These six computer programs for PCs accompany the paper: Crawford, J. R., Garthwaite, P. H., and Porter, S. (2010). Point and interval estimates of effect sizes for the case‑controls design in neuropsychology: Rationale, methods, implementations, and proposed reporting standards. Cognitive Neuropsychology, 27, 245-260..
The programs are all new versions of earlier programs: they are upgraded to provide point and interval estimates of effect sizes for the difference between a case and controls.
Details of each program are provided in the table below. To download a program click on its name in the left hand column of the table and save it to disk (once downloaded click on the program icon to run). Alternatively, click here for a zip file containing all six programs.
Computer Program |
Description |
This program is an upgraded version of the program Singlims.exe (Crawford & Garthwaite, 2002). It implements classical methods for comparison of a single‑case’s score to scores obtained in a control sample. The interval estimate of the effect size for the difference between case and controls is obtained using classical methods |
|
This program is an upgraded version of the program SingleBayes.exe (Crawford & Garthwaite, 2007). It implements Bayesian methods for comparison of a single‑case’s score to scores obtained in a control sample. The interval estimate of the effect size for the difference between case and controls is obtained using Bayesian methods |
|
This program is an upgraded version of the program RSDT.exe (Crawford & Garthwaite, 2005). It implements classical methods to test for a difference between a single‑case’s scores on two tasks by comparing the difference against differences observed in a control sample. Note that, although the hypothesis test is a classical test, the interval estimate of the effect size is obtained using Bayesian methods. |
|
This program is an upgraded version of the program DiffBayes.exe (Crawford & Garthwaite, 2007). It implements Bayesian methods to test for a difference between a single‑case’s scores on two tasks by comparing the difference against differences observed in a control sample. The interval estimate of the effect size is obtained using Bayesian methods. |
|
This program is an upgraded version of Dissocs.exe (Crawford & Garthwaite, 2005). It tests if a single‑case meets criteria for a dissociation using classical statistical methods. The interval estimates of the effect size for the difference between the case’s score and controls on each of the two tasks is obtained using classical methods; the interval estimate of the effect size for the difference between tasks is obtained using Bayesian methods. Note also that the upgraded version now offers the option of using a one‑tailed test when testing for a difference between a case’s X and Y scores (a two-tailed test remains as the default) |
|
This program is an upgraded version of Bayes_Dissocs.exe (Crawford & Garthwaite, 2007). It tests if a single‑case meets criteria for a dissociation using Bayesian statistical methods. All interval estimates of effect size are obtained using Bayesian methods. Note also that the upgraded version now offers the option of using a one‑tailed test when testing for a difference between a case’s X and Y scores (a two-tailed test remains as the default) |
Your web browser is most probably configured to recognise that the files are executable. If you have any problems (i.e. the browser treats them as text files), hold down the shift key when clicking. If your network does not allow downloads of executables then downloading the zip file is a solution.
The author of this software (John R Crawford) and the University of Aberdeen make no representations about the suitability of the software or about any content or information made accessible by the software, for any purpose.
The software is provided 'as is' without express or implied warranties, including warranties of merchantability and fitness for a particular purpose or noninfringement.
The software is provided gratuitously and, accordingly, the author shall not be liable under any theory or any damages suffered by you or any user of the software.
If there are any problems please e-mail me at j.crawford@abdn.ac.uk. Further contact details are available in the footer of this page.