







- 5 1 Sun, containing 99.9% of mass
- 8 planets; 5 dwarf planets, and counting
- 15 moons over 1000 km in diameter
- ∼100,000 asteroids
- probably billions of Kuiper belt objects, scattered disc
   objects and Oort cloud objects
  - Y including billions of potential comets
- billions of meteorites, meteoroids and debris
- 🐤 solar wind
- comagnetic field

#### Bode's Law of Planetary Distances 🖈





If *a* is the average distance of a planet to the Sun, then:

$$a = \frac{3n+4}{10} \text{AU} \quad , \quad n = 0, 1, 2, 4, 8, 16, 32$$

$$n = 0 \text{ for Mercury}$$

$$n = 1 \text{ for Venus}$$

$$n = 2 \text{ for Earth}$$

$$n = 4 \text{ for Mars}$$

$$n = 8 \text{ for?} \quad - \text{ Ceres (1801)}$$

$$n = 16 \text{ for Jupiter}$$

$$n = 32 \text{ for Saturn}$$

$$n = 64 \text{ for?} \quad - \text{ Uranus (1784)}$$



After
K & K
chapter
7 table

| n   | Bode's Law<br>Prediction | Today's Measured<br>Distance (AU) | Object  |
|-----|--------------------------|-----------------------------------|---------|
| 0   | 0.4                      | 0.39                              | Mercury |
| 1   | 0.7                      | 0.72                              | Venus   |
| 2   | 1                        | 1                                 | Earth   |
| 4   | 1.6                      | 1.52                              | Mars    |
| 8   | 2.8                      | 2.8                               | Ceres   |
| 16  | 5.2                      | 5.2                               | Jupiter |
| 32  | 10                       | 9.54                              | Saturn  |
| 64  | 19.6                     | 19.19                             | Uranus  |
|     |                          | 30.06                             | Neptune |
| 128 | 38.8                     | 39.4                              | Pluto   |



















Densities are calculated from ratio

density 
$$(kg \ m^{-3}) = \frac{mass(kg)}{volume(m^3)}$$

- Terrestrial planets are mainly rocky matter, with a molten core
- Jovian planets are mainly gas and liquid, with a rock core





























Welchy Asur Faith Wate Indited Samur Meding Sing

Data from K & K

**Planet** 





- \* Rotation is generally in the same direction:
  - rotation of Sun (equator rotates faster than polar regions)
  - rotation of planets about their axes (except Venus, Uranus and Pluto)
  - orbits of planets about Sun
  - orbits of moons about planets  $\gamma > 100$  named moons
- Most orbits nearly circular and in same plane
- \* All Jovian planets have ring systems



- Average energy (½mv²) of molecules ∝ temp
  - ighter molecules therefore move faster
- In a gas there is a wide range of molecular speeds, called the Maxwell distribution → [next slide]
  - a significant number of molecules travel at more than 10 times the average speed
  - if they reach the escape velocity without colliding any more, they will escape
- \* The Earth has lost its primitive H<sub>2</sub> and He







# How Molecular Speeds Depend on Temperature

Each planet is plotted at its atmospheric temperature and escape velocity





- system nearly planar
- angular momentum mostly in outer regions
- spacing of planets increases with distance from Sun
- chemical composition of planets
- cratering everywhere
- ring systems on Jovian planets
- presence of asteroids, comets & meteorites
- Planetary systems likely to be common around other single stars – prediction prior to planet discoveries



- Catastrophe theories consider the Solar system pulled out from a star
  - the physics and chemistry of catastrophe theories cannot be made to produce the observed features
- Evolutionary theories describe formation from an initial large cloud of rotating gas
  - gravitational attraction along with conservation of angular momentum gives the condensing cloud a disk shape



- Collapse parallel to the rotation axis does not redistribute angular momentum
- Collapse perpendicular to the rotation axis causes the cloud to spin faster



### Modern Evolutionary Theory

- von Weizäcker's analysis of a rotating gas condensing around a *protosun* showed that the gas would form eddies, with larger eddies further from the centre
- Planetessimals slowly formed by collision
  - asteroids are remnant planetesimals that failed to join together due to the stirring influence of Jupiter
- The expected fast rotation of the Sun was slowed by the influence of its magnetic field on the ionised gas it created



#### Sol from α Centauri

🎂 Capella (Alpha Aur

Courtesy:

http://www.astronexus.com



Some 300 stars now have confirmed planets

All candidates within ~100 LY of Earth have

been examined

Most common technique
is to detect very small
Doppler shifts of spectral
lines from parent stars





- Most planets detected are
  - close to their stars
  - have masses like Jupiter
  - are in eccentric orbits





Courtesy: http://exoplanets.org/massradiiframe.html



















- N celestialhemisphere →
- For 3D skymap
  - http://media4.obspm.fr/exoplanets/b ase/carte3d.php



Courtesy: http://media4.obspm.fr/exoplanets/base/carte.php





- Large planets provide the biggest wobble of their parent stars
  - the closest large planet in the solar system (Jupiter) orbits in ~12 years
  - looking for changes in stars over times as long as this requires patience and instrument stability
- The new perception is the discovery that large planets that circle their parent in only a few days exist around some stars
  - planetary systems like these are unlike the solar system









HD209458 is a Sun-like star 150 LY distant in the constellation of Pegasus

it has a planet  $0.7M_{Jup}$  orbiting in 3.5 days







Courtesy: A. Feild \( \)

## Transit of HD209458

- The planet transits the star, affecting the light received
- The planet is bigger than Jupiter





Light absorbed

by planet itself-

Time

Brightness

of star

Courtesy: A. Feild \( \)



Duration

of transit

Additional light

absorbed by

atmosphere

planetary

Courtesy: Z. Levay ↑



- Giant planets close in to their parent stars will have temperatures of over 1000°C facing the star
- Detecting Earth-like planets will not be easy
  - 47 UMa has at least 2 giant planets in circular orbit at a distance of several AU
  - a new era in astronomy has dawned
  - new instruments, including giant mirrors and custom designed space probes
  - new techniques such as looking for the dip in light as a planet transits its parent star





- Nearby star: 20 LY distance
- Red dwarf star; m = 10.5;  $T \sim 3500$  K;  $\sim 1\%$  output of Sun; mass  $\sim 0.3 M_{\odot}$
- 3 planets discovered by wobble technique
- Outer 2 (Gliese 581 c & Gliese 581 d) discovered in 2007 at either edge of habitable zone; both larger than Earth
- May be most Earth-like planets found; may be more like large Venus and large Mars, too hot and too cold



- Mission to look for Earth-like planets using the transit dimming technique
- Monitoring light emission from 100,000+ stars to a precision of 20 ppm in a fixed area of sky for 4 6 years
- Launch Feb 2009 into Earth-trailing heliocentric orbit





