
Representational Succinctness of
Abstract Dialectical Frameworks

Hannes Strass

Computer Science Institute, Leipzig University, Leipzig, Germany

Abstract Representational succinctness is the ability of a formalism with model-
theoretic semantics to express interpretation sets in a space-efficient way. In this
paper we analyse the representational succinctness of abstract dialectical frame-
works (ADFs) under the two-valued model semantics. We also compare ADFs’
succinctness to related formalisms like propositional logic, argumentation frame-
works (under stable extension semantics), and normal logic programs (under sup-
ported model semantics). This concerns a fundamental computational aspect of
(argumentation) formalisms, as representation size is important both for storing
descriptions and reasoning over them.

1 Introduction

When can a formal model of argumentation be considered computational?
To us, being “computational” means that the model can – in principle and in practice

– be stored and processed by a computer. One crucial aspect of storage and processing
is representation size. If a model produces descriptions of infinite size, the model is
not computational in principle, since infinite descriptions cannot be processed by fi-
nite machines. If a model produces descriptions of at least exponential size in the best
case, it is computational in principle but not in practice, as reasoning cost (in terms of
computation time) and representation size tend to correlate positively.

Clearly Dung’s abstract argumentation frameworks (AFs) [1] are computational (in
principle whenever they are finite, in practice if they are of “practical” size), since ar-
guments and pairs of arguments (that is, attacks) could be represented by bit strings
(among other possibilities). However, it has long been noted that the means of expres-
sion offered by AFs are quite limited. “Means of expression” here refers to express-
iveness in the sense of realisability, that is, the interpretation-sets that can be produced
by some AF. This has recently been made technically precise by Dunne et al. [2], who
basically showed that introducing new, purely technical arguments is sometimes inev-
itable when using AFs for representation purposes. However, due to their very nature,
the dialectical meaning of such technical arguments might be – ironically – debatable.

A more expressive alternative to AFs are the abstract dialectical frameworks (ADFs)
of Brewka and Woltran [3,4]. There – even in the restricted subclass of bipolar ADFs
– arguments can also support each other, in addition to the AF notion of attack. ADFs
could be called the lovechild of AFs and logic programs, since they combine intu-
itions and semantics from Dung-style abstract argumentation as well as logic program-
ming [4,5,6]. While on the abstract level, ADFs are intended to function as “argument-
ation middleware” – a target formalism for translations from more concrete formalisms

that is still sufficiently expressive. As part of the ADF success story, we just mention
a reconstruction of the Carneades model of argument [7], an instantiation of simple
defeasible theories into ADFs [8], and recent applications of ADFs for legal reasoning
and reasoning with cases by Al-Abdulkarim et al. [9,10].

In this paper, we approach argumentation formalisms as knowledge representation
formalisms, since they are used to represent knowledge about arguments and relation-
ships between these arguments. We employ this view to analyse the representational
capabilities of ADFs. Due to their roots in AFs and logic programs [3,5], we also com-
pare the representational capabilities of these formalisms in the same setting. In this
initial study we restrict ourselves to looking at two-valued semantics, more specific-
ally the ADF model semantics, which corresponds to AF stable extension semantics,
and the supported model semantics for logic programs. One of our main results is that
ADFs are – in a formally defined sense – representationally strictly more efficient than
normal logic programs. Moreover, even bipolar ADFs can polynomially express some
model sets that normal logic programs cannot. This is especially significant given that
ADFs and normal logic programs (under the semantics we consider here) are equally
expressive [11] and have the same computational complexity.1

Analysing the expressiveness of argumentation formalisms is a quite recent strand
of work. Its ascent can be attributed to Dunne et al. [2], who studied realisability for
argumentation frameworks (allowing to introduce new arguments as long as they are
never accepted). Likewise, Dyrkolbotn [15] analysed AF realisability under projection
(allowing to introduce new arguments) for three-valued semantics. Baumann et al. [16]
studied the expressiveness of the subclass of “compact” AFs, where each argument is
accepted at least once. In previous work of our own, we analysed the expressiveness of
ADFs and compared it with that of AFs and logic programs, also restricted to a two-
valued setting, however only studying expressive power without addressing representa-
tional efficiency [11]. Finally, and most recently, Puehrer [17] analysed the realisability
of three-valued semantics for ADFs. In the present paper we take the next step and also
consider the sizes of realisations, as is not uncommon in logic-based AI [18,19,20,21].
Indeed, representation size is a fundamental practical aspect of knowledge represent-
ation languages: universal expressiveness is of little use if the model sets to express
require exponential-size knowledge bases even in the best case!

On the technical side of our analysis, we can make use of a powerful methodology
to analyse and compare the expressive power and expressive efficiency of knowledge
representation formalisms, a methodology that was introduced in a landmark paper by
Gogic et al. [22]. According to their definition, a formalism X is exponentially more
succinct than a formalism Y if and only if every knowledge base of Y has an equivalent
knowledge base in X that is at most polynomially larger, but there is a knowledge
base of formalism X whose smallest equivalent knowledge base in Y is exponentially
larger [22]. The word “equivalent” here means syntactical equality of the sets of models,
and so explicitly rules out introducing and projecting out new variables. As [22] pointed
out, representational succinctness is different from computational complexity, as the
latter is only interested in preserving the answer to a decision problem, and the former
is interested in preserving the precise set of models under a fixed vocabulary.

1 More precisely, the model existence problem is equally complex, NP-complete [12,13,4,14].

It might seem that viewing formalisms as sets of knowledge bases associated with
a two-valued semantics is a restricting assumption. However, this language representa-
tion model is universal in the sense that it is just another way of expressing languages as
sets of words over {0, 1}. Using an n-element vocabulary An = {a1, . . . , an}, a binary
wordw = x1x2 · · ·xn of length n is encoded as the setMw = {ai ∈ An | xi = 1} ⊆ An.
For example, using the vocabulary A3 = {a1, a2, a3}, the binary word 101 of length 3
corresponds to the set M101 = {a1, a3}. Consequently, a set Ln of words of length n
can be represented by a set XLn ⊆ 2An of subsets of An; conversely, each sequence
(Xn)n≥0 of sets with Xn ⊆ 2An uniquely determines a language L =

⋃
n≥0 Ln over

{0, 1}. In this paper we use “language” to refer to object-level languages while “formal-
ism” refers to meta-level languages, such as propositional logic, argumentation frame-
works, abstract dialectical frameworks, and logic programs.

Formally, the syntax of ADFs is defined via Boolean functions. However, we are
interested in representations of ADFs. So we have to fix a representation of ADFs via
fixing a representation of Boolean functions. We choose to use propositional formu-
las, as is customary in most of the literature [3,4,14]. Exceptions to this custom are
the works of Brewka et al. [23], who use Boolean circuits, and [5], where we used
characteristic models (that is, represented the formulas in disjunctive normal form). For
the subclass of bipolar ADFs, yet no uniform representation exists, which is another
question that we will address in this paper.

By propositional formulas over a vocabularyA we mean formulas over the Boolean
basis {∧,∨,¬}, that is, trees whose leaves (sinks) are atoms from A or the logical
constants true > or false ⊥, and internal nodes are either unary (¬) or binary (∧,∨).
We also make occasional use of Boolean circuits, where “trees” above is replaced by
“directed acyclic graphs”; in particular, we allow unbounded fan-in, that is, reusing
subcircuits. As usual, the depth of a formula (circuit) is the length of the longest path
from the root to a leaf (sink). Figure 1 below shows an example of depth 3.

∨

∧ ∧

p

¬

q q

¬

p

∨

∧ ∧

¬

q

¬

p

Figure 1: Representing (p∧¬q)∨ (q∧¬p) as a formula tree (left) and a circuit (right).

Analysing the expressive power and representation size of Boolean circuits is an
established subfield of computational complexity [24]. This has led to a number of lan-
guage classes whose members can be recognised by Boolean circuits satisfying certain
restrictions. We will need the class AC0, which contains all languages L =

⋃
n≥0 Ln

for which there exist d, k ∈ N such that for each n ∈ N, there exists a Boolean circuit
Cn of depth at most d and size at most nk where the models ofCn exactly expressXLn .
In other words, every language L ∈ AC0 can be recognised by a family of polynomial-
size Boolean circuits of a fixed maximal depth that is independent of word length.

The rest of the paper proceeds as follows. We next formally define the succinctness
relation for formalisms, and what it means for a formalism to polynomially express
an object-level language. Then we define the notion of bipolar propositional formula
and show a correspondence to the semantical notion of bipolar Boolean function as
implicitly defined by Brewka and Woltran [3]. The main part of the paper analyses the
succinctness of (bipolar) ADFs and compares it to the other mentioned languages. We
then conclude with a discussion of remaining problems and possible future work.

2 Background

We presume a finite set A of atoms (statements, arguments), the vocabulary. A know-
ledge representation formalism interpreted over A is then some set F ; a (two-valued)
semantics for F is a mapping σ : F → 22

A

that assigns sets of two-valued models to
knowledge bases kb ∈ F . (So A is implicit in F .) Below, we write the set of realisable
model sets of a formalism as σ(F) = {σ(kb) | kb ∈ F}.

Definition 1. Let A be a finite vocabulary, F1,F2 be formalisms that are interpreted
over A, have size measures ‖·‖1 and ‖·‖2, and two-valued semantics σ1 and σ2, re-
spectively. Define Fσ1

1 ≤s F
σ2
2 if and only if there is a k ∈ N such that for all kb1 ∈ F1

with σ1(kb1) ∈ σ1(F1) ∩ σ2(F2), there is a kb2 ∈ F2 with σ1(kb1) = σ2(kb2) and
‖kb2‖2 ≤ ‖kb1‖

k
1 .

Intuitively, any knowledge base fromF1 with an equivalent counterpart inF2 must have
an equivalent counterpart that is at most polynomially larger. Note that succinctness
talks only about those model sets that both can express, so it is most meaningful when
comparing languages that are equally expressive, that is, whenever σ1(F1) = σ2(F2).
As usual, we defineF1 <s F2 iffF1 ≤s F2 andF2 6≤s F1, andF1

∼=s F2 iffF1 ≤s F2

and F2 ≤s F1. The relation ≤s is reflexive, but not necessarily antisymmetric or trans-
itive.

Definition 2. A formalism F can polynomially express a language L =
⋃
n≥0 Ln un-

der semantics σ : F → 22
A

if and only if there is a k ∈ N such that for each positive
n ∈ N there is a knowledge base kbn ∈ F of that formalism such that σ(kbn) = Ln
and ‖kbn‖ ∈ O(nk).

We next introduce some specific object-level languages that we will use. First of all,
the language PARITY contains all odd-element subsets of the vocabulary. Formally, for
An = {a1, . . . , an} with n ≥ 1 we have

PARITYn = {M ⊆ An | ∃m ∈ N : |M | = 2m+ 1}

As explained before, then PARITY =
⋃
n∈N,n≥1 PARITYn. It is a textbook result that

PARITY is expressible by polynomial-size propositional formulas [25]; for example,

we can define ΦPARITY
1 (a1) = a1 and for n ≥ 2 set

ΦPARITY
n (a1, . . . , an) = (ΦPARITY

n↓
(a1, . . . , an↓) ∧ ¬ΦPARITY

n↑
(an↓+1, . . . , an)) ∨

(¬ΦPARITY
n↓

(a1, . . . , an↓) ∧ ΦPARITY
n↑

(an↓+1, . . . , an))

with n↓ =
⌊
n
2

⌋
and n↑ =

⌈
n
2

⌉
. (This construction yields a formula of logarithmic depth

and therefore polynomial size.) It is also a textbook result that PARITY cannot be ex-
pressed by depth-bounded polynomial-size circuits, that is, PARITY /∈ AC0 [25].

As another important class, threshold languages are defined for n, k ∈ N with n ≥ 1
and k ≤ n:

THRESHOLDn,k = {M ⊆ An | k ≤ |M |}

That is, THRESHOLDn,k contains all interpretations with at least k true atoms. The spe-
cial case k =

⌈
n
2

⌉
leads to the majority languages, MAJORITYn = THRESHOLDn,dn2 e

containing all interpretations where at least half of the atoms in the vocabulary are true.
The following subsections introduce the particular knowledge representation form-

alisms we study in this paper. All will make use of a vocabulary A; the results of the
paper are all considered parametric in such a given vocabulary.

2.1 Argumentation Frameworks

Dung [1] introduced argumentation frameworks as pairs F = (A,R) where A is a set
of (abstract) arguments and R ⊆ A×A a relation of attack between the arguments.
The purpose of semantics for argumentation frameworks is to determine sets of argu-
ments (called extensions) which are acceptable according to various standards. For a
given extension S ⊆ A, the arguments in S are considered to be accepted, those that
are attacked by some argument in S are considered to be rejected, and all others are
neither, their status is undecided. We will only be interested in so-called stable exten-
sions, defined as follows: A set S ⊆ A of arguments is conflict-free iff there are no
a, b ∈ S with (a, b) ∈ R. A set S is a stable extension for (A,R) iff it is conflict-free
and for all a ∈ A \ S there is a b ∈ S with (b, a) ∈ R. In stable extensions, each argu-
ment is either accepted or rejected by definition, thus the semantics is two-valued. The
size of an argumentation framework F = (A,R) is ‖F‖ = |A|+ |R|.

2.2 Abstract Dialectical Frameworks

An abstract dialectical framework is a tuple D = (A,L,C) where A is a set of state-
ments (representing positions one can take or not take in a debate), L ⊆ A×A is a set
of links (representing dependencies between the positions), C = {Ca}a∈A is a collec-
tion of total functions Ca : 2par(a) → {t, f}, one for each statement a. The function
Ca is called acceptance condition of a and expresses whether a can be accepted, given
the acceptance status of its parents par(a), that is, nodes with a direct link to a. In this
paper, we represent each Ca by a propositional formula ϕa over par(a). Then, clearly,
for M ⊆ A we have Ca(M ∩ par(a)) = t iff M is a model for ϕa, i.e. M |= ϕa.

[3] introduced a useful subclass of ADFs: an ADF D = (A,L,C) is bipolar iff
all links in L are supporting or attacking (or both). A link (b, a) ∈ L is supporting in

D iff for all M ⊆ par(a), we have that Ca(M) = t implies Ca(M ∪ {b}) = t. Sym-
metrically, a link (b, a) ∈ L is attacking in D iff for all M ⊆ par(a), we have that
Ca(M ∪ {b}) = t implies Ca(M) = t. If a link (b, a) is both supporting and attacking
then b has no influence on a, the link is redundant (but does not violate bipolarity).
We will sometimes use this circumstance when searching for ADFs; there we simply
assume that L = A×A, then links that are actually not needed can be expressed by
acceptance conditions that make them redundant.

A set M ⊆ A is a model of D iff for all a ∈ A we find that a ∈M iff Ca(M) = t.
The set of models of D is written as su(D). The size of an ADF D over A is given by
‖D‖ =

∑
a∈A ‖ϕa‖; the size ‖ϕ‖ of a formula ϕ is the number of its nodes.

2.3 Logic Programs

For a vocabulary A define not A = {not a | a ∈ A} and the set of literals over A as
A± = A ∪ not A. A normal logic program rule over A is then of the form a← B
where a ∈ A and B ⊆ A±. The set B is called the body of the rule, we abbrevi-
ate B+ = B ∩A and B− = {a ∈ A | not a ∈ B}. A logic program (LP) P over A
is a set of logic program rules over A. The body of a rule a← B ∈ P is satisfied
by a set M ⊆ A iff B+ ⊆M and B− ∩M = ∅. M is a supported model for P iff
M = {a ∈ A | a← B ∈ P,B is satisfied by M}. For a logic program P we denote the
set of its supported models by su(P). As size measure we define ‖a← B‖ = |B|+ 1
for rules and ‖P‖ =

∑
r∈P ‖r‖ for programs.

2.4 Translations between the formalisms

From AFs to BADFs Brewka and Woltran [3] showed how to translate AFs into
ADFs: For an AF F = (A,R), define the ADF associated to F as DF = (A,R,C)
with C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. The resulting ADF is bipolar

since parents are always attacking. Brewka and Woltran [3] proved that this translation
is faithful for the AF stable extension and ADF model semantics (Proposition 1). The
translation induces at most a linear blowup.
From ADFs to PL Brewka and Woltran [3] also showed that ADFs under supported
model semantics can be faithfully translated into propositional logic: when acceptance
conditions of statements a ∈ A are represented by propositional formulas ϕa, then the
supported models of an ADF D over A are given by the classical propositional models
of the formula set ΦD = {a↔ ϕa | a ∈ A}.
From AFs to PL In combination, the previous two translations yield a polynomial and
faithful translation chain from AFs into propositional logic.
From ADFs to LPs We [5] showed that ADFs can be faithfully translated into normal
logic programs. For an ADF D = (A,L,C), its standard LP PD is given by

{a← (M ∪ not (par(a) \M)) | a ∈ A,Ca(M) = t}

It is a consequence of Lemma 3.14 in [5] that this translation preserves the supported
model semantics. The translation is size-preserving for the acceptance condition rep-
resentation of [5] via characteristic models; when representing acceptance conditions
via propositional formulas, this cannot be guaranteed as we will show later.

From AFs to LPs The translation chain from AFs to ADFs to LPs is compact, and
faithful for AF stable semantics and LP supported semantics [5]. It is also size-preserving
since the single rule for each atom contains all attackers once.
From LPs to PL It is well-known that logic programs under supported model se-
mantics can be translated to propositional logic [26]. A logic program P becomes the
propositional theory ΦP = {a↔ ϕa | a ∈ A} where (for a ∈ A)

ϕa =
∨

a←B∈P

(∧
b∈B+

b ∧
∧
b∈B−

¬b

)

From LPs to ADFs The predicate completion of a normal logic program [26] directly
yields an equivalent ADF over the same signature [3]. The translation is computable
in polynomial time and the blowup (with respect to the original logic program) is at
most linear. The translation is faithful for the supported model semantics, which is a
consequence of Lemma 3.16 in [5].

2.5 Relative Expressiveness

Given two formalisms F1,F2 with semantics σ1, σ2, we say that F2 under σ2 is at least
as expressive as F1 under σ1 if and only if σ1(F1) ⊆ σ2(F2). This induces a partial
order, and its associated strict partial order can be defined as usual. According to this
definition, argumentation frameworks (under stable extension semantics) are strictly
less expressive than bipolar ADFs (under model semantics), which are in turn strictly
less expressive than general ADFs (also under model semantics), normal logic pro-
grams (under supported model semantics) and propositional logic [11]. The latter three
formalisms are all universally expressive, that is, using vocabulary A they can express
any subset X ⊆ 2A. This is relevant for our work since relative succinctness concerns
only model sets that both considered formalisms can express.

3 Main Results

3.1 Representing Bipolar Boolean Functions

While bipolarity has hitherto predominantly been defined and used in the context of
ADFs [3], it is easy to define the concept for Boolean functions in general. Let A be a
set of atoms and f : 2A → {t, f} be a Boolean function. An atom a ∈ A is supporting
iff for all M ⊆ A, f(M) = t implies f(M ∪ {a}) = t; we then write a ∈ sup(f). An
atom a ∈ A is attacking iff for all M ⊆ A, f(M) = f implies f(M ∪ {a}) = f ; we
then write a ∈ att(f). A Boolean function f : 2A → {t, f} is semantically bipolar iff
each a ∈ A is supporting or attacking or both.

We will now define bipolar propositional formulas for representing bipolar ADFs.
This is important not only for our study, but also since (for three-valued semantics),
bipolarity is the key to BADFs’ low complexity in comparison to general ADFs [14].
Formally, the polarity of an atom a ∈ A in a formula is determined by the number of
negations on the path from the root of the formula tree to the atom. The polarity is
positive if the number is even and negative if the number is odd.

Definition 3. A propositional formula ϕ over A is syntactically bipolar if and only if
no atom a ∈ A occurs both positively and negatively in ϕ.

We will now address the question how to represent bipolar Boolean functions. It is a
textbook result that all Boolean functions can be represented by propositional formu-
las [24,25]. We modify this construction later and thus reproduce it here. For a Boolean
function f : 2A → {t, f}, its associated formula is

ϕf =
∨

M⊆A,f(M)=t

ϕM with ϕM =
∧
a∈M

a ∧
∧

a∈A\M

¬a (1)

That is, each ϕM has exactly one model M , and ϕf enumerates those models.
So in particular, all bipolar Boolean functions can be represented by propositional

formulas as well. However, this only guarantees us the existence of such representations
but gives us no way to actually obtain them. Our first fundamental result shows how we
can construct a syntactically bipolar propositional formula from a given semantically
bipolar Boolean function. The converse is straightforward, and thus the two notions of
bipolarity are closely related. For a formula ϕ, its Boolean function fϕ returns t iff
given a model of ϕ.

Theorem 1. Let A be a set of atoms.

1. For each syntactically bipolar formula ϕ over A, its Boolean function fϕ is se-
mantically bipolar.

2. For each semantically bipolar Boolean function f : 2A → {t, f}, there exists a syn-
tactically bipolar formula ψf with fψf = f .

Proof. 1. Obvious: every atom occurring only positively is supporting, every atom
occurring only negatively is attacking.

2. Let f : 2A → {t, f} be semantically bipolar. We slightly modify construction (1) to
define ψf :

ψf =
∨

M⊆A,
f(M)=t

ψM with ψM =
∧
a∈M,

a/∈att(f)

a ∧
∧

a∈A\M,

a/∈sup(f)

¬a

(Note that for any M ⊆ A we have |= ϕM → ψM .) It is easy to see that ψf is
syntactically bipolar: Since f is semantically bipolar, each a ∈ A is: (1) attacking
and not supporting, then it occurs only negatively in ψf ; or (2) supporting and not
attacking, then it occurs only positively in ψf ; or (3) supporting and attacking, then
it does not occur in ψf . It remains to show that fψf = f ; we show |= ϕf ≡ ψf .
|= ϕf → ψf : Let v : A→ {t, f} with v(ϕf) = t. Then there is an M ⊆ A such

that f(M) = t and v(ϕM) = t. (Clearly v = vM .) By |= ϕM → ψM we get
v(ψM) = t and thus v(ψf) = t.

|= ψf → ϕf : For each model v of ψf , there is an M ⊆ A with f(M) = t such
that v(ψM) = t. To show that each model of ψf is a model of ϕf , we show
that for all M ⊆ A with f(M) = t, each model v of ψM is a model of ϕf .
Let |A| = n. Then each ϕM contains exactly n literals. For the corresponding

ψM there is a k ∈ N with 0 ≤ k ≤ n such that ψM contains exactly n− k lit-
erals. For two interpretations v1 : A→ {t, f} and v2 : A→ {t, f}, define the
difference between them as δ(v1, v2) = {a ∈ A | v1(a) 6= v2(a)}. (Note that
for |A| = n we always have |δ(v1, v2)| ≤ n.) We will use induction on k to
show the following: for each M ⊆ A with f(M) = t, each v : A→ {t, f}
with v(ψM) = t and |δ(v, vM)| = k we find that v(ϕf) = t. This covers all
models v of ψf (since |δ(v, vM)| ≤ |A|) and thus establishes the claim.
k = 0: δ(v, vM) = 0 implies v = vM whence v(ϕf) = vM (ϕf) = vM (ϕM) = t

by definition of ϕM and ϕf .
k k + 1: Let M ⊆ A with f(M) = t, and v : A→ {t, f} with v(ψM) = t

and |δ(v, vM)| = k + 1. Since k + 1 > 0, there is some a ∈ δ(v, vM), that
is, an a ∈ A with v(a) 6= vM (a).
(a) a is supporting and not attacking. Then necessarily v(a) = t. (If v(a) = f ,

then vM (a) 6= v(a) implies vM (a) = t, that is, a ∈M whence {ψM} |= a
and v(ψM) = f , contradiction.) Define the interpretationw : A→ {t, f}
such thatw(a) = f andw(c) = v(c) for c ∈ A \ {a}. Clearly δ(v, w) = {a}
and |δ(w, vM)| = k. Hence the induction hypothesis applies to w and
w(ϕf) = t. Now w(a) = f , v(a) = t and w(ϕf) = t. Since a is sup-
porting, also v(ϕf) = t.

(b) a is attacking and not supporting. Symmetric to the opposite case
above.

(c) a is both supporting and attacking. Define the interpretationw : A→ {t, f}
such that w(a) = vM (a) and w(c) = v(c) for c ∈ A \ {a}. It follows
that |δ(w, vM)| = k, whence the induction hypothesis applies to w
and w(ϕf) = t. Since a is both supporting and attacking, we get that
v(ϕf) = w(ϕf) = t. �

3.2 Relative Succinctness

From the intertranslation results reviewed in the background section, we can infer the
following relationships:

AF ≤s BADFsu ≤s ADFsu ≤s PL and LPsu ≤s ADFsu

It is easy to see that AFs have a somewhat special role as they are representationally
succinct in any case: for a vocabularyAn, there is syntactically no possibility to specify
a knowledge base (an AF) of exponential size, since the largest AF over An has size
‖(An, An ×An)‖ = n+ n2 and is thus polynomially large. So anything that can be
expressed with an AF can be expressed in reasonable space by definition. However,
this “strength” of AFs should be taken with a grain of salt, since they are comparably
inexpressive [11]. This can already be seen from a simple counting argument: even
if all syntactically different AFs over An were semantically different (which they are
not), they could express at most 2n

2

different model sets, which is – for increasing n –
negligible in relation to the 22

n

possible model sets over An.
In contrast, it turns out that ADFs (under the model semantics) are not only as ex-

pressive, but also as succinct as propositional logic. This is due to the fact that proposi-
tional formulas can be transformed into ADFs (over the same vocabulary) with at most

linear blowup. This next result improves upon our result in [11], where we provided
only a semantic realisation – a construction taking a set of models and yielding an ADF
of a size that is (while linear in the size of the given set of models) worst-case exponen-
tial in the number of statements.

Theorem 2. PL ≤s ADFsu .

Proof. Let ψ be a propositional formula over vocabulary A with |A| = n. Define the
ADF Dψ over A by setting ϕa = a↔ ψ = (a ∧ ψ) ∨ (¬a ∧ ¬ψ) for all a ∈ A. Thus
‖ϕa‖ ∈ O(‖ψ‖), whence ‖Dψ‖ ∈ O(n ‖ψ‖). It remains to show su(Dψ) = mod(ψ).
Recall that for any ADF D over A, su(D) = mod(ΦD) for ΦD =

∧
a∈A (a↔ ϕa).

Applying the definition of ϕa in Dψ yields

ΦDψ =
∧
a∈A (a↔ (a↔ ψ))

Now for any a ∈ A, the formula (a↔ (a↔ ψ)) is equivalent to ψ. (The proof is by
case distinction on a.) Thus ΦDψ is equivalent to

∧
a∈A ψ, that is, to ψ, and it follows

that su(Dψ) = mod(ΦDψ) = mod(ψ). �

For example, consider the vocabulary A = {a, b} and the propositional formula
ψ = a ∧ b. The canonical construction above yields ADFDψ with acceptance formulas
ϕa = a↔ (a ∧ b) and ϕb = b↔ (a ∧ b). Now we have:

ϕa = a↔ (a ∧ b) = (a→ (a ∧ b)) ∧ ((a ∧ b)→ a) ≡ ¬a ∨ (a ∧ b) ≡ ¬a ∨ b

Intuitively, ϕa = ¬a ∨ b expresses that a cannot be false, and is true if b is true. By a
symmetrical argument, the acceptance formula of b is equivalent to ¬b ∨ a. It is readily
checked that su(Dψ) = {{a, b}} as desired. Since we know that the converse transla-
tion is also possible, we get the following.

Corollary 1. PL ∼=s ADFsu

It is quite obvious that the canonical ADF constructed in Theorem 2 is not bipolar,
since a as well as every atom mentioned by ψ occurs both positively and negatively in
ϕa. From the general construction of Theorem 2 it follows that if ψ has a “small” con-
junctive normal form (a conjunction of clauses) and disjunctive normal form (disjunc-
tion of monomials) representation, then there is also a “small” normal logic program
representation for mod(ψ).

For the opposite direction, it is easy to see that any language that is polynomially
expressible by normal logic programs under supported semantics is in AC0. For the
stable semantics of so-called canonical logic programs, this has recently been shown
by Shen and Zhao [21] (Proposition 2.1). The case we are interested in (supported
semantics) works similarly, but we still present the proof for completeness.

The main technical result towards proving that is a lemma showing how to turn a
logic program into an equivalent Boolean circuit of a fixed depth.

Lemma 1. For every normal logic program P , there exists a circuit CP over the basis
{¬,∧,∨} such that (1) CP accepts all and only the supported models of P , (2) the size
of CP is linear the size of P , (3) CP has depth 4.

Proof. Let A = {a1, . . . , an} be the vocabulary of P , and its Clark completion be
ΦP = {ai ↔ ψi | ai ∈ A} where the ψi are DNFs over literals from A. Clearly the
circuit for ΦP must compute CP =

∧
ai∈A(ai ↔ ψi) where ai ↔ ψi can be replaced

by (¬ai ∨ψi)∧ (ai ∨¬ψi) with ¬ψi a CNF over literals from A. The construction can
be depicted as follows, where the inner layers are shown for one i only, and dotted lines
represent potential edges.

∧

∨ψi → ai ∨ ai → ψi.

∧¬ψi ∧ . . . ∧

∨. . .∨

ai ¬aia1 ¬a1 . . . an ¬an. . .

Now (1) follows since su(P) = mod(ΦP) and CP accepts all and only the models of
ΦP . For (2), if P contains m = |P | rules, then m ≤ ‖P‖ and the total number of inner
gates is bounded by n(2m+ 3) ≤ n(2 · ‖P‖+ 3). (3) is clear. �

While the statement of Lemma 1 is actually much stronger and gives a constant
upper bound of the resulting circuit depth for arbitrarily-sized logic programs, it readily
follows that the set of polynomially logic-program expressible languages is a subset of
the languages expressible by alternating Boolean circuits with unbounded fan-in and
constant depth.

Proposition 1. If L is polynomially expressible by normal logic programs under sup-
ported semantics, then L ∈ AC0.

It follows immediately that normal logic programs cannot polynomially express the
language PARITY.2 This is the supported-semantics counterpart of Theorem 3.1 in [21].

Corollary 2. PARITY has no polynomial size normal logic program representation.

Proof. By Proposition 1 and PARITY /∈ AC0 [25]. �

It follows that propositional logic is strictly more succinct than normal logic pro-
grams under supported semantics.

Corollary 3. PL 6≤s LPsu and thus LPsu <s PL.

2 Logic programs under supported models are universally expressive, so they can express
PARITY, just not in polynomial size.

While PARITY allows us to separate propositional logic from normal logic pro-
grams, we cannot use the same language for bipolar ADFs. BADFs cannot even express
PARITY, since there is no BADF D over A3 such that its model set is given by3

su(D) = PARITY3 = {{a1} , {a2} , {a3} , A3}

However, the MAJORITY language does the trick in this case.

Theorem 3. BADFsu 6≤s LPsu

Proof. We show that the language MAJORITY can be polynomially expressed by BADFsu ,
but not by LPsu . The latter fact follows from MAJORITY /∈ AC0 [25] and Proposition 1.
We now show the first part by constructing a series of BADFsDn overAn = {a1, . . . , an}
(n ∈ N, n ≥ 1) such that su(Dn) = MAJORITYn. We use results of [27,28], who show
that – for all positive n ∈ N and k ≤ n, the language THRESHOLDn,k has negation-
free propositional formulas ΦTHRESHOLD

n,k of polynomial size s, where we use the bound
of Boppana, s ∈ O

(
k4.27n log n

)
. Define D1 by ϕa1 = >, and for n ≥ 2 set k =

⌈
n
2

⌉
and for 1 ≤ i ≤ n,

ϕai = ai ∨ ¬ΦTHRESHOLD
n−1,k (a1, . . . , ai−1, ai+1, . . . , an)

Intuitively, the formula ϕai checks whether the remaining variables could achieve a
majority without ai. If so, then ai can be set arbitrarily; otherwise, ai must be set to
true. Clearly the Boolean function computed by ϕai is bipolar, since ai is supporting
and all other parents are attacking. For the size of Dn, we observe that

‖Dn‖ ∈ O
(
n
∥∥ΦTHRESHOLD

n−1,k
∥∥)

whence the overall size is polynomial. It remains to show that su(Dn) = MAJORITYn.

“⊇”: LetM ∈ MAJORITYn. We have to showM ∈ su(Dn), that is, a ∈M iffM |= ϕa
for all a ∈ An. For a ∈M , it is immediate that M |= ϕa, so let aj /∈M for some
j ∈ {1, . . . , n}. We have to show M 6|= ϕaj . Since M ∈ MAJORITYn, we have
|M | = m for k =

⌈
n
2

⌉
≤ m ≤ n− 1 andM ∈ THRESHOLDn−1,k, that is, we have

M |= ΦTHRESHOLD
n−1,k (a1, . . . , aj−1, aj+1, . . . , an). Together with M 6|= aj , it follows

that M 6|= ϕaj .
“⊆”: LetM /∈ MAJORITYn. Then |M | = m for 0 ≤ m <

⌈
n
2

⌉
= k. In particular, there

is some aj ∈ An \M . Nowm < k implies that there is noN ∈ THRESHOLDn−1,k
with |N | = m = |M |. ThusM 6|= ΦTHRESHOLD

n−1,k (a1, . . . , aj−1, aj+1, . . . , an) whence
it follows that M |= ϕaj . Together with M 6|= aj we conclude that M /∈ su(Dn).

�

Since every BADF is an ADF of the same size, we get:

Corollary 4. ADFsu 6≤s LPsu

In combination with the translation from logic programs to ADFs (implying the rela-
tion LPsu ≤s ADFsu), this means that also ADFs are strictly more succinct than logic
programs.

3 This can be proven just like Theorem 4 in [11].

BADFsu ADFsu LPsu PL
BADFsu = ≤s 6≤s ≤s
ADFsu ? = 6≤s ∼=s
LPsu ? <s = <s
PL ? ∼=s 6≤s =

Table 1: Relative succinctness results for (bipolar) ADFs under the model semantics,
normal logic programs under the supported semantics, and classical propositional lo-
gic. An entry ◦ in row F1 and column F2 means F1 ◦ F2.

Corollary 5. LPsu <s ADFsu

In the next and last section, we provide an overview over and discussion of the results
obtained in this paper.

4 Overview and Discussion

We analysed the representational capabilities of abstract dialectical frameworks under
the two-valued model semantics and compared it to the like capabilities of abstract argu-
mentation frameworks, normal logic programs, and propositional logic. The most sig-
nificant results are presented at a glance in Table 1. Among other things, we have shown
that ADFs (under model semantics) are exponentially more succinct than normal logic
programs (under supported model semantics), and that even bipolar ADFs (under model
semantics) – although being less expressive – can succinctly express some model sets
where equivalent normal logic programs (under supported model semantics) over the
same vocabulary must necessarily blow up exponentially in size. The table also shows
that we are only “three results away” from having a complete picture. It is easy to show
that ADFs and propositional logic behave equivalently in relation to bipolar ADFs,
since they are equally expressive and equally succinct; that is, ADFsu ≤s BADFsu iff
PL ≤s BADFsu . Thus the three open problems in Table 1 are really only two.

Why are these hard problems? Firstly, precisely characterising the expressiveness of
BADFs is a hard open problem. While it is clear that BADFs can express arbitrary ⊆-
antichains, it is not clear how much more they can express. In other words, a non-trivial
characterisation of model sets that are not bipolarly realisable is still missing. Note that
“X is not bipolarly realisable” means that for all ADFs realising X (there is at least
one), there exists a statement whose acceptance function is not bipolar. However, this
statement need not be the same in each realisation. And while we showed in earlier work
that there are model sets that BADFs cannot express, this depended on a computer-aided
proof, providing further evidence that BADF expressiveness is a hard problem [11].
Indeed, succinctness results are often “only” conditional, that is, depend on some widely
believed complexity-theoretic assumption [22,18,19] (see also Footnote 4 below).

Parts of the expressiveness results for normal logic programs carry over to further
LP classes. For example, canonical logic programs provide a limited form of nesting
by allowing literals of the form not not a in rule bodies [29]. This makes it quite

easy to see how normal logic programs under supported semantics can be translated to
equivalent canonical logic programs, namely by replacing each positive body atom a
by not not a in all rule bodies. Recently, Shen and Zhao [21] showed that canonical
logic programs and propositional logic programs are succinctly incomparable (under an
assumption4), and also provide interesting avenues for further succinctness studies.

In their original paper, Gogic et al. [22] also used a relaxed version of succinctness,
where they allowed to introduce a linear number of new variables. For the formalisms
we study, adding (even only linearly many) extra variables leads to a collapse of all
observed differences (a table full of the linear-blowup version of ∼=s), since AFs can
equivalently express any propositional formula with at most linear blowup [11]. How-
ever, a linear blowup in knowledge base size – from n to cn for a c ∈ N with c > 1 –
leads to a polynomial increase in search space size – from 2n to 2cn = (2n)c.

In future work, we plan on studying further semantics (for example the stable model
semantics for normal logic programs and (bipolar) abstract dialectical frameworks), as
well as considering further knowledge representation formalisms.

References

1. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77 (1995) 321–
358

2. Dunne, P.E., Dvořák, W., Linsbichler, T., Woltran, S.: Characteristics of Multiple View-
points in Abstract Argumentation. In: Proceedings of the Fourteenth International Confer-
ence on the Principles of Knowledge Representation and Reasoning (KR), Vienna, Austria
(July 2014) 72–81

3. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: Proceedings of the Twelfth In-
ternational Conference on the Principles of Knowledge Representation and Reasoning (KR).
(2010) 102–111

4. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Dialectical
Frameworks Revisited. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (IJCAI), IJCAI/AAAI (August 2013) 803–809

5. Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Ar-
tificial Intelligence 205 (December 2013) 39–70

6. Alviano, M., Faber, W.: Stable model semantics of abstract dialectical frameworks revisited:
A logic programming perspective. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina (July 2015) In press.

7. Brewka, G., Gordon, T.F.: Carneades and Abstract Dialectical Frameworks: A Reconstruc-
tion. In: Computational Models of Argument: Proceedings of COMMA 2010. Volume 216
of Frontiers in Artificial Intelligence and Applications., IOS Press (September 2010) 3–12

8. Strass, H.: Instantiating rule-based defeasible theories in abstract dialectical frameworks
and beyond. Journal of Logic and Computation (2015) To appear in a special issue on
Computational Logic in Multi-Agent Systems (CLIMA XIV).

9. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: Abstract dialectical frameworks for
legal reasoning. In Hoekstra, R., ed.: Proceedings of the Twenty-Seventh Annual Confer-
ence on Legal Knowledge and Information Systems (JURIX). Volume 271 of Frontiers in
Artificial Intelligence and Applications., IOS Press (December 2014) 61–70

4 P 6⊆ NC1
/poly, the circuit equivalent of the assumption NP 6⊆ P.

10. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: Evaluating an approach to reas-
oning with cases using abstract dialectical frameworks. In: Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Law (ICAIL). (June 2015)

11. Strass, H.: The relative expressiveness of abstract argumentation and logic programming.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI),
Austin, TX, USA (January 2015) 1625–1631

12. Bidoit, N., Froidevaux, C.: Negation by default and unstratifiable logic programs. Theoretical
Computer Science 78(1) (1991) 85–112

13. Marek, V.W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3) (1991)
587–618

14. Strass, H., Wallner, J.P.: Analyzing the Computational Complexity of Abstract Dialectical
Frameworks via Approximation Fixpoint Theory. Artificial Intelligence 226(0) (2015) 34–
74

15. Dyrkolbotn, S.K.: How to argue for anything: Enforcing arbitrary sets of labellings using
AFs. In: Proceedings of the Fourteenth International Conference on the Principles of Know-
ledge Representation and Reasoning (KR), Vienna, Austria (July 2014) 626–629

16. Baumann, R., Dvořák, W., Linsbichler, T., Strass, H., Woltran, S.: Compact Argumenta-
tion Frameworks. In: Proceedings of the Twenty-First European Conference on Artificial
Intelligence (ECAI), Prague, Czech Republic (August 2014) 69–74

17. Puehrer, J.: Realizability of three-valued semantics for abstract dialectical frameworks. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI). IJCAI/AAAI, Buenos Aires, Argentina (July 2015) In press.

18. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. Journal of Artificial Intelligence
Research (JAIR) 17 (2002) 229–264

19. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2) (April 2006) 261–268

20. French, T., van der Hoek, W., Iliev, P., Kooi, B.: On the succinctness of some modal logics.
Artificial Intelligence 197 (2013) 56–85

21. Shen, Y., Zhao, X.: Canonical logic programs are succinctly incomparable with propositional
formulas. In: Proceedings of the Fourteenth International Conference on the Principles of
Knowledge Representation and Reasoning (KR), Vienna, Austria (July 2014) 665–668

22. Gogic, G., Kautz, H., Papadimitriou, C., Selman, B.: The comparative linguistics of know-
ledge representation. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI), Morgan Kaufmann (1995) 862–869

23. Brewka, G., Dunne, P.E., Woltran, S.: Relating the Semantics of Abstract Dialectical Frame-
works and Standard AFs. In: Proceedings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence (IJCAI), IJCAI/AAAI (2011) 780–785

24. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press (2009)

25. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Volume 27 of Algorithms
and Combinatorics. Springer (2012)

26. Clark, K.L.: Negation as Failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases,
Plenum Press (1978) 293–322

27. Friedman, J.: Constructing O(n logn) size monotone formulae for the k-th elementary
symmetric polynomial of n Boolean variables. SIAM Journal on Computing 15 (1986) 641–
654

28. Boppana, R.B.: Threshold functions and bounded depth monotone circuits. Journal of Com-
puter and System Sciences 32(2) (1986) 222–229

29. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence 25(3–4) (1999) 369–389

	Representational Succinctness of Abstract Dialectical Frameworks
	Hannes Strass

