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Abstract. This paper describes a framework for practical reasoning in
the presence of norms. We describe a formal normative model constructed
using Action-based Alternating Transition Systems. This model is able
to represent goals; obligations and prohibitions and their violation; and
permissions, which are used to derogate the former. Inspired by Atkin-
son’s scheme for practical reasoning, we utilise argument schemes and
critical questions to both show, and reason about how goals and obliga-
tions lead to preferences over the possible executions of the system. The
model then allows us to determine if sufficient information has been pro-
vided in order to perform practical reasoning, identify the best courses of
action, and explain why specific sequences of actions should be executed
by agents within the system.

1 Introduction

The violation of a norm, as expressed through obligations, permissions and pro-
hibitions, can result in sanctions being imposed on an agent. Since such sanctions
are undesirable, the agent will typically attempt to comply with its norms while
pursuing goals. However, it may be the case that the violation of a norm can
yield greater rewards than the cost of sanctions to the agent (e.g. if the violation
results in the achievement of an important goal). Norms therefore impose soft
constraints upon an agent, and when performing practical reasoning, an agent
must weigh up the penalties (and rewards) involved in violating (or adhering to)
norms against the rewards provided by achieving its goals.

Now while practical reasoning frameworks taking norms into account have
been previously proposed (e.g. [1]), explaining the decision processes taken by
agents when acting in such a system, particularly to non-experts, is a difficult
task. In this paper, we propose an argumentation based framework for practical
reasoning in the presence of norms, with the longer term aim of investigating
how argumentation can be used to contribute to the explanation of the agent’s
decision processes. While decision and game theory provide processes whereby
a rational agent (i.e. one that attempts to maximise some utility, or reach a
most preferred state) can identify an optimal sequence of actions, we argue that
in the practical reasoning domain, such processes can be more easily under-
stood through argument schemes. The instantiation of such schemes, and their
associated critical questions, results in an argument framework which can be



evaluated to identify the appropriate action(s) to pursue. These arguments can
then be presented to explain why the specific course of action was selected.

In this paper we propose a semantics for norms and goals that can be used
to describe the possible executions of a system. The set of all these executions
then forms the core of the practical reasoning process. Building on this formal
system, we introduce a set of argument schemes together with the appropriate
critical questions, which can in turn be used to identify the most preferred system
execution path.

In the next section we describe our formal model in detail. Following this,
Section 3 introduces the argument scheme and maps it to our formal model. An
example of the approach is provided in Section 4, and we discuss related and
future work in Section 5, before concluding the paper in Section 6.

2 The Model

In this section we describe our formal model, which is based on action-based
alternating transition systems (AATSs) [2]. Such AATSs are intended to encode
all possible evolutions of a system due to the actions of all agents within it,
representing the various states through which the system can pass through by
means of a branching time tree structure. Since this can be described as a Kripke
system, we can reason about the possible trajectories of the system by means of
a branching time logic. After introducing the basic concepts of AATSs, we detail
how goals and norms, as well as more complex concepts such as violations and
the derogation of obligations can be specified using the logic.

2.1 Semantics

Definition 1. (AATS, [2]) An Action-based alternating transition system (AATS)
is a tuple of the form

S = 〈Q, q0, Ag,Ac1, . . . Acn, ρ, τ, Φ, π〉

Where

– Q is a finite non-empty set of states.
– q0 ∈ Q is the initial state.
– Ag = {1, . . . , n} is a finite non-empty set of agents.
– Aci, with 1 ≤ i ≤ n, is a finite and non-empty set of actions for each agent,

where actions for different agents do not overlap.
– ρ : Aci → 2Q is an action precondition function which identifies the set of

states from which some action α ∈ Aci can be executed
– τ : Q× JAg → Q where JAg =

∏
i∈Ag Aci, is the system transition function

identifying the state that results from executing a set of actions from within
JAg in some state.

– Φ is a finite and non-empty set of atomic propositions



– π : Q→ 2Φ is the interpretation function which identifies the set of proposi-
tions satisfied in each state.

Following [2], we define a computation (also referred to as a path) to be an
infinite sequence of states λ = q0, q1, . . ., where qi ∈ τ(qi−1, α) for some α for
which qi ∈ ρ(α). We index a state within a path using array notation. Thus, the
first element of path λ can be referenced via λ[0], while a sub-path of the path
starting at the second element and consisting of the remainder of the path is
written λ[1,∞].

An AATS encodes the possible states of the world that result from executing
actions, and can be viewed as a Kripke structure with the transition function τ
acting as the accessibility relation. We can therefore represent the AATS using
CTL* operators [3], allowing us to refer to both single paths and groups of paths
in the structure. We define the semantics of CTL* in two stages, first defining
state formulae, following which we describe path formulae. The syntax of CTL*
emerges directly from the semantics and is not detailed due to space constraints.

Definition 2. (State Formulae) State formulae are evaluated with respect to
an AATS S and a state q ∈ Q:

S, q |= >
S, q 6|= ⊥
S, q |= p iff p ∈ π(q)
S, q |= ¬ψ iff S, q 6|= ψ
S, q |= ψ ∨ φ iff S, q |= ψ or S, q |= φ
S, q |= Aψ iff S, λ |= ψ for all paths where λ[0] = q
S, q |= Eψ iff S, λ |= ψ for some path where λ[0] = q

Definition 3. (Path Formulae) Path formulae are evaluated with respect to
an AATS S and a path λ.

S, λ||= ψ iff S, λ[0] |= ψ where ψ is a state formula.
S, λ||= ¬ψ iff S, λ 3 ψ
S, λ||= ψ ∨ φ iff S, λ||= ψ or S, λ||= φ
S, λ||=©ψ iff S, λ[1,∞]||= ψ
S, λ||= ♦ψ iff ∃u ∈ N such that S, λ[u,∞]||= ψ
S, λ||= �ψ iff ∀u ∈ N it is the case that t S, λ[u,∞]||= ψ
S, λ||= φUψ iff ∃u ∈ N such that S, λ[u,∞]||= ψ and

∀v s.t. 0 ≤ v < u, S, λ[v,∞]||= φ

Note that state formulae refer only to a single possible world, or state, within
a path, even in the case when the state operator then refers to a path formula
(c.f. the A and E operators). Path formulae always refer to entire paths which
begin at some state (e.g. the next state in the case of the © operator).

These semantics capture the evolution of a system over time due to agent
actions. However, they say nothing about why one path might be followed by
agents rather than another in order to effect certain actions and therefore lead
to certain states. To capture this notion we define a relation over paths, written



�g to represent the preferences of some group of agents g with respect to one
group of paths over another. This group of paths is specified by means of a path
formula. Thus, for example, ♦a �{α} ♦¬a captures the preference of agent α for
those paths in which a is eventually true over those paths where it is eventually
false. When dealing with a single agent, or referring to a group by a label, we
write �α instead of �{α}. Finally, we write λ �g λ′ to represent the case when
λ �g λ′ and λ′ 6�g λ, and abbreviate the situation where both λ �g λ′ and
λ′ �g λ hold as λ ∼g λ′.

Now a question arises as to the origin and form of the preference relation, and
we propose that the agent’s goals, together with the norms found in the system
constrain (but do not fully specify) it. For example, if an agent has a goal, then
it should prefer those paths where the goal is achieved to those paths where
it is not. However, this goal does not impose any preference ordering between
those paths in which the goal is achieved (or indeed between those paths where
it is not). We begin a more detailed exploration of the preference relationship
by examining goals more closely.

2.2 Goals

Goals identify states of affairs in the world that an agent prefers (and should be
able to bring about in part due to their action, but we do not formally impose
this requirement). In other words, when undertaking practical reasoning, agents
prefer those actions forming paths wherein their goals are achieved to those where
they are not. We therefore represent goals through path formulae, identifying the
state of affairs that must exist for a goal to be considered as met or satisfied.

We consider both achievement and maintenance goals [4]. The former iden-
tifies a state of affairs that must hold at some point in time, while the latter
requires some state of affairs to be maintained until some deadline. Both of
these goals can be easily represented in our logic, though in this paper we ignore
conditional goals (i.e. goals of the form “ If X is the case then a goal Y exists”).

Definition 4. (Goals) An formula γ decribes a path where an achievement
goal is met if it is of the form ¬dUx. It describes a maintenance goal path if it
takes the form (¬d ∧ x)Ud.1

x represents the state of affairs that the goal aims to satisfy, while d represents
the goal’s deadline.

Since achieving a goal γ is preferred by some agent or group over not achieving
the goal, we can identify a preference ordering over possible paths by the simple
rule

γ �g ¬γ

1 The semantics of U require us to ensure that the deadline does not occur before it
actually does.



2.3 Norms

Norms within a system represent obligations, prohibitions and permissions im-
posed on, or provided to, entities within a society or group. Obligations and
prohibitions (respectively) identify the states of affairs that a target must ensure
do (or do not) occur. If these states of affairs do not (or do) occur, then the norm
is violated. Following [5–7], we treat permissions as exceptions to obligations and
prohibitions: in the case of an obligation, if a state of affairs is ordinarily obliged,
but a permission not to achieve the state exists, then even if the state of affairs
is not achieved, no violation occurs.

Now we view norms primarily as social constructs. That is, an obligation
(for example) specifies who should behave in some way (i.e. it has a set of target
agents), and also identifies which agent — or set of agents — desires that this be-
haviour occur. The latter form the norm’s creditors (c.f. the social commitments
of Singh [8]).

Following this perspective, we view a norm as expressing a preference over
a state of affairs for its creditors rather than its target. That is, a creditor
prefers those situations in which a norm is not violated to one where it is.
Now this implies that a norm, in isolation, has no direct effect on its target’s
behaviour. Instead, we claim that such behaviour regulation stems from two
sources. First, the violation of a norm could (via contrary-to-duties) permit a
sanction to be imposed on the violator. Second, social ties could mean that a
norm’s target takes the norm creditor’s preferences into account (e.g. I may fulfil
my obligations to my friends because I care about their feelings rather than any
threat of sanctions). Note however that in our argument framework, we merge
all individual agent preferences into a global preference, limiting the effects of
this approach; investigating a more “local” view of preferences forms part of our
future work.

Next, we provide a high level overview of the different norm types, before
proceeding to formalise them.

Obligations and Prohibitions As mentioned above, obligations identify states
of affairs that should be achieved by the target of the obligation. Obligations are
imposed by some group (the creditor) on the target2. Furthermore, if an obliga-
tion is not fulfilled, then the creditor could potentially sanction the obligation’s
target. An obligation therefore encodes two concepts, namely the preference by
the creditor for paths wherein the obligation is fulfilled over those where it is
not. Second, if an obligation is not fulfilled, then a record must be kept that it
has been violated in order to enable sanctions to be put into place.

In line with goals, we consider two distinct types of obligations, namely
achievement obligations, which require the target to see to it that some state
of affairs holds at some point before some deadline occurs, and maintenance
obligations, which require the target to ensure that the state of affairs holds

2 Note that this creditor could be the entire society of agents.



at all points before the deadline. Before formally defining obligations, we must
examine the notion of a permission, which acts as an exception to an obligation.

Permissions A permission acts as an exception to an obligation (or a prohibi-
tion). In other words, given an obligation to achieve some state of affairs, and
a permission not to achieve it, not achieving this state of affairs will not result
in a violation. As discussed previously, we model prohibitions as negated obli-
gations, and therefore concentrate on the interactions between permissions and
obligations. Like other modalities, a permission is given by some creditor to a
target, and affects the creditor’s concept of a violation. Similarly, permissions
identify some (permitted) state of affairs, and a deadline.

Clearly, interpreting a permission in this way makes little sense without an
obligation or prohibition being present, and we therefore encode permissions
through the presence of a permission proposition, with one such unique proposi-
tion being defined for every combination of creditor, target and state of affairs.
Since our AATS has only a finite number of agents and propositions, there are
a finite number of such proposition symbols. More precisely, we use the proposi-
tion Pga,x to indicate that agent a has obtained permission from g to see that the
state of affairs x is not the case in the state where the proposition is true. We
can now define a permission through the use of a formula in our logic, writing
P ga (x|d) as an abbreviation of the formula

APga,xUd

This formula ensures that a permission is in force over all possible paths in the
system until deadline d. Since we must ensure that the permission predicate does
not hold when no permission is in force, we require the following axiom in the
system:

A�(¬P ga (x|d)→ ¬Pga,x)

Formalising Obligations Obligations identify states of affairs that should
hold, and a failure to abide by the requirements of an obligation leads to a vio-
lation. We encode such a violation through a violation proposition, in a manner
similar to the permission proposition. In other words, the proposition Vga,x,d rep-
resents a violation by the target a of the obligation, with respect to a creditor
g, to see to it that state of affairs x was the case with respect to a deadline d.

An achievement obligation, abbreviated Oga(x|d) requiring the target a to
ensure that some state of affairs x holds before a deadline d towards a creditor
g is represented as follows:

A(¬Vga,x,d ∧ ¬d ∧ ¬x)U (((¬x ∧ d ∧ ¬Pga,x ∧ V
g
a,x,d)∨

(¬x ∧ d ∧ Pga,x ∧ ¬V
g
a,x,d))∨

(x ∧ ¬Vga,x,d))

This obligation therefore requires the following conditions to be met on all pos-
sible paths:



1. Before either the deadline or x occurs, the obligation is not considered vio-
lated (the first line of the obligation following the U).

2. If the deadline occurs and x is not the case, then if there is no permission
allowing this to occur, a violation is recorded. Alternatively, if such a per-
mission exists, then no violation is recorded (this is encoded by the second
line of the proposition).

3. Finally, if x is achieved (before the deadline), then no violation is recorded
(this is captured by the final line of the proposition).

Therefore, our encoding of an obligation essentially states that if an obligation
is in force, it is only violated if the deadline is reached without the desired
state of affairs being achieved, assuming that no permission exists allowing the
obligation to be ignored. However, nothing in this definition prevents a violation
from existing in a state of affairs without an associated obligation. We therefore
require that the following axiom hold:

A�(¬Oga(x|d)→ ¬Vga,x,d)

Maintenance obligations requires that a state of affairs be maintained until some
deadline3. We abbreviate a maintenance obligation on a from g requiring x be
the case until deadline d as Oga(m : d). This stands for the following formula.

A ((¬x ∧ ¬d ∧ (¬Pga,x ∧ V
g
a,x,d)∨

(Pga,x ∧ ¬V
g
a,x,d)) ∨ (x ∧ ¬d))Ud

In other words, before the deadline, either x is maintained, or x is not maintained,
in which case the obligation is violated if an associated permission does not exist.

The requirement for the lack of a violation, as stated above, is repeated for
maintenance obligations:

A�(¬Oga(x : d)→ ¬Vga,x,d)

In discussing obligations so far, we have identified the situations in which
they are violated. Detecting these situations allows for the modelling of contrary
to duty obligations, which come into force when a violation occurs. Such contrary
to duties are a form of conditional obligation, which comes into force only when
some state of affairs holds in the environment, and generally, such conditionals
can be represented via an axiom utilising an implication relation, e.g.

A(Vga,x,d → Oga(x′|d′))

We now turn our attention to the second aspect of obligations, namely their
interactions with preferences over paths through the system. Informally, the
presence of an obligation or prohibition imposed by some creditor leads to that

3 We assume that this maintenance requirement comes into force with the obligation,
ignoring obligations of the form “maintain x between 5pm and 8pm tomorrow”.



creditor preferring those paths through the system where the obligation is com-
plied with (i.e. not violated) over those where it is violated. This leads to the
following rule within our system:

�¬Vga,x,d �
g ♦Vga,x,d

Note that we do not prefer fewer violations over more violations, as other pref-
erences, for example regarding the interval length of a violation, could affect the
preference ordering.

Having formalised permissions and obligations, we now consider prohibitions.
In this work we consider only achievement prohibitions, that is, prohibitions
on seeing to it that a state of affairs holds (until the prohibition’s deadline
occurs). Such a prohibition can in fact be modelled as a maintenance obligation
— a prohibition on achieving x until some deadline is a maintenance obligation
Oga(¬x : d), requiring the target to ensure x holds until the deadline.

We conclude this section by making several observations regarding our nor-
mative system. Unlike many other models, violations in our model do not persist.
That is, a violation identifies a single, specific point in time at which an obliga-
tion was violated, and is associated with the violated obligation via x and d, the
creditor (g) and target (a). Violations are represented as unique propositions in
our language.

It should also be noted that our representation of obligations means that an
achievement obligation ceases to have force (in the sense of implying a violation)
at the moment of deadline; work such as [9] instead specifies that an obligation
must still be fulfilled even after it has been violated, and we will investigate this
interpretation in future work.

Also note that our preference relation over obligations implies that agents/social
groups are, in a sense, “honest”, that is, they prefer the outcome implied by com-
pliance with the obligation over one where the obligation is violated.

3 Practical Reasoning via Argumentation

Our formal model contains two distinct aspects. The first aspect consists of the
AATS, which identifies all possible evolutions of the system, while the second
aspect is associated with the preferences over paths (i.e. sequence of actions)
that agents hold. Our aim is to identify whether a most preferred path through
the system exists, and explain why this is the case. In order to do so,we make use
of argument schemes [10], defeasible rules expressed in natural language which
can be used to justify some conclusion. An argument scheme is associated with
a set of critical questions, which are used to prevent the inferences of the rule
from being made.

The argument schemes we define in the next section are instantiated as ar-
guments within an extended argument framework (EAF) [11]. The evaluation
of such an EAF according to a specific argumentation semantics results in a set
of extensions, each containing a set of arguments. Each of these sets of argu-
ments is, in some sense, justified. We begin by describing our argument schemes



in more detail, following which we describe EAFs and the extension evaluation
procedure.

3.1 Argument Schemes

The first scheme we consider puts forth the argument that any sequence of
actions through the AATS can be justified. Each path through the AATS thus
results in a unique argument which is an instantiation of the following argument
scheme.

AS1: In situation S, the sequence of joint actions A1, . . . An should be exe-
cuted.
This argument scheme is associated with two critical questions:

CQ1-1 Does some other sequence of actions exist that can be executed?
CQ1-2 Is there a more preferred sequence of actions to this one?

The first critical question will result in symmetric attacks between all instanti-
ations of AS1 for all possible paths (which are instantiations of the sequence of
actions) through the system. The second critical question will lead to an asym-
metric attack from another AS identifying the more preferred sequence of actions
to the less preferred sequence of action. Now a reason for one sequence of ac-
tions to be preferred over another is that it achieves a goal, or complies with a
norm that is important to the agent. We therefore introduce several additional
argument schemes capturing these possible reasons.

AS2: The sequence of joint actions A1, . . . , An is preferred over A′1, . . . A
′
n

as the former achieves a goal which the latter does not. Critical questions here
are as follows:

CQ2-1 Is there some other sequence of actions which achieves a more preferred goal
than the one achieved by this action sequence?

CQ2-2 Does the sequence of actions lead to the violation of a norm?

AS3 and AS4 are argument schemes that deal with obligations and permissions:
AS3: The sequence of actions A1, . . . An should be less preferred than se-

quence A′1, . . . A
′
n as, in the absence of permissions, the former violates a norm

while the latter does not.

CQ3-1 Is the goal resulting from the sequence of actions more preferred than the
violation?

CQ3-2 Does the violation resulting from this norm result in some other, more im-
portant violation not occurring?

CQ3-3 Is there a permission that derogates the violation?

AS4: There is a permission that derogates the violation of an obligation.
Note that the separation between AS3 and AS4 is intended purely for explana-
tory purposes; conceptually, it would be possible to merge both of these schemes
into one by considering an argument scheme which deals with violation once
permissions are considered.



Finally, we can identify several simple argument schemes that allow an agent
to associate preferences between different goals and norms, thereby enabling the
instantiation of the critical questions for AS2 and AS3.

AS5: Agent α prefers goal g over goal g′

AS6: Agent α prefers achieving goal g to not violating n

AS7: Agent α prefers not achieving goal g to violating n

AS8: Agent α prefers violating n to violating n′

AS9: Agent α prefers situation A to B

This last argument scheme is intended to allow an agent to express individual
preferences with regards to outcomes.

3.2 Argument Scheme Semantics

We now provide a brief formalisation of the argument schemes and critical ques-
tions based on our AATS semantics. Above, our argument schemes referred to
sequences of actions, which are equivalent to paths through the AATS. As done
previously, we label this AATS S below. Our formalisation makes use of the
formulae obtained from goals and norms to express preferences over paths. That
is, given S, and preferences expressed using CTL* formula φ and ψ of the form
φ �a ψ, We specify a set of path preferences λ ≥a λ′ for any paths λ, λ′ where
S, λ |= φ and S, λ′ |= ψ.

Given a sequence of actions j1, . . . , jn, we can obtain a path λ as the path
beginning in the initial state q0 ∈ Q, and for which for all i = 1 . . . n, τ(qi−1, ji) =
qi.

Given an AATS, we can then identify valid installations of the argument
schemes and critical questions, resulting in an argument framework whose eval-
uation allows us to determine justified action sequences.

AS1: There is a path λ obtained from the sequence of actions j1, . . . jn.

AS2: There is a goal γ and two paths λ, λ′ obtained from the sequence of
joint actions , j1, . . . jn and j′1, . . . j

′
m respectively, and it is the case that S, λ |= γ

and S, λ′ 6|= γ.

AS3: There exist two paths λ, λ′ obtained from the sequence of joint actions
j1, . . . jn and j′1, . . . j

′
m respectively, and it is the case that S\Pga,x, λ |= V

g
a,x,d

and S\Pga,x, λ′ 6|= V
g
a,x,d

AS4: There is a path λ obtained from the sequence of joint actions j1, . . . jn,
and S\Pga,x, λ |= V

g
a,x,d but S, λ 6|= Vga,x,d.

AS5-AS9 express individual agent preferences between goals, and violations.
For example, an agent may prefer to achieve one goal over another (AS5), or
avoid achieving a goal if it means violating a norm (AS7).

AS5: There are goals γ, γ′ where S, λ |= γ and S, λ′ |= γ′ and γ �α γ′
AS6: There is a goal γ and violation Vga,x,d such that γ �α ¬Vga,x,d
AS7: There is a goal γ and violation Vga,x,d such that ¬γ �α Vga,x,d
AS8: There are two violations Vga,x,d, Vhb,y,e such that Vga,x,d �α Vhb,y,e
AS9: A �α B where A,B are formulae in our language.



Now let us turn our attention to the critical questions, using the same definitions
as above.

CQ1-1: There is a sequence of joint actions j′1, . . . j
′
n such that for some

i ∈ 1 . . . n ji 6= j′i.

CQ1-2: There is an instance of AS2 or AS3 whose path λ is created by the
sequence of joint actions of this AS1. Alternatively, there is an instance of AS9
whose path B is equivalent to λ created by the sequence of joint actions of this
AS1.

CQ2-1: There an instance of AS5 whose less preferred goal is the one iden-
tified by this instantiation of AS2.

CQ2-2: There is an instance of AS3 whose path λ is the λ path for AS2.

CQ3-1: There is an instance of AS6 for S, λ |= γ and S, λ |= Vga,x,d, where λ
is the first path of AS3.

CQ3-2: There is an instantiation of AS8 for which this instantiation of AS3
means that S\Pga,x, λ |= V

g
a,x,d and S\Pga,x, λ 6|= Vhb,y,e

CQ3-3: There is an instantiation of AS4 referring to a permission Pga,x which
refers to the same path λ as this instantiation of AS3.

3.3 Instantiating the Framework

We instantiate the framework described above using Modgil’s extended argument
frameworks (EAF) [11]. Formally, an EAF is defined as follows:

Definition 5. (Extended Argument Framework) An EAF is a tuple (Args, R,D)
such that Args is a set of arguments, R ⊆ Args×Args, and D ⊆ Args×R subject
to the constraint that if (C, (A,B)), (C ′, (B,A)) ∈ D, then (C,C ′), (C ′, C) ∈ R

Each instantiation of any of the argument schemes is associated with an
argument within our EAF, and each critical question is associated with an attack
on the argument scheme instantiation to which this critical question belongs. The
constraint imposed on EAFs causes additional attacks to appear that are not
described by the critical questions. We describe the process of EAF instantiation
informally due to both space concerns and its simplicity.

CQ1-1 arises since only one sequence of actions can ultimately be executed,
and results in symmetric attacks being inserted into R between every pair of
nodes instantiating AS1. CQ1-2 refers to preferences between actions and fol-
lowing [12], is captured via an attack from the node representing the argument
to the appropriate attacking edge.

CQ2-1, CQ2-2, CQ3-1 and CQ3-2 capture preferences over goals and norms.
That is, they are used to represent the fact that one goal (or norm) is preferred
over some other goal (or norm) by entities in the system. All of these link the
appropriate argument, as instantiated by AS5-8 via an attack, on the attack
from the argument instantiated by the appropriate AS2 or AS3.

Finally, CQ3-3 encompasses the possibility of a violation being derogated by
a permission, and in instantiated as an attack from AS8 to the appropriate AS3.



Given the above, CQ1-1 and CQ3-3 result in attacks added to R, while the
remaining critical questions result in attacks added to D. Together with the at-
tacks added by the constraint, these attacks between the arguments instantiated
from the application of the argument schemes fully specify our EAF.

Given an EAF instantiated as above, all the preferred extensions of the EAF
will contain a single argument from argument scheme AS1 for some specific
action sequence to be executed iff this action sequence is most preferred by all
agents in the system. This sequence of actions is the dominant strategy for all
agents in the system. Therefore, each preferred extension of the EAF identifies
a single most preferred sequence of action.

The presence of multiple preferred extensions indicates that there are multi-
ple most preferred sequences of action. In most multi-agent situations, this is an
undesirable situation, as additional coordination is then required between the
agents to ensure that a most desired sequence of joint actions is executed. This
would require more refined reasoning about plans (e.g. [13]) to take place.

Finally, an empty set of extensions indicates that there is a preference conflict
that must be resolved before a course of action can be agreed on.

4 Example

In this section, we provide a brief example of the framework in action. Due to
space constraints, we do not present all details of the system in our example, but
instead concentrate on the most important aspects of the system’s operation.

Consider two agents, α and β. α can undertake two actions, namely to visit
her ill mother in hospital (V ), or go to work (W ). β, who is α’s boss, has two
possible actions, namely to fire α (F ), or not fire her (N). α has two (conflicting)
goals: to visit her mother (vm), and to keep her job (kj), while β would like to
see some work done (wd), which can only occur if α goes to work. Finally, β has
an obligation to not fire α, but has permission to do so if she does come to work.

The AATS for this example is shown in the top left of Figure 1, and instan-
tiating the EAF results in the main graph of Figure 1. Within this graph, paths
from the AATS are indicated through nodes containing the path number; pref-
erence information is encoded through the propositions true in the state (e.g.
1 > 3 kj indicate that path 1 is preferred to path 3 due to α’s preference to
keep her job; the permission to fire is indicated via the per node, and nvl iden-
tifies preference nodes instantiated through the prohibition on firing α. Dashed
lines indicate attacks due to actions being mutually exclusive, while solid lines
capture preference based attacks.

Evaluating the preferred extension of this EAF indicates that multiple actions
are possible; for example, paths 1 and 2 are present in two of the extensions.
This means that the system’s preferences are underspecified. Looking at the
situation more closely, this occurs for several reasons. First, α does not have any
preferences encoded between going to the hospital or keeping her job; prioritising
one of these (by adding attacks on edges between kj and vm via an instantiation
of AS9) reduces the number of extensions, for example, if vm is preferred over kj,
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Fig. 1. The AATS (top left) and EAF (main figure) of the example.

only path 2 remains in the extension indicating that α should visit her mother
and keep her job.

This odd result arises because while β has permission to fire α if she does
not turn up to work, no preferences are expressed over whether β would prefer
this situation to one where α keeps her job. Adding an additional preferences
over paths, through a new goal for β stating that either the work is done and α
keeps her job, or the work is not done and α is fired, will result in α losing her
job if she visits her mother in hospital (path 4). Note that due to the permission,
there is no need to then express another preference for β between this goal and
the norm on not firing α; without the permission, such an additional preference
would be necessary.

5 Discussion and Future Work

In practice, there are several ways of using the framework proposed here, each of
which poses an avenue for future research. First, as done in the example above,
a given AATS could be converted to an EAF and evaluated in order to identify



whether sufficient preference information has been provided in order to reach a
decision about a sequence of actions. The potential exponential growth in the
number of arguments with respect to AATS size makes this approach practical
for only small AATSs.

Second, a dialogue game could be formulated (and verified against an AATS)
based on arguments and attacks instantiated from the argument schemes and
critical questions. This would involve agents arguing for why some course of ac-
tion should be taken via utterances regarding their goals, norms and preferences.

Third, and perhaps most novel, an instantiated EAF could be used as the
basis of a process to explain why some sequence of actions was followed given
agents with some goals and norms. A user could, for example, understand that
an action was executed as while a norm was violated, the goal achieved was more
important to the agents in the system than the violation.

Our work borrows several ideas from Atkinson’s argument scheme for prac-
tical reasoning based on values [14]. Atkinson’s approach puts both goals and
values at the centre of the argumentation scheme, stating that “in situation S,
action A should be pursued in order to achieve goal G while promoting values
V ”. This argument scheme is encoded through a VAF, which is used to repre-
sent the preferences of different audiences over values. Each argument within
the VAF can be associated with several values, but an audience’s value ordering
must be fully specified and consistent.

In the current work, preferences (which have a similar role to Atkinson’s
values) are associated with different sequences of action due to the goals that
these sequences achieve for the agents as well as the norms violated or complied
with by the sequence. Given this, our AS1 argument scheme is much simpler
than Atkinson’s, stating that (by default) some sequence of actions should be
executed, and requiring all possible sequences of actions to be mutually exclusive
with each other. Deciding how to act then requires identifying the most preferred
sequence of actions. Unlike [14], our work explicitly considers norms in practical
reasoning, and considers all possible interactions between norms and goals.

Our representation of preferences within an EAF is based on [12], which ap-
plied EAFs to VAFs. While there are many similarities between our instantiation
and the VAF instantiation, the requirement of VAFs to have a single consistent
preference ordering makes them unsuitable for our needs; as shown above, we
explicitly concern ourselves with detecting inconsistent preference orderings.

In one sense, the work presented here takes a global view of norms and
actions. We consider joint actions, and require that all agents agree on a path.
Such an approach ignores an important nuances of practical reasoning: agents
may be force to pursue sub-optimal goals due to the actions of other agents.
Thus, while our approach currently finds dominant strategies, it is unable to
find other game theoretic solution concepts (e.g. Nash equilibria); we believe
that capturing these additional solution concepts is critical, and are currently
investigating how these concepts can be captured using our approach. This will
make more extensive use of the notion of a norm’s creditor and target, and the
preferences of each with regards to specific outcomes.



Another interesting avenue of future work involves considering a more dy-
namic system where new obligations, permissions and prohibitions can be created
and removed as the system executes, and agents goals can change over time.

Finally, integrating practical reasoning over norms with reasoning over values
would also be useful. This, in combination with the already present capability to
reason over goals, should provide an end-to-end practical reasoning formalism.

6 Conclusions

In this paper we proposed a representation for norms built on top of an AATS.
Using this representation we described how arguments over norms can be con-
structed, allowing for the detection of inconsistencies when performing practical
reasoning, the explanation of why some action was taken, and making a decision
about how to act in the presence of both goals and norms.
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