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Abstract. We study the computational complexity of problems that arise in ab-
stract argumentation in the context of dynamic argumentation, minimal change,
and aggregation. In particular, we consider the following problems where always
an argumentation framework F and a small positive integer k are given.

– The REPAIR problem asks whether a given set of arguments can be modified
into an extension by at most k elementary changes (i.e., the extension is of
distance k from the given set).

– The ADJUST problem asks whether a given extension can be modified by
at most k elementary changes into an extension that contains a specified
argument.

– The CENTER problem asks whether, given two extensions of distance k,
whether there is a “center” extension that is a distance at most k − 1 from
both given extensions.

We study these problems in the framework of parameterized complexity, and take
the distance k as the parameter. Our results covers several different semantics,
including admissible, complete, preferred, semi-stable and stable semantics.

1 Introduction

Starting with the seminal work by Dung [10] the area of argumentation has evolved to
one of the most active research branches within Artificial Intelligence [4, 26]. Dung’s
abstract argumentation frameworks, where arguments are seen as abstract entities which
are just investigated with respect to how they relate to each other, in terms of “attacks”,
are nowadays well understood and different semantics (i.e., the selection of sets of
arguments which are jointly acceptable) have been proposed. Such sets of arguments
are called extensions of the underlying argumentation framework (AF).

Argumentation is an inherently dynamic process, and there has been increasingly
interest in the dynamic behavior of abstract argumentation. A first study in this direction
was carried out by Cayrol, et al. [6] and was concerned with the impact of additional ar-
guments on extensions. Baumann and Brewka [3] investigated whether it is possible to
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modify a given AF in such a way that a desired set of arguments becomes an extension
or a subset of an extension. Baumann [2] further extended this line of research by con-
sidering the minimal exchange necessary to enforce a desired set of arguments. In this
context, it is interesting to consider notions of distance between extensions. Booth et
al. [5] suggested a general framework for defining and studying distance measures.

A natural question that arises in the context of abstract argumentation is how com-
putationally difficult it is to decide whether an AF admits an extension at all, or whether
a given argument belongs to at least one extension or to all extensions of the AF. Indeed
this question has been investigated in a series of papers, and the exact worst-case com-
plexities have been determined for all popular semantics [7, 8, 10, 12–14, 18]. Abstract
argumentation has also been studied in the framework of parameterized complexity [9]
which admits a more fine-grained complexity analysis that can take structural aspects
of the AF into account [11, 15, 22, 19, 16].

Surprisingly, very little is known on the computational complexity of problems in
abstract argumentation that arise in the context of dynamic behavior of argumentation,
such as finding an extension by minimal change. However, as the distance in these
problems are assumed to be small, it suggests itself to consider the distance as the
parameter for a parameterized analysis.

New Contribution In this paper we provide a detailed complexity map of various prob-
lems that arise in abstract argumentation in the context of change and distance.

In particular, we consider the following problems where always an argumentation
framework F and a small positive integer k are given, and σ denotes a semantics.

– The σ-REPAIR problem asks whether a given set of arguments can be modified into
a σ-extension by at most k elementary changes (i.e., the extension is of distance k
from the given set).
This problem is of relevance, for instance, when a σ-extension E of an argumen-
tation framework is given, and dynamically the argumentation framework changes
(i.e., attacks are added or removed, new arguments are added). Now the set E may
not any more be a σ-extension of the new framework, and we want to repair it with
minimal change to obtain a σ-extension.

– The σ-ADJUST problem asks whether a given σ-extension can be modified by at
most k elementary changes into a σ-extension that contains a specified argument.
This problem is a variant of the previous problem, however, the argumentation
framework does not change, but dynamically the necessity occurs to include a cer-
tain argument into the extension, by changing the given extension minimally.

– The σ-CENTER problem asks whether, given two σ-extensions of distance k, whether
there is a “center” σ-extension that is a distance at most k − 1 from both given ex-
tensions.
This problem arises in scenarios of judgment aggregations, when, for instance two
extensions that reflect the opinion of two different agents are presented, and one
tries to find a compromise extension that minimizes the distance to both extensions.

We study these problems in the framework of parameterized complexity, and take the
distance k as the parameter. Our results covers several different semantics, including
admissible, complete, preferred, semi-stable and stable semantics. The parameterized
complexity of the above problems are summarized in Figures 1.
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σ general bounded degree
adm W[1]-hard FPT
com W[1]-hard FPT
prf para-coNP-hard para-coNP-hard
sem para-coNP-hard para-coNP-hard
stb W[1]-hard FPT

Fig. 1. Parameterized Complexity of the problems σ-REPAIR, σ-ADJUST, and σ-CENTER for
arbitrary AFs and AFs of bounded degree depending on the considered semantics.

2 Preliminaries

An abstract argumentation system or argumentation framework (AF, for short) is a
pair (X,A) where X is a (possible infinite) set of elements called arguments and A ⊆
X×X is a binary relation called attack relation. In this paper we will restrict ourselves
to finite AFs, i.e., to AFs for which X is a finite set. If (x, y) ∈ A we say that x attacks
y and that x is an attacker of y.

An AF F = (X,A) can be considered as a directed graph, and therefore it is conve-
nient to borrow notions and notation from graph theory. For a set of arguments Y ⊆ X
we denote by F [Y ] the AF (Y, { (x, y) ∈ A | x, y ∈ Y }) and by F − Y the AF
F [X \ Y ].

We define F to be the undirected graph obtained from F that has vertex set X and
edge set { {x, y} }(x, y) ∈ A }. We define the degree of an argument x ∈ X to be the
degree (number of neighbors) of the vertex that corresponds to x in F . We say a class
of AFs C has bounded maximum degree, or shortly bounded degree, if there exists a
constant c such that for every F ∈ C the maximum degree of the undirected graph F is
at most c.

IfE andE′ are 2 sets of arguments of F then we defineE4E′ to be the symmetric
difference between E and E′, i.e., E 4 E′ := {x ∈ X | (x ∈ E ∧ x /∈ E′) ∨ (x ∈
E′ ∧ x /∈ E) }. We also define dist(E,E′) to be |E 4 E′|.

Let F = (X,A) be an AF, S ⊆ X and x ∈ X . We say that x is defended (in F ) by
S if for each x′ ∈ X such that (x′, x) ∈ A there is an x′′ ∈ S such that (x′′, x′) ∈ A.
We denote by S+

F the set of arguments x ∈ X such that either x ∈ S or there is an
x′ ∈ S with (x′, x) ∈ A, and we omit the subscript if F is clear from the context. Note
that in our setting the set S is contained in S+

F . We say S is conflict-free if there are no
arguments x, x′ ∈ S with (x, x′) ∈ A.

Next we define commonly used semantics of AFs, see the survey of Baroni and Gia-
comin [1]. We consider a semantics σ as a mapping that assigns to each AF F = (X,A)
a family σ(F ) ⊆ 2X of sets of arguments, called extensions. We denote by adm, com,
prf, sem and stb the admissible, complete, preferred, semi-stable and stable semantics,
respectively. These five semantics are characterized by the following conditions which
hold for each AF F = (X,A) and each conflict-free set S ⊆ X .

– S ∈ adm(F ) if and only if each s ∈ S is defended by S.
– S ∈ com(F ) if and only if S ∈ adm(F ) and every argument that is defended by S

is contained in S.
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– S ∈ prf(F ) if and only if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ( T .
– S ∈ sem(F ) if and only if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+ (
T+.

– S ∈ stb(F ) if and only if S+ = X .

Parameterized Complexity For our investigation we need to take two measurements
into account: the input size n of the given AF F and the parameter k given as the
input to σ-REPAIR, σ-ADJUST, and σ-CENTER. The theory of parameterized com-
plexity, introduced and pioneered by Downey and Fellows [9], provides the adequate
concepts and tools for such an investigation. We outline the basic notions of parame-
terized complexity that are relevant for this paper, for an in-depth treatment we refer to
other sources [20, 24].

An instance of a parameterized problem is a pair (I, k) where I is the main part
and k is the parameter; the latter is usually a non-negative integer. A parameterized
problem is fixed-parameter tractable (FPT) if there exists a computable function f such
that instances (I, k) of size n can be solved in time f(k) · nO(1), or equivalently, in
fpt-time. Fixed-parameter tractable problems are also called uniform polynomial-time
tractable because if k is considered constant, then instances with parameter k can be
solved in polynomial time where the order of the polynomial is independent of k, in
contrast to non-uniform polynomial-time running times such as nO(k). Thus we have
three complexity categories for parameterized problems: (1) problems that are fixed-
parameter tractable (uniform polynomial-time tractable), (2) problems that are non-
uniform polynomial-time tractable, and (3) problems that are NP-hard or coNP-hard
if the parameter is fixed to some constant (such as k-SAT which is NP-hard for k =
3). The major complexity assumption in parameterized complexity is FPT ( W[1].
Hence, W[1]-hard problems are not fixed-parameter tractable under this assumption.
Still, such problems are non-uniform polynomial-time tractable. Problems that fall into
(3) above are said to be para-NP-hard or para-coNP-hard. The classes in parameterized
complexity are defined by fpt-reduction, which performs in fpt-time and bounds the
new parameter k′ by a computable function in k.

In our proofs of complexity results we will reduce from the following problem,
which is W[1]-complete [25].

MULTICOLORED CLIQUE

Instance: A natural number k, and a k-partite graph G = (V,E) with partition
{V1, . . . , Vk}.
Parameter: k.
Question: Does G contain a clique of size k?

W.l.o.g. we may assume that the parameter k of MULTICOLORED CLIQUE is even. To
see this, we reduce from MULTICOLORED CLIQUE to itself as follows. Given an in-
stance (G, k) of MULTICOLORED CLIQUE we construct an equivalent instance (G′, 2k)
of MULTICOLORED CLIQUE where G′ is the disjoint union of 2 copies of G.

First-Order Logic We will briefly recall the syntax and semantics of First-Order for-
mulas (FO formulas). FO formulas are evaluated over structures defined on a fixed
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vocabulary. A (relational) vocabulary τ is a set of relation symbols. Each relation sym-
bol R ∈ τ has an associated arity arity(R) ≥ 1. A structure U of vocabulary τ , or
τ -structure, consists of a set U called the universe and an interpretation RS ⊆ Aarity(R)

for each relational symbol R ∈ τ .
To define the syntax of FO formulas we fix a countably infinite set of variables

which we denote in the following by lower case letters with or without indicies, e.g.,
x, y, x1 etc.. Let τ be a vocabulary. The syntax of FO formulas is defined inductively
as follows: (1) if x, y, and x1, . . . , xl are variables and R is an l-ary relation symbol
in τ then x = y and Rx1, . . . , xl are FO formulas, (2) if ϕ and ϕ′ are FO formulas,
then ϕ ∧ ϕ′, ϕ ∨ ϕ′, and ¬ϕ are FO formulas, and (3) if x is a variable and ϕ is a FO
formula, then ∃xϕ and ∀xϕ are FO formulas. Let x and y be variables and ϕ and ϕ′ FO
formulas. For convenience we also introduce the following abbreviations: (1) x 6= y
as a shortcut for ¬x = y, (2) ϕ → ϕ′ as a shortcut for ¬ϕ ∨ ϕ′, and (3) ϕ ↔ ϕ′ as a
shortcut for (ϕ→ ϕ′) ∧ (ϕ′ → ϕ).

By free(ϕ) we denote the set of free variables of ϕ, i.e., the set of all variables x
that occur in ϕ but are not in the scope of a quantifier binding in ϕ. A sentence is a
formulas without free variables. We write ϕ(x1, . . . , xk) to indicate that ϕ is a first-
order formula with free(ϕ) ⊆ {x1, . . . , xk}. We also use the notation ϕ(x1, . . . , xk) to
conveniently indicate substitutions. For instance, if ϕ(x) is a formula then ϕ(y) denotes
the formula obtained from ϕ(x) by replacing all free occurrences of x by y, renaming
bound variables if necessary.

To define the semantics, for each FO formula ϕ(x1, . . . , xk) and each structure U
over some vocabulary τ , we define the relation ϕ(U) ⊆ Uk inductively as follows:

– If ϕ(x1, . . . , xk) = Rxi1 . . . xil where R ∈ τ is l-ary and i1, . . . , il ∈ {1, . . . , k},
then

ϕ(U) := { (u1, . . . , uk) ∈ Uk | (ui1 , . . . , uil) ∈ RU }.

Equalities are treated similarly.
– If ϕ(x1, . . . , xk) = ϕ(xi1 , . . . , xil) ∧ χ(xj1 , . . . , xjr ) with i1, . . . , il, j1, . . . , jr ∈
{1, . . . , k}, then

ϕ(U) := { (u1, . . . , uk) ∈ Uk | (ai1 , . . . , ail) ∈ ϕ(U), and
(aj1 , . . . , ajr ) ∈ χ(U) }.

The other connectives are treated similarly.
– If ϕ(x1, . . . , xk) = ∃xk+1ϕ(xi1 , . . . , xil) with i1, . . . , il ∈ {1, . . . , k + 1}, then

ϕ(U) := { (u1, . . . , uk) ∈ Uk | there exists an uk+1 ∈ U such that
(ui1 , . . . , uil) ∈ ϕ(U) }.

Universal quantifiers are treated similarly.

The above definition also applies for the case that k = 0; in this case, ϕ(A) is either the
empty set or the set consisting of the empty tuple. We usually write U |= ϕ(x1, . . . , xk)
instead of (a1, . . . , ak) ∈ ϕ(U). If ϕ is a sentence, we simply write U |= ϕ instead of
ϕ(U) 6= ∅ and say that U satisfies ϕ or U is a model of ϕ. Observe that for a sentence
ϕ the condition ϕ(U) just means that ϕ(U) contains the empty tuple.
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In this paper we are mainly interested in structures that model (argument)-labeled
AF or equivalently (vertex)-labeled directed graphs. We represent the labels of an AF
F = (X,A) by a family of subsets {L1, . . . , Lr} of X , i.e., for every 1 ≤ i ≤ r,
Li ⊆ X . Let F = (X,A) be a labeled AF with labels {L1, . . . , Lr}. We denote
by τ(F, {L1, . . . , Lr}) the vocabulary {A,L1, . . . , Lr} and by F({L1, . . . , Lr}) the
τ(F, {L1, . . . , Lr})-structure with universe X , 1 binary relation A with
AF({L1,...,Lr}) := A, and 1 unary relation Li with LF({L1,...,Lr})

i := Li for every
1 ≤ i ≤ r.

Let C be a class of (possibly labeled) AFs. We consider the following problem.

C-FO MODEL CHECKING
Instance: A labeled AF F = (X,A) with labels {L1, . . . , Lr} such that F ∈ C
and an FO sentence ϕ over vocabulary τ(F, {L1, . . . , Lr}).
Parameter: |ϕ|.
Question: F({L1, . . . , Lr}) |= ϕ

3 Problems for Dynamic Argumentation

In this section we present the problems that we consider for dynamic argumentation. Let
σ ∈ {adm, com, prf, sem, stb} and recall that 4 and dist are defined as the symmetric
difference and the cardinality of the symmetric difference between 2 sets of arguments,
respectively.

σ-SMALL
Instance: An AF F = (X,A), a nonnegative integer k.
Parameter: k.
Question: Is there a nonempty extension E ∈ σ(F ) of size at most k?

σ-REPAIR
Instance: An AF F = (X,A), a set of arguments S ⊆ X , a nonnegative
integer k.
Parameter: k.
Question: Is there a nonempty extension E ∈ σ(F ) s.t. dist(E,S) ≤ k?

σ-ADJUST
Instance: An AF F = (X,A), an extension E0 ∈ σ(F ), an argument t ∈ X , a
nonnegative integer k.
Parameter: k.
Question: Is there an extension E ∈ σ(F ) s.t. dist(E,E0) ≤ k and t ∈
E0 4 E?

σ-CENTER
Instance: An AF F = (X,A), two extensions E1, E2 ∈ σ(F ).
Parameter: dist(E1, E2).
Question: Is there an extension E ∈ σ(F ) s.t. dist(E,Ei) < dist(E1, E2) for
every i ∈ {1, 2}?
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4 Hardness Results

This section is devoted to our hardness results. We start by showing that all the problems
that we consider in the context of dynamic argumentation are W[1]-hard and hence
unlikely to have FPT-algorithms.

Theorem 1. Let σ ∈ {adm, com, prf, sem, stb}. Then the problems σ-SMALL, σ-
REPAIR, σ-ADJUST, σ-CENTER are W[1]-hard.

We note here that W[1]-hardness also implies the NP-hardness of the considered prob-
lems. In the next section we will show that when considering AFs of bounded max-
imum degree then (fpt)-tractability can be obtained for the admissible, complete, and
stable semantics. Unfortunately, this positive result does not hold for the preferred and
semi-stable semantics as the following result shows.

Theorem 2. Let σ ∈ {prf, sem}. Then the problems σ-SMALL, σ-REPAIR, σ-ADJUST,
σ-CENTER are para-coNP-hard even for AF of maximum degree 5.

Due to space-limitations we had to move the proof of Theorem 1 to the appendix.
We will now show Theorem 2.

Lemma 1. Let σ ∈ {prf, sem}. Then the problems σ-SMALL and σ-REPAIR are
para-coNP-hard (for parameter equal to 1) even if the maximum degree of the AF is
bounded by 5.

Proof. We will show the theorem by providing a polynomial reduction from the 3-
CNF-2-UNSATISFIABLILY problem which is well-known to be coNP-hard [21]. The
3-CNF-2-UNSATISFIABLILY problem ask whether a given 3-CNF-2 formula Φ, i.e., Φ
is a CNF formula where every clause contains at most 3 literals and every literal occurs
in at most 2 clauses, is not satisfiable. Let Φ be a such a 3-CNF-2 formula with clauses
C1, . . . , Cm and variables x1, . . . , xn. We will (in polynomial time) construct an AF
F = (X,A) such that (1) F has bounded degree and (2) Φ is not satisfiable if and only
if there is an E ∈ σ(F ) with |E| = 1. This implies the theorem.

F contains the following arguments: (1) 2 arguments Φ and Φ, (2) 1 argument Cj

for every 1 ≤ j ≤ m, (3) 2 arguments xi and xi for every 1 ≤ i ≤ n, and (4) 1
argument e. Furthermore, F contains the following attacks: (1) 1 self-attack for the
arguments Φ and C1, . . . , Cm, (2) 1 attack from Φ to Φ, (3) 1 attack from Cj to Φ for
every 1 ≤ j ≤ m, (4) 1 attack from xi to Cj for every 1 ≤ i ≤ n and 1 ≤ j ≤ m such
that xi ∈ Cj , (5) 1 attack from xi to Cj for every 1 ≤ i ≤ n and 1 ≤ j ≤ m such that
xi ∈ Cj , (6) 2 attacks from xi to xi and from xi to xi for every 1 ≤ i ≤ n, and (7) 2
attacks from Φ to xi and to xi for every 1 ≤ i ≤ n.

Note that the constructed AF F does not have bounded degree. Whereas all argu-
ments in X \ {Φ,Φ} have degree at most 5, the degree of the arguments Φ and Φ can
be unbounded. However, the following simple trick can be used to transform F into an
AF with bounded degree.

Let B(i) be an undirected rooted binary tree with root r and i leaves l1, . . . , li and
let B′(i) be obtained from B after subdividing every edge of B once, i.e., every edge
{u, v} is replaced with 2 edges {u, nuv} and {nuv, v} where nuv is a new vertex for
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every such edge. We denote by B(Φ) the rooted directed tree obtained from B′(m)
after directing every edge of B′ towards the root r and introducing a self-attack for
every vertex in V (B′) \ V (B), i.e., all vertices introduced for subdividing edges of B
are self-attacking in B(Φ). Then to ensure that the argument Φ has bounded degree in
F we first delete the attacks from the arguments C1, . . . , Cm to Φ in F . We then add a
copy of B(Φ) to F and identify Φ with the root r. Finally, we add 1 attack from Cj to
lj for every 1 ≤ j ≤ m. Observe that this construction maintains the property of F that
if a σ-extension of F contains Φ then it also has to contain at least 1 attacker of every
argument C1, . . . , Cm.

Let B(Φ) be the rooted directed tree obtained from B′(2n) after directing every
edge of B′ away from the root r and introducing a self-attack for every vertex in V (B).
To ensure that also the argument Φ has bounded degree we first delete the attacks from
the argument Φ to x1, x1, . . . , xn, xn in F . We then add a copy of B(Φ) to F and
identify Φ with the root r. Finally, we add 2 attacks from li to xi and from ln+i to xi
for every 1 ≤ i ≤ n. Observe that this construction maintains the property of F that if
a σ-extension of F contains xi or xi for some 1 ≤ i ≤ n then Φ needs to be attacked
by the argument Φ in F and hence such a σ-extension has to contain the argument Φ.

Clearly, after applying the above transformations to F the resulting AF has max-
imum degree at most 5. However, because it is straightforward to verify but tedious
to proof the remaining theorem for the transformed AF with bounded degree we will
henceforth prove the theorem for F . We will need the following claim.

Claim 1. If there is an E ∈ adm(F ) that contains at least 1 argument in
{Φ, x1, x2, . . . , xn, xn} then Φ ∈ E.

Let E ∈ adm(F ) with E ∩ {Φ, x1, . . . , xn} 6= ∅. If Φ ∈ E then the claim holds. So
suppose that Φ /∈ E. Then there is an 1 ≤ i ≤ n such that either xi ∈ E or xi ∈ E.
Because both xi and xi are attacked by the argument Φ and the only argument (apart
from Φ) that attacks Φ in F is Φ it follows that Φ ∈ E. This shows the claim.

Claim 2. There is an E ∈ adm(F ) that contains at least 1 argument in
{Φ, x1, x2, . . . , xn, xn} if and only if the formula Φ is satisfiable.

Suppose there is an E ∈ adm(F ) with E ∩ {Φ, x1, . . . , xn} 6= ∅. Because of the
previous claim we have that Φ ∈ E. Because Φ ∈ E and Φ is attacked by every
argument C1, . . . , Cm it follows that every argument C1, . . . , Cm must be attacked by
some argument in E. Let a(Cj) be an argument in E that attacks Cj . Then a(Cj) is
an argument that corresponds to a literal of the clause Cj . Furthermore, because E is
conflict-free the set L := { a(Cj) | 1 ≤ j ≤ m } does not contain arguments that
correspond to complementary literals. Hence, L corresponds to a satisfying assignment
of Φ.

For the reverse direction suppose Φ is satisfiable and let L be a set of literals wit-
nessing this, i.e., L is a set of literals that correspond to a satisfying assignment of Φ. It
is straightforward to check that E := {Φ} ∪ L is in adm(F ). This completes the proof
of the claim.

Claim 3. Let E ∈ σ(F ). Then e ∈ E.
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This follows directly from our assumption that σ ∈ {prf, sem} and the fact that the
argument e is isolated in F .

We are now ready to show thatΦ is not satisfiable if and only if there is anE ∈ σ(F )
with |E| = 1. So suppose that Φ is not satisfiable. It follows from the previous claim
that E ∩ {Φ, x1, x1, . . . , xn, xn} = ∅ for every E ∈ adm(F ) and hence also for every
E ∈ σ(F ). Because of the self-attacks of the arguments in {Φ,C1, . . . , Cm}, we obtain
that E ⊆ {e}. Using the previous claim, we have E = {e} as required.

For the reverse direction suppose that there is an E ∈ σ(F ) with |E| = 1. Because
of the previous claim it follows that E = {e}. Furthermore, because of the maximality
condition of the preferred and semi-stable semantics it follows that there is no E ∈
adm(F ) such that E ∩ {Φ, x1, x1, . . . , xn, xn} 6= ∅ and hence (using Claim 2) the
formula Φ is not satisfiable. ut

Lemma 2. Let σ ∈ {prf, sem}. Then the problem σ-ADJUST is para-coNP-hard (for
parameter equal to 2) even if the maximum degree of the AF is bounded by 5.

Proof. We use a similar construction as in the proof of Theorem 1. Let F be the AF
constructed from the 3-CNF-2 formulas Φ as in the proof of Theorem 1. Furthermore,
let F ′ be the AF obtained from F after removing the argument e and adding 4 novel
arguments t1, t′1, t2, and t′2 and the attacks (t1, Φ), (Φ, t1), (t1, t2), (t2, t1), (t1, t′1),
(t2, t

′
2), (t

′
1, t
′
1), and (t′2, t

′
2) to F . Because F has degree bounded by 5 (and the degree

of the argument Φ in F is 3) it follows that the maximum degree of F ′ is 5 as required.
We claim that (F ′, {t1}, t1, 2) is a YES-instance of σ-ADJUST if and only if Φ is not
satisfiable.

It is straightforward to verify that the Claims 1 and 2 also hold for the AF F ′. We
need the following additional claims.

Claim 4. {t1} ∈ σ(F ′).

Clearly, {t1} ∈ adm(F ′). We first show that for every E ∈ adm(F ′) with t1 ∈ E
it holds that E = {t1}. Let E ∈ adm(F ′) with t1 ∈ E. Because of the attacks
between t1 and t2 and between t1 and Φ it follows that Φ, t2 /∈ E. Using Claim 1
it follows that also none of the arguments in {x1, x1, . . . , xn, xn} are contained in E.
Furthermore, because of the self-attacks in F ′ it also holds that none of the arguments
in {Φ,C1, . . . , Cm, t

′
1, t
′
2} are contained in E. Hence, E = {t1}, as required. This

implies that {t1} ∈ prf(F ′). To show that {t1} ∈ sem(F ′) observe that t1 is the only
argument in F (apart from t′1 itself) that attacks t′1. Furthermore, because t′1 attacks
itself it cannot be in any semi-stable extension of F ′. Hence, {t1} ∈ sem(F ′). This
shows the claim.

Claim 5. {t2} ∈ σ(F ′) if and only if Φ is not satisfiable.

Suppose that {t2} ∈ σ(F ′). If {t2} ∈ prf(F ′) then there is no E ∈
adm(F ′) with {t2} ( E. It follows that there is no E′ ∈ adm(F ′) with E′ 6=
∩{Φ, x1, x1, . . . , xn, xn} 6= ∅, since such an E′ could be added to E. Using Claim 2 it
follows that Φ is not satisfiable. If on the other hand {t2} ∈ sem(F ′) then because t2
is the only argument that attacks t′2 and because of the self-attack of t′2 it follows again
that there is no E ∈ adm(F ′) with {t2} ( E. Hence, using the same arguments as for
the case {t2} ∈ prf(F ′) we again obtain that Φ is not satisfiable.
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For the reverse direction suppose that Φ is not satisfiable. Because of Claim 2 we
obtain that there every E ∈ adm(F ′) (and hence also every E ∈ σ(F ′)) contains no
argument in {Φ, x1, x1, . . . , xn, xn}. Because {t2} ∈ adm(F ′) and attacks the only
remaining argument t1 with no self-attack it follows that {t2} ∈ σ(F ′).

To show the theorem it remains to show that there is an E′ ∈ σ(F ′) with t /∈ E′
and dist(E,E′) ≤ 2 if and only if the formula Φ is not satisfiable. First observe that
because of Claim 4, ∅ /∈ σ(F ′) and hence E′ must contain exactly 1 argument other
than t1. Consequently, it remains to show that there is an argument x ∈ X \ {t1} such
that {x} ∈ σ(F ′) if and only if Φ is not satisfiable.

Suppose that there is an x ∈ X \ {t1} with {x} ∈ σ(F ′). If x ∈
{Φ, x1, x1, . . . , xn, xn} then because of Claim 1 it holds that x = Φ. However, as-
suming that Φ contains at least 1 clause it follows that {x} is not admissible, and hence
x 6= Φ. Considering the self-attacks of F we obtain that x = t2. Hence, the forward
direction follows from Claim 5.

The reverse direction follows immediately from Claim 5. This concludes the proof
of the theorem. ut

Lemma 3. Let σ ∈ {prf, sem}. Then the problem σ-CENTER is para-coNP-hard (for
parameter equal to 6) even if the maximum degree of the AF is bounded by 5.

Proof. We use a similar construction as in the proof of Theorem 1. Let F be the AF
constructed from the 3-CNF-2 formulas Φ as in the proof of Theorem 1. Further-
more, let F ′ be the AF obtained from F after removing the argument e and adding
12 novel arguments t, t′, w1, w2, w′1, w′2, z, z′, z1, z′1, z2, z′2 and the attacks (t, z),
(z, z), (t′, z′), (z′, z′), (w1, z1), (z1, z1), (w′1, z

′
1), (z

′
1, z
′
1), (w2, z2), (z2, z2), (w′2, z

′
2),

(z′2, z
′
2), (t, Φ), (Φ, t), (t′, Φ), (Φ, t′), (t, t′), (t′, t), (w1, w

′
1), (w′1, w1), (w2, w

′
2),

(w′2, w2), (w1, t), (w2, t), (w′1, t
′), and (w′2, t) to F . Because F has degree bounded by

5 (and the degree of the argument Φ of F is 5) it follows that the maximum degree of
F ′ is 6 as required. We claim that (F ′, {t, w′1, w′2}, {t′, w1, w2}) is a YES-instance of
σ-CENTER if and only if Φ is not satisfiable.

It is straightforward to verify that the Claims 1 and 2 also hold for the AF F ′. We
need the following additional claims.

Claim 6. {t, w′1, w′2} ∈ σ(F ′) and {t′, w1, w2} ∈ σ(F ′).

We show that {t, w′1, w′2} ∈ σ(F ′). The case for {t′, w1, w2} ∈ σ(F ′) is analogous
due to the symmetry of F ′. Clearly, {t, w′1, w′2} ∈ adm(F ′).

We first show that for everyE ∈ adm(F ′) with t ∈ E it holds thatE = {t, w′1, w′2}.
Let E ∈ adm(F ′) with t ∈ E. Clearly, E does not contain Φ, t′, w1 or w2 (since these
arguments are neighbors of t in F ). Using Claim 1 it follows that also none of the
arguments in {x1, x1, . . . , xn, xn} are contained in E. Furthermore, because of the
self-attacks in F ′ it also holds that none of the arguments in {Φ,C1, . . . , Cm, z, z

′}
are contained in E. Hence, E ⊆ {t1, w′1, w′2}. However, because t is attacked by
w1 and w2 in F and w′1 and w2 are the only arguments of F that attack w1 and w2 it
follows that E = {t, w′1, w′2}. This implies that {t, w′1, w′2} ∈ prf(F ′). To show that
{t, w′1, w′2} ∈ sem(F ′) observe that t is the only argument in F (apart from z itself)
that attacks z. Furthermore, because z attacks itself it cannot be in any semi-stable
extension of F ′. Hence, {t, w′1, w′2} ∈ sem(F ′). This shows the claim.
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The proof of the previous claim actually showed the following slightly stronger
statement.

Claim 7. Let E ∈ σ(F ′) with t ∈ E. Then E = {t, w′1, w′2}. Similarly, if E ∈ σ(F ′)
with t′ ∈ E. Then E = {t′, w1, w2}.

We are now ready to show that there is an E ∈ σ(F ′) with dist(E,Ei) <
dist(E1, E2) = 6 for every i ∈ {1, 2} if and only if the formula Φ is not satisfiable.

Suppose that there is an E ∈ σ(F ′) with dist(E,Ei) < dist(E1, E2) = 6 for
every i ∈ {1, 2}. Then because of Claim 7 E does not contain t or t′. If there is an
E ∈ σ(F ′) with Φ ∈ E then we can assume (because of the maximality properties of
the two semantics) that E contains 1 of xi or xi for every 1 ≤ i ≤ n. Hence, if Φ ∈ E
and the formula Φ contains at least 5 variables (which we can assume w.l.o.g.) then
dist(E,E1) > 5. Consequently, Φ /∈ E and it follows from Claims 1 and 2 that Φ is not
satisfiable, as required.

For the reverse direction suppose that Φ is not satisfiable. Let E := {w1, w
′
1}.

Clearly, dist(E,Ei) = 3 < 5, as required. It remains to show that E ∈ σ(F ′). It
is easy to see that E ∈ adm(F ′). Furthermore, Φ is not satisfiable it follows from
Claim 2 that no E′ ∈ σ(F ′) can contain an argument in {Φ, x1, x1, . . . , xn, xn} and
henceE ∈ prf(F ′). The maximality ofE with respect to the semi-stable extension now
follows from the fact that w1 and w′2 are the only arguments that attack the arguments
z1 and z′2 and because of their self-attacks none of z1 and z2 can them-self be contained
in a semi-stable extension. This completes the proof of the theorem. ut
Lemmas 1, 2, and 3 together imply Theorem 2.

5 Tractability Results

Unfortunately, the results of the previous section draw a rather negative picture of the
complexity of problems important to dynamic argumentation. In particular, Theorem 2
strongly suggests that at least for the preferred and semi-stable semantics these prob-
lems remain intractable even under strong structural restrictions. The hardness of these
problems under the preferred and semi-stable semantics seems to originate from their
maximality conditions. In this section we take a closer look at the complexity of our
problems for the 3 remaining semantics, i.e., the admissible, complete, and stable se-
mantics. We show that in contrast to the preferred and semi-stable semantics all our
problems become fixed-parameter tractable when restricting the structure of the given
AF (e.g. to have bounded degree). In particular, we will show the following result.

Theorem 3. Let σ ∈ {adm, com, stb} and c a natural number. Then the problems σ-
SMALL, σ-REPAIR, σ-ADJUST, and σ-CENTER are fixed-parameter tractable if the
maximum degree of the input AF is bounded by c.

The rest of this section is devoted to a proof of this theorem.
Our main tool for the proof of the above theorem is the following well-known re-

sult for C-FO MODEL CHECKING – this result is originally stated for labeled directed
graphs, however, the result directly applies to labeled AFs due to the equivalent nature
of labeled AF and labeled directed graphs.
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Proposition 1 ([27]). Let C be the class of all (possibly labeled) AFs whose maximum
degree is bounded by some constant. Then the problem C-FO MODEL CHECKING is
fixed-parameter tractable.

There exists several extensions of the above result to even more general classes, e.g., the
class of graphs with locally bounded treewidth. Due to the technicality of the definition
of these classes we refrain from stating these results in detail and refer the interested
reader to [23]. Results such as the one above are also commonly refereed to as meta-
theorems, i.e., they allow us to make statements about a wide variety of algorithmic
problems. Similar meta-theorems have been used before in the context of Abstract
Argumentation (see, e.g., [11, 22, 17]).

To use this result we need to state our problems in terms of the C-FO MODEL
CHECKING problem, i.e., we need to (1) model the input of σ-SMALL, σ-REPAIR,
σ-ADJUST, σ-CENTER in terms of labeled AFs, and (2) give a FO sentence that is sat-
isfied if and only if the given instance of σ-SMALL, σ-REPAIR, σ-ADJUST, σ-CENTER
(represented by the labeled AF from step (1)) is a YES instance.

To accomplish step (1) we only need to define the labels from the input of the given
problem. We do this in the natural way, i.e., for an instance (F, k) of σ-SMALL, F
is the corresponding labeled AF, for an instance (F, S, k) of σ-REPAIR, F with labels
{S} is the corresponding labeled AF, for an instance (F,E0, t, k) of σ-ADJUST, F with
labels {E0, T} where T := {t} is the corresponding labeled AF, and for an instance
(F,E1, E2) of σ-CENTER, F with labels {E1, E2} is the corresponding labeled AF.

Towards defining the FO formulas for step (2) we start by defining the following
auxiliary formulas. Due to the complexity of the FO formulas that we need to define,
we will introduce some additional notation that will allow us to reuse formulas by sub-
stituting parts of other formulas. We will provide examples how to interpret the notation
when these formulas are introduced.

In the following let l be a natural number, and let ϕ(x), ϕ1(x), and ϕ2(x) be FO
formulas with free variable x.

The formula SET[l](x1, . . . , xl, y) is satisfied if and only if the argument y is equal
to at least 1 of the arguments x1, . . . , xl.

SET[l](x1, . . . , xl, y) := y = x1 ∨ · · · ∨ y = xl

We note here that the notation SET[l] means that the exact definition of the formula
SET[l] depends on the value of l, e.g., if l = 3 then SET[l] is the formula y = x1 ∨ y =
x2 ∨ y = x3.

The formula CF[ϕ(x)] is satisfied if and only if the set of arguments that satisfy the
formula ϕ(x) is conflict-free.

CF[ϕ(x)] := ∀x∀y(ϕ(x) ∧ ϕ(y))→ ¬Axy
Again we note here that the notation CF[ϕ(x)] means that the exact definition of the
formula CF[ϕ(x)] depends on the formula ϕ(x), e.g., if ϕ(x) := SET[l](x1, . . . , xl, y)
then CF[ϕ(x)] is the formula ∀x∀y(SET[l](x1, . . . , xl, x) ∧ SET[l](x1, . . . , xl, y)) →
¬Axy which in turn evaluates to ∀x∀y(

∨
1≤i≤l x = xi ∧

∨
1≤i≤l y = xi)→ ¬Axy.

The formula SYM-DIFF[ϕ1(x), ϕ2(x)](y) is satisfied if and only if the argument y
is contained in the symmetric difference of the sets of arguments that satisfy the formula
ϕ1(x) and the set of arguments that satisfy the formula ϕ2(x).
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SYM-DIFF[ϕ1(x), ϕ2(x)](y) := (ϕ1(y) ∧ ¬ϕ2(y)) ∨ (¬ϕ1(y) ∧ ϕ2(y))

The formula ATMOST[ϕ(x), k] is satisfied if and only if the set of arguments that sat-
isfy the formula ϕ(x) contains at most k arguments.

ATMOST[ϕ(x), k] := ¬(∃x1, . . . ,∃xk+1(
∧

1≤i<j≤k+1 xi 6= xj)∧(
∧

1≤i≤k+1 ϕ(xi)))

The following formulas model the semantics adm, com, stb. These formulas are
therefore evaluated over a fixed (possibly labeled) AF F := (X,A).

The formula adm[ϕ(x)] is satisfied by the structure of a possibly labeled AF F if
and only if the set of arguments that satisfy the formula ϕ(x) is an admissible extension
of F .

adm[ϕ(x)] := CF[ϕ(x)] ∧ (∀x∀z(ϕ(x) ∧ (¬ϕ(z)) ∧Azx)→ (∃yϕ(y) ∧Ayz))

The formula com[ϕ(x)] is satisfied by the structure of a possibly labeled AF F if and
only if the set of arguments that satisfy the formula ϕ(x) is a complete extension of F .

com[ϕ(x)] := adm[ϕ(x)] ∧ (∀z((∀aAaz → ∃xϕ(x) ∧Axa) ∧ (∀xϕ(x)→
¬(Axz ∨Azx)))→ ϕ(z)

The formula stb[ϕ(x)] is satisfied by the structure of a possibly labeled AF F if and
only if the set of arguments that satisfy the formula ϕ(x) is a stable extension of F .

stb[ϕ(x)] := CF[ϕ(x)] ∧ (∀zϕ(z) ∨ (∃aϕ(a) ∧Aaz))

We are now ready to define the formulas that model the problems σ-SMALL, σ-
REPAIR, σ-ADJUST, and σ-CENTER.

Let σ ∈ {adm, com, stb}. The formula σ-SMALL[σ, k] is satisfied by the structure
of a possibly labeled AF F if and only if the AF F has a σ-extension that contains at
most k arguments, i.e., if and only if (F, k) is a YES instance of σ-SMALL.

σ-SMALL[σ, k] := ∃x1, . . . ,∃xkσ[SET[k](x1, . . . , xk)]

The formula σ-REPAIR[σ, k] is satisfied by the structure of a labeled AF F = (X,A)
with labels {S} if and only if F has a E ∈ σ(F ) with dist(E,S) ≤ k, i.e., if and only
if (F, S, k) is a YES instance of σ-REPAIR.

σ-REPAIR[σ, k] := ∃x1, . . . ,∃xkσ[SYM-DIFF[Sx,SET[k](x1, . . . , xk)]]

The formula σ-ADJUST[σ, k] is satisfied by the structure of a labeled AF F = (X,A)
with labels {E0, T} where T := {t} if and only if F has a E ∈ σ(F ) such that
dist(E0, E) ≤ k and t ∈ E 4 E0, i.e., if and only if (F,E0, t, k) is a YES instance of
σ-ADJUST..

σ-ADJUST[σ, k] :=
∃t∃x1, . . . ,∃xk−1Tt ∧ σ[SYM-DIFF[E0x,SET[k](t, x1, . . . , xk−1)]]

The formula σ-CENTER[σ, k] is satisfied by the structure of a labeled AF F = (X,A)
with labels {E1, E2} if and only if F has a E ∈ σ(F ) with dist(Ei, E) < dist(E1, E2)
for every i ∈ {1, 2}, i.e., if and only if (F,E1, E2) is a YES instance of σ-CENTER.
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σ-CENTER[σ, k] := ∃x1, . . . ,∃xk−1σ[SYM-DIFF[E1x,SET[k−1](x1, . . . , xk−1)]]∧
ATMOST[k − 1][SYM-DIFF[SYM-DIFF[E1x,SET[k − 1](x1, . . . , xk−1)], E2x]

Because the length of the above FO formulas is easily seen to be bounded in terms
of the parameter k of the respective problem, these formulas together with Proposition 1
immediately imply Theorem 3.
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A Omitted proofs

Proof of Theorem 1

We will have shown Theorem 1 after showing the following 3 Lemmas.

Lemma 4. Let σ ∈ {adm, com, prf, sem, stb}. Then the problems σ-SMALL and σ-
REPAIR are W[1]-hard.

Proof. We start by showing the lemma for the problem σ-SMALL by giving an fpt-
reduction from the MULTICOLORED CLIQUE problem to the σ-SMALL problem, when
σ is one of the listed semantics. Let (G, k) be an instance of MULTICOLORED CLIQUE
with partition V1, . . . , Vk. We construct in fpt-time an AF F such that there is an E ∈
σ(F ) with |E| = k if and only if G has a k-clique. The AF F contains the following
arguments: (1) 1 argument yv for every v ∈ V (G) and (2) for every 1 ≤ i ≤ k, 1
argument zjv for every v ∈ Vi and 1 ≤ j ≤ k with j 6= i. For every 1 ≤ i < j ≤ k, we
denote by Y [i] the set of arguments { av | v ∈ Vi } and by Z[i, j] the set of arguments
{ ajv | v ∈ Vi }. Furthermore, we set Y :=

⋃
1≤i≤k Y [i] and Z :=

⋃
1≤i<j≤k Z[i, j].

For every 1 ≤ i ≤ k, the AF F contains the following attacks:

– 1 attack from yv to yu for every u, v ∈ Y [i] with u 6= v;
– 1 self-attack for all arguments in Z;
– For every v ∈ Vi, 1 attack from zjv to yv for every 1 ≤ j ≤ k with j 6= i;
– For every v ∈ Vi, 1 attack from yv to zju for every u ∈ Vi \{v} and 1 ≤ j ≤ k with
j 6= i.

– For every {u, v} ∈ E(G) with u ∈ Vi and v ∈ Vj , 1 attack from yu to ziv and 1
attack from yv to zju.

This completes the construction of F . It remains to show that G has a k-clique if and
only if there is an E ∈ σ(F ) with |E| = k. If Q ⊆ V (G) we denote by YQ the set of
arguments { yq | q ∈ Q }. We need the following claim.

Claim 8. A set Q ⊆ V is a k-clique in G if and only if YQ ∈ adm(F ) and YQ 6= ∅.

Suppose that Q ⊆ V (G) is a k-clique in G. Then YQ contains exactly 1 argument
from Y [i] for every 1 ≤ i ≤ k. Because there are no attacks between arguments
in Y [i] and Y [j] for every 1 ≤ i < j ≤ k it follows that YQ is conflict-free. To
see that YQ is also admissible let yv ∈ YQ ∩ Vi and suppose that yv is attacked by
an argument x of F . It follows from the construction of F that either x ∈ Y [i] or
x ∈ { zjv | 1 ≤ j ≤ k and j 6= i }. In the first case x is attacked by yv . In the second
case zjv is attacked by the argument in Y [j] ∩ YQ because Q is a k-clique of G. Hence,
YQ ∈ adm(F ) and YQ 6= ∅, as required.

For the opposite direction, suppose that E ∈ adm(F ) and E 6= ∅. Because E
conflict-free it follows that E ⊆ Y and E contains at most 1 argument from the set Y [i]
for every 1 ≤ i ≤ k. Because E 6= ∅ there is an argument yv ∈ Y [i] ∩ E. Because of
the construction of F , yv is attacked by the arguments { zjv | 1 ≤ j ≤ k and j 6= i }.
Hence, the arguments { zjv | 1 ≤ j ≤ k and j 6= i } need to be attacked by arguments
in E. However, the only arguments of F that attack an argument zjv with j 6= i are
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the arguments yu ∈ Y [j] such that {u, v} ∈ E(G). Hence, for every argument yv ∈
E ∩ Y [i] and every 1 ≤ j ≤ k with j 6= i there is an argument yu ∈ E ∩ Y [j] such that
{u, v} ∈ E(G). It follows that the set { v | yv ∈ E } is a k-clique in G. This shows the
claim.

The previous claim shows that every non-empty admissible extension of F corre-
sponds to a k-clique of G. It is now straightforward to check that every such extension
is not only admissible but also complete, preferred, semi-stable, and stable. This shows
the lemma for σ-SMALL. To show the Lemma for the σ-REPAIR problem we note that
(F, ∅, k) is a YES-instance for σ-REPAIR if and only if (F, k) is a YES-instance for
σ-SMALL. ut

Lemma 5. Let σ ∈ {adm, com, prf, sem, stb}. Then the problem σ-ADJUST is W[1]-
hard.

Proof. We give an fpt-reduction from the σ-SMALL problem. Let (F, k) be an instance
of the σ-SMALL problem where F = (X,A). We construct an equivalent instance
(F ′, E1, E2) of the σ-ADJUST problem as follows. F ′ = (X ′, A′) is obtained from F
by adding 1 argument t and 2 attacks (t, x) and (x, t) for every x ∈ X to F . Because the
argument t attacks is attacked by all arguments in X it follows that {t} is a σ-extension
of F ′. In is now straightforward to show that (F ′, {t}, t, k + 1) is a YES-instance of
σ-ADJUST if and only if (F, k) is a YES-instance of σ-SMALL. This shows the lemma.

ut

Lemma 6. Let σ ∈ {adm, com, prf, sem, stb}. Then the problem σ-Center is W[1]-
hard.

Proof. We give an fpt-reduction from the σ-SMALL problem. Let (F, k) be an instance
of the σ-SMALL problem where F = (X,A). W.l.o.g. we can assume that k is even.
This follows from the remark in Section 2 that MULTICOLORED CLIQUE is W[1]-
hard even if k is even and the parameter preserving reduction from MULTICOLORED
CLIQUE to σ-SMALL given in Lemma 4. We will construct an equivalent instance
(F ′, E1, E2) of the σ-CENTER problem as follows. F ′ = (X ′, A′) is obtained from F
by adding the following arguments and attacks to F .

– 2 arguments t and t′;
– the arguments in W := {w1, . . . , wk} and W ′ := {w′1, . . . , w′k};
– the arguments in Z := {z1, . . . , zk} and Z ′ := {z′1, . . . , z′k};
– attacks from t to all arguments in X ∪ {t′} ∪ Z ∪ Z ′ and attacks from t′ to all

arguments in X ∪ {t} ∪ Z ∪ Z ′;
– attacks from wi to {t, w′i} and attacks from w′i to {t′, wi} for every 1 ≤ i ≤ k;
– self-attacks for the arguments z1, . . . , zk and z′1, . . . , z

′
k;

– attacks from zi to {wi, w
′
i} and from X to zi for every 1 ≤ i ≤ k;

– attacks from {wi, w
′
i} to z′i and from z′i to X for every 1 ≤ i ≤ k;

We set E0 := {w1, . . . , wk/2, w
′
k/2+1, . . . , w

′
k}, E1 := {t}∪W ′, E2 := {t′}∪W , and

k′ := dist(E1, E2)−1 = 2(k+1)−1 = 2k+1. Then E1 and E2 are σ-extensions and
hence (F ′, E1, E2) is a valid instance of the σ-CENTER problem. It remains to show
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that (F, k) is a YES instance of σ-SMALL if and only if (F ′, E1, E2) is a YES instance
of σ-CENTER.

Suppose that (F, k) is a YES instance of σ-SMALL and let E be a non-empty σ-
extension of cardinality at most k witnessing this. Then E′ := E ∪E0 is a σ-extension
of F ′ and dist(E′, Ei) = k + k + 1 = 2k + 1 ≤ k′ for i ∈ {1, 2}, as required.

For the reverse direction suppose that E′ is a σ-extension of F ′ with dist(E′, Ei) ≤
k′ for i ∈ {1, 2}. We need the following claim.

Claim 9. E′ does not contain t or t′.

Suppose for a contradiction thatE′ contains one of t and t′. Because t and t′ attack each
other E′ cannot contain both t and t′. W.l.o.g. we can assume that t ∈ E′. Because E′

is a σ-extension E′ is also admissible. Since, the arguments w1, . . . , wk attack t, there
need to be arguments in E′ that attack these arguments. It follows that E′ contains the
arguments w′1, . . . , w

′
k. But then dist(E′, E2) ≥ dist(E1, E2) a contradiction.

Claim 10. E′ ∩X is a non-empty σ-extension of F and E′ contains exactly one of the
arguments wi and w′i for every 1 ≤ i ≤ k.

It follows from the previous claim thatE′ does not contain t or t′. Furthermore, because
of the self-loops of the arguments in Z∪Z ′, E′ contains only arguments fromX∪W ∪
W ′. Since the arguments in X do not attack or are attacked by arguments in W ∪W ′
it follows that E′ ∩ X is a σ-extension of F . To see that E′ ∩ X is also not empty,
suppose for a contradiction that this is not the case. Then because E′ is non-empty, E′

has to contain at least 1 argument from W ∪W ′. However, any argument in W ∪W ′
is attacked by an argument in Z and the only arguments that attack arguments in Z are
the arguments in X ∪ {t, t′}. Again using the previous claim and the fact that E′ is
admissible, it follows that E′ has to contain at least 1 argument from X , as required.
It remains to show that E′ contains exactly one of wi and w′i for every 1 ≤ i ≤ k.
Because E′ contains at least 1 argument from X and all arguments in X are attacked
by all arguments in Z ′, E′ needs to contain arguments that attack all arguments in
Z ′. However, the only arguments that attack arguments in Z ′ are the arguments in
{t, t′}∪W ∪W ′. Using the previous claim it follows that the only way for E′ to attack
all arguments in Z ′ is to contain at least 1 of wi and w′i for every 1 ≤ i ≤ k. The
claim now follows by observing that because E′ is conflict-free, it cannot contain both
arguments wi and w′i for any 1 ≤ i ≤ k. This proves the claim.

Since E′ contains exactly 1 of wi and w′i for every 1 ≤ i ≤ k we obtain that either
|W \ E′| ≥ k/2 or |W ′ \ E′| ≥ k/2. W.l.o.g. we can assume that |W \ E′| ≥ k/2.
But then dist(E′, E2) = |E′ ∩X| + 1 + 2|W \ E′| = |E′ ∩X| + k + 1 and because
dist(E′, E2) ≤ k′ = 2k + 1 it follows that |E′ ∩X| ≤ k. This concludes the proof of
the lemma. ut
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