
Making Simple Decisions
CS3523

AI for Computer Games
The University of Aberdeen



Contents

I Decision making

I Search and Optimization

I Decision Trees

I State Machines



Motivating Question

I How can we program rules of behaviour for a Non-Player
Character (NPC)?

I Constraints:

I Developers must be able to: create, test, debug, modify easily.
I Should enhance player experience:
I Performance (care about speed).
I Sufficiently interesting and lifelike for players.



Agent-world interaction

I Think about some simple interaction between an agent and its
world.

I Agent wants to influence changing world through action.

chosen action
world (inc. agent) −→ new world



Repeated decision

I Usually, will want to have an agent that continually takes
decisions.

I May have a feedback loop like:

model world (theory, data, inc. self) −→ apply decision process

↑ ↓

observe new ‘actual’ world (new data) ←− take available action



Decision Making
I For a rational agent, decision making leads to action (i.e.

behaviour).
I Many subtleties and complexities here. Some are

deep/philosophical. How does one define
I rational
I agent
I decision making
I world?

I Some are more technical
I Decision making may have a cost; this may have to be

factored into the decision!
I e.g. may decide not to decide, to bury head in the sand.
I Inaction is an action: choose explicitly to do nothing.

I Other ‘agents’ may be choosing and acting simultaneously.

I As a game designer we set the rules, so presumably we are
free to pay just as much attention to these issues as we wish,
as long as we can satisfy the end-user.

I Our agents may not have to be subject to the rules of the
Natural, Social or Behavioural Sciences.



Optimizing Agents

I Consider an agent taking a single decision.

I The agent wants to be select an action that will lead to an
outcome that is desirable. So some actions will be better than
others.

I Ideally, the decision process should return the optimum (best)
action (to give the best behaviour).

I If decision-maker (DM) knows what the outcome of each
choice would be, and can optimize over these, then DM has
solution.

I This requires DM to know (be coded with, or have access to):
I what the current state of the world is
I how the world changes for each choice
I preferences between these outcomes.



Optimization



Search

I Search is a major part of AI
I Search to find out the available actions
I Search of the world,

I e.g., for a path, or for treasure on a game map.

I A lot of AI involves optimization.
I A lot of optimization is about search for the optimum solution,

or,
I search for an optimal (and good-enough) solution; this is

known as satisficing.

I You’ll spend some time looking at search, particularly
pathfinding, starting from next week.



Simple Reflexes

I The decision-making that we will look at today is that done
by simple-reflex agents.

I They observe the world (state) and then react in fixed,
‘simple’ ways.

I They usually do this kind of thing continually, e.g. at every
clock-tick of the game.

I They don’t search for sophisticated choices.

I They don’t build a sophisticated model.



Decision Trees (1)

I Decision trees used to compute (reflex) choices in state of
world.

I Agent can find out properties of world state, and use this
information to choose its reaction.

I Use a simple kind of computable function that maps
world-states to simple actions, for any given decision:

DecTree : States −→ SimpleActions .

I So, if it is given a state s, then an action DecTree(s) is
chosen.



Decision Trees (2)

I Can be coded using:
I conditional statements (if-then), or
I rules from a dedicated rule-language.

I Pragmatics of this choice in games
I fast
I easy to understand
I See Millington for more details.



E.G.: World with enemy seen



E.G.: enemy observed to be weak



E.G.: enemy observed to be weak and close



Decision Tree Issues

I Not required to be binary: nodes can have many children.
I Performance:

I choose order of interrogation nodes.

I Generalizations:
I Edges allowed to merge at a lower node: decision graphs (but

usually must be directed acyclic)
I Randomness: (slides below).

I Different decision trees for different NPCs, or for the same
NPC in different modes (also below)

I E.g. separate fight/flee-mode, from attack-mode.



Decision and Learning

I We have focussed on a version of decision trees that simply
calculates choice (leading to behaviour) by a sequence of
interrogations of states of the world, with no optimization.

I Which is the best action can be learned (won’t discuss today).



More Complicated Decision Trees

I Different type of ‘decision-tree’ used for economic, managerial
(and some AI) decisions. There are various different forms of
these trees in the literature.

I Used for more-sophisticated choices (not just reflexes).
Require optimization procedures.



Randomness

I Randomness is very important.

I World changes too hard to predict exactly.

I NPC behaviour might be random.

I Human player might be too hard to predict.

I Agents may not be able to predict each others behaviour.

I Random algorithms important computational tools, when
dealing with large state and search spaces.



Random NPC

I Random behaviour of NPC may be best.

I Easy to add a node to decision tree which tests a random
number.



EG: Decision graph with random node



Random NPC — Sampling Issue

I If game ‘ticks’ every 20ms, do we really need and want the
random values to be re-sampled, and the NPCs to change
their behaviour this often?

I e.g. random attack/flee choice
I e.g. goal location
I Should the NPC change its behaviour every 20ms?
I Probably not.

I Be careful about how often behaviour changes.



More Persistent NPC State

I Better to have NPC in a definite state, which is only changed
at sensible intervals.

I E.g. state: fight, flee

I Behaviour determined by one decision tree, which interrogates
the state of both the NPC and the world, and which runs
every game tick. (e.g. 20ms).

I NPC state changed by a separate decision tree
I e.g. when environ. changes, e.g. enemy gone, or
I e.g. after a fixed period, say 10 mins.

I OO-approach really helps here.



State Machines

I Alternative way to do decisions

I Focuses on state
I Most common today in games

I According to Millington

I a.k.a FSM (Finite State Machine), Finite State Automata



Example: Find treasure FSM



Example: Use of NPC states in decision tree



Quake code: set state (a transition)



Quake code: use of state in decision



FSM with Decision Trees

I Most of quake code is about special case handling, not “being
smart”

I e.g. monster which can’t melee
I e.g. easy mode

I Similar to other game software
I 80% (90%) is special case handling

I Brittleness in unusual situations is major problem with AI in
general.



Hierarchical State Machines

I Usually have:
I many states in games
I no direct transition between most states
I certain, similar transitions occur repeatedly.

I State is often naturally hierarchical.

I Can ‘chunk’ state machines and combine into hierarchical
state machines.

I Quite natural from a coding point of view.



HSM Alarm

E.G., used for alarms:

I Can have one FSM for basic background behaviour, and one
(alarm) for behaviour in presence of enemy.

I When enemy seen:
I interrupt background-FSM with alarm-FSM to deal with enemy

I Revert to background-FSM when enemy gone.



HSM Alarm Example



State machines elsewhere

State machines very common in CS as a whole:

I Compilers

I Software engineering (UML)

I Hardware design

I Theory of computing, logic

I Linguistics



Example: dog

I What states does a dog have
I Quake, Sims
I real life?

I What drives state transition?



How good are these?

I In both of the above approaches (FSM and dec. tree) the
choice of behaviour is made according to some (simple or
complicated) rules, given the world.

I R & N call this a reflex agent (Section 2.4).
I How close to the optimal (or even an optimum solution) are

such decisions:
I For the player of the game?
I For the designer?



Simple AI Works in Complex Games

I Simple state machines and decision trees can give rise to
intelligent-looking behaviour in a complex world.

I General finding in AI that apparent intelligence can come
from:

I complex algorithms in simple world, or
I simple algorithms in complex world.



Problem

I User can find a bug or poorly handled special case, and exploit
this

I e.g. monster uses weak sword instead of mega-powerful bow if
in sword range.

I Deeper AI would help:
I Want common sense NPC behaviour
I Such behaviour a long-term goal of AI.
I Could be expensive to build, test, verify.



Game Engines

I Lots of packages developed by individuals for:
I Decision trees,
I FSM,
I HSM.

I Are there now any standard and widely-used open-source
engines with these?



Reading

You might be interested to read more in:

I Millington, Chapter 5.

I Russell and Norvig, 2nd ed., bits of chapters 2 and 16.

I This is not required.



Attendance

I Attendance at practicals is mandatory.

I You will not be allowed to sit the exam if you fail to attend
(without good cause).

I Most of the students who fail this course are the ones who
don’t show up.

I You will find later practicals very hard if you don’t do the
earlier ones first.

I No student has performed well who has regularly skipped this
class.


