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1 What’s the point?

In the last two talks, Irakli introduced us to simplicial sets and model categories. It’s been a
while, so we recall things we need along the way.

Categories are often insufficient when doing homotopy theory: Homotopies are maps
between maps, and that’s not something a plain category can deal with. The point of∞-
categories is to give a generalization of categories where we can do homotopy theory nicely.
Let’s collect some properties that we want these to have:

Consider a map f : X → Y of spaces. We are interested in the fibre of this map, e.g.,
because it sometimes gives us a long exact sequence of homotopy groups. Now, a plain
fibre of f would just be a pullback

f −1 y X

y Y .

f

This pullback is classified by its universal property: A map T → f −1 y corresponds to a com-
mutative diagram

T X

y Y .

f

But often, what we really want is the homotopy fibre: For example, this always gives you a
long exact sequence! The homotopy fibre is a homotopy pullback

Ff X

y Y .

f

But now, a map T → Ff corresponds not just to a (homotopy) commutative diagram as
above. Instead, it corresponds to a diagram
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T X

y Y ,

f

together with the data of homotopies making this diagram homotopy commutative. This is
not a purely categorical construction anymore: A plain category cannot keep track of ho-
motopy data.

First demand. Data is to∞-categories as properties are to categories. Any homotopi-
cal category should be able to keep track of homotopies (and homotopies between homo-
topies,...)

For plain categories, things are often unique, or unique up to unique isomorphism. That
doesn’t happen in homotopy theory: For example, every isomorphism has a unique inverse.
But a homotopy equivalence can have many inverses. Now, any two inverses will be homo-
topic. But there can be many homotopies between two inverses! Now, any two homotopies
will be homotopic. But...

This is a lot of data to keep track of, just to say that something is essentially unique. Of
course, there’s a nicer way: We need to structure the data. Specifically, one should have a
space of inverses, not just a set. Then homotopical uniqueness just means that this space is
(weakly) contractible.

Second demand. Sets should be replaced by spaces. In particular, we want mapping spaces
between objects. We consider these spaces only up to weak equivalence. One direct applica-
tion: Uniqueness should be replaced by contractibility (i.e., "the set of choices is a singleton"
becomes "the space of choices has the homotopy type of a singleton".)

An obvious solution at this point would be categories enriched over spaces (e.g., topo-
logical, or sSet, or Kan complexes). Also true, but harder to see: Even for model categories,
one can construct mapping spaces! But while these do give valid models for∞-categories,
they are hard to work with:

Third demand: Statements from categories should carry over to∞-categories, as long
as one translates them in the spirit of the first two demands. For example, we would like
analogues to the following statements:

• An essentially surjective, fully faithful functor is an equivalence of categories.

• A natural transformation is an isomorphism iff it is an object-wise isomorphism.

Neither of these work in these models. In fact, (the homotopical version of) essentially sur-
jective fully faithful functors don’t even necessarily have inverses there! For example, the
inclusion

(finite cell complexes, cellular maps) ,→ (topological spaces equivalent to finite cell complexes, continuous maps

can be realized a such a functor, but there is no reason to believe that one can go the other
way.

There are at least two models that satisfy all of the above: Quasicategories and complete
Segal spaces. We’ll see both during this seminar, but we will start with quasicategories.
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How to think about quasicategories : Every concept and statement from 1-categories can
be easily translated, and is almost certainly true. This makes them very natural to work with,
because you already understand how they work!

The disadvantage will be: Things are hard to prove, and hard to explicitly construct. The
first one is not a huge problem, people (i.e., Jacob Lurie) have proved most statements that
you’ll want to use. The second part is a problem: For example, it is often very hard to explic-
itly construct functors.

2 Spaces and Categories

Let’s take a step back.
Recall that we learned about simplicial sets last time. We defined the category ∆ with

objects the posets [n ] = {1 ≤ . . . ≤ n}, and morphisms as order-preserving maps. Then a
simplicial set is a presheaf X : ∆op → Set. More concretely, this consists of the sets of n-
simplices Xn , together with boundary and degeneracy maps:

· · · X2 X1 X0

An important example is the n-simplex ∆n = Hom(−, [n ]). [draw 2-simplex.] By the
Yoneda lemma, we have Xn = Hom(∆n , X )—i.e., Xn really tells us about how n-simplices
can fit into X .

We’ve also encountered horns: For 0 ≤ i ≤ n , the simplicial set Λn
i ,→ ∆

n was obtained
by deleting the n-simplex and its i th face. [draw 2-horns.] Moreover, we had spines: The
n-spine I n ,→∆n consists of just the 1-simplices (i , i +1). [draw 3-spine.]

Then Irakli introduced us to Kan complexes. To recall, a Kan complex was a simplicial
set K that admits horn fillers, i.e.: For any 0≤ i ≤ n , one can find a dotted arrow:

Λn
i K

∆n .

We saw that for any topological space X , the singular complex S (X )with Sn (X ) =Map(|∆n |, X )
is a Kan complex, and this assembles into a functor that induces an equivalence of homo-
topy categories (more precisely: S is a Quillen equivalence between Top and sSet, and Kan
complexes are the fibrant-cofibrant objects). Succinctly: Kan complexes are spaces.

As it turns out, one can do a similar thing for categories: Note that the poset [n ] can be
viewed as a category:

n = 0→ 1→ ·· ·→ n .

Likewise, the maps [n ]→ [m ] correspond precisely to functors between these categories.

Definition 2.1. Let C be an ordinary category. The nerve of C is the simplicial set N C, where
the n-simplices are

N Cn = Fun(n ,C),

and the maps are induced by precomposition. In more concrete terms: A 0-simplex of N C

is an object of C, a 1-simplex is a morphism in C, and an n-simplex of N C is a chain of n
composable morphisms in C:

c0→ c1→ ·· ·→ cn .

3



Faces are obtained by omitting and composing morphisms, and degeneracies by inserting
identities. More intuitively, draw a simplex, and put the morphisms on the spine. Then
triangles are filled by composition, and one can read off the faces and degeneracies:

y

x z .

gf

g f

Now, as we will see later, this is a fully faithful functor: That is, one can do category
theory loss-free by looking at nerves. Therefore it is useful to characterize those simplicial
sets which arise as the nerve of a category. It turns out that the characteristic property is
very similar to that of Kan complexes:

Theorem 2.2 (1.1.52). For a simplicial set X :∆op→ Set, the following are equivalent:

(1) X is (isomorphic to) the nerve of some 1-category C.

(2) X has unique spine fillers, i.e.: For any spine I n → X , there is a unique extension

I n X

∆n .

(3) X has unique inner horn fillers, i.e.: For any inner horn Λn
i → X , with 0 < i < n, there is

a unique extension

Λn
i X

∆n .

Proof. We will only sketch a proof. First, it is rather straightforward to see that (1)⇒ (2):

• (1)⇒ (2) : A spine I n → X is a string of "composable" 1-simplices:

HomsSet(I
n , X ) = X1×X0

· · · ×X0
X1.

For nerves, these are precisely the n-simplices:

HomsSet(I
n , N C) =N C1×N C0

· · · ×N C0
N C1

∼=morC×objC · · · ×objC morC∼=N Cn
∼=HomsSet(∆

n , N C).

This tells us that any spine I n →N C is the restriction of a unique simplex∆n →N C.

• (2)⇒ (1) : Given a simplicial set X with unique spine fillers, let us construct a category
C s.t. X ∼=N C: We set objC= X0, and the morphisms as the 1-simplices:

HomC(x , y ) = { f ∈ X1|d1 f = x , d0 f = y }.

The composition is defined through filling 2-spines, and the identities are degenera-
cies of the 0-simplices. Then one checks that this is a category (by filling the appropi-
ate spines), and it is immediate that X ∼=N C. (If you’re confused about this, it is very
useful to spell this out right now!)

4



For (2)⇔ (3), one needs to get a bit technical. Let us denote for S ⊂ [n ] the face∆S ⊂∆n

as the maximal subset on the 0-vertices in S . E.g., d j∆
n =∆[n ]−{ j }. Likewise for spines: I S is

the spine of∆S .
Also note that for n = 2, we have I 2 = Λ2

1, so the only inner horn is also a spine, and the
statement is trivial. We can therefore assume n ≥ 3.

• (2)⇒ (3) : Consider an inner hornα :Λn
i → X . Then I n ,→Λn

i , so we can restrictα to the
spine, and extend that uniquely to a simplex β :∆n → X . We only need to show that
β restricted to the horn agrees with α. Check this for the faces∆[n ]−{ j } separately: For
j = 0, n , this is immediate, as their spine is included in the larger spine: I [n ]−{0} ⊂ I n .
Hence the restrictions ofα and β to that face are the unique extension, and agree. For
other j , note that their spine has only one edge not in I n : the one from j −1 to j +1.
But as n ≥ 3, this lies in either the 0th or the nth face, which agrees with α. So the
same argument applies. In total, we get a unique extension to all faces—in particular,
we get a unique extension to some inner horn, from which we can uniquely extend to
the simplex.

• (3)⇒ (2) : We do an induction over the dimension n . For n > 2, and assume that we
can lift all k -spines uniquely to k -simplices, for k < n . Consider a map I n → X , which
we want to lift uniquely to∆n . The Idea is the following: First, we can look at the first
n −1 segments of the spine: These make up the spine I [n ]−{n} of the nth face∆[n ]−{n},
so we can uniquely fill that. Likewise, we can fill the 0th face, by filling in the last n −1
segments of the spine. On the middle n − 2 segments, these must then agree, by the
uniqueness condition.

Now we have 2 faces filled in, and some more edges to chose from: In particular, hav-
ing the 0th face guarantees that we have the spine for the 1st face, which we can there-
fore fill in. Iterating this leaves us with all faces of the simplex filled in–in particular,
we have a unique extension to any inner horn, where we then have a unique extension
to the full simplex by (1).

3 Quasicategories

The upshot is, spaces and categories are simplicial sets with very similar horn filling proper-
ties: Spaces admit all horn fillers, and categories admit unique inner horn fillers. A curious
mind would now want to know what lies in between: First, let’s look at what happens if one
takes both conditions at once:

Remark 3.1. Let C be a category. Note that if N C is Kan, then C must be a groupoid: For
any map f in C, filling the outer 2-horns Λ2

0 and Λ2
2 with f as one leg, and the respective

identities as the other, gives an inverse to f .
In fact, the converse is true: If C is a groupoid, then N C is Kan. For 2-horns, this is im-

mediate. (Try it for 3-horns!) For n ≥ 4, it is a technical fact that outer horns for nerves can
always be filled! C.f. Land, 1.1.53)

So, this describes the intersection: Groupoids are precisely both categories and spaces.
What about the common ground of the two horn-filling conditions?

5



Definition 3.2. A simplicial set C is called quasicategory (or∞-category, (∞, 1)-category,
weak Kan complex) if it admits (possibly non-unique) fillers for inner horns, i.e.: For 0< i <
n , the dotted arrow exists:

Λn
i C

∆n .

(Warning: Without uniqueness, this is not the same as just lifting spines! Look into Land for
that, he calls simplicial sets with spine fillers "composers", and essentially concludes that
they’re not very useful.)

We then call the 0-simplices objects, the 1-simplices morphisms or arrows, and denote
them by f : x → y . A functor of quasicategories is simply a map of simplicial sets.

By construction, we have two classes of examples: Every category is an∞-category, by
considering its nerve; and every space is an∞-category, by considering it as a Kan complex.
Other examples are annoyingly difficult, see next talk!

For now, let’s equip ourselves with some analogies between∞-categories and 1-categories.

Definition 3.3. Let f , g ∈C1 be two arrows in an∞-category C. They are called composable
if d0 f = d1g , and for any 2-simplex

•

• •,

gf

h

h is called a composite of f , g . (But, note that this comes with the data of the composition
through the 2-simplex!)

Remark 3.4. Note that these always exist, by filling the 2-horn, but needn’t be unique! So
there is generally no strict composition law in∞-categories. (Later: In accordance with the
second demand, there will be a contractible space of composites comp( f , g )≃ ∗.)

Remark 3.5. The identity on x ∈ C0 is idx = s0 x . To see that this makes sense, take some
arrow f : x → y in C: Then the two degeneracies of f are 2-simplices

y x

x y x y .

s0 y ff

f

s0 x

f

In other words, f is a composite of f and the respective degeneracies.

What about associativity? Well, we don’t have strict composition, so the better question
is: What would associativity be? Consider composable maps f , g , h . Then we can fill the
following 3-simplex:

y z

x y .

gf h
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The dotted line is then a composite of f , g , h—in whatever order we compose. (Again, the
bigger picture is that there is also a space comp( f , g , h )≃ ∗.)

We want to do homotopy theory, so we need homotopies:

Definition 3.6. Let f , g : x → y be two parallel arrows in an∞-category C. They are called
homotopic if there exists a 2-simplex

y

x y .

s0 yf

g

It is a good exercise to check that this is indeed an equivalence relation, and that one could
equivalently put the degeneracy to the other side. Another nice exercise: Show that any two
composites of two composable maps are homotopic.

4 Homotopy Categories

If∞-categories are a good model for homotopical categories, they need an associated ho-
motopy category, i.e., a 1-category obtained by strictly inverting all equivalences. It makes
sense to construct them for all simplicial sets, where they are a bit complicated, but they’ll
be much nicer for quasicategories!

Construction 4.1. Let X be any simplicial set. The homotopy category h X of X is obtained
as follows: Objects of h X are the 0-simplices X0. The morphisms are generated by the 1-

simplices: For every∆1 f
−→ X , there exists a morphism f from d1 f to d0 f ; and those can be

composed; up to some relations:

Hom(x , y ) =
�

( fn , · · · , f1)|d1 f1 = x , d0 fn = y , d0 fi = d1 fi+1

	

/∼ .

As for relations, we have:

• The degeneracy s0(x ) is the identity on x ,

• For any 2-simplex

•

• •,

hg

k

we identify
( fn , · · · , h , g , · · · f1)∼ ( fn , · · · , k , · · · f1).

(Check that this is compatible with identities.)

This describes a functor h : sSet→Cat.

Fact 4.2. If C is a quasicategory, then hC has a simpler description: The objects are still C0,
and morphisms are now simply a quotient of C1 by homotopy; no need for free composites:
That is,

hC(x , y ) =
�

f ∈C1|d1 f = x , d0 f = y
	

/∼,

where f ∼ g whenever there is a homotopy between them:
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y

x y .

idyf

g

It is a good (albeit lengthy) exercise to check that this works: You just fill horns all the way
through. Note: Land calls this construction πC, but it is naturally isomorphic to hC.

Proposition 4.3. There is an adjunction

h : sSet⇔Cat : N ,

i.e., for any simplicial set X and 1-category C, we have

Fun(h X ,C)∼=HomsSet(X , N C).

Proof. Let us construct unit and counit:
The counit hN C→C is almost tautological: As N C is a quasicategory, its homotopy cat-

egory allows for the easier description. Its objects are given by N C0, which are the objects
of C. The morphisms from x to y are arrows in N C, i.e., morphisms in C, modulo the ho-
motopy relation:

HomhN C(x , y ) = { f ∈N C1|d1 f = x , d0 f = y }/∼=HomC(x , y )/∼ .

If f , g : x → y are homotopic, this is witnessed by a 2-simplex

y

x y .

idyf

g

But 2-simplexes in the nerve come from composition in C, i.e., g = idy ◦ f = f . So there
is no relation, hence the morphisms in hN C and C also agree. Hence, hN C is naturally
isomorphic(!) to C.

For the unit X → N h X , note there are canonical maps on 0- and 1-simplices: The 0-
simplices are just the same, and there is a canonical generator map from X1 to the mor-
phisms of h X , which make the 1-simplices of N h X . For n > 1, we get a map

Xn =HomsSet(∆
n , X )

res−→HomsSet(I
n , X )∼= X1×X0

· · · ×X0
X1

h−→mor(h X )×obj(h X ) · · · ×obj(h X )mor(h X )∼=N h Xn .

Then one checks that these are natural maps, and satisfy the unit/counit relations.

Corollary 4.4. As the counit is a natural isomorphism, this also proves the earlier statement
that N is fully faithful.

Remark 4.5. This adjunction is a shadow of a general phenomenon: Let C be cocomplete,
and consider a functor F : ∆ → C. Then F has a unique colimit-preserving extension
F̂ : sSet→C, which admits a right adjoint R satisfying

R (C )n =HomC(F [n ], C ).

Examples of this are:
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• ∆→ Top, [n ]→ |∆n |: This extends to the geometric realization, with right adjoint the
singular complex S (X )n =Map(|∆n |, X ).

• ∆→ Cat, [n ]→ n . This extends to the homotopy category functor, with right adjoint
the nerve N (C)n = Fun(n ,C).

• Next lecture, we’ll see the simplicial nerve, which is obtained as a right adjoint from
simplicially enriched categories to simplicial sets.

Even more so, there is nothing special here about ∆: This works for any (essentially small)
categoryD, it’s really more about the magic of presheaves: The category of presheaves onD,
i.e., P(D) = Fun(Dop, Set), should be thought of as "freely attaching all colimits to D." This
is one consequence of that.

5 Equivalences

Now, if quasicategories do homotopy theory, we need a notion of equivalences:

Definition 5.1. Let C be a quasicategory. An arrow f : x → y in C is an equivalence if it
becomes an isomorphism in the homotopy category. Untangling definitions, this means
that there exist 2-simplices

y x

x x y y .

g ff

idx

g ′

idy

As mentioned initially, we should later expect a contractible space of inverses to f . In
particular, we can later show that any choices for g and g ′ will be homotopic.

Earlier, we noticed that groupoids (i.e., categories where all morphisms are isomorphisms)
are also Kan complexes. The obvious analogue for∞-categories is the following:

Definition 5.2. An∞-groupoid (anima, (∞, 0)-category, surprisingly never quasigroupoid)
is an∞-category where all arrows are equivalences.

Proposition 5.3. Every Kan complex is an anima.

Proof. Let K be Kan. Then it is in particular a quasicategory. Consider any edge f : x → y
in K . Then we can fill the outer horns

y x

x x y y .

ff

id id

The resulting 2-simplices yield precisely our homotopy inverses.

Surprisingly, the converse holds! This is immensely useful, and was one of the initial
motivations for developing the theory of∞-categories:

Fact 5.4 (Grothendieck homotopy hypothesis). Animae are precisely Kan complexes.

9



We’ll see a (rather involved) proof in talk 7. Historically, this proof was the (first) big
obstacle to making∞-categories work—when Joyal managed this, many things fell into
place quickly. In particular, all the "contractible spaces of choices" mentioned throughout
will use some form of this statement.
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