
Talk 10:
Symmetric monoidal∞-categories

Julius Frank

May 2021

1 Prelude: A Fibration

Before we start the actual talk, I want to revisit a 1-categorical example for a cocartesian fi-
bration in some detail–I did this recently, and it really helped me to get a feeling for these.
We’ll also be able to extract some lessons for today’s talk.

Consider the category CRing of commutative rings, and for each ring R , its module cat-
egory ModR . (If you’re feeling adventurous, you may also take associative rings.) There are
several ways to make this functorial: If f : R → S is a ring map, we get adjoint functors

ModR ←→ModS

f ∗N ←−pN
M 7−→ S ⊗R M .

The first one, restriction of scalars, is readily made into a functor CRingop→Cat: The mod-
ule f ∗N has the same underlying abelian group as N , and r ∈ R acts on n via r.n = f (r)n .
This is compatible with composition and identities.

However, this does not quite work for the inductions: For example, the identity R → R
gets mapped to R ⊗R M →M , which is a natural isomorphism, but not the identity! (This
depends on how you model your tensor products, but morally, they only exist up to natural
isomorphism.) Same for composition.

This is a natural example of a pseudofunctor: What’s happening here is that Cat is actu-
ally a 2-category (categories, functors, natural transformations), and functors into Cat often
want to be 2-functors. In this specific setting, we map from a 1-category, but composition
and identity only hold up to natural isomorphism, making this into a (2, 1)-functor / weak
2-functor / pseudofunctor.

Now, Irakli explained to us that a pseudofunctor F :C→Cat is the same data as a cocarte-
sian fibration (classically: Grothendieck opfibration)

∫

F → C. The reason we care about
this quite technical notion is that it turns the coherence data of the pseudofunctor into a
property of the fibration, which is easier to construct and check!

1

Let us consider the cocartesian fibration for our example: By construction,
∫

Mod is the
1-category with objects (R , M)where R is a commutative ring, M ∈ModR , and a morphism
from (R , M) to (S , N) consisting of

f : R −→ S

φ : S ⊗R M −→N .

There is a natural projection p :
∫

Mod→CRing that forgets the modules. Let us unravel the
technical notions in this setting:

Recall that a morphism (f ,φ) : (R , M)→ (S , N) is cocartesian if for all diagrams

(R , M) (S , N) R S

(Q , L) Q ,

(f ,φ)

(g ,ψ)

f

g

h

there is a unique lift of h : S →Q to a (h ,ξ) : (S , N)→ (Q , L). In other words, for such a setting
we need a unique ξ : Q ⊗S N → L such that ξ ◦ (Q ⊗S φ) =ψ:

Q ⊗R M ∼=Q ⊗S (S ⊗R M) Q ⊗S N

L .

Q⊗Sφ

ψ

ξ

It turns out that we can give a nice explicit description of the cocartesian edges:

Proposition 1.1. A morphism (f ,φ) : (R , M)→ (S , N) is cocartesian if and only ifφ : S⊗R M →
N is an isomorphism.

Proof. Ifφ is an isomorphism, so is Q ⊗S φ, and ξmust beψ ◦ (Q ⊗S φ)−1.
Conversely, let (f ,φ) be cocartesian. To see that φ is an isomorphism, we take good

choices for (Q , L): First, consider the setting

(R , M) (S , N) R S

(S , cokerφ) S ,

(f ,φ)

(f ,0)

f

f

id

Then both 0 the canonical projection S ⊗S N ∼=N → cokerφ are lifts of idS , so they must be
equal–henceφ is surjective.

Likewise, in

(R , M) (S , N) R S

(S ,S ⊗R M) S ,

(f ,φ)

(f ,id)

f

f

id

the existence of a lift of idS gives us a left inverse forφ, henceφ is injective.

2

It is now easy to see that p :
∫

Mod→CRing is indeed a cocartesian fibration: For any ring
map f : R → S and object (R , M), there exists a cocartesian lift (f , id) : (R , M)→ (S ,S ⊗R M).

If we start with any morphism (f ,φ) : (R , M)→ (S , N), we can factor it as

(R , M)
(f ,id)
−−→ (S ,S ⊗R M)

(id,φ)
−−→ (S , N),

i.e., into a cocartesian map, and a map in the fibre p−1(S). This works for any cocartesian
fibration: The first map is a cocartesian lift of f , the second map exists uniquely by the
cocartesianness. This suggests to think of

∫

Mod (or any cocartesian fibration) as consisting
of the categories sitting in the fibres, and cocartesian morphisms between the fibres that
assemble into functors between the categories. All other morphisms are then generated
from these.

Remark 1.2. There is another nice thing hidden in this example: Note that by the adjunc-
tion, a mapφ : S⊗R M →N is the same as a map φ̂ : M → f ∗N . Then one can show dually to
the above that the cartesian edges are precisely those where φ̂ is an isomorphism, this gives
us the other (contravariant) functor into Cat. And since this means that p is both cartesian
and cocartesian, this gives us the adjunctions back! For any f : R → S , the pullback of p

along ∆1 f
−→ CRing yields precisely the cartesian and cocartesian fibration over ∆1 corre-

sponding to the adjunction.

There are two lessons to be taken away here:

1. ∞-categories are just fancy 1-categories, and it is always necessary to understand
these, first.

2. (Co)cartesian fibrations are a useful tool to handle (some) 2-categorical issues in a
1-categorical way.

2 Monoidal 1-categories

According to the first lesson, we need to properly understand symmetric monoidal 1-categories
first: The definition of symmetric monoidal∞-categories will be just the same, as long as
we’ve put it in the right language in the 1-category setting first. Let’s start with the classical
definition:

Definition 2.1. A monoidal 1-category consists of the following data:

• A 1-category C,

• a functor ⊗ :C×C→C,

• an object 1 ∈C (considered as a functor ∗→C),

• a natural isomorphism (x ⊗ y)⊗ z
α−→ x ⊗ (y ⊗ z),

• natural isomorphisms 1⊗ x
ηL−→ x

ηR←− x ⊗1,

satisfying the following coherence axioms:

3

(x ⊗1)⊗ y x ⊗ (1⊗ y)

x ⊗ y

[and the pentagon of different bracketings of x ⊗ y ⊗ z ⊗w . I won’t tex that.]

This is, of course, a failure in mathematical communication: We don’t intrinsically care
about the pentagon, it’s just another level of coherence: The associator gives us coherent 3-
fold tensors, and the pentagon 4-fold tensors. Why stop there? The answer is the following
theorem, which should be the definition:

Theorem 2.2 (Mac Lane). In a monoidal 1-category C, there is a canonical isomorphism be-
tween any two bracketings of x1⊗· · ·⊗xn , obtained by any possible combination of associators
and inserting units.

This allows us to denote x1⊗ · · · ⊗ xn like that, without brackets. The classical definition
is really a theorem, namely that this property can be checked on the pentagon.

It also gives us the following:

Corollary 2.3. Any monoidal 1-category can be strictified, i.e., it is monoidally equivalent to
a strict monoidal 1-category where associator and unitors are the identity.

It is useful to have both tools at hand: Strict monoidal categories rarely come up in na-
ture, but come with less notational overhang. Note that this distinction will vanish in the
homotopy-coherent world: In the non-strict monoidal category, the coherence theorem
gives us a contractible groupoid between all the bracketings, which we cannot distinguish
from a point.

Let us now take symmetry into the mix:

Definition 2.4. A symmetric monoidal category is a monoidal category C with a natural iso-
morphism

x ⊗ y
s−→ y ⊗ x ,

satisfying hexagon coherence diagrams with the associator (the two ways to turn (x ⊗ y)⊗z
into y ⊗ (z ⊗ x), and the same with swapped bracketing), and is involutive:

s 2 = id : x ⊗ y −→ x ⊗ y .

(Without the latter, we’d end up with a braided monoidal category.)

Again, this is the wrong definition: Morally, a symmetric monoidal category is a category
with tensor product where we don’t have to care about bracketing and order of the factors.

Now, in order to transfer these definitions to∞-categories, we need to make them more
coherent and less "generators and relations"-y. Let’s start with the strict version.

Construction 2.5. Consider the category Fin∗ of pointed finite sets. We identify the objects
〈n〉= {0, . . . , n}with 0 the basepoint.

Let C be a strict symmetric monoidal category. We construct a functor

C : Fin∗ −→Cat

〈n〉 7−→C×n

4

as follows: Any map f : 〈n〉→ 〈m〉 decomposes uniquely (up to isomorphism) as

〈n〉 i−→ 〈n ′〉
g+−→ 〈m〉,

where i is inert, i.e., it sends some points to the basepoint, and is isomorphic everywhere
else; and g+ sends only 0 to 0. Then the induced map f :C×n →C×m is given as

Cn i∗−→Cn ′ g∗−→Cm

where i∗ forgets all factors that i sends to 0, and g∗ is given on the k th factor of Cm as the
tensor product

C×n ′ proj
−→
∏

j∈g −1k

C
⊗−→C.

[Draw some trees.] In words: We multiply those C-factors which are identified by f , and
forget all the factors that are sent to 0.

It turns out that this really gives us an equivalent notion of strict symmetric monoidal
categories:

For any 1≤ i ≤ n , we define pi : 〈n〉→ 〈1〉 sending i to 1, and all else to 0.

Theorem 2.6. The assignment C 7→ C identifies strict symmetric monoidal categories with
those functors F : Fin∗ → Cat for which the maps pi : 〈n〉 → 〈1〉, 1 ≤ i ≤ n assemble into an
isomorphism

F 〈n〉 ∼−→ F 〈1〉n

This new perspective on symmetric monoidal categories is the right one for us to con-
sider: It encodes all the ways of writing n factors into a product, and ensures that all ways of
multiplying them are equal. (It is a nice exercise to extract the symmetric monoidal category
from such a functor!)

For a general symmetric monoidal category, we want associativity and unitality only up
to coherent isomorphisms. It turns out that translating this to this functor setting means
that we should consider pseudofunctors F : Fin∗→Cat. And we have a nicer model for these:
Cocartesian fibrations

∫

F → Fin∗ are precisely the data of a symmetric monoidal category!
(Again, it is very instructive to work out how one recovers a symmetric monoidal category
from this.)

3 Monoidal functors

Before we go homotopical, we still need to talk about morphisms of symmetric monoidal
categories. There is more than one useful notion here:

Definition 3.1. Let C, D be symmetric monoidal categories. A functor F :C→D is called

1. lax symmetric monoidal if it comes with natural transformations

F (x)⊗ F (y)−→ F (x ⊗ y)

1−→ F (1),

such that these are suitably coherent with associators (get a diagram for the two ways
of going from (F x⊗F y)⊗F z to F (x⊗(y⊗z))), units, and commute with the symmetry;

5

2. (strong) symmetric monoidal if it is lax and these transformations are isomorphisms,
and

3. strict symmetric monoidal if it is lax and these transformations are identities.

Most examples we encounter will be strong, e.g., TQFTs Bord〈n−1,n〉→VectC. But every so
often, lax functors come up. To have one example, the forgetful VectC→ Set is lax monoidal:
There is a natural transformation of sets V ×W → V ⊗W , sending (v, w) to v ⊗w . But this
is not a bijection. Note that like adjunctions, lax functors are 2-categorical, so we’ll have
to employ some trickery to formulate them in (∞, 1)-categories. Strong functors are (2, 1)-
categorical, so they will be more straightforward. Let’s see this in our discrete setting, first:

Proposition 3.2. A strict monoidal functor F :C→D is the same data as a natural transfor-
mation F :C→D of the associated functors Fin∗→Cat.

Proof. We’ll only sketch how F is constructed: Given F , F is given by

F 〈n〉 :C〈n〉=Cn F n

−→Dn =D〈n〉.

Then the symmetric monoidal structure translates precisely to this being natural, e.g., the
multiplication map m : 〈2〉→ 〈1〉 inducing the product yields a square

C2 D2

C D,

F

m m

F

the commutativity then means precisely that F (x ⊗ y) = F (x)⊗ F (y).

Likewise, a strong monoidal functor should be a transformation of pseudofunctors. In-
stead of annoying ourselves with collecting the required coherence data, let’s immediately
consider cocartesian fibrations:

Definition 3.3. Let p : E→ C and p ′ : E′→ C be two cocartesian fibrations. A morphism of
cocartesian fibrations from p to q is a commuting diagram

E E′

C

F

p

p ′

such that F sends cocartesian edges to cocartesian edges.

Then the correspondence between cocartesian fibrations and pseudofunctors becomes
an equivalence of categories, i.e., these give precisely the right notion of transformations of
pseudofunctors.

Proposition 3.4. Under the identification of symmetric monoidal categories and cocartesian
fibrations over Fin∗, the strong symmetric monoidal functors correspond to morphisms of co-
cartesian fibrations.

6

Proof. This time, we’ll only sketch how one recovers F from F ⊗:
Let C, D be symmetric monoidal categories, and F ⊗ : C⊗ → D⊗ a morphism of their

associated cocartesian fibrations. Then one recovers a symmetric monoidal functor F :C→
D as follows:

• As a functor, F is obtained by pulling back F ⊗ over the object 〈1〉, we obtain

F = F ⊗〈1〉 :C=C⊗〈1〉→D⊗〈1〉 =D.

• Likewise, we obtain F ⊗〈2〉 : C⊗〈2〉 → D⊗〈2〉. First, we need to see that under the identifi-

cations C2 = C⊗〈2〉 and D⊗〈2〉 = D2, F ⊗〈2〉 corresponds to F 2. For this, consider an object

(c1, c2) ∈C2 and the projections 〈1〉
p1←− 〈2〉

p2−→ 〈1〉 in Fin∗ that send 2 resp. 1 to the base-
point. Then there are cocartesian lifts given as c1 ←p (c1, c2) 7→ c2. Applying F ⊗ then
gives us cocartesian arrows

F (c1)←p F ⊗〈2〉(c1, c2) 7→ F (c2).

But after identifying D⊗〈2〉 = D 2, this means that the projections of F ⊗〈2〉(c1, c2) to the
factors are F (c1) and F (c2), i.e., F ⊗〈2〉(c1, c2) = (F (c1), F (c2)). (The same argument works
for higher 〈n〉.)

• To see how F (c1 ⊗ c2) relates to F (c1)⊗ F (c2), consider again the multiplication map
m : 〈2〉→ 〈1〉 that sends 1 and 2 to 1. Then this lifts to a cocartesian arrow (c1, c2)→ c ,
where cocartesianness here translates to the fact that c1 ⊗ c2

∼= c . Applying F then
gives us a cocartesian arrow

(F (c1), F (c2)) = F ⊗〈2〉(c1, c2)→ F (c),

where the fact that this is cocartesian translates to an isomorphism F (c1)⊗ F (c2)→
F (c)∼= F (c1⊗ c2).

Now, to define a lax monoidal functor, we need a setting where the first two arguments
of the previous proof work, but the third one doesn’t:

Proposition 3.5. A lax monoidal functor F :C→D is the same as a commuting diagram

C⊗ D⊗

Fin∗

F

such that F preserves cocartesian arrows if they are lying over inert maps 〈m〉→ 〈n〉.
Proof. The projections p1, p2 are inert, besides the basepoints they are bijections of single-
tons. The multiplication map is not inert. However, one still obtains a map

(F (c1), F (c2)) = F ⊗〈2〉(c1, c2)→ F (c).

To see this, note that there is a cocartesian lift (F (c1), F (c2))→ F (c1)⊗ F (c2) of m . There is
also the map F (m) : (F (c1), F (c2))→ F (c) ∼= F (c1 ⊗ c2). The cocartesianness of the lift then
precisely gives us a unique map F (c1)⊗F (c2)→ F (c1⊗ c2). The only thing from the previous
proof that fails is that this map needn’t be an isomorphism. (Of course, one has to show
similar things for unity and coherences.)

7

4 Infinity

This will now be uninteresting: Everything is just the same.

Remark 4.1. Just because it hasn’t been said before: Cat∞ wants to be an (∞, 2)-category.
In order to get the (∞, 1)-category, we had to forget all natural transformations that were
not natural equivalences. In other words,

MapCat∞
(C,D) = Fun(C,D)'.

This raises the same complications as in the discrete setting, and is the whole reason we
need to talk about these fibrations.

Definition 4.2. • A symmetric monoidal∞-category is a functor C : N Fin∗→Cat∞, or,
equivalently, a cartesian fibration C⊗→N Fin∗.

• A strong monoidal functor is a natural transformation F : C→ D, or, equivalently, a
(homotopy) commutative diagram

C⊗ D⊗

N Fin∗

F ⊗

s.t. F ⊗ preserves cocartesian edges.

• A lax symmetric monoidal functor is a (homotopy) commutative diagram

C⊗ D⊗

N Fin∗

F ⊗

s.t. F ⊗ preserves cocartesian edges over inert morphisms.

Let’s collect examples:

Example 4.3. 1. If C is a symmetric monoidal 1-category, N C is a symmetric monoidal

∞-category, e.g. through N Fin∗
N C
−→N Cat ,→Cat∞.

2. There is a notion of monoidal model categories, their underlying∞-categories then
become monoidal, too.

3. If C has all coproducts or products, these give a symmetric monoidal structure.

4. To give a non-trivial example: The∞-category Sp of spectra has a symmetric monoidal
structure through the smash product. This was classically very hard to describe, now
you can define it in one line through its universal property. (It’s still complicated,
though–nothing is ever free.)

8

5. The disjoint union makes the (upwards-extended) bordism category Bord〈n−1,n〉 into
a symmetric monoidal∞-category. This is where TQFTs live! (Likewise, the fully ex-
tended Bordn is a symmetric monoidal (∞, 1)-category, but we don’t know yet what
that means.)

Remark 4.4. In case you wondered about non-symmetric monoidal categories: Essentially
the same thing works, but we need to inflate Fin∗ in order to remember the ordering of tensor
products. One way of doing this is to take the same objects, but to equip morphisms with a
total ordering on their fibres–it’s relatively straightforward to trace this ordering through all
our considerations above.

Surprisingly (confusingly?), there is another way of doing this: One can instead take the
category∆op: It is a nice exercise to translate this to our setting. Note that this category is not
equivalent to the previous one! Essentially, ∆op doesn’t allow permutations of the factors,
while the previous category allows it and has to keep track of it.

9

	Prelude: A Fibration
	Monoidal 1-categories
	Monoidal functors
	Infinity

