GEOMETRY AND TOPOLOGY OF NETWORKS AND DATA

Ruben Sanchez-Garcia
Mathematical Sciences
University of Southampton

Applied Algebraic Topology Network
Durham
24 September 2016
Network models

- Representation of a complex system using a network (graph)

- Networks, usually weighted, can also be used to represent data sets

- Limitation: pairwise (or binary) relations — no higher-order structures

Images: (L) MacArthur et al, Nature Reviews Molecular Cell Biology; (C) FEMA; (R) Flickr by Marc_Smith
Symmetry in Complex Networks

Question: Are real-world networks symmetric?

- **Aut(G)** permutations of the vertices preserving adjacency
- Symmetries relate to redundancy (structurally equivalent vertices)
 - system robustness, evolution from basic principles

[Images of regular graph, complex network, and random graph]
Symmetry in Complex Networks

Question. Are real-world networks symmetric?

- **Regular graphs** have a **large** group of (global) symmetries.
- **Random graphs** have a **trivial** group of symmetries.
- **Complex networks** have a **large** (in absolute terms*) but **localised** group of symmetries.

*10^9 - 10^{11298} in the networks studied

Regular graph | Complex network | Random graph
Toy example

\[
\text{Sym}(G) = S_2 \times S_3 \times S_4 \times S_2 \times (S_2 \wr S_2)
\]

\[
|\text{Sym}(G)| = 4608
\]
Real world examples

Yeast $S_2^{90} \times S_3^{26} \times S_4^{16} \times S_5^{8} \times S_6^{6} \times S_7^{5} \times S_8^{2} \times S_9^{2} \times S_{10}^{3} \times S_{11}^{2} \times S_{12} \times S_{13} \times S_{46} \times (S_2 \wr S_2)$

PhD $S_2^{43} \times S_3^{27} \times S_4^{16} \times S_5^{11} \times S_6^{10} \times S_7^{4} \times S_8^{5} \times S_9^{6} \times S_{10} \times S_{11}^{3} \times S_{12}^{2} \times S_{13}^{2} \times S_{35} \times (S_2 \wr S_2)^{3} \times (S_5 \wr S_2)$

Computation: *nauty* algorithm (McKay’81), GAP, decomposition theorem

We found:

- **Aut(G)** direct product of symmetric groups and wreath products of symmetric groups (*tree-like*)
- Most factors (> 90%) S_n acting naturally on $k \geq 1$ orbits (*basic symmetric motifs*) with a very constrained structure (Liebeck’88)
- Identify specific **eigenvalues** arising from the symmetry
Symmetric spectrum

- We studied how symmetries (automorphisms) affect network spectrum
- Symmetries give rise to high-multiplicity eigenvalues (peaks in spectral density)

- The network spectrum is the union of the redundant spectrum of the symmetric motifs, and the spectrum of the quotient network
- The redundant spectrum of the basic symmetric motifs is very constrained e.g.

\[RSpec_1 = \{-1, 0\} \quad RSpec_2 = \{-2, -\varphi, -1, 0, \varphi - 1, 1\} \]
\[RSpec_3 = \{-3, -2, -1, 0, 1, \pm \sqrt{2}, \pm \sqrt{3}, -1 \pm \sqrt{2}, -1 \pm \sqrt{3}, \ldots\} \]

Adaptive Networks

• Network topology and dynamics influence each other

• We studied a biologically motivated model of an adaptive regulatory network

 ▶ The system self-organises to a critical state

 ▶ We analytically related stability to cycle structure (via graph eigenvalues and Rouché's theorem in complex analysis)

Multilayer Networks

- We studied two natural quotients associated to a multilayer network:

\[
\lambda_i \leq \mu_i \leq \lambda_{i+(n-m)}
\]

- The eigenvalues of the quotient *interlace* those of the parent graph:

UK Power Grid

- EPSRC-funded project *Preventing wide-area blackouts through adaptive islanding* (2010-14) PI: Jacek Brodzki

- Collaboration between power engineers and mathematicians

- Network modelling approach

- Graph Laplacian as main analytical tool (spectral clustering)

- Android App (Yuki Ikuno)

Sanchez-Garcia et al *Hierarchical spectral clustering of power grids* *IEEE Transactions of Power Systems* (2014)
Spectral Clustering

- The Laplacian eigenvectors give geometric coordinates to the vertices (*spectral embedding*) revealing clusters

IEEE 39-bus test system
3-dimensional spectral embedding
Spectral Clustering

- **Cluster**: ‘Almost connected component’
- The *isoperimetric ratio* of \(\emptyset \neq S \subseteq V \) is
 \[
 \phi(S) = \frac{\sum_{i \in S, j \notin S} a_{ij}}{\sum_{i, j \in S} a_{ij}} = \frac{\text{boundary of } S}{\text{volume of } S}
 \]
- The ‘best’ \(k \)-partition (minimising the worst ratio) is
 \[
 h_G(k) = \min_{S_1, \ldots, S_k} \left(\max_{1 \leq i \leq k} \phi(S_i) \right)
 \]
 the \(k \)-way Cheeger constant of the graph

The Laplacian spectrum \(0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \) is closely related to clustering:
- \(\lambda_k = 0 \) iff the graph has (at least) \(k \) connected components
- Higher-order Cheeger inequalities (Lee et al, 2012)
 \[
 \frac{\lambda_k}{2} \leq \phi_G(k) \leq Ck^2 \sqrt{\lambda_k}
 \]
Algebraic Graph Theory

REAL-WORLD

- **system, data**

MODEL

- **network**

ALGEBRA

- e.g. **matrix (linear operator)**

- **Adjacency matrix** $n_0 \times n_0$ matrix $[A]_{ij} = 1$ if i and j adjacent

- **Incidence matrix** $n_0 \times n_1$ matrix $[B]_{ik} = \pm 1$ if vertex i final/initial vertex of edge k (after orienting edges)

- **Laplacian matrix** $n_0 \times n_0$ matrix $L = BB^t = D - A$

- There are weighted and normalised versions of the Laplacian

- Eigenvalues & eigenvectors of these matrices reflect the structure and dynamics of a network
From networks to complexes

- A network is a 1-dimensional model of a complex system, or data set.
- Networks generalise to higher-dimensional topological complexes.
- There are adjacency, incidence, and Laplacian matrices, at each dimension.
- Complexes can be studied combinatorially, topologically or geometrically.
- Complexes can be constructed from a network (e.g. clique complex) or from a data set (e.g. point cloud).
Topological Data Analysis

Data ➔ Complex (filtration) ➔ Topological features (persistent)

- Towards Geometrical Data Analysis...
 - Incorporate aspects of the geometry
 - Topologically every network is equivalent to
 - A good candidate (motivated by network analysis): Combinatorial (discrete, Hodge) Laplacian
Adjacency matrices

- Complexes can be seen at three levels: combinatorial, topological or geometrical

- Two k-simplices are **lower adjacent** if they intersect at a common $(k-1)$-simplex, and **upper adjacent** if they belong to the same $(k+1)$-simplex

- We have lower/upper $\mathcal{N}_k \times \mathcal{N}_k$ adjacency matrices $A^\text{lower}_k, A^\text{upper}_k$ encoding the combinatorial structure at dimension k

- They can be seen as adjacency matrices of (k-dual) graphs, revealing the combinatorial structure at dimension k
Boundary matrices

• Organise topological information as a chain complex

• Algebraically: \[C_{i+1} \xrightarrow{B_i} C_i \xrightarrow{B_{i-1}} C_{i-1} \] chain complex

where \(C_i \) is the real vector space of dimension \(n_i \) the number of i-simplices, \(B_i \) is the boundary matrix

• \(B_i \) is a \(n_i \times n_{i-1} \) matrix with entries 0, \(\pm 1 \) given by the signs of the (i-1)-simplices in the boundary of the i-simplices

• Homology: \(H_i = \ker(B_{i-1})/\text{im}(B_i) \)
Weighted complexes

- One way to encode (aspects of) the geometry is by using weighted complexes: associate a positive weight to each simplex (a choice of inner product $\langle e_i, e_j \rangle = \delta_{ij} w_i$)

- Algebraically:

\[
\begin{align*}
W_{i+1} & \xrightarrow{B_i} W_i & W_i & \xrightarrow{B_{i-1}} W_{i-1} \\
C_{i+1} & \xrightarrow{} C_i & C_i & \xrightarrow{} C_{i-1}
\end{align*}
\]

where C_i is the real vector space of dimension n_i, the number of i-simplices, B_i is the boundary matrix, and W_i is the diagonal matrix of weights
Laplacian matrices

- There are Laplacians at each dimension of a simplicial complex

\[
W_{i+1} \xrightarrow{B_i} W_i \xrightarrow{B_{i-1}} W_{i-1}
\]

\[
C_{i+1} \xleftarrow{\cdot} C_i \xleftarrow{\cdot} C_{i-1}
\]

\[
L^\text{up}_i = W_i^{-1} B_i^T W_{i+1} B_i
\]

\[
L^\text{down}_i = B_{i-1} W_{i-1}^{-1} B_{i-1}^T W_i
\]

\[
L_i = L^\text{up}_i + L^\text{down}_i
\]

where \(C_i \) is the real vector space of dimension \(n_i \) the number of \(i \)-simplices, \(B_i \) is the boundary map, and \(W_i \) represents a choice of inner product

- The kernel of \(L_i \) is isomorphic to \(H_i(X; \mathbb{R}) \), a topological invariant

- The non-zero spectrum of \(L_i \) is the union of the non-zero spectrum of \(L^\text{up}_i \) and \(L^\text{down}_i \), and it encodes the geometry with respect to the inner product

- This general framework developed by Horak & Jost (2013)

 “…we wish to propose this Laplacian spectrum as a new tool in data analysis.”

[Horak, Jost Spectra of combinatorial Laplace operators on simplicial complexes Adv. in Math. 244 (2013)]
Examples

(Digit recognition) ‘8’ encoded as simplicial complex (92 vertices, 236 edges, 179 triangles)

\[L_i = L_i^{up} + L_i^{down} \]

<table>
<thead>
<tr>
<th>eig((L_1))</th>
<th>(\beta_1)</th>
<th>(L_1^{down})</th>
<th>(L_1^{up})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>(\beta_1)</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.0000</td>
<td>(\beta_1)</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.0353</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.0920</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.1431</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.2589</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.3898</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.4810</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.5241</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
<tr>
<td>0.6236</td>
<td>(L_1^{down})</td>
<td>(L_1^{up})</td>
<td>(L_1^{up})</td>
</tr>
</tbody>
</table>
Application: Ranking in horse racing

- Current work by Conrad D’Souza (PhD Maths & Management)
 Co-supervisors: T. Ma, V. Sung and J. Johnson
- Topologically-inspired global ranking from pairwise comparison between alternatives [Jiang et al. Statistical ranking and combinatorial Hodge theory Math. Progr. 127 (2011)]
- Rank horses and predict race winner based on past performance data
- Particularly useful for incomplete and inconsistent data
- Represent horse racing data using a weighted 2-dim. simplicial complex: nodes = horses edges weighted by pairwise preferences $\alpha_{ij} = -\alpha_{ji}$
 triangles weighted by boundary $\alpha_{ij} + \alpha_{jk} + \alpha_{ki}$ (local inconsistencies)
- **Problem**: Find global ranking $r \in C^0$ with induced pairwise ranking $\delta_0(r)$ close to observed pairwise ranking $Y = (\alpha_{ij}) \in C^1$
- Minimum norm solution given by a Laplacian matrix $r = \Delta_0^\dagger \delta_0^* Y$
- Use Hodge theory to study inconsistencies (e.g. global vs local)
HodgeRank

- Scores: Y_{ij}^α preference i over j by voter [race] α [beaten lengths]

- Aggregate scores:
 $$\overline{Y}_{ij} = \frac{\sum_{\alpha \in \Lambda_{ij}} \omega^\alpha Y_{ij}^\alpha}{\sum_{\alpha \in \Lambda_{ij}} \omega^\alpha} \quad \left[\omega^\alpha = e^{-\frac{t^\alpha}{h}} \right]$$

- Optimisation:
 $$\min_{s \in C^0} \|\delta_0 s - \overline{Y}\|_W^2 = \min_{s \in C^0} \sum_{i,j \in V} w_{ij} (X_{ij} - \overline{Y}_{ij})^2$$

 $$\left[w_{ij} = \frac{1}{1 + \Delta_{1}^{up}(i, j)} \right]$$

- Minimum norm solution:
 $$s^* = \Delta_{0}^\dagger \delta_0 \overline{Y}$$

- Residual:
 $$R^* = \overline{Y} - \delta_0 s^* = \text{proj}_{\text{im}(\delta_1^*)} \overline{Y} + \text{proj}_{\text{ker}(\Delta_1)} \overline{Y}$$

 local inconsistencies

 global inconsistencies
Horse ranking: Results

- Data set: UK races 2008-2012 (5 years) about 36k races and 38k horses
- Computation: 4-5h in IRIDIS (12k cores)
- Validation: conditional logit model (\tilde{R}^2, p-value, LLR), Kelly betting algorithm
- Results: improves predictions, significance, ‘makes money’
CONCLUSIONS

• Use of weighted complexes & discrete Laplacian in complex systems modelling, and exploratory data analysis (Geometrical Data Analysis)

• Advantages
 ► Natural generalisation of algebraic (& spectral) graph theory
 ► Rich mathematical theory underpinning this approach

• Challenges:
 ► Validity of modelling approach (e.g. meaningful, computationally feasible)
 ► Relation to Topological Data Analysis (e.g. persistent homology)
 ► Spectral signatures
 ► Metrics, curvature, (hidden) geometries
 ► (Quasi-)Symmetry Etc.

• Upcoming review paper Geometry and Topology of Networks (with Ben MacArthur)
THANK YOU