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What is persistent homology?

Persistent homology is a method from algebraic topology used to study
topological features of data.
e Topological features: e.g. connected components, holes, voids, etc.

o Data: e.g. a finite set X together with a distance d, called a point

cloud
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What is the topology of this point cloud?

Here X is a subset of R? and d is the Euclidean distance.
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Idea: build a simplicial complex on the points.
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Idea: build a simplicial complex on the points.

Choose a distance €. Draw a k-simplex on xp, ..., xx if and only if the
points have pairwise distance smaller then or equal to e.
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Idea: build a simplicial complex on the points.

Choose a distance €. Draw a k-simplex on xp, ..., xx if and only if the
points have pairwise distance smaller then or equal to e.

For example:
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Problem: how do we choose €7
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Problem: how do we choose €7

If € is too small:
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Solution: look at all possible values for the distance and obtain a
sequence of simplicial complexes {K.}>0 with K, C K., for €1 < e2. We
call this a filtered simplicial complex.
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Solution: look at all possible values for the distance and obtain a
sequence of simplicial complexes {K.}>0 with K, C K., for €1 < e2. We
call this a filtered simplicial complex.

Each feature, e.g. hole, appears at a certain distance ¢; and disappears at
another distance e5:
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Solution: look at all possible values for the distance and obtain a
sequence of simplicial complexes {K.}>0 with K, C K., for €1 < e2. We
call this a filtered simplicial complex.

Each feature, e.g. hole, appears at a certain distance ¢; and disappears at
another distance e5:

€1 ; €2 ?
We say that the persistence of this feature is the interval [e1,€2) and we
represent it by a bar

€1 €2

0 1 2
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How do we compute the barcode?

Step 1: Order the simplices so that the total order is compatible with the
filtration.

Step 2: Construct the boundary matrix.

Let n be the number of simplices. The boundary matrix B is an
n X n-matrix defined by:

B(i.j) 1 o; Cojand dim(oj) = dim(oj) — 1
i,j) =
J 0 otherwise

Step 3: Reduce the matrix using column additions from left to right.

Step 4: Read the endpoints of the persistence intervals from the matrix to
get the barcode.
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Step 1. Given a filtered simplicial complex
@ZKoCKlC"'CKm:K

put an order on its simplices such that:

@ A face of a simplex precedes the simplex.

@ A simplex in K; precedes simplices in K \ K;.
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Step 1. Given a filtered simplicial complex
@ZKoCKlC"'CKm:K

put an order on its simplices such that:

@ A face of a simplex precedes the simplex.

@ A simplex in K; precedes simplices in K \ K;.

Example:
[ ]
- - /_\. - A
[ ] [ ]
K1 K> K3 Ky
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Put an order on the simplices such that:

@ A face of a simplex precedes the simplex.
e A simplex in K; precedes simplices in K\ K;.

02
.

°
01
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Put an order on the simplices such that:

@ A face of a simplex precedes the simplex.
e A simplex in K; precedes simplices in K\ K;.

02 02
.
04

°
01 01 03
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Put an order on the simplices such that:

@ A face of a simplex precedes the simplex.
e A simplex in K; precedes simplices in K\ K;.

02 02 g2
°

o4 04 06
[
01 o1 g3 01 05 O3

Nina Otter (Oxford) Roadmap for PH computation

Aberdeen, 8 June 2015

11/ 38



Put an order on the simplices such that:

@ A face of a simplex precedes the simplex.
e A simplex in K; precedes simplices in K\ K;.

02 02 g2
°

o4 04 06
[
01 o1 g3 01 05 O3
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Step 2. We obtain the boundary matrix:

1[2[3[4[5[6]7 For j=1,...,7 define low(j) = i if
1 1)1 i is the position of the lowest 1 in
2 1 1 column j.
3 1)1
4 1 If the column is zero leave low())
5 undefined.
6
7 e.g. low(4)=2
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Step 3. Reduce the boundary matrix.

Let n be the number of simplices. 11234 (5]6]|7
1 1)1
Algorithm: 2 1 1
3 1)1
for j =1to ndo 4 1
5 1
while there exists i < j with 6 1
low(i) = low(j) do
add column 7 to column j 7
end while
end for
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Step 3. Reduce the boundary matrix.

Algorithm:

for j=1to ndo

while there exists i < j with
low(i) = low(j) do

add column / to column j

end while
end for

Nina Otter (Oxford)
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Step 3. Reduce the boundary matrix.

Algorithm:

for j=1to ndo

while there exists i < j with
low(i) = low(j) do

add column / to column j

end while
end for

Nina Otter (Oxford)

Add column 4 to column 6:

112|3(4]|5|6
1)1
1
1

~N OGP WN -
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Step 4. Read the persistence pairs.

o If low(j) = i then g is negative 11234 |5|6]|7
and paired with the positive o;. 1 1)1
2 1
3 1
4 1
o If low(j) is undefined then o; is 5 1
positive. 6 1
If there exists k such that 7

low(k) = j then o; is paired
with the negative simplex o.
If no such k exists o; is
unpaired.

o1 positive, unpaired

oo positive, paired with o4
o3 positive, paired with o5
o4 negative, paired with o5
o5 negative, paired with o3
o6 positive, paired with o7
o7 negative, paired with og
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02 02 02
°

04 g4 06

o1 o1 03 o1 o5 03

o1 positive, unpaired ~~ interval [1,00) in Hp.
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02 02

o) o2
[}
[ J [ ]

o1 o1 03 o1 05 03 o1 o5 03
o1 positive, unpaired ~~ interval [1,00) in Hp.

oo positive, paired with o4 ~~ no interval, since o> and o4 enter at the
same time in the filtration
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02 02

o) o2
[}
[ J [ ]

o1 o1 03 o1 o5 03 o1 o5 03

o1 positive, unpaired ~~ interval [1,00) in Hp.

oo positive, paired with o4 ~~ no interval, since o> and o4 enter at the
same time in the filtration

o3 positive, paired with o5 ~ interval [2,3) in Hp.
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02 02 02 02
[ ]

[ J [

o1 o1 03 o1 o5 03 o1 o5 03

o1 positive, unpaired ~~ interval [1,00) in Hp.

oo positive, paired with o4 ~~ no interval, since o> and o4 enter at the
same time in the filtration

o3 positive, paired with o5 ~ interval [2,3) in Hp.

0 positive, paired with o7 ~~ interval [3,4) in Hj.
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PH computation pipeline

Filtered
Data Bound.ary }—>‘ Barcodes
complex matrix

Nina Otter (Oxford) Roadmap for PH computation Aberdeen, 8 June 2015 18 / 38



Perseus http://www.sas.upenn.edu/~vnanda/perseus/
JavaPlex http://appliedtopology.github.io/javaplex/
jHoles http://cuda.unicam.it/jHoles/

Dionysus http://www.mrzv.org/software/dionysus/
phom http://cran.r-project.org/web/packages/phom/
PHAT https://code.google.com/p/phat/

DIPHA https://code.google.com/p/dipha/

GUDHI https://project.inria.fr/gudhi/software/
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rief (biased) history of PH softwares

H& 2004 PH algorithm G. Carlsson and A. Zomorodian
M& 2005 Plex V. de Silva, P. Perry, L. Kettner, A. Zomorodian

m 2011 JavaPlex A. Tausz, M. Vejdemo-Johansson, H. Adams
ﬁ/ 2012 Perseus V. Nanda

% !
ﬁmx 2013 PHAT wm. Kerber, J. Reininghaus, U. Bauer, H. Wagner
7A@ 2014 DIPHA M. Kerber, J. Reininghaus, U. Bauer

D

2014 GUDHI c Maria, J.-D. Boissonnat, M. Glisse, M.
Yvinec
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Optimisations

Filtered
Data iltere

complex
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Optimisations

Filtered
Data iltere

complex

Simple complexes:

@ Witness complex, [de Silva, Carlsson
2004]

@ Linear size approximations of VR
complex, [Sheehy 2013]

Simplification of a given filtered complex:

@ Discrete Morse theory, [Mischaikov,
Nanda 2013]

@ The tidy set, [Zomorodian 2010)
Efficient data structure:

@ Simplex tree, [Boissonnat, Maria
2012
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Optimisations

Filtered Boundary

Data Barcodes

complex matrix

Simple complexes:

@ Witness complex, [de Silva, Carlsson
2004]

@ Linear size approximations of VR
complex, [Sheehy 2013

Simplification of a given filtered complex:

@ Discrete Morse theory, [Mischaikov,
Nanda 2013]

@ The tidy set, [Zomorodian 2010)
Efficient data structure:

@ Simplex tree, [Boissonnat, Maria
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Optimisatio

Filtered Boundar
Data 2 Barcodes
complex matrix
Simple complexes: Sequential optimization:

@ Dual algorithm, [de Silva, Morozov,
Vejdemo-Johansson 2011]

@ Twist algorithm, [Chen, Kerber 2011]

@ Linear size approximations of VR Parallel optimizations:
complex, [Sheehy 2013]

@ Witness complex, [de Silva, Carlsson
2004)

@ Spectral sequence algorithm
[Edelsbrunner, Harer 2008]
@ Chunk algorithm [Bauer, Kerber,
@ Discrete Morse theory, [Mischaikov, Reininghaus 2013]
Nanda 2013] @ Distributed computation [Bauer, Kerber,
Reininghaus 2014]

Efficient data structures:

Simplification of a given filtered complex:

@ The tidy set, [Zomorodian 2010]

Efficient data structure: @ Bit tree pivot column [Bauer, Kerber,
Reininghaus, Wagner 2013)
@ Simplex tree, [Boissonnat, Maria 2012) @ Compressed annotation matrix

[Boissonnat, Dey, Maria 2013
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Sequential optimisation: example

Twist algorithm

Note: Optimisation:
@ If column j is reduced and

. ; } Red [ fi ight t
/OW(_/) — > 0 then S|mp|ex o; o eauce columns rrom rig (0]

: - . left

is positive and reducing column

i will result in setting column i @ If column j is reduced and

to zero. low(j) = i > 0 then set column
@ o; is a codimension 1 face of o; i to zero.
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Previous example:

1

2

3

SN

N OO WN -

Column 7 is reduced and
low(7) = 6, so set column 6 to zero.
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Previous example:

11234 7 2|13(4|5|6
1 1 1 11
2 1 2 1

3 3 1
4 1 4

5 1 5

6 1 6

7 7

Column 7 is reduced and
low(7) = 6, so set column 6 to zero.

Nina Otter (Oxford)
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Now we are done.
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Parallel optimisation: example

Spectral sequence algorithm Idea:

@ Reduce the matrix in phases: in

Let kj denote the number of each phase r, reduce columns

simplices in subcomplex K;. in B/ by adding columns in the
Let B/ denote the columns blocks from B/~"*1 to B/.
numbered k;_; + 1 to k;. Optimisation:

Let B; denote the rows numbered @ The reduction in each block
ki_1+1 to k;. and each phase is independent,

and can be executed in parallel.

Nina Otter (Oxford) Roadmap for PH computation Aberdeen, 8 June 2015 26 / 38



Phase r = 1:

Bk

By

By

Nina Otter (Oxford)
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Phase r = 2:
B! B/ Bk
By
B;
By
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Phase r = 3: Phase r = k:

Bl

By

By By
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Optimisations

Filtered
Data I

complex

Simple complexes:
@ Witness complex — JavaPlex, phom

@ Linear size approximations of VR
complex — no implementation (?7)

Simplification of a given filtered complex:
@ Discrete Morse theory — Perseus
@ The tidy set — not open source
Efficient data structure:

@ Simplex tree — GUDHI

Nina Otter (Oxford)

Roadmap for PH computation

Boundary

: Barcodes
matrix

Sequential optimization:

@ dual algorithm — Dionysus, PHAT,
DIPHA, GUDHI, JavaPlex

@ Twist algorithm — PHAT, DIPHA,
Dionysus

Parallel optimizations:
@ Spectral sequence algorithm — PHAT
@ Chunk algorithm — PHAT
@ Distributed computation — DIPHA
Efficient data structures:
@ Bit tree pivot column — PHAT, DIPHA

@ Compressed annotation matrix —
GUDHI
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Software  Precomp. filt. Compl. ! Parallel Visualiz. PH algorithms

standard, dual

javaPlex v VR, LW, W, CW X v i
zig zag
Perseus ve VR X Ve Morse reductions
o standard, dual
Dionysus X a, VR, Cech X X .
twist
jHoles v WRCF v shared V2 standard (javaPlex)
phom v VR, LW X v standard, dual
standard, dual, twist
PHAT X X  shared X chunk, spectral seq.
dual, spectral seq.
dual, twist
DIPHA X VR, lower star / distr. v
distributed
multifield
GUDHI X VR X X
dual

1VR:Vietoris Rips complex, W=witness complex, LW=lazy witness complex, CW=CW complex, WRCF=
weight rank clique filtration
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Data

Synthetic data Real world data
@ Points sampled from Klein @ Genomic sequence of HIV virus
bottle

@ Points sampled from 3D scans
@ Geometric random graphs of Stanford dragon

o C. Elegans neuronal network

@ Human genome network
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o Cluster®: 1728 (180*16) cores of 2.0GHz
RAM : 64 GiB x80 nodes, 128 GiB x 4 nodes

@ Shared memory system3: 64 cores of 2.67GHz
RAM: 1 TB

3Advanced Research Computing (ARC), Oxford
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We study the softwares from four different points of view:
@ Performance measured in CPU and real time
© Memory usage
© Maximum size of simplicial complex allowed by the software

@ User-friendliness: phases of computation of PH supported by software
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Performance

Performance for VR complex for point clouds created from subsample of
Klein bottle, HIV genome and the 3D scans of the Standford dragon.

S
s | GUDHI —_— |
9-10°  javaPlex R — j / i
8-10° [ DIPHA - P j // |
Dionysus 8 ;
7-10° | ; |
“ Perseus ; /
T 6-10° | ; |
8 ; /
g 5100 - :‘ / |
Rt N
N .
3.100 [ i
2-10° b i // |
1-108 | J P |
0 - . . & . . QX |
S 8y S8 R T L, U Ay Yy X, %y S %,
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> Oy Xy 90 T o o s Yos Yoo Y00 Y0q, Yoy

simplices
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User-friendliness

2.5
barcodes
, m— boundary matrix
I T ——e b D complex
l:l installation
15t R R
l |
05 F =7 i
0 e
sy S, %, %& “%
%, % J’“‘o& 5
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Maximal size of simplicial complex

Maximal size of simplicial complex supported by the software*:

Software JavaPlex Perseus Dionysus DIPHA  GUDHI
maximal size  4-10°  2-10° 1.6-10° 1-10° 2.107

*Thus far, computations still in progress.
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Challenges

Creation of a computational topology library.

Definition and construction of benchmarking datasets for the test of
new algorithms and data structures.

Uniformization of input type across different implementations.

Efficient storage and constrution of complexes: recent progress in the
computation of barcodes from the boundary matrix is hindered by the
complexity of the computation of the complex.

Stream Processing: new techniques are needed to compute PH for
streams of data.
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