Lusternik-Schnirleumann Category and Moment-Angle Complexes

Piotr Beben (with Jelena Grbić)

Aberdeen

May 2016
Polyhedral Products

K-simplicial complex on n vertices,

$$(X, A) = ((X_1, A_1), \ldots (X_n, A_n)), \ A_i \subseteq X_i,$$

$$(X, A)^K = \bigcup_{\sigma \in K} Y_1^\sigma \times \cdots \times Y_n^\sigma \subseteq X_1 \times \cdots \times X_n,$$

where

$$Y_i^\sigma = \begin{cases} X_i, & \text{if } i \in \sigma \\ A_i, & \text{if } i \notin \sigma, \end{cases}$$

example

- $K = \Delta^n \Rightarrow (X, A)^K = X_1 \times \cdots \times X_n.$
- K disjoint points $\Rightarrow (X, \ast)^K = X_1 \lor \cdots \lor X_n.$
Moment-angle complexes

Davis-Januszkiewicz spaces

$$\text{DJ}(K) = (\mathbb{C}P^\infty, *)^K$$

Moment-angle complexes

$$Z_K = (D^2, \partial D^2)^K$$

$$\simeq (\mathbb{C}^n, \mathbb{C}^n - \{0\})^K$$

$$= \mathbb{C}^n - \bigcup_{\sigma \notin K} \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = 0 \text{ if } i \in \sigma\}.$$

More generally, $$Z^\ell_K = (D^{\ell+1}, \partial D^{\ell+1})^K$$ and $$\mathbb{R}Z_K = Z^0_K = (D^1, \partial D^1)^K.$$

- The orbit space of a certain free torus action on $$Z_K$$ for $$K$$ boundary of dual simple polytope is a quasi-toric manifold $$M = Z_K/T^{f_0-n}$$.
- A subspace arrangement $$A$$ is a finite set of affine subspaces of $$\mathbb{R}^n$$ (or $$\mathbb{C}^n$$), $$V_A$$ is their union, and $$M_A = \mathbb{R}^n - V_A$$ (or $$M_A = \mathbb{C}^n - V_A$$) its complement.

Thus $$Z_K$$ is homotopy equivalent to the complement $$M_A$$ of the arrangement

$$\bigcup_{\sigma \notin K} \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i = 0 \text{ if } i \in \sigma\}.$$ Similarly for $$\mathbb{R}Z_K$$.
k-equal Problem

Given a set of real numbers \(\{x_1, \ldots, x_n\} \) and \(k \geq 2 \), how many comparisons \(x_i - x_j \geq 0 \) are needed (by the best algorithm in the worst case) to determine if any \(k \) of them are equal?

More Generally

Given an arrangement \(A \) and any \(x \) in \(\mathbb{R}^n \), how many comparisons of the form \(\ell(x) \geq 0 \) (for each linear equation \(\ell \) associated to each affine subspace in \(A \)) are needed to determine if \(x \in V_A \)?

The arrangement associated to the \(k \)-equal problem is the \(k \)-equal arrangement

\[
A = \{ (x_1, \ldots, x_n) \mid x_{i_1} = \cdots = x_{i_k} \text{ for each } \{i_1, \ldots, i_k\} \subseteq [n] \}.
\]
Theorem (Björner, Lovász, Yao,...)

The minimum number of comparisons \(\ell(x) \geq 0 \) are given asymptotically in terms of the Betti numbers of \(M_A \) and the intersection lattice of \(A \).

Consequently, the minimum number of comparisons needed for the \(k \)-equal problem are asymptotically

\[\Theta(n \log \frac{2n}{k}). \]
Let S be a **simplicial n-polytope** (a polytope whose codimension 1 faces are $(n-1)$-simplices, i.e. the dual of a simple polytope).

The **f-vector**

$$f(S') = (f_0, \ldots, f_{n-1})$$

where f_i is the number of i-dimensional faces of S'.

Its **h-vector**

$$h(S') = (h_0, h_1, \ldots, h_n)$$

is given by

$$h_0 t_n + \cdots + h_{n-1} t + h_n = (t - 1)^n + f_0(t - 1)^{n-1} + \cdots + f_{n-1}$$
The \textit{g-Theorem (Stanley, Birella, Lee)}

$$(f_0, \ldots, f_{n-1})$$ is f-vector of some simplicial (or simple) polytope S iff h-vector

$$(h_0, \ldots, h_n)$$ satisfies:

1. \(h_i = h_{n-i} \) for \(i = 0, \ldots, n \) \text{(the Dehn-Sommerville relations)};

2. \(1 = h_0 \leq h_1 \leq h_{\lfloor \frac{n}{2} \rfloor} \);

3. \(h_{i+1} - h_i \leq (h_i - h_{i-1})^{(i)} \) \text{(the \(i^{th} \) pseudopower) for \(i = 0, \ldots, \lfloor \frac{n}{2} \rfloor - 1 \).}

\[\square \]

- Proof of the necessity part of \textit{g}-theorem involves cohomology of quasitoric varieties.
- Betti numbers of quasitoric manifold

\[M = \mathbb{Z}_{\partial S}/T^{f_0-n} \]

satisfy \(\beta^{2i}(M) = h_i(S) \), so Dehn-Sommerville relations follow by Poincaré Duality.

- \textit{g}-Theorem is still a conjecture for general triangulations of spheres.
- But Dehn-Sommerville equations hold also for arbitrary triangulations K of
closed compact manifolds, and this can be shown using the bigraded betti numbers of \(\mathbb{Z}_K \).
Chemistry

A fullerene spherical molecules of carbon, each carbon atom belongs to three carbon rings, each carbon ring is either a pentagon or hexagon.

Mathematically, a fullerene is a simple 3-polytope all of whose 2-faces are pentagons and hexagons.
Belts

- p_k is the number of k-gonal 2-faces of 3-polytope P.
- A k-belt of a 3-polytope P is a sequence of 2-faces (F_0, \ldots, F_{k-1}) s.t. $F_{i-1} \cap F_{(i \mod k)}$ is an edge, and all other intersections are \emptyset.

Figure: A 4-belt
Dual $K = \partial P^*$ of simple polytope P is a simplicial complex. \exists bigrading on $H^*(\mathbb{Z}_K)$ defining:

$$\beta^{i,j}(P)$$ the **bigraded Betti number** of $H^*(\mathbb{Z}_{\partial P^*})$ (more on this later).

Buchstaber, Erokhovets

Theorem

For a fullerene P

- $\beta^{-1,6} = 0$ – the number of 3-belts.
- $\beta^{-2,8} = 0$ – the number of 4-belts.
- $\beta^{-3,10} = 12 + k$, $k \geq 0$ – the number of 5-belts. If $k > 0$, then $p_6 = 5k$.

Thus fullerenes have no 3-belts and 4-belts.

Theorem

For any fullerene

- $\beta^{-1,4} = \frac{(8 + p_6)(9 + p_6)}{2}$
- $\beta^{-2,6} = \frac{(6 + p_6)(8 + p_6)(10 + p_6)}{3}$
- $\beta^{-3,8} = \frac{(4 + p_6)(7 + p_6)(9 + p_6)(10 + p_6)}{8}$

For any simple 3-polytope, p_k for $k \neq 6$ satisfy

$$3p_3 + 2p_4 + p_5 = 12 + \sum_{k \geq 7} (k - 6)p_k$$ (Eberhard).
Chemists are interested in symmetries of molecules such as fullerenes P, e.g. $\text{Aut}(P)$.

Fan, Ma, Wang

If P and Q are fullerenes:

$$P \approx Q \iff H^*(\mathbb{Z}_{\partial P^*}) \cong_{\text{rings}} H^*(\mathbb{Z}_{\partial Q^*})$$

Corollary

$$\text{Aut}(P) \approx \text{Aut}(H^*(\mathbb{Z}_{\partial P^*}))$$

(*polytope automorphisms and ring automorphisms, respectively*).
Question

- To what extent does $H^*(\mathbb{Z}_G)$ determine a graph G? What other invariants, if any, are needed?
- How does commutative algebra in the form of $H^*(\mathbb{Z}_G)$ fit into algebraic graph theory?
Commutative and Combinatorial Algebra

(Buchstaber, Panov)

For k a field or \mathbb{Z}:

- $H^*(\text{DJ}(K); k) \cong k[K] = \frac{k[v_1,\ldots,v_n]}{I_K}$ (Stanley-Reisner Ring),

where ideal

$$I_K = \langle \text{square-free monomials } v_{i_1}\ldots v_{i_k} \text{ s.t. } \{i_1,\ldots,i_k\} \notin K \rangle,$$

- $H^*(\Omega \text{DJ}(K); k) \cong \text{Tor}_{k[K]}(k,k)$ (Homology ring of $k[K]$),

- $H^*(\mathbb{Z}_K; k) \cong \text{Tor}_{k[v_1,\ldots,v_n]}(k[K],k).$
\((\text{Buchstaber, Baskakov, Franz, Panov, Hochster}):\)

\[H^*(\mathcal{Z}_K ; k) \cong \text{Tor}_{k[v_1,\ldots,v_n]}(k[K], k) \cong \bigoplus_{I \subseteq [n]} \tilde{H}^{*-|I|-1}(|K_I| ; k). \]

cup product multiplication induced by canonical inclusions for disjoint \(I \) and \(J \):

\[\iota_{I,J} : |K_{I \cup J}| \longrightarrow |K_I \ast K_J| \cong |K_I| \ast |K_J| \cong \Sigma |K_I| \wedge |K_J|. \]

Bigraded Betti number:

\[\beta^{i,2j}(\mathcal{Z}_K) = \sum_{|I|=j} \text{rank}(\tilde{H}^{i+j-1}(|K_I|)). \]
The Golod Property

Golod: algebraic definition

A ring $R = k[v_1, \ldots, v_n]/\mathcal{I}$, \mathcal{I} a homogenous ideal, is **Golod** over field k if $\text{Tor}^+_k(v_1, \ldots, v_n)(R, k)$ has trivial multiplication and all Massey products vanish.

Golod: combinatorial definition

A simplicial complex K is **Golod** over field k if Stanley-Reisner ring $k[K]$ is Golod.

Golod: topological definition

A simplicial complex K is **Golod** over ring F if all cup products (of positive degree elements) and Massey products vanish in $H^+(\mathbb{Z}_K; F) \cong \text{Tor}^+_F(v_1, \ldots, v_n)(F[K], F)$.

Long-standing problem:
Compute the Poincaré series

\[P(R) = \sum b_i t^i \]

of a commutative ring \(R \), where

\[b_i = \text{Tor}^i_R(k, k). \]

Conjecture (Kaplansky, Serre)
\(R = k[v_1, \ldots, v_n]/\mathcal{I} \) (\(\mathcal{I} \) a homogenous ideal) \(\implies \) then \(P(R) \) is a rational function.

Theorem (Golod)
\(R = k[v_1, \ldots, v_n]/\mathcal{I} \) is Golod \(\implies \) \(P(R) \) is a rational function.

Theorem (Grbić, Theriault)
\(k[K] \) is Golod (i.e. \(K \) is Golod) \(\implies \) \(P(k[K]) = \frac{t(1-t)^n}{t-P(H^*(\mathbb{Z}_K))} \).

Problem:
Characterize Golod rings \(R \). In particular, characterize Golod complexes \(K \).
Homotopy Theory

Theorem (Grbić, Theriault, Panov, Wu, Berglund, Jöllenbeck)

If K is a flag complex, then the following are equivalent:

1. K is Golod;
2. \prod vanishes in $H^+(\mathbb{Z}_K) \cong \text{Tor}^+_{\mathbb{Z}[v_1,\ldots,v_n]}(\mathbb{Z}[K],\mathbb{Z})$;
3. 1-skeleton of K is a chordal graph;
4. \mathbb{Z}_K is a co-H-space (wedge of spheres).

(4) \Rightarrow (1), since in general:

$$X \text{ a co} - H - \text{space} \implies \text{cup prod. and Massey prod. vanish in } H^+(X)$$

co-H-spaces are precisely LS-category 0 and 1 spaces...
The \textbf{LS-category} \(\text{cat}(X) \) is smallest number \(m \) of open sets \(U_1, \ldots, U_{m+1} \) that cover \(X \) and are contractible in \(X \).

The \textbf{cup length} \(\text{cup}(X) \) of \(X \) is largest number \(m \) s.t. there is a nonzero cup product \(u_1 \cdots u_m \) for some \(u_i \in \tilde{H}^*(X) \).

- \(\text{cat}(X) \leq m \implies \text{cup}(X) \leq m; \)
- \(\text{cat}(X) \leq 1 \implies \text{Massey prod. vanish in } H^+(X) \)
Theorem (Rudyak,...)

If $\text{cat}(X) \leq m$ then:

(i) $\text{cup}(X) \leq m$;

(ii) Massey products $\langle v_1, \ldots, v_k \rangle \in H^+(X)$ vanish whenever for some odd i, even j, and $m_i + m_j > m$ we have:

$$v_i = a_1 \cdots a_{m_i} \text{ and } v_j = b_1 \cdots b_{m_j} \text{ for some } a_s, b_t \in H^+(X).$$

$$\square$$

Definition

Say K is m-Golod if (i) and (ii) above hold for $X = \mathbb{Z}_K$.

Thus:

- $\text{cat}(X) \leq m \implies K$ is m-Golod.
Problem 1
Characterize those K for which K is m-Golod.

and:

Problem 2
Characterize those K for which $\text{cat}(\mathcal{Z}_K) = m$.

- As we saw, both these problems are solved when $m = 1$ and K is a flag complex.
- Problem 2 is solved for $(X, \ast)^K$ for certain nice X (Felix, Tanre).
LS-category ≤ 1 (co-H-spaces) and 1-Golod K

- Since $\text{cat}(X) \leq 1 \implies K$ is Golod, knowing homotopy types of \mathcal{Z}_K tells us when K is Golod.
- This has had some success, e.g. shifted complexes and chordal flag complexes.
- In the other direction, since $H^*(\mathcal{Z}_K)$ is simplest when K is Golod, homotopy type of \mathcal{Z}_K should be simplest here as well.

Homotopy type \mathcal{Z}_K known for the following Golod K (increasing generality, due to Iriye, Kishimoto, Grbić, Theriault, Panov, Wu,...):

- K is n disjoint vertices;
- K is shifted;
- K is chordal flag complex or graph;
- K is a $\frac{n}{2}$-neighbourly or a 1-neighbourly 2-dim surface;
- K is Alexander dual of shellable or sequential Cohen-Macaulay;
- K extractible (most general);

In all cases they are co-H-spaces, often a wedge of spheres.
Conjecture A

K is Golod $\iff \mathcal{Z}_K$ is a co-H-space ($\text{cat} (\mathcal{Z}_K) \leq 1$).

(equivalently) Conjecture A

Massey products vanish and $\iota_{I,J}: |K_{I \cup J}| \longrightarrow |K_I \ast K_J|$ trivial on cohomology for all $I \cap J = \emptyset$ $\iff \mathcal{Z}_K$ is a co-H-space.

Theorem (Iriye, Kishimoto)

\mathcal{Z}_K is a co-H-space if and only if $\mathcal{Z}_K \simeq \bigvee_{I \subseteq [n]} \Sigma^{\lvert I \rvert + 1} \lvert K_I \rvert$.

This is a desuspension of a general splitting of $\Sigma \mathcal{Z}_K$ due to Bahri, Bendersky, Cohen, Gitler (the BBCG splitting).

Conjecture is true for flag complexes (Grbić, Panov, Theriault, Wu), and rationally (Berglund)
Conjecture A seems to be false (Iriye, Yano).

Question A

To what extent is it true?
Question A - Main Idea

Ganea

A space Y is a co-H-space ($\text{cat}(Y) \leq 1$) \iff the evaluation map $\Sigma \Omega Y \xrightarrow{\text{ev}} Y$ has a right homotopy inverse.

- To see if \mathcal{Z}_K is a co-H-space, we construct what looks like a configuration space model

 $$\gamma : C(\mathbb{R}\mathcal{Z}_K) \to \Omega \mathcal{Z}_K.$$

 and use $\Sigma \gamma$ to help us find right homotopy inverses for $\Sigma \Omega \mathcal{Z}_K \xrightarrow{\text{ev}} \mathcal{Z}_K$.
Labelled Configuration Spaces

Let M be any path connected space, $N \subseteq M$ a subspace, and Y a basepointed space with basepoint \ast.

$$SP((M/N) \wedge Y) \cong \bigsqcup_{i=0}^{k} M^\times i \times Y^\times i / \sim$$

where the equivalence relation \sim is given by

- $(z_1, \ldots, z_i; y_1, \ldots, y_i) \sim (z_{\sigma(1)}, \ldots, z_{\sigma(i)}; y_{\sigma(1)}, \ldots, y_{\sigma(i)})$ for permutations $\sigma \in \Sigma_i$;

- $(z_1, \ldots, z_i; y_1, \ldots, y_i) \sim (z_1, \ldots, z_{i-1}; y_1, \ldots, y_{i-1})$ for $y_i = \ast$ or $z_i \in N$.

The pairs (z_j, y_j) are called particles, the y_j's their labels.

Classical Labelled Configuration Space

$C(M, N; Y) \subseteq SP((M/N) \wedge Y)$ subspace of all configurations $(z_1, \ldots, z_i; y_1, \ldots, y_i)$ such that $z_1 \neq \cdots \neq z_i$.
A Classical Result

Segal, B"odigheimer, McDuff,...

M smooth parallelizable ℓ-manifold, there exists a (weak) homotopy equivalence

$\gamma: C(M, \emptyset; Y) \longrightarrow \text{map}(Z, Z - M; \Sigma^\ell Y)$.

where $Z = M \cup (\partial M \times [0, 1))$.
• For $X_1 \times \cdots \times X_n$:

$$\Omega \prod_i \Sigma X_i \cong \Omega \Sigma X_1 \times \cdots \times \Omega \Sigma X_n \cong C(\mathbb{R}, \emptyset; X_1) \times \cdots \times C(\mathbb{R}, \emptyset; X_n).$$

• For $X_1 \vee \cdots \vee X_n$:

$$\Omega \bigvee_i \Sigma X_i \cong \Omega \Sigma (X_1 \vee \cdots \vee X_n) \cong C(\mathbb{R}, \emptyset; X_1 \vee \cdots \vee X_n).$$

Polyhedral products tend to sit between these two outliers.
Suppose $W \subseteq X_1 \times \cdots \times X_n$.

Represented sets

- A multiset of points $S = \{x_1, \ldots, x_s\} \subset \bigsqcup_i X_i$ is **represented** by a point in W if there exists a point in $p \in W$ such that some subset of coordinates of p is equal to S.

Let $V = X_1 \uplus \cdots \uplus X_n$.

$C(M, N; W)$ is the subspace of $SP((M/N) \land V)$ of configurations

$$y = (z_1, \ldots, z_k; x_1, \ldots, x_k) \in SP((M/N) \land V)$$

such that

- y non-degenerate, $i_1 \neq \cdots \neq i_s$, and $z_{i_1} = \cdots = z_{i_s}$, $\implies \{x_{i_1}, \ldots, x_{i_s}\}$ is represented by some point in W.
Lemma

$C(D^\ell, \partial D^\ell; \mathbb{R} Z_K)$ deformation retracts onto Z^ℓ_K.

1. Inclusion $Z^\ell_K \xrightarrow{i} C(D^\ell, \partial D^\ell; \mathbb{R} Z_K)$

$$((t_1, x_1), \ldots, (t_n, x_n)) \mapsto (t_1, \ldots t_n; x_1, \ldots x_n)$$

homeomorphic onto its image;

2. Two step radial expansion $R_t(x) = tx$:

Figure: (1) Radially expand particles towards ∂D^ℓ to annihilation until there are no more than n particles left, each with a label in a distinct coordinate of $(D^1)^{\times n}$, at the same time attract labels near the basepoint towards it; (2) continue radially expanding until the remaining particles are a point in $Z^\ell_K \subseteq C(D^\ell, \partial D^\ell; \mathbb{R} Z_K)$, meanwhile coordinate-wise attract the label set towards $\mathbb{R} Z_K$.
Scanning Map

Theorem

M smooth parallelizable ℓ-manifold, exists a natural scanning map

\[\gamma : C(M, \emptyset; \mathbb{R}Z_K) \to \text{map}(Z, Z - M; Z^\ell_K). \]

where \(Z = M \cup (\partial M \times [0, 1]) \).

Proof.

\[\gamma : C(M, \emptyset; \mathbb{R}Z_K) \quad \to \quad \text{map}(Z, Z - MC(D^\ell, \partial D^\ell; \mathbb{R}Z_K)) \quad \to \quad \text{map}(Z, Z - M; Z^\ell_K) \]

When \(\partial M = \emptyset \) (\(Z = M \)):
In particular (taking $M = D^1$), we have a map

$$\gamma: C(\mathbb{R}, \emptyset; \mathbb{R}\mathcal{Z}_K) \xrightarrow{\sim} C(D^1, \emptyset; \mathbb{R}\mathcal{Z}_K) \longrightarrow \Omega\mathcal{Z}_K.$$
Splittings

Let

\[C(\mathbb{R} \mathbb{Z}_K) = C(\mathbb{R}, \emptyset; \mathbb{R} \mathbb{Z}_K). \]

\[D_k(\mathbb{R} \mathbb{Z}_K) = \frac{C_i(\mathbb{R} \mathbb{Z}_K)}{C_{i-1}(\mathbb{R} \mathbb{Z}_K)} \]

Theorem B

\[\sum C(\mathbb{R} \mathbb{Z}_K) \simeq \bigvee_{i \geq 1} \sum D_i(\mathbb{R} \mathbb{Z}_K). \]
Moreover,

\[D_k(\mathbb{R} \mathbb{Z}_K) \cong \bigvee_{(k,n)\text{-partitions } S} D_S(\mathbb{R} \mathbb{Z}_K) \]

where \(S = (s_1, \ldots, s_n) \) non-negative integers s.t. \(s_1 + \cdots + s_n = k \), and \(D_S(\mathbb{R} \mathbb{Z}_K) \subseteq D_k(\mathbb{R} \mathbb{Z}_K) \) subspace where \(s_i \) particles have labels in a \(i^{th} \)-coordinate.
Let $\mathcal{A} = (1, \ldots, 1) \in \mathbb{N}^n$.

Proposition

(i) *homotopy commutative diagram of (homotopy) cofibration sequences*

\[
\begin{align*}
C(i) \xrightarrow{\partial} \Sigma D_A(\mathbb{R} \tilde{Z}_K) & \xrightarrow{\Sigma \hat{i}} \Sigma D_A(\mathbb{R} Z_K) \xrightarrow{\hat{q}} \Sigma C(i) \\
\Sigma^n |K| \xrightarrow{\sim} \tilde{Z}_K & \xrightarrow{\text{include}} Z_K \xrightarrow{q} \tilde{Z}_K \cong \Sigma^{n+1}|K|,
\end{align*}
\]

(where $\Sigma^n |K| \cong C(i)$ similar to 2-step radial expansion argument, this time particles vanishing on tip of mapping cone).

(ii) Z_K is a co-H-space when quotient map $Z_{K_I} \xrightarrow{q} \tilde{Z}_{K_I}$ has a right homotopy inverse for each $I \subseteq [n]$.

Quotiented config. spaces $D_A(\mathbb{R} Z_K)$ have nice combinatorial description (in analogy to quotiented moment-angle complexes $\tilde{Z}_K = Z_K/\tilde{Z}_K \cong \Sigma^{n+1}|K|$. having an obvious nice combinatorial description).
Homotopy Golod Condition

(1) *Homotopy version of trivial cup products:*
Require the inclusions

$$\Sigma\iota_{I,J} : \Sigma |K_{I \cup J}| \to \Sigma |K_I \ast K_J|$$

to be nullhomotopic, for each $I \cap J = \emptyset$.

(2) *Coherence of these nullhomotopies:*
consider that there is a commutative diagram

\[
\begin{array}{ccc}
|K_{I \cup J_1 \ast K_{J_2}}| & \xrightarrow{(\iota_{I,J_1}) \ast \iota_{I,J_2}} & |K_I \ast K_{J_1} \ast K_{J_2}| \\
\downarrow^{\iota_{I \cup J_1,J_2}} & & \downarrow^{\iota_{I \ast (\iota_{J_1,J_2})}} \\
|K_{I \cup J_1 \cup J_2}| & \xrightarrow{\iota_{I,J_1 \cup J_2}} & |K_I \ast K_{J_1 \cup J_2}| \\
\end{array}
\]

Then we require the composites

$$Cone(\Sigma |K_{I \cup J_1 \cup J_2}|) \xrightarrow{\hat{\iota}_{I \cup J_1,J_2}} \Sigma |K_{I \cup J_1} \ast K_{J_2}| \to \Sigma |K_I \ast K_{J_1} \ast K_{J_2}|$$

$$Cone(\Sigma |K_{I \cup J_1 \cup J_2}|) \xrightarrow{\hat{\iota}_{I,J_1 \cup J_2}} \Sigma |K_I \ast K_{J_1 \cup J_2}| \to \Sigma |K_I \ast K_{J_1} \ast K_{J_2}|$$

to be homotopic to to each other via a homotopy that is fixed on the base $\Sigma |K_{I \cup J_1 \cup J_2}|$ of the cone $Cone(\Sigma |K_{I \cup J_1 \cup J_2}|)$, where $\hat{\iota}_{I \cup J_1,J_2}$ and $\hat{\iota}_{I,J_1 \cup J_2}$ are the extensions given by the nullhomotopies of $\Sigma \iota_{I \cup J_1,J_2}$ and $\Sigma \iota_{I,J_1 \cup J_2}$. One then continues this process for longer joins.
Figure: Skeleton of an order 4 permutohedron

Take the dual of the order n permutohedron: the delta set

$$\mathcal{K}_n = \{\mathcal{F}_0, \ldots, \mathcal{F}_{n-1}\}$$

with $(m - 2)$-faces the set

$$\mathcal{F}_{m-2} = \{\text{all length } m \text{ ordered partitions } (I_1, \ldots, I_m) \text{ of } [n]\}$$

and face maps $d_i: \mathcal{F}_{m-2} \to \mathcal{F}_{m-3}$ given by

$$d_i((I_1, \ldots, I_m)) = (I_1, \ldots, I_{i-1}, I_i \cup I_{i+1}, I_{i+2}, \ldots, I_m).$$

\mathcal{K}_n is a simplicial complex of dimension $n - 2$, $|\mathcal{K}_n| \cong S^{n-2}$.
A simplicial complex K on vertex set $[n]$ is **homotopy Golod** if K is a single vertex, or (recursively) $K\setminus \{i\}$ is homotopy Golod for each $i \in [n]$ and there is a map

$$\Psi_K : |\mathcal{K}_n| \times Cone(\Sigma|K|) \longrightarrow \Sigma|\Delta^{n-1}|$$

such that for any $\gamma \in |\mathcal{K}_n|$:

1. $\Psi_K(\gamma, *)$ is the basepoint $\ast_{-1} \in \Sigma|\Delta^{n-1}|$
2. the restriction

$$\left(\Psi_K\right)|_{\{\gamma\} \times \{0\} \times \Sigma|K|} : \Sigma|K| \longrightarrow \Sigma|\Delta^{n-1}|$$

is the suspended inclusion;
3. if $\gamma \in |S|$ for some $S = (I_1, \ldots I_m) \in \mathcal{F}_{m-2}$, then

$$\Psi_K(\{\gamma\} \times Cone(\Sigma|K|)) \subseteq \Sigma|K_{I_1} \ast \cdots \ast K_{I_m}| \subseteq \Sigma|\Delta^{n-1}|.$$
\textbf{Theorem D}

K is homotopy Golod $\implies Z_K$ is a co-H-space (i.e. $\text{cat}(Z_K) \leq 1$).
Extractible complexes are homotopy Golod:

K is **extractible** if $K\setminus\{i\}$ is a simplex for some i, or (recursively) each $K\setminus\{i\}$ is extractible and

$$\bigvee_i \Sigma|K\setminus\{i\}| \xrightarrow{\text{include}} \Sigma|K|$$

has a right homotopy inverse. This is one of the most general classes of Golod complexes for which \mathcal{Z}_K is a co-H-space.

$\left\lfloor \frac{n}{2} \right\rfloor$-neighbourly complexes are homotopy Golod:

K is **$\left\lfloor \frac{n}{2} \right\rfloor$-neighbourly** if every subset of at most $\left\lfloor \frac{n}{2} \right\rfloor$ vertices is a face of K, where n is the number of vertices of K.

$\left\lfloor \frac{n}{2} \right\rfloor$-neighbourly but not extractible:

Let

$$K = (\partial \Delta^2 \ast \partial \Delta^1) \cup_{\partial \Delta^1} \Delta^1.$$

K has 5 vertices, and every pair of vertices is connected by an edge, so K is highly connected, therefore homotopy Golod. But $H_2(|K|) \cong \mathbb{Z}$, while $H_2(|K\setminus\{i\}|) = 0$ for each $i \in [5]$, so K cannot be extractible.
K is **homotopy Golod (without coherence)** if each suspended inclusion

$$
\sum |I \cup J| t_{I,J} : \sum |I \cup J| K_{I \cup J} \longrightarrow \sum |I \cup J| K_I * K_J
$$

is nullhomotopic for each $I \cap J = \emptyset$.

Theorem E

Z_K is a co-H-space $\implies K$ is homotopy Golod without coherence.
K is \textit{k-neighbourly} if every k vertices in K span a $(k-1)$-simplex in K.

\textbf{Corollary}

If K is $\frac{n}{3}$-neighbourly then:

\mathcal{Z}_K is a co-H-space \iff each $\Sigma^{|I \cup J|} K_{I \cup J} \longrightarrow \Sigma^{|I \cup J|} K_I \ast K_J$ nullhomotopic.
Question

What about $\text{cat}(\mathcal{Z}_K) > 1$.

LS-Category > 1
Flag complexes

Problem
Repeat the classification of \(\text{cat}(\mathcal{Z}_K) = 1 \) (equiv. 1-Golod) flag complexes \(K \) for \(\text{cat}(\mathcal{Z}_K) = m > 1 \) and \(m \)-Golod \(K \).

- The \(m = 1 \) case involved knowledge about topology of \(\mathcal{Z}_L \) for 1-dimensional cycles \(L \).
- Thus we need to know more about \(\mathcal{Z}_L \) for higher dimensional cycles.
- Start with the simplest cycles: triangulated spheres \(K \) (still difficult). Here \(\mathcal{Z}_K \) is a manifold.
Spheres

The above can be used to show:

Theorem

- If K on vertex set $[n] = \{1, \ldots, n\}$ is any triangulated d-sphere for $d = 0, 1, 2$,
- or (under some conditions) K is obtained from these spheres via join, connected sum, and vertex double operations,

then the following are equivalent.

1. K is m-Golod over \mathbb{Z};
2. $\text{Nil}((\text{Tor}_{\mathbb{Z}[v_1, \ldots, v_n]}(\mathbb{Z}[K], \mathbb{Z}))) \leq m + 1$ (equivalently $\text{cup}(\mathbb{Z}_K) \leq m$);
3. for any filtration of full subcomplexes
 \[\partial \Delta^{d+2-\ell} = K_{I_\ell} \not\subset K_{I_{\ell-1}} \not\subset \cdots \not\subset K_{I_1} = K \]
 such that $|K_{I_i}| \cong S^{d+1-i}$, we have $\ell \leq m$;
4. $\text{cat}(\mathbb{Z}_K) \leq m$.

Moreover, $1 \leq m \leq d + 1$; that is, K satisfies any of the above for some m which cannot be greater than $d + 1$.

Question: General sphere triangulations? Triangulations of manifolds?
Gluings

- **Geometric category:** $gcat(X) \leq k$ if open cover $X = \bigcup_{i=0}^{k} U_i$ s.t. U_i (self) contractible.

- **Strong category:** $Cat(X) = \min \{gcat(Y) \mid Y \simeq X\}$.

- $Cat(X) - 1 \leq cat(X) \leq Cat(X) \leq gcat(X)$.

Proposition

If C is a (possibly empty) full subcomplex common to K_1, \ldots, K_m,

$$cat(\mathcal{Z}_{K_1 \cup_C \ldots \cup_C K_m}) \leq \max\{1, cat(\mathcal{Z}_{K_1}), \ldots, cat(\mathcal{Z}_{K_m})\} + Cat(\mathcal{Z}_C).$$
Connected sums

Let \(\dim L_i = d \), \(\sigma_i \) is a \(d \)-face common to \(L_i \) and \(L_{i+1} \), and \(\sigma_i \cap \sigma_j = \emptyset \) when \(i \neq j \).

Proposition

Let

\[
K = L_1 \#_{\sigma_1} L_2 \#_{\sigma_2} \cdots \#_{\sigma_{k-1}} L_k
\]

Then

\[
\text{cat}(\mathcal{Z}_K) \leq \max\{1, \text{cat}(\mathcal{Z}_{L_1^{(d-1)}}), \ldots, \text{cat}(\mathcal{Z}_{L_k^{(d-1)}})\} + 1.
\]
Dimension and Coord. Suspension

Proposition

- \(\text{cat}((\Sigma X, \Sigma A)^K) \leq \text{cat}((X, A)^K) \).
- \(\Rightarrow \) for \(\ell \geq 1 \), \(\text{cat}(\mathcal{Z}_K^\ell) \leq \text{cat}(\mathcal{Z}_K) \leq \text{cat}(\mathbb{R}\mathcal{Z}_K) \).
- \(\text{cat}(\mathcal{Z}_K) \leq \dim K + 1 \).

example

If \(G \) is a graph,

\[
\text{cat}(\mathcal{Z}_G) \leq 2.
\]

Thus, \(G \) is (at most) 2-Golod, and all Massey products of decomposable elements in \(\text{Tor}^+_{\mathbb{Z}[v_1,\ldots,v_n]}(\mathbb{Z}[G],\mathbb{Z}) \) vanish.
Many interesting spaces found amongst (or derived from) moment-angle complexes

\[\mathcal{Z}_K = (D^2, \partial D^2)^K \simeq (ES^1, S^1)^K \]

and other polyhedral products of the form \((BG, \ast)^K\) and \((EG, G)^K\):

- Intersections of quadrics, complements of arrangements.
- \(K\) a sphere \(\implies\) \(\mathcal{Z}_K\) a smooth closed manifold.
- \(K\) a triangulated manifold \(\implies\) \(\mathcal{Z}_K - \ast\) open manifold (\(\mathcal{Z}_K\) has 1 singularity).
- \((B\mathbb{Z}, \ast)^K\) and \((E\mathbb{Z}, \mathbb{Z})^K\) are classifying spaces for the right-angled Artin group \(A(K)\) and its commutator subgroup.
- \((B\mathbb{Z}_2, \ast)^K\) and \((E\mathbb{Z}_2, \mathbb{Z}_2)^K\) are classifying spaces for the right-angled Coxeter group \(C(K)\) and its commutator subgroup.
- Every complex cobordism class has as a representative a quasitoric manifold \(M = \mathcal{Z}_{\partial P^\ast}/T^{n-\dim P}\) (Panov).

So extending above bounds might answer certain questions about these spaces, e.g.

- group cohomology of commutators subgroups of Right-angled Artin/Coxeter groups;
- counting minimal number of critical points of a Morse function, since

\[1 + \text{cat}(M) \leq \text{crit}(M) = \min \{ \# \text{ critical points } f \mid f: M \longrightarrow \mathbb{R} \text{ smooth } \} . \]

for smooth manifolds \(M\).
Question

Given m-Golod K, when is $\text{cat}(\mathcal{Z}_K) = m$? Is $\text{cat}(\mathcal{Z}_K)$ even bounded? If not, how fast does it grow asymptotically w.r.t. vertex set $[n]$?

- If such a bound exists, we get a generalization of the basic and well-known fact:

 the identity map $|K| \xrightarrow{1} |K|$ induces trivial map on cohomology

 $\iff \Sigma|K| \xrightarrow{\Sigma 1} \Sigma|K|$ is nullhomotopic.

(e.g. for $m = 1$, the inclusions $|K_{I \cup J}| \xrightarrow{\iota_{I,J}} |K_I \ast K_J|$ in place of $|K| \xrightarrow{1} |K|$, together with vanishing Massey products, since $\text{cat}(\mathcal{Z}_K) = 1$ implies they are nullhomotopic).
Rational Homotopy

Theorem (Avramov, Berglund)
Localized at the rationals \mathbb{Q}, the following are equivalent:

1. K is Golod over \mathbb{Q};
2. $H^+ (\mathbb{Z}_K; \mathbb{Q}) \cong \text{Tor}^+_{\mathbb{Q}[v_1, \ldots, v_n]} (\mathbb{Q}[K], \mathbb{Q})$ trivial mult./vanishing Massey prod.;
3. $H^+ (\mathbb{Z}_K; \mathbb{Q})$ has trivial mult. and $(\Lambda (u_1, \ldots, u_n) \otimes \mathbb{Q}[K], d)$ is formal;
4. $\mathbb{Z}_K \simeq$ a wedge of spheres;
5. $\text{cat} (\mathbb{Z}_K) = 1$.

Question
How does this generalize to $\text{cat} (\mathbb{Z}_K) > 1$? In particular, $(3) \iff (2)$? Note: there is a generalization of formality due to Stasheff and Halperin.
Related Invariants

Problem: Compute $TC(\mathcal{Z}_K)$, sectional category, and related invariants. What are the implications of these in commutative algebra?

- $TC((S^n, \ast)^K)$ is known (González, Gutiérrez, Yuzvinsky).
- $\hat{\text{cat}}(X) \leq TC(X) \leq 2\hat{\text{cat}}(X) - 1$.
- \mathcal{Z}_K can be thought of as configuration space of n points in $(D^2, \partial D^2)^K$, where tuples of points are allowed in $\text{interior}(D^2)$ depending on K.

Thus \mathcal{Z}_K (or $\mathcal{Z}_K \cap \text{Config}(D^2, n)$) are simple models for motion planning for air traffic control, or robotic n-arm motion with restraints.

- An n-arm 2-leg **arachnoidal linkage** in \mathbb{R}^d is precisely $\mathcal{Z}_K^d = (D^d, \partial D^d)^K$ for K the n-gon. A similar result for certain planar m-arm linkages. (Kamiyama, Tsukuda)
Connections to Motion Planning on Graphs

Take a graph G with m edges, a collection of simplicial complexes

$$\mathcal{L} = \{L_1, \ldots, L_m\}$$

each on n vertices. We have a configuration space $C_n(G; \mathcal{L})$:

modelling factory-floor motion planning: n robots, certain tuples of robots (of right or shape size) can bypass one another in i^{th} corridor, depending on L_i.
• When each \(L_i \) is \(n \) disjoint points: there are no collisions, and (usually) \(C_n(G; \mathcal{L}) = K(\pi_1, 1) \) (Abrams, Ghrist).

• When \(m = 1 \), \(C_n(G; L_1) \) is special case (\(K = G \)) of certain diagonal arrangements \(C_K(\mathbb{R}; I) \), appearing in summands of a stable splitting

\[
\Sigma^\infty \Omega(\Sigma X, *) \simeq \bigvee_{I \in \mathbb{N}^n} C_K(\mathbb{R}; I)_+ \wedge X^I
\]

and in the homology of \(\Omega(\mathbb{C}P^\infty, *)^K \) (Dobrinskaya).

• When \(m = 1 \), \(I = (1, \ldots, 1) \in \mathbb{N}^n \), we have Euler characteristic

\[
\chi(C_K(\mathbb{C}P^{\ell-1}; I)) = \ell^{th} \text{ chromatic number of } G
\]

where \(K \) is the flag complex of complement graph \(\bar{G} \) of \(G \) (Eastwood, Huggett).
Anders Björner - a Number Theoretic Complex:

Let $P(k)$ be the set of prime factors of integer k. Simplicial complex:

$$K(m) = \{ P(k) \mid k \text{ is square-free and } k \leq m \}.$$

Theorem

Euler characteristic $\chi(K(m))$ gives:

- **Prime Number Theorem true** $\iff |\chi(K(m))| \leq \epsilon m$ all $\epsilon > 0$, large m.
- **Riemann hypothesis true** $\iff |\chi(K(m))| \leq m^{\frac{1}{2}} + \epsilon$ all $\epsilon > 0$, large m.

- Thus, one should study Betti numbers of $\beta_i(K(m))$.
- Björner estimated $\beta_i(K(m))$ by showing $K(m)$ is a shifted complex, and using properties of shifted complexes.

Problem

What can stronger topological/combinatorial invariants such as $H^*(\mathbb{Z}_{K(m)})$ tell us about number theory? Do they raise the right questions?

- Since shifted complexes are Golod, cup/Massey prod. vanish in $H^+(\mathbb{Z}_{K(m)})$, and $|K_{I \cup J}| \rightarrow |K_I \ast K_J|$ trivial on $H^*(\cdot)$. What does this tell us?
Thank you!