Polyhedral Products and Configuration Spaces

Piotr Beben (with Jelena Grbić)

Queen Mary University

January 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polyhedral Products

Definition: Polyhedral products K-simplicial complex on n vertices, $(\underline{X}, \underline{A}) = ((X_1, A_1), \dots (X_n, A_n)), A_i \subseteq X_i,$

$$(\underline{X},\underline{A})^{K} = \bigcup_{\sigma \in K} Y_{1}^{\sigma} \times \dots \times Y_{n}^{\sigma} \subseteq X_{1} \times \dots \times X_{n},$$

where

$$Y_i^{\sigma} = \begin{cases} X_i, & \text{if } i \in \sigma \\ A_i, & \text{if } i \notin \sigma, \end{cases}$$

example

- $K = \Delta^{n-1} \Rightarrow (\underline{X}, \underline{A})^K = X_1 \times \dots \times X_n.$
- K disjoint points $\Rightarrow (\underline{X}, *)^K = X_1 \lor \cdots \lor X_n$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Moment-angle complexes

 $Davis\text{-}Januszkiewicz\ spaces$

$$\mathrm{DJ}(K) = (\mathbb{C}P^{\infty}, *)^K$$

Moment-angle complexes

 $\mathcal{Z}_{K} \simeq \text{ homotopy fiber of inclusion } \mathrm{DJ}(K) \longrightarrow (\mathbb{C}P^{\infty})^{\times n}$ $\simeq \text{ compl. coord. subspace arrangement}$ $\mathbb{C}^{n} - \bigcup_{\sigma \notin K} \{(z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \mid z_{i} = 0 \text{ if } i \in \sigma\}$ $= (D^{2}, S^{1})^{K} \quad \text{where } S^{1} = \partial D^{2}.$

The quotient of a certain free torus action on Z_K for K dual to a simple polytope is a *quasi-toric manifold*.

Commutative and Combinatorial Algebra

Geometrically realize important algebraic objects. For F a field or \mathbb{Z} :

• (Buchstaber, Panov):

$$H^*(\mathrm{DJ}(K);F) \cong F[K] \cong \frac{F[v_1,\ldots,v_n]}{I_K}$$
 (Stanley-Reisner Ring),

where ideal

$$I_{K} = \langle \text{square-free monomials } v_{i_{1}} \cdots v_{i_{k}} \text{ s.t. } \{i_{1}, \ldots, i_{k}\} \notin K \rangle,$$

• (Buchstaber, Baskakov, Franz, Panov):

$$H^*(\mathcal{Z}_K; F) \cong \operatorname{Tor}_{F[v_1, \dots, v_n]}(F[K], F) \cong \bigoplus_{I \subseteq [n]} \tilde{H}^*(|K_I|; F).$$

cup product multiplication induced by canonical inclusions

$$\iota_{I,J} \colon |K_{I\cup J}| \longrightarrow |K_I * K_J| \cong |K_I| * |K_J| \simeq \Sigma |K_I| \wedge |K_J|.$$

for disjoint I and J.

・ロト・西ト・モン・モー うへぐ

The Golod Property

Golod: algebraic definition

A local ring R is **Golod** over field \mathbf{k} if the multuplication and all Massey products in $\operatorname{Tor}_{\mathbf{k}[v_1,\ldots,v_n]}(R,\mathbf{k})$ vanish.

Golod: combinatorial definition

A simplicial complex K is **Golod** over field \mathbf{k} if Stanley-Reisner ring $\mathbf{k}[K]$ is Golod.

Golod: topological definition

A simplicial complex K is **Golod** over ring F if all cup products in $H^*(\mathcal{Z}_K; F)$ vanish.

The Golod Property over fields

We will use topological definition. These are all related for fields F (Berglund, Jollenbeck):

 $F[K] \text{ is Golod over } F \iff \text{cup products and Massey products}$ $\text{vanish in } H^*(\mathcal{Z}_K; F)$ $\iff \text{cup products vanish in } H^*(\mathcal{Z}_K; F)$ $\iff \iota_{I,J} \text{ induce trivial maps on cohomology,}$ $\text{for all disjoint } I, J \subseteq [n]$ $\iff H_*(\Omega \mathcal{Z}_K; F) \text{ is a free graded}$ associative algebra.

If K is Golod over all fields \mathbf{k} , we simply say K is Golod.

Homotopy Theory

- Knowing homotopy types of \mathcal{Z}_K tells us when K is Golod in particular.
- Since $H^*(\mathcal{Z}_K)$ is simplest when K is Golod, homotopy type of \mathcal{Z}_K should be simplest here as well.

Homotopy type \mathcal{Z}_K known for the following Golod K (increasing generality, due to Iriye, Kishimoto, Grbić, Theriault, Panov, Wu,...):

- K is n disjoint vertices;
- K is shifted;
- K is chordal flag;
- K is Alexander dual of *shellable* or *sequential Cohen-Macaulay*;
- *K* extractible (most general);

In all cases they are co- $H\mbox{-}{\rm spaces},$ often a wedge of spheres.

Conjecture K is Golod $\iff \mathcal{Z}_K$ is a co-H-space.

Irije, *Kishimoto* Z_K is a co-*H*-space if and only if $Z_K \simeq \bigvee_{I \subseteq [n]} \Sigma^{|I|+1} |K_I|$. \Box

This is a desuspension of a general splitting of ΣZ_K due to Bahri, Bendersky, Cohen, Gitler (the BBCG splitting).

Conjecture is true for flag complexes, or localized at \mathbb{Q} (Berglund, Grbić, Panov, Theriault, Wu)

(K is a Golod flag complex \Leftrightarrow K is a chordal flag complex \Leftrightarrow K is flag and \mathcal{Z}_K a co-H-space).

Main Idea

<u>Fact</u>: A space Y is a co-H-space if and only if the evaluation map $\Sigma\Omega Y \xrightarrow{ev} Y$ has a right homotopy inverse.

- Therefore, to see if Y is a co-H-space, start by trying to find the finest possible splitting of $\Sigma\Omega Y$.
- To do this for $Y = Z_K$, construct configuration space models for ΩZ_K .

Labelled Configuration Spaces

Let M be any path connected space, $N \subseteq M$ a subspace, and Y a basepointed space with basepoint *. Let $D_0(M, N; Y) = *$ and take the quotient space k

$$D_k(M,N;Y) = \coprod_{i=0} M^{\times i} \times Y^{\times i} / \sim$$

where the equivalence relation \sim is given by

• $(z_1, \ldots, z_i; x_1, \ldots, x_i) \sim (z_{\sigma(1)}, \ldots, z_{\sigma(i)}; x_{\sigma(1)}, \ldots, x_{\sigma(i)})$ for permutations $\sigma \in \Sigma_i$;

•
$$(z_1, \ldots, z_i; x_1, \ldots, x_i) \sim (z_1, \ldots, z_{i-1}; x_1, \ldots, x_{i-1})$$
 for $x_i = *$ or $z_i \in N$.

Then

$$D(M,N;Y) = \bigcup_{k=0}^{\infty} D_k(M,N;Y) \quad (\cong SP((M/N) \wedge Y).$$

Classical Labelled Configuration Space: $C(M, N; Y) \subseteq D(M, N; Y)$ subspace of all configurations $(z_1, \ldots, z_i; x_1, \ldots, x_i)$ such that $z_1 \neq \cdots \neq z_i$.

Classical Results

Bödigheimer, McDuff

X a CW-complex, M smooth compact parallelizable ℓ -manifold, N a submanifold, M/N or X is connected. Then there exists a homotopy equivalence

$$\gamma \colon \mathcal{C}(M,N;X) \longrightarrow map(Z-N,Z-M;\Sigma^{\ell}X),$$

where $Z = M \cup (\partial M \times [0,1))$.

Segal

If X is path connected, then

 $C(\mathbb{R}^n; X) \simeq \Omega^n \Sigma^n X.$

Coordinate Suspensions

$Coordinate \ suspensions$

- $X = X_1 \times \cdots \times X_n$; each X_i connected basepointed;
- $W \subset X$

Definition: ℓ -fold coordinate suspension

$$W^{\ell} = \left\{ ((t_1, x_1), \dots, (t_n, x_n)) \mid t_i \in D^{\ell}, (x_1, \dots, x_n) \in W \right\}$$

as a subspace of $X^{\ell} = \Sigma^{\ell} X_1 \times \cdots \times \Sigma^{\ell} X_n$.

Definition: coordinate smash Let $Y = \prod_{i=1}^{n} Y_i$, take $Y \wedge_X W = \{((y_1, x_1), \dots, (y_n, x_n)) \mid y_i \in Y_i, (x_1, \dots, x_n) \in W\}$ as a subspace of $Y \wedge_X X = (Y_1 \wedge X_1) \times \dots \times (Y_n \wedge X_n)$.

Properties:

•
$$W^0 = W$$
, $(W^{l_1})^{l_2} = W^{l_1+l_2}$;

 If W basepointed connected, and n = 1 (or W ⊆ X₁ ∨ ... ∨ X_n ⊆ X), then

$$W^{\ell} = \Sigma^{\ell} W.$$

• If $W = \bigcup_{\mathcal{J}} A_{j_1} \times \cdots \times A_{j_n}$, then

$$W^{\ell} = \bigcup_{\mathcal{J}} \Sigma^{\ell} A_{j_1} \times \dots \times \Sigma^{\ell} A_{j_n}$$

• Let $(\underline{X}, \underline{A}) = ((X_1, A_1), \dots, (X_n, A_n))$ and K a simplicial complex on n vertices.

$$W = (\underline{X}, \underline{A})^K \Longrightarrow W^\ell = (\Sigma^\ell \underline{X}, \Sigma^\ell \underline{A})^K.$$

where $(\Sigma^{\ell}\underline{X}, \Sigma^{\ell}\underline{A}) = ((\Sigma^{\ell}X_1, \Sigma^{\ell}A_1), \dots (\Sigma^{\ell}X_n, \Sigma^{\ell}A_n)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Config. Space Models for Spaces of Maps to Coordinate Suspensions

• If
$$W = X_1 \times \cdots \times X_n$$
, then

 $\Omega W^1 \cong \Omega \Sigma X_1 \times \cdots \times \Omega \Sigma X_n \simeq C(\mathbb{R}, \emptyset; X_1) \times \cdots \times C(\mathbb{R}, \emptyset; X_n).$

• If
$$W = X_1 \lor \cdots \lor X_n$$
, then

$$\Omega W^1 \cong \Omega \Sigma (X_1 \vee \cdots \vee X_n) \simeq C(\mathbb{R}, \emptyset; X_1 \vee \cdots \vee X_n).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition: Represented multisets

- A submultiset of points $S = \{x_1, \ldots, x_s\} \subset \coprod_i X_i$ is **represented** by a point in W if there exists a $(\bar{x}_1, \ldots, \bar{x}_n) \in W$ and some injective function $f_S: \{1, \cdots, s\} \longrightarrow \{1, \cdots, n\}$ such that $x_i = \bar{x}_{f_S(i)}$.
- A configuration y is **represented** if its multiset of labels is represented.

Let $X^{\vee} = X_1 \vee \cdots \vee X_n$ be the wedge at basepoints $* \in X_i$.

Allow represented labelled particles to collide

C(M, N; W) is the subspace of $D(M, N; X^{\vee})$ of configurations $y = (z_1, \ldots, z_k; x_1, \ldots, x_k) \in D(M, N; X^{\vee})$ such that

• y non-degenerate, $i_1 \neq \cdots \neq i_s$, and $z_{i_1} = \cdots = z_{i_s}$, $\implies \{x_{i_1}, \ldots, x_{i_s}\}$ is represented by some point in W.

There are other generalizations that allow collisions under various rules (Kallel, Salvatore, Dobrinskaya).

Theorem A

Each X_i a connected basepointed CW complexes, W a connected basepointed subcomplex of $X = \prod X_i$, M-smooth compact parallelizable ℓ -manifold, N-submanifold, M/N connected. Then there is a homotopy equivalence

$$\gamma : \mathcal{C}(M, N; W) \longrightarrow map(Z - N, Z - M; W^{\ell})$$

where $Z = M \cup (\partial M \times [0, 1))$.

Examples

- free loop spaces $N = \emptyset$ $Z = M = S^1$ $\Lambda W^1 \simeq \mathcal{C}(S^1; W)$
- based loop spaces $N = \varnothing$ $M = D^1$ $Z \simeq \mathbb{R}$

 $\Omega W^1 = \operatorname{map}(\mathbb{R}, \mathbb{R} - D^1; W^1) \simeq \mathcal{C}(D^1, \emptyset; W) \simeq \mathcal{C}(\mathbb{R}^1, \emptyset; W)$

• We can take $W = (D^1, S^0)^K$. Then

$$W^1 = (\Sigma D^1, \Sigma S^0)^K = (D^2, S^1)^K = Z_K.$$

・ロト・西ト・ヨト・ヨー シック

The Simplest Case: $M = D^{\ell}$, $N = \partial D^{\ell}$

$\frac{Lemma}{\mathcal{C}(D^{\ell}, \partial D^{\ell}; W)} \simeq map(D^{\ell}, \emptyset, W^{\ell}) \simeq W^{\ell}$

Proof.

(1) Inclusion
$$W^{\ell} \longrightarrow \mathcal{C}(D^{\ell}, \partial D^{\ell}; W);$$

$$((t_1, x_1), \ldots, (t_n, x_n)) \mapsto (t_1, \ldots, t_n; x_1, \ldots, x_n)$$

(2) $C^{\varepsilon} \subseteq C(D^{\ell}, \partial D^{\ell}; W)$ subspace of configurations $y = (z_1, \ldots, z_k; x_1, \ldots, x_k)$ such that:

• if y non-degenerate, $i_1\neq \cdots \neq i_s,$ and $\{\{x_{i_1},\ldots,x_{i_s}\}\}$ is not represented by point in W then

$$var(z_{i_1},\ldots,z_{i_s}) = \frac{1}{s(s-1)} \sum_{i\neq j} |z_i-z_j| \geq \varepsilon.$$

(3) $C^{\epsilon} \simeq C(D^{\ell}, \partial D^{\ell}; W)$ (4) W^{ℓ} and C^{ϵ} have same homeomorphic image in $C(D^{\ell}, \partial D^{\ell}; W)$ when $\epsilon \ge 2$.

More Problems

Section Spaces

Z - a smooth ℓ -manifold without boundary, $M \subseteq Z$ - a smooth compact codimension 0 submanifold, T(Z) - the S^{ℓ} -bundle over Z obtained from tangent bundle. Pullback:

Construct the $W^{\ell} = (\prod^{n} S^{\ell}) \wedge_{X} W$ -bundle $\mathcal{T}(Z; W) \xrightarrow{\pi} Z$. Let $\kappa_{\infty}: Z \longrightarrow \mathcal{T}(Z; W)$ be the section of π that sends a point in $z \in Z$ to the basepoint $*_{z}$ at infinity on the fiber at z.

Definition: Section space $\Upsilon(Z; A, B; W)$

For any subspaces $B \subset A \subset Z$, $\Upsilon(Z; A, B; W)$ space of sections of π defined on A, that agree with κ_{∞} on B.

• Z is parallelizable, $\Upsilon(Z; A, B; W) \cong map(A, B; W^{\ell})$.

Proof of Theorem A

Identical to Bödingheimer, McDuff:

(1) (when Z parallelizable) there is a scanning map

 $\gamma \colon \mathcal{C}(M,N;W) \longrightarrow map(Z-N,Z-M;\mathcal{C}(D^{\ell},\partial D^{\ell};W)) \xrightarrow{\simeq} map(Z-N,Z-M;W^{\ell})$

(2) (quasi)fibration diagram

(3) Induction for progressively more general (M, N):

- (a) Handles $(D^k \times D^{\ell-k}, D^k \times S^{\ell-k-1})$ of index k, induction on k (base case $(D^{\ell}, \partial D^{\ell})$ done);
- (b) $(M, \partial M)$ (induction on handle decomposition of M) (c) (M, N) ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Splittings

Let $\mathcal{C}(W) = \mathcal{C}(\mathbb{R}, \emptyset; W) \simeq \Omega W^1$. There is a map

$$\zeta : \mathcal{C}(W) \longrightarrow C(\mathbb{R}, \emptyset; V_{\infty}(W)) \simeq \Omega \Sigma V_{\infty}(W),$$

where $C(\mathbb{R}, \emptyset; V_{\infty}(W))$ is a classical labelled config. space, and

$$V_k(W) = \bigvee_{i=1}^k \Sigma^i \frac{\mathcal{C}_i(W)}{\mathcal{C}_{i-1}(W)},$$

where $C_i(W) = \{j \text{-particle configurations in } C_i(W) \mid j \leq i\}$. Adjointing, there is a homotopy equivalence

$$\zeta':\Sigma\mathcal{C}(W)\longrightarrow\Sigma V_{\infty}(W).$$

Theorem B

$$\Sigma \Omega W^1 \simeq \bigvee_{i \ge 1} \Sigma \frac{\mathcal{C}_i(W)}{\mathcal{C}_{i-1}(W)} \simeq \bigvee_{i \ge 1} \Sigma \mathcal{D}_i(W).$$

Take $W = (D^1, S^0)^K$. Then $W^1 = (D^2, S^2)^K = \mathcal{Z}_K$. Recall:

Conjecture K is Golod $\iff Z_K$ is a co-H-space. In other words:

Conjecture

$$\begin{split} \iota_{I,J} \colon |K_{I\cup J}| &\longrightarrow |K_I * K_J| \text{ trivial on cohomology for all } I \cap J = \varnothing &\Longleftrightarrow \\ \mathcal{Z}_K &\simeq \bigvee_{I \subseteq [n]} \Sigma^{|I|+1} |K_I|. \end{split}$$

Theorem B

Conjecture is true localized at a sufficiently large prime p.

Proof.

 $D_i(W) \simeq$ finite CW-complex $\Rightarrow \Sigma D_i(W) \simeq$ wedge of spheres at large primes, and if $H^*(W^1; \mathbb{Z}_p)$ has trivial cup products, then $\Sigma \Omega W^1 \xrightarrow{eval} W^1$ induces surjection on $H_*(-; \mathbb{Z}_p)$, so using splitting $\Sigma \Omega W^1 \simeq \vee \Sigma D_i(W)$ and picking appropriate spheres, can construct right homotopy inverse of eval.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some Useful Spaces

For any
$$I = \{i_1, \dots, i_k\} \subseteq [n]$$
, let
 $W_I^{\ell} = image(W^{\ell} \xrightarrow{include} \Sigma^{\ell} X_1 \times \dots \times \Sigma^{\ell} X_n \xrightarrow{project} \Sigma^{\ell} X_{i_1} \times \dots \times \Sigma^{\ell} X_{i_k}),$
 $W_j^{\ell} = \bigcup_{I \subseteq [n], |I| = j} W_I^{\ell} \cong (W_j)^{\ell}.$

Filtration

$$\star = W_0^\ell \subseteq \dots \subseteq W_{n-1}^\ell \subseteq W_n^\ell = W^\ell$$

Let

$$\hat{W}_j^\ell = \frac{W_j^\ell}{W_{j-1}^\ell}$$

Then $\hat{W}^\ell_j \cong \bigvee_{|I|=j} \hat{W}^\ell_I$ where

$$\hat{W}_I^\ell \cong \Sigma^{|I|\ell+1} |K_I|.$$

Proposition

(i) homotopy commutative diagram of (homotopy) cofibration sequences

$$\begin{array}{ccc} \mathbb{C}(i) & \xrightarrow{\partial} \Sigma \mathcal{D}_n(W_{n-1}) \xrightarrow{\Sigma i} \Sigma \mathcal{D}_n(W_n) & \xrightarrow{\hat{q}} \Sigma \mathbb{C}(i) \\ & & & & & \\ \downarrow^{\simeq} & & & & & \\ \Sigma^{n-1} \hat{W}_n & \longrightarrow W_{n-1}^1 & \xrightarrow{include} W_n^1 & \xrightarrow{q} \hat{W}_n^1, \end{array}$$

(*ii*) W^1 is a co-*H*-space \iff quotient map $W^1_I \xrightarrow{q} \hat{W}^1_I$ has a right homotopy inverse for each $I \subseteq [n]$.

(iii) (quotient map) q has a right homotopy inverse \iff (homotopy cofiber inclusion) \hat{q} has a right homotopy inverse $\iff \partial$ is nullhomotopic.

A Necessary and Sufficient Condition Let $\triangle_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 = \dots = x_n\}$, and consider the following subspace of $\mathcal{P}_n = (\mathbb{R}^n - \triangle_n) \land \Sigma \Delta^n$:

$$\mathcal{Q}_K = \bigcup_{\substack{y \in (\mathbb{R}^n - \Delta_n) \\ (I_1, \dots, I_m) = [n]_y}} \{y\} \wedge \Sigma | K_{I_1} * \dots * K_{I_m}|.$$

Then $\mathcal{D}_n(W_{n-1}) \cong \mathcal{Q}_K \lor (\text{something else}).$

K on vertex set [n] is **weakly coherently homotopy Golod** if *K* is a single vertex, or (recursively) $K \setminus \{i\}$ is weakly coherently homotopy Golod for each $i \in [n]$, and the map

$$\psi_K \colon \Sigma^n |K| \longrightarrow \Sigma \mathcal{Q}_K$$

given for any $z \in |K|$, $t_1, \ldots t_{n-1}, t \in [-1, 1]$ by

$$\psi_K(t_1,\ldots,t_{n-1},t,z) = (2\beta - 1,(t_1,\ldots,t_{n-1},0),(t,z))$$

is nullhomotopic, where $\beta = \max\{|t_1|, \ldots, |t_{n-1}|, 0\}$.

Theorem C \mathcal{Z}_K is a co-H-space $\iff K$ is weakly coherently homotopy Golod.

The Coherent Homotopy Golod Condition

(1) Homotopy Version of Golod:

Require the inclusions

$$\Sigma\iota_{I,J}\colon \Sigma|K_{I\cup J}|\longrightarrow \Sigma|K_{I}*K_{J}|$$

to be nullhomotopic, for each $I \cap J = \emptyset$.

(2) Coherence of Nullhomotopies:

Moreover, we will require transitions between these null-homotopies. For example, there is a commutative diagram of inclusions

for disjoint I, J_1 , and J_2 , and the null-homotopy of $\Sigma \iota_{I,J}$ gives a map

$$\hat{\iota}_{I,J}$$
: $Cone(\Sigma|K_{I\cup J}|) \longrightarrow \Sigma|K_I * K_J|,$

we require the composite $\Sigma(\iota_{I,J_1} * \iota_{J_2}) \circ \hat{\iota}_{I \cup J_1, J_2}$ to be homotopic to $\Sigma(\iota_I * \iota_{J_1, J_2}) \circ \hat{\iota}_{I, J_1 \cup J_2}$ via a homotopy that is fixed on the base $|K_{I \cup J_1 \cup J_2}|$ of the cone $Cone(\Sigma|K_{I \cup J_1 \cup J_2}|)$, and so on for longer joins.

Coherently Homotopy Golod: Precise Definition

Delta set

$$\mathcal{K}_n = \{\mathcal{F}_0, \dots, \mathcal{F}_{n-1}\}$$

• (*m* − 2)-face

 $\mathcal{F}_{m-2} = \{ \text{set of all ordered partitions } (I_1, \dots, I_m) \text{ of } [n] \};$

• face maps
$$d_i \colon \mathcal{F}_{m-2} \longrightarrow \mathcal{F}_{m-3}$$
 given by

 $d_i((I_1,\ldots,I_m)) = (I_1,\ldots,I_{i-1},I_i \cup I_{i+1},I_{i+2},\ldots,I_m).$

 \mathcal{K}_n is a simplicial complex of dimension n-2,

$$|\mathcal{K}_n| \cong S^{n-2}.$$

A simplicial complex K on vertex set [n] is **coherently homotopy Golod** if K is a single vertex, or (recursively) $K \setminus \{i\}$ is coherently homotopy Golod for each $i \in [n]$ and there is a map

$$\bar{\Psi}_K \colon |\mathcal{K}_n| \times Cone(\Sigma|K|) \longrightarrow \Sigma|\Delta^{n-1}|$$

such that for any $\gamma \in |\mathcal{K}_n|$, $\overline{\Psi}_K(\gamma, *)$ is the basepoint $*_{-1} \in \Sigma|\Delta^{n-1}|$, and:

(1) the restriction of $\overline{\Psi}_K$ to $\{\gamma\} \times (\{0\} \times \Sigma |K|)$ is the suspended inclusion $\Sigma |K| \longrightarrow \Sigma |\Delta^{n-1}|$;

(2) if
$$\gamma \in |\mathcal{S}|$$
 for some $\mathcal{S} = (I_1, \dots I_m) \in \mathcal{F}_{m-2}$, then $\overline{\Psi}_K$ maps $\{\gamma\} \times Cone(\Sigma|K|)$ to a subspace of $\Sigma|K_{I_1} \ast \dots \ast K_{I_m}| \subseteq \Sigma|\Delta^{n-1}|.$

Theorem D K is coherently homotopy Golod $\implies \mathcal{Z}_K$ is a co-H-space.

Extractible complexes are coherently homotopy Golod: K is extractible if $K \setminus \{i\}$ is a simplex for some i, or (recursively) each $K \setminus \{i\}$ is extractible and

$$\bigvee_{i} \Sigma |K \setminus \{i\}| \xrightarrow{include} \Sigma |K|$$

has a right homotopy inverse. This was the most general class of Golod complexes for which Z_K is known to be a co-*H*-space.

Highly complete complexes are coherently homotopy Golod: K is highly complete if every subset of at most $\lfloor \frac{n}{2} \rfloor$ vertices is a face of K, where n is the number of vertices of K.

Highly complete but not extractible:

Let

$$K = \left(\partial \Delta^2 * \partial \Delta^1\right) \cup_{\partial \Delta^1} \Delta^1.$$

K has 5 vertices, and every pair of vertices is connected by an edge, so K is highly connected, therefore homotopy Golod. But $H_2(|K|) \cong \mathbb{Z}$, while $H_2(|K \setminus \{i\}|) = 0$ for each $i \in [5]$, so K cannot be extractible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

K is **homotopy Golod** if it satisfies a homotopy version of Golodness, i.e. the suspended inclusions

$$\Sigma^{n+1}\iota_{I,J}\colon\Sigma^{n+1}|K_{I\cup J}|\longrightarrow\Sigma^{n+1}|K_{I}*K_{J}|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are nullhomotopic for each $I \cap J = \emptyset$.

Theorem E \mathcal{Z}_K is a co-H-space $\implies K$ is homotopy Golod.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	K is:	\mathcal{Z}_K is a co- H -space?
	coherently homotopy Golod	sufficient
weaker	weakly coherently homotopy Golod	necessary and sufficient
¥	homotopy Golod	necessary
	Golod	necessary

Question:

K Golod \iff homotopy Golod \iff K weakly coherently homotopy Golod?

In particular:

If each $\iota_{L,I}$ induces trivial maps on cohomology, then is each $\Sigma^{n+1}\iota_{L,I}$ nullhomotopic?

A counterexample to this would be a counterexample to conjecture: K Golod iff \mathcal{Z}_K co-H-space.

(Grbić, _, Iriye, Kishimoto) Sometimes direct topological proofs are easier: Let Δ^I denote the (|I| - 1)-simplex on vertex set $I \subseteq [n]$. Given a simplicial complex L on vertex set J and L' on vertex set J', let

$$K = (L * \Delta^J) \cup_{L * L'} (\Delta^{J'} * L').$$

Then \mathcal{Z}_K is the homotopy pushout:

Since the inclusions are up to homotopy equivalence the projection maps onto the left and right factor of $Z_L \times Z_{L'}$,

$$\mathcal{Z}_K \simeq \mathcal{Z}_L * \mathcal{Z}_{L'} \simeq \Sigma \mathcal{Z}_L \wedge \mathcal{Z}_{L'}$$

i.e. \mathcal{Z}_K is a co-*H*-space \Rightarrow *K* Golod. Combinatoral proof *K* Golod seems more difficult, no direct proof known that *K* is weakly homotopy Golod.

Problem:

For general K, determine the homotopy type or CW-structure of \mathcal{Z}_K combinatorially in terms of K.

Do this by describing the attaching maps in terms of the combinatorics of K (and perhaps familiar maps such as higher Whitehead products).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Say K on vertex set [n] is ℓ -Golod if K_I is Golod whenever $|I| \le n - \ell$. So Golod is the same as 0-Golod.

Filtration

$$\mathcal{G}_0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_{\infty} = \{ \text{all finite complexes} \},\$$

where $\mathcal{G}_{\ell} = \{ all \ \ell - Golod complexes \}.$

minimally non-Golod complexes

Certain connected sums of sphere products

$$\mathcal{Z}_K = \#_\alpha(S^{i_\alpha} \times S^{j_\alpha})$$

correspond to certain sphere triangulations $K \in (\mathcal{G}_1 - \mathcal{G}_0)$ (McGavran, Bosio, Meersseman). $\mathcal{G}_1 - \mathcal{G}_0$ is the set **minimally non-Golod** complexes.

Homotopy types for K minimally non-Golod: Let K be minimally non-Golod. Let $W = W_n = (D^k, S^{k-1})^K$, then

If moreover we assume each $K \setminus \{i\}$ is weakly homotopy Golod, then

$$\Sigma \mathcal{D}_n(W_{n-1}) \simeq \bigvee_{\text{partitions } I_1 \cup \dots \cup I_N \in [n], N > 1} \Sigma^{nk-N+2} |K_{I_1} * \dots * K_{I_N}|,$$

and if $k \ge 2$, then ∂ is a suspension, so ∂ is determined by each map

$$\Sigma^{nk}|K| \longrightarrow \Sigma^{nk-N+2}|K_{I_1} \ast \cdots \ast K_{I_N}|.$$

What are these maps? The vertical map ϕ can be determined with respect to the above splitting.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

In the interest of finding configuration space models for mapping spaces between manifolds:

Question:

When is a manifold a coordinate suspension? When is the coordinate suspension of a manifold embedded into a product of 1-disks a manifold?

This is true for connected sums of sphere products, or for the manifold \mathcal{Z}_K when K is a sphere triangulation.

Introduction Configuration Spaces Back to Polyhedral Products Homotopy Golodness More Problems

Thank you!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●