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Polyhedral Products

Definition: Polyhedral products

K-simplicial complex on n vertices,
(X, A) = ((X1,A1),... (Xn, An)), Ai € X,

(&’A)K: U Y10><~-~><Y77 [ Xlx...xXn’
oeK

where

}/,L»U _ XZ If ’L (SNea
A;, ifié¢o,
example

e K=A"1 = (X,A)F = X; x-x Xp,.
o K disjoint points = (57*)1( =XV vX,.

More Problems
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Moment-angle complezes

Dawvis-Januszkiewicz spaces
DI(K) = (CP=, )X

Moment-angle complexes

Zk ~ homotopy fiber of inclusion DJ(K) — (CP*)*"

~ compl. coord. subspace arrangement

(Cn_ U {(Zla-"azn)e(cn|Z¢:0ifl.60'}
o¢ K

(D?,S1)%  where S* =9D?

The quotient of a certain free torus action on Zx for K dual to a simple
polytope is a quasi-toric manifold.
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Commutative and Combinatorial Algebra
Geometrically realize important algebraic objects. For F' a field or Z:

e (Buchstaber, Panov):

H*(DIK);F)zF[K]= M (Stanley-Reisner Ring),
K
where ideal
I = (square-free monomials v;,---v;, s.t. {i1,...,ix} ¢ K),

e (Buchstaber, Baskakov, Franz, Panov):

H*(Zk;F) 2 Torppy, ... o) (FIK],F) 2 @ H*(|K|;F).
Ic[n]

cup product multiplication induced by canonical inclusions
1yt | Kpug| — |Kr * K| 2 |[Kq|* |[K | = S|K7| A K]

for disjoint I and J.
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The Golod Property

Golod: algebraic definition

A local ring R is Golod over field k if the multuplication and all
Massey products in Tory[y, . 4,](#;k) vanish.

Golod: combinatorial definition

A simplicial complex K is Golod over field k if Stanley-Reisner
ring k[ K] is Golod.

Golod: topological definition

A simplicial complex K is Golod over ring F' if all cup products in
H*(Zg; F) vanish.
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The Golod Property over fields

We will use topological definition. These are all related for fields F’
(Berglund, Jollenbeck):

F[K] is Golod over F' <= cup products and Massey products
vanish in H*(Zg; F)
<= cup products vanish in H*(Zk; F)
<= 11,7 induce trivial maps on cohomology,
for all disjoint I,.J ¢ [n]
<~ H,(QZk; F) is a free graded
associative algebra.

If K is Golod over all fields k, we simply say K is Golod.
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Homotopy Theory

e Knowing homotopy types of Zx tells us when K is Golod in
particular.

e Since H*(Zk) is simplest when K is Golod, homotopy type of Zx
should be simplest here as well.

Homotopy type Zx known for the following Golod K (increasing
generality, due to Iriye, Kishimoto, Grbi¢, Theriault, Panov, Wu,...):

e K is n disjoint vertices;

e K is shifted:

e K is chordal flag;

e K is Alexander dual of shellable or sequential Cohen-Macaulay;
o K extractible (most general);

In all cases they are co-H-spaces, often a wedge of spheres.
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Conjecture
K is Golod < Zk is a co-H-space.

Irije, Kishimoto

Zx is a co-H-space if and only if Zic ~ \/ SH* K. o
Ic[n]

This is a desuspension of a general splitting of 3 Zx due to Bahri,
Bendersky, Cohen, Gitler (the BBCG splitting).

Conjecture is true for flag complexes, or localized at Q (Berglund,
Grbi¢, Panov, Theriault, Wu)

(K is a Golod flag complex < K is a chordal flag complex < K is flag and Z a co-H-space ).
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Main Idea

Fact: A space Y is a co-H-space if and only if the evaluation map
¥V =5 Y has a right homotopy inverse.

e Therefore, to see if Y is a co-H-space, start by trying to find
the finest possible splitting of %QY".

e To do this for Y = Zg, construct configuration space models
for QZK
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Labelled Configuration Spaces

Let M be any path connected space, N € M a subspace, and Y a
basepointed space with basepoint *. Let Do(M, N;Y') = x and take the
quotient space

k
Dp(M,N;Y) =] M xY*| ~
i=0
where the equivalence relation ~ is given by

° (21, ,255%15 -, %0) ~ (Zo(1)s -+ -5 Z0(i); Ta(1)s - - - > To(i)) O
permutations o € 3;;

o (21,0, 2521, ., @) ~ (21,0005 Zm1; X1, .., T4-1) for 2; = * or
ZiEN.

Then

D(M,N;Y) = ) Dy(M,N;Y) (2 SP((M/N) AY).
k=0
Classical Labelled Configuration Space:
C(M,N;Y)c D(M,N;Y) subspace of all configurations
(21,2421, .., 2;) such that zq # - # 2.
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Classical Results

Bodigheimer, McDuff

X a CW-complex, M smooth compact parallelizable £-manifold,
N a submanifold, M /N or X is connected. Then there exists a
homotopy equivalence

v:C(M,N:;X) — map(Z - N, Z - M; £ X),
where Z = M u (OM x [0,1)).

Segal
If X is path connected, then

C(R";X)~Q"E"X.

omotopy Golodness  More Problem
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Coordinate Suspensions

Coordinate suspensions

e X = X7 x--x X,; each X; connected basepointed;
e WcX

Definition: (-fold coordinate suspension
W= {((t1,21),. .., (tn,xn)) | ti € DY, (21,...,20) € W}
as a subspace of X = XX x - x 2X,,.

Definition: coordinate smash
Let Y =], Y;, take

Y/\X W= {((ylaxl)a“"(ynaxn)) | Yi € ina (xla"-axn) € W}

as a subspace of Y Ax X = (Y1 A Xy) x--x (Y, A X,,).



Introduction Configuration Spaces Back to Polyhedral Products Homotopy Golodness More Problems

Properties:

° WO — M/y (Wll)l2 — Wl1+l2;

e If W basepointed connected, and n =1 (or W< X;v...vX, c X),
then
wt=xw.

L4 IfW:UjAjl X'--XAjn, then
Wh=UxfA;, x x4,
J

o let (X,A)=((X1,41),...(X,,A,,)) and K a simplicial complex
on 7 vertices.

W= (X, ) — W' = (=X, 2 ).

where (26X, %6A) = (21X, 204)),... (X, %4,)).
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Config. Space Models for Spaces of Maps to Coordinate
Suspensions

o If W =Xy x-xX,, then
QW 2 Q%X x - xQ¥X, ~C(R,2; X1) x - x C(R,2; X,,).
o If W=X;v--vX,, then

QW2 Q8(X; v vX,)2CR,@; X, v v X,).
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Definition: Represented multisets

o A submultiset of points S = {x1,...,2s} c [I; X; is represented by
a point in W if there exists a (Z1,...,Z,) € W and some injective
function fs:{1,--,s} — {1,---,n} such that x; = Z;,(;).

e A configuration y is represented if its multiset of labels is
represented.

Let XV = X; v---v X,, be the wedge at basepoints * € X;.

Allow represented labelled particles to collide
C(M,N;W) is the subspace of D(M, N; X") of configurations
y=(21,...,2k;21,...,2k) € D(M,N; X") such that

e y non-degenerate, i1 # - £ 45, and z;, == 2;,, = {®iy, ..., T, }
is represented by some point in .

There are other generalizations that allow collisions under various rules
(Kallel, Salvatore, Dobrinskaya).



Configuration Spaces

Theorem A
Each X; a connected basepointed CW complexes, W a connected
basepointed subcomplex of X =] X;, M-smooth compact parallelizable
¢-manifold, N-submanifold, M |N connected.
Then there is a homotopy equivalence

v: C(M,N;W) — map(Z - N, Z - M; W*)
where Z = M u (OM x [0,1)).
Examples

e free loop spaces N=¢@ Z =M =S" AWt ~C(SH W)
e based loop spaces N=@ M=D' Z=~R

QW' =map(R,R- D' W) ~C(D', ;W) ~C(R", &, W)
e We can take W = (D!, S%)%. Then

Wt =(2D', 255 = (D? s)K = 2.
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The Simplest Case: M = DY, N = 0D*

Lemma
C(D*,dD*; W) ~ map(D*, @, W*) ~ W*

Proof.

(1) Inclusion W¢ — C(D*, D% W);
((t1,21)y. -y (tnyzn)) = (1, tn; 21, ... Tn)

(2) €= cC(Dt aD! W) subspace of configurations y = (21, ..., 2k; &1, ..., Z)
such that:
e if y non-degenerate, iy # --- # 45, and {{zi,,...,®; }} is not
represented by point in W then

1
var(ziy,- -, %) = ﬁlei—zjl > e
1#]

(3) € ~C(D, D% W)
(4) W* and C¢ have same homeomorphic image in C(D?,8D% W) when € > 2.
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Section Spaces

Z - a smooth /-manifold without boundary, M ¢ Z - a smooth compact
codimension 0 submanifold, 7'(Z) - the S*-bundle over Z obtained from
tangent bundle. Pullback:

TA(Z) —7

-

n"7z)—1"z

Construct the W* = ([T" S*) Ax W-bundle T(Z; W) - Z. Let
Keoi Z —> T (Z; W) be the section of 7 that sends a point in z € Z to
the basepoint =, at infinity on the fiber at z.

Definition: Section space Y(Z;A,B;W)

For any subspaces Bc Ac Z, T(Z; A, B;W) space of sections of 7
defined on A, that agree with ., on B.

e 7 is parallelizable, Y(Z; A, B; W) = map(A, B;W*).
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Proof of Theorem A
Identical to Bodingheimer, McDuff:
(1) (when Z parallelizable) there is a scanning map

v: C(M,N;W) —— map(Z - N, Z - M;C(D%, D% W)) —— map(Z - N, Z - M; W¢)

(2) (quasi)fibration diagram

C(L,LAN;W) —————————> C(M,N; W) —————————> C(M, LU N; W)

) ) )

Y(Z-LNN,Z-L;W) ——> Y(Z-N,Z-M;W) ——> Y(Z-LUN,Z-M;W).

(3) Induction for progressively more general (M, N):
(a) Handles (D* x D% Dk x §¢%-1) of index k, induction on k
(base case (D?,0D") done);
(b) (M,0M) (induction on handle decomposition of M)
(c) (M,N) ...
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Splittings
Let C(W) =C(R, ;W) ~ QW There is a map

C:C(W) — C(R,2; Voo (W)) =~ QEV (W),

where C'(R, @; Voo (W)) is a classical labelled config. space, and

i (W)
Ve(W) = Z\/lzJ CA (W)’

where C; (W) = {j-particle configurations in C;(W) | j <i}.
Adjointing, there is a homotopy equivalence

C’: SC(W) — XV (W).
Theorem B

YOW! ~ \>/12 Cf?‘% = \>/12Di(W).



Back to Polyhedral Products

Take W = (D', S%)X. Then W' = (D?, S?)K = Zj. Recall:

Conjecture
K is Golod < Z is a co-H-space.

In other words:

Conjecture
1,9 | Krog| — | K1 * K| trivial on cohomology for all InJ =@ <—
Zr =~/ K.
Ic[n]

Theorem B
Conjecture is true localized at a sufficiently large prime p.

Proof.

D;(W) =~ finite CW-complex = ¥.D;(W') ~ wedge of spheres at large
primes, and if H*(W?;Z,) has trivial cup products, then QW! ool
induces surjection on H,(-;Z,), so using splitting SQW! ~ \/ XD, (W)
and picking appropriate spheres, can construct right homotopy inverse of
eval. O
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Some Useful Spaces

For any I = {é1,...,4x} S [n], let

W = image(W* "5 20X, x o x 20X, TS 00X ) x BEXG ),

wi= U Wy o= (W)

1€[n] 1]

Filtration

x=WgccWi W, =W*
Let )

W=
Jj - Wt
j-1

Then W = V7., W/ where

Wiz sl i,



Back to Polyhedral Products

Proposition

(i) homotopy commutative diagram of (homotopy) cofibration
sequences

Ci) —2—> £D, (Wy_1) —s = D (Wn) BN YO0

N

1 1 include 1 29
xn-11y, W wl W},

n-1

ii) W' is a co-H-space <= quotient map W+ — W has a right
I I
homotopy inverse for each I ¢ [n].
(#ii) (quotient map) q has a right homotopy inverse

<= (homotopy cofiber inclusion) § has a right homotopy inverse
<= 0 is nullhomotopic.
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A Necessary and Sufficient Condition
Let &, ={(z1,...,2) € R" | z1 =--- =z, }, and consider the following
subspace of P,, = (R" — A,) AZA™

Ok = U {y} AX|Ky, + % K, |
ye(R"-4,)
(Ila“wlnz):[n]’y

Then D, (W,-1) 2 Qk Vv (something else).
K on vertex set [n] is weakly coherently homotopy Golod if K is a

single vertex, or (recursively) K\{i} is weakly coherently homotopy
Golod for each i € [n], and the map

Ui K| — £Qk
given for any z € |K]|, t1,...t,-1,t € [-1,1] by
wK(tla . n 1,t Z) (26—1 (tl,...,tn_l,O),(t,Z))

is nullhomotopic, where 8 = max{|t1],...,[tn-1],0}.
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Theorem C
ZK is a co-H-space <> K is weakly coherently homotopy Golod.
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The Coherent Homotopy Golod Condition

(1) Homotopy Version of Golod:

Require the inclusions
Ser, g0 B|Krog| — Z|Kr * Kl

to be nullhomotopic, for each InJ =@.
(2) Coherence of Nullhomotopies:
Moreover, we will require transitions between these null-homotopies. For example, there is a commutative diagram

of inclusions
[Krug, * Kyl

LIuJy, Jo LI,Jy %y

IKr100y005 |[Kp* Ky K, (1)
|Kr* K0yl
for disjoint I, Jy, and Ja, and the null-homotopy of £¢7 ; gives a map
ir,7: Cone(E|Ky ) — Z|K1 * K|,

we require the composite (¢y g, * tj,) 0 i1y ,Jo to be homotopic to X(ey * gy, 75) 0 i1 Jyugy Viaa
homotopy that is fixed on the base | K1, ., | of the cone Cone(E|K 1y, uJ, ). and so on for longer joins.
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Coherently Homotopy Golod: Precise Definition

Delta set
Kn={Fo,. ., Fn-1}
e (m—2)-face
Fm—2 = {set of all ordered partitions (Iy,..., ;) of [n]};
e face maps d;: Fp—o —> Fin—3 given by
di((Iy. .. L)) = (11, .o L1, ;U Ly, Lioy ooy Iy
KC,, is a simplicial complex of dimension n — 2,

K| = S"72.



Homotopy Golodness

A simplicial complex K on vertex set [n] is coherently homotopy
Golod if K is a single vertex, or (recursively) K\{i} is coherently
homotopy Golod for each i € [n] and there is a map

Tyt K| x Cone(S|K]) — SJA™ ]|
such that for any v € |KC,,|, Wi (7, #) is the basepoint

+_1 € LJA™ ), and:

(1) the restriction of Wy to {7y} x ({0} x X|K]) is the suspended
inclusion L|K| — S|A™

(2) if v €S| for some S = (I1,... 1) € Fn_2, then ¥y maps
{7} x Cone(X|K]) to a subspace of
Y|Ky, # - Ky | € S|A™Y.



Introduction Configuration Spaces Back to Polyhedral Products Homotopy Golodness More Problems

Theorem D
K is coherently homotopy Golod =— Z is a co-H -space.
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Extractible complexes are coherently homotopy Golod:

K is extractible if K\{i} is a simplex for some i, or (recursively) each
K\{i} is extractible and

include

VEIR\()] " sk

has a right homotopy inverse. This was the most general class of Golod
complexes for which Zg is known to be a co- H-space.

Highly complete complexes are coherently homotopy Golod:

K is highly complete if every subset of at most l%J vertices is a face of
K, where n is the number of vertices of K.

Highly complete but not extractible:

Let
K = (A% + A ) ugar AL

K has 5 vertices, and every pair of vertices is connected by an edge, so
K is highly connected, therefore homotopy Golod. But Hy(|K]) = Z,
while Hy(JK\{i}|) = 0 for each i € [5], so K cannot be extractible.



Homotopy Golodness

K is homotopy Golod if it satisfies a homotopy version of
Golodness, i.e. the suspended inclusions

2n+1LI7J: EnJrllKIUJ’ _ 2n+1|KI % KJ|
are nullhomotopic for each InJ = @.

Theorem E
ZK is a co-H-space =—> K is homotopy Golod.



Homotopy Golodness

K is: Zk is a co-H-space?
coherently homotopy Golod sufficient
weakerl weakly coherently homotopy Golod | necessary and sufficient
homotopy Golod necessary
Golod necessary

Question:

K Golod <= homotopy Golod
<= K weakly coherently homotopy Golod?

In particular:

If each vy 5 induces trivial maps on cohomology, then is each E”“LLJ
nullhomotopic?

A counterexample to this would be a counterexample to conjecture: K Golod iff Z g co-H-space.
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(Grbié, _, Iriye, Kishimoto) Sometimes direct topological proofs are easier:

Let AT denote the (|I| - 1)-simplex on vertex set I ¢ [n]. Given a simplicial complex
L on vertex set J and L’ on vertex set J', let
K=(L+A)up, 0 (A +L).
Then Zk is the homotopy pushout:
ZL X ZL’ M ZL X (DQ)X‘J"
include

D2y x 2 — > Zpe

Since the inclusions are up to homotopy equivalence the projection maps onto the left
and right factor of Zp x Z;,

ZK':ZL*ZL/ ZEZL/\ZL/

i.e. Zx is a co-H-space = K Golod. Combinatoral proof K Golod seems more
difficult, no direct proof known that K is weakly homotopy Golod.



More Problems

Problem:
For general K, determine the homotopy type or CW -structure of

Zi combinatorially in terms of K.

Do this by describing the attaching maps in terms of the
combinatorics of K (and perhaps familiar maps such as higher
Whitehead products).
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Say K on vertex set [n] is ¢-Golod if K is Golod whenever |I| <n — /.
So Golod is the same as 0-Golod.

Filtration
Goc Gy c - € Goo = {all finite complexes},

where G, = {all £ - Golod complexes}.

mainimally non-Golod complexes
Certain connected sums of sphere products

Zic = #a(S" % §7)

correspond to certain sphere triangulations K € (G; — Go) (McGavran,
Bosio, Meersseman). Gy — Gy is the set minimally non-Golod
complexes.
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to Polyl

Homotopy types for K minimally non-Golod:
Let K be minimally non-Golod. Let W = Wy, = (D*, S*=1)K  then

C(i) —2 > SDu (W 1) — s 5D, (W) ——= £C(2)

L F T

—113 1 include 1 1
=W, — = W Wy Wy

2nk|K| J—
If moreover we assume each K\{i} is weakly homotopy Golod, then

SDn(Wn-1) = \/ Enk7N+2|K11 >(""*I(INL
partitions Iyu--Ulny=[n],N>1

and if k > 2, then O is a suspension, so O is determined by each map
S| — SN2 R s K

What are these maps?
The vertical map ¢ can be determined with respect to the above splitting.

1l Products Homotopy Golodness More Problems



More Problems

In the interest of finding configuration space models for mapping
spaces between manifolds:

Question:
When is a manifold a coordinate suspension? When is the
coordinate suspension of a manifold embedded into a product of
1-disks a manifold?

This is true for connected sums of sphere products, or for the
manifold Zx when K is a sphere triangulation.
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Thank you!
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