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Polyhedral Products

Definition: Polyhedral products

K-simplicial complex on n vertices,
(X,A) = ((X1,A1), . . . (Xn,An)), Ai ⊆Xi,

(X,A)K = ⋃
σ∈K

Y σ
1 ×⋯ × Y σ

n ⊆ X1 ×⋯ ×Xn,

where

Y σ
i =

⎧⎪⎪⎨⎪⎪⎩

Xi, if i ∈ σ
Ai, if i ∉ σ,

example

� K = ∆n−1 ⇒ (X,A)K =X1 ×⋯ ×Xn.

� K disjoint points ⇒ (X,∗)K =X1 ∨⋯ ∨Xn.
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Moment-angle complexes

Davis-Januszkiewicz spaces

DJ(K) = (CP∞,∗)K

Moment-angle complexes

ZK ≃ homotopy fiber of inclusion DJ(K)Ð→ (CP∞)×n

≃ compl. coord. subspace arrangement

Cn − ⋃
σ∉K

{(z1, . . . , zn) ∈ Cn ∣ zi = 0 if i ∈ σ}

= (D2, S1)K where S1 = ∂D2.

The quotient of a certain free torus action on ZK for K dual to a simple
polytope is a quasi-toric manifold.
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Commutative and Combinatorial Algebra
Geometrically realize important algebraic objects. For F a field or Z:

� (Buchstaber, Panov):

H∗(DJ(K);F ) ≅ F [K] ≅ F [v1, . . . , vn]
IK

(Stanley-Reisner Ring),

where ideal

IK = ⟨square-free monomials vi1⋯vik s.t. {i1, . . . , ik} ∉K⟩ ,

� (Buchstaber, Baskakov, Franz, Panov):

H∗(ZK ;F ) ≅ TorF [v1,...,vn](F [K], F ) ≅ ⊕
I⊆[n]

H̃∗(∣KI ∣;F ).

cup product multiplication induced by canonical inclusions

ιI,J ∶ ∣KI∪J ∣Ð→ ∣KI ∗KJ ∣ ≅ ∣KI ∣ ∗ ∣KJ ∣ ≃ Σ∣KI ∣ ∧ ∣KJ ∣.

for disjoint I and J .
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The Golod Property

Golod: algebraic definition

A local ring R is Golod over field k if the multuplication and all
Massey products in Tork[v1,...,vn](R,k) vanish.

Golod: combinatorial definition

A simplicial complex K is Golod over field k if Stanley-Reisner
ring k[K] is Golod.

Golod: topological definition

A simplicial complex K is Golod over ring F if all cup products in
H∗(ZK ;F ) vanish.
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The Golod Property over fields

We will use topological definition. These are all related for fields F
(Berglund, Jollenbeck):

F [K] is Golod over F ⇐⇒ cup products and Massey products

vanish in H∗(ZK ;F )
⇐⇒ cup products vanish in H∗(ZK ;F )
⇐⇒ ιI,J induce trivial maps on cohomology,

for all disjoint I, J ⊆ [n]
⇐⇒H∗(ΩZK ;F ) is a free graded

associative algebra.

If K is Golod over all fields k, we simply say K is Golod.
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Homotopy Theory

� Knowing homotopy types of ZK tells us when K is Golod in
particular.

� Since H∗(ZK) is simplest when K is Golod, homotopy type of ZK
should be simplest here as well.

Homotopy type ZK known for the following Golod K (increasing
generality, due to Iriye, Kishimoto, Grbić, Theriault, Panov, Wu,...):

� K is n disjoint vertices;

� K is shifted;

� K is chordal flag;

� K is Alexander dual of shellable or sequential Cohen-Macaulay;

� K extractible (most general);

In all cases they are co-H-spaces, often a wedge of spheres.
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Conjecture

K is Golod ⇐⇒ ZK is a co-H-space.

Irije, Kishimoto

ZK is a co-H-space if and only if ZK ≃ ⋁
I⊆[n]

Σ∣I ∣+1∣KI ∣. ◻

This is a desuspension of a general splitting of ΣZK due to Bahri,
Bendersky, Cohen, Gitler (the BBCG splitting).

Conjecture is true for flag complexes, or localized at Q (Berglund,
Grbić, Panov, Theriault, Wu)

(K is a Golod flag complex ⇔ K is a chordal flag complex ⇔ K is flag and ZK a co-H-space ).
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Main Idea

Fact: A space Y is a co-H-space if and only if the evaluation map

ΣΩY
evÐ→ Y has a right homotopy inverse.

� Therefore, to see if Y is a co-H-space, start by trying to find
the finest possible splitting of ΣΩY .

� To do this for Y = ZK , construct configuration space models
for ΩZK .
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Labelled Configuration Spaces
Let M be any path connected space, N ⊆M a subspace, and Y a
basepointed space with basepoint ∗. Let D0(M,N ;Y ) = ∗ and take the
quotient space

Dk(M,N ;Y ) =
k

∐
i=0

M×i × Y ×i/ ∼

where the equivalence relation ∼ is given by

� (z1, . . . , zi;x1, . . . , xi) ∼ (zσ(1), . . . , zσ(i);xσ(1), . . . , xσ(i)) for
permutations σ ∈ Σi;

� (z1, . . . , zi;x1, . . . , xi) ∼ (z1, . . . , zi−1;x1, . . . , xi−1) for xi = ∗ or
zi ∈ N .

Then

D(M,N ;Y ) =
∞
⋃
k=0

Dk(M,N ;Y ) (≅ SP ((M/N) ∧ Y ).

Classical Labelled Configuration Space:

C(M,N ;Y ) ⊆D(M,N ;Y ) subspace of all configurations
(z1, . . . , zi;x1, . . . , xi) such that z1 ≠ ⋯ ≠ zi.
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Classical Results

Bödigheimer, McDuff

X a CW -complex, M smooth compact parallelizable `-manifold,
N a submanifold, M/N or X is connected. Then there exists a
homotopy equivalence

γ ∶ C(M,N ;X)Ð→map(Z −N,Z −M ; Σ`X),

where Z =M ∪ (∂M × [0,1)).

Segal

If X is path connected, then

C(Rn;X) ≃ ΩnΣnX.
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Coordinate Suspensions

Coordinate suspensions

� X =X1 ×⋯ ×Xn; each Xi connected basepointed;

� W ⊂X

Definition: `-fold coordinate suspension

W ` = {((t1, x1), . . . , (tn, xn)) ∣ ti ∈D`, (x1, . . . , xn) ∈W}

as a subspace of X` = Σ`X1 ×⋯ ×Σ`Xn.

Definition: coordinate smash

Let Y =∏n
i=1 Yi, take

Y ∧X W = {((y1, x1), . . . , (yn, xn)) ∣ yi ∈ Yi, (x1, . . . , xn) ∈W}

as a subspace of Y ∧X X = (Y1 ∧X1) ×⋯ × (Yn ∧Xn).
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Properties:

� W 0 =W, (W l1)l2 =W l1+l2 ;

� If W basepointed connected, and n = 1 (or W ⊆X1 ∨ . . .∨Xn ⊆X),
then

W ` = Σ`W.

� If W = ⋃J Aj1 ×⋯ ×Ajn , then

W ` =⋃
J

Σ`Aj1 ×⋯ ×Σ`Ajn

� Let (X,A) = ((X1,A1), . . . (Xn,An)) and K a simplicial complex
on n vertices.

W = (X,A)K Ô⇒W ` = (Σ`X,Σ`A)K .

where (Σ`X,Σ`A) = ((Σ`X1,Σ
`A1), . . . (Σ`Xn,Σ

`An)).
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Config. Space Models for Spaces of Maps to Coordinate
Suspensions

� If W =X1 ×⋯ ×Xn, then

ΩW 1 ≅ ΩΣX1 ×⋯×ΩΣXn ≃ C(R,∅;X1) ×⋯×C(R,∅;Xn).

� If W =X1 ∨⋯ ∨Xn, then

ΩW 1 ≅ ΩΣ(X1 ∨⋯ ∨Xn) ≃ C(R,∅;X1 ∨⋯ ∨Xn).
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Definition: Represented multisets

� A submultiset of points S = {x1, . . . , xs} ⊂∐iXi is represented by
a point in W if there exists a (x̄1, . . . , x̄n) ∈W and some injective
function fS ∶{1,⋯, s}Ð→ {1,⋯, n} such that xi = x̄fS(i).

� A configuration y is represented if its multiset of labels is
represented.

Let X∨ =X1 ∨⋯ ∨Xn be the wedge at basepoints ∗ ∈Xi.

Allow represented labelled particles to collide

C(M,N ;W ) is the subspace of D(M,N ;X∨) of configurations
y = (z1, . . . , zk;x1, . . . , xk) ∈D(M,N ;X∨) such that

� y non-degenerate, i1 ≠ ⋯ ≠ is, and zi1 = ⋯ = zis , Ô⇒ {xi1 , . . . , xis}
is represented by some point in W .

There are other generalizations that allow collisions under various rules
(Kallel, Salvatore, Dobrinskaya).
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Theorem A
Each Xi a connected basepointed CW complexes, W a connected
basepointed subcomplex of X =∏Xi, M -smooth compact parallelizable
`-manifold, N -submanifold, M/N connected.
Then there is a homotopy equivalence

γ ∶ C(M,N ;W )Ð→map(Z −N,Z −M ;W `)

where Z =M ∪ (∂M × [0,1)).

Examples

� free loop spaces N = ∅ Z =M = S1 ΛW 1 ≃ C(S1;W )

� based loop spaces N = ∅ M =D1 Z ≃ R

ΩW 1 = map(R,R −D1;W 1) ≃ C(D1,∅;W ) ≃ C(R1,∅;W )

� We can take W = (D1, S0)K . Then

W 1 = (ΣD1,ΣS0)K = (D2, S1)K = ZK .
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The Simplest Case: M =D`, N = ∂D`

Lemma
C(D`, ∂D`;W ) ≃map(D`,∅,W `) ≃W `

Proof.

(1) Inclusion W ` Ð→ C(D`, ∂D`;W );

((t1, x1), . . . , (tn, xn))↦ (t1, . . . tn;x1, . . . xn)

(2) Cε ⊆ C(D`, ∂D`;W ) subspace of configurations y = (z1, . . . , zk;x1, . . . , xk)
such that:

� if y non-degenerate, i1 ≠ ⋯ ≠ is, and {{xi1 , . . . , xis}} is not
represented by point in W then

var(zi1 , . . . , zis) =
1

s(s − 1)∑i≠j
∣zi − zj ∣ ≥ ε.

(3) Cε ≃ C(D`, ∂D`;W )
(4) W ` and Cε have same homeomorphic image in C(D`, ∂D`;W ) when ε ≥ 2.
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Section Spaces

Z - a smooth `-manifold without boundary, M ⊆ Z - a smooth compact
codimension 0 submanifold, T (Z) - the S`-bundle over Z obtained from
tangent bundle. Pullback:

T∆(Z) //

��

Z

∆

��
∏n T (Z) // ∏nZ.

Construct the W ` = (∏n S`) ∧X W -bundle T (Z;W ) πÐ→ Z. Let
κ∞∶Z Ð→ T (Z;W ) be the section of π that sends a point in z ∈ Z to
the basepoint ∗z at infinity on the fiber at z.

Definition: Section space Υ(Z;A,B;W )
For any subspaces B ⊂ A ⊂ Z, Υ(Z;A,B;W ) space of sections of π
defined on A, that agree with κ∞ on B.

� Z is parallelizable, Υ(Z;A,B;W ) ≅map(A,B;W `).



Introduction Configuration Spaces Back to Polyhedral Products Homotopy Golodness More Problems

Proof of Theorem A

Identical to Bödingheimer, McDuff:

(1) (when Z parallelizable) there is a scanning map

γ ∶ C(M,N ;W ) // map(Z −N,Z −M ;C(D`, ∂D`;W )) ≃ // map(Z −N,Z −M ;W `)

(2) (quasi)fibration diagram

C(L,L ∩N ;W )
//

γ

��

C(M,N ;W )
//

γ

��

C(M,L ∪N ;W )

γ

��
Υ(Z −L ∩N,Z −L;W )

// Υ(Z −N,Z −M ;W )
// Υ(Z −L ∪N,Z −M ;W ).

(3) Induction for progressively more general (M,N):

(a) Handles (Dk ×D`−k,Dk × S`−k−1) of index k, induction on k
(base case (D`, ∂D`) done);

(b) (M,∂M) (induction on handle decomposition of M)
(c) (M,N) ...
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Splittings
Let C(W ) = C(R,∅;W ) ≃ ΩW 1. There is a map

ζ ∶ C(W )Ð→ C(R,∅;V∞(W )) ≃ ΩΣV∞(W ),

where C(R,∅;V∞(W )) is a classical labelled config. space, and

Vk(W ) =
k

⋁
i=1

Σi Ci(W )
Ci−1(W )

,

where Ci(W ) = {j-particle configurations in Ci(W ) ∣ j ≤ i}.
Adjointing, there is a homotopy equivalence

ζ ′ ∶ ΣC(W )Ð→ ΣV∞(W ).

Theorem B

ΣΩW 1 ≃⋁
i≥1

Σ
Ci(W )
Ci−1(W )

≃⋁
i≥1

ΣDi(W ).

◻
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Take W = (D1, S0)K . Then W 1 = (D2, S2)K = ZK . Recall:

Conjecture

K is Golod ⇐⇒ ZK is a co-H-space.

In other words:

Conjecture

ιI,J ∶ ∣KI∪J ∣Ð→ ∣KI ∗KJ ∣ trivial on cohomology for all I ∩ J = ∅ ⇐⇒
ZK ≃ ⋁

I⊆[n]
Σ∣I ∣+1∣KI ∣.

Theorem B
Conjecture is true localized at a sufficiently large prime p.

Proof.

Di(W ) ≃ finite CW -complex ⇒ ΣDi(W ) ≃ wedge of spheres at large

primes, and if H∗(W 1;Zp) has trivial cup products, then ΣΩW 1 evalÐ→W 1

induces surjection on H∗(−;Zp), so using splitting ΣΩW 1 ≃ ⋁ΣDi(W )
and picking appropriate spheres, can construct right homotopy inverse of
eval.
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Some Useful Spaces

For any I = {i1, . . . , ik} ⊆ [n], let

W `
I = image(W ` includeÐ→ Σ`X1 ×⋯ ×Σ`Xn

projectÐ→ Σ`Xi1 ×⋯ ×Σ`Xik),

W `
j = ⋃

I⊆[n],∣I ∣=j
W `
I ≅ (Wj)`.

Filtration
∗ =W `

0 ⊆ ⋯ ⊆W `
n−1 ⊆W `

n =W `

Let

Ŵ `
j =

W `
j

W `
j−1

Then Ŵ `
j ≅ ⋁∣I ∣=j Ŵ

`
I where

Ŵ `
I ≅ Σ∣I ∣`+1∣KI ∣.
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Proposition

(i) homotopy commutative diagram of (homotopy) cofibration
sequences

C(ι̂) ∂ //

≃

��

ΣDn(Wn−1)
include

Σι̂ //

��

ΣDn(Wn)
q̂ //

��

ΣC(ι̂)

≃

��
Σn−1Ŵn

// W 1
n−1

include // W 1
n

q // Ŵ 1
n ,

(ii) W 1 is a co-H-space ⇐⇒ quotient map W 1
I

qÐ→ Ŵ 1
I has a right

homotopy inverse for each I ⊆ [n].

(iii) (quotient map) q has a right homotopy inverse
⇐⇒ (homotopy cofiber inclusion) q̂ has a right homotopy inverse
⇐⇒ ∂ is nullhomotopic.
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A Necessary and Sufficient Condition
Let △n = {(x1, . . . , xn) ∈ Rn ∣ x1 = ⋯ = xn}, and consider the following
subspace of Pn = (Rn −△n) ∧Σ∆n:

QK = ⋃
y∈(Rn−△n)

(I1,...,Im)=[n]y

{y} ∧Σ∣KI1 ∗⋯ ∗KIm ∣.

Then Dn(Wn−1) ≅ QK ∨ (something else).

K on vertex set [n] is weakly coherently homotopy Golod if K is a
single vertex, or (recursively) K/{i} is weakly coherently homotopy
Golod for each i ∈ [n], and the map

ψK ∶ Σn∣K ∣Ð→ ΣQK

given for any z ∈ ∣K ∣, t1, . . . tn−1, t ∈ [−1,1] by

ψK(t1, . . . , tn−1, t, z) = (2β − 1, (t1, . . . , tn−1,0), (t, z))

is nullhomotopic, where β = max{∣t1∣, . . . , ∣tn−1∣,0}.
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Theorem C
ZK is a co-H-space ⇐⇒ K is weakly coherently homotopy Golod.
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The Coherent Homotopy Golod Condition
(1) Homotopy Version of Golod:

Require the inclusions
ΣιI,J ∶ Σ∣KI∪J ∣Ð→ Σ∣KI ∗KJ ∣

to be nullhomotopic, for each I ∩ J = ∅.

(2) Coherence of Nullhomotopies:
Moreover, we will require transitions between these null-homotopies. For example, there is a commutative diagram
of inclusions

∣KI∪J1 ∗KJ2 ∣

ιI,J1
∗ιJ2

((PP
PPP

PPP
PPP

P

∣KI∪J1∪J2 ∣

ιI∪J1,J2

77ppppppppppp

ιI,J1∪J2

''NN
NNN

NNN
NNN

∣KI ∗KJ1 ∗KJ2 ∣

∣KI ∗KJ1∪J2 ∣,

ιI∗ιJ1,J2

66nnnnnnnnnnnn

(1)

for disjoint I, J1, and J2, and the null-homotopy of ΣιI,J gives a map

ι̂I,J ∶ Cone(Σ∣KI∪J ∣)Ð→ Σ∣KI ∗KJ ∣,

we require the composite Σ(ιI,J1 ∗ ιJ2 ) ○ ι̂I∪J1,J2 to be homotopic to Σ(ιI ∗ ιJ1,J2 ) ○ ι̂I,J1∪J2 via a

homotopy that is fixed on the base ∣KI∪J1∪J2 ∣ of the cone Cone(Σ∣KI∪J1∪J2 ∣), and so on for longer joins.
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Coherently Homotopy Golod: Precise Definition

Delta set
Kn = {F0, . . . ,Fn−1}

� (m − 2)-face

Fm−2 = {set of all ordered partitions (I1, . . . , Im) of [n]};

� face maps di ∶ Fm−2 Ð→ Fm−3 given by

di((I1, . . . , Im)) = (I1, . . . , Ii−1, Ii ∪ Ii+1, Ii+2, . . . , Im).

Kn is a simplicial complex of dimension n − 2,

∣Kn∣ ≅ Sn−2.
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A simplicial complex K on vertex set [n] is coherently homotopy
Golod if K is a single vertex, or (recursively) K/{i} is coherently
homotopy Golod for each i ∈ [n] and there is a map

Ψ̄K ∶ ∣Kn∣ ×Cone(Σ∣K ∣)Ð→ Σ∣∆n−1∣

such that for any γ ∈ ∣Kn∣, Ψ̄K(γ,∗) is the basepoint
∗−1 ∈ Σ∣∆n−1∣, and:

(1) the restriction of Ψ̄K to {γ} × ({0} ×Σ∣K ∣) is the suspended
inclusion Σ∣K ∣Ð→ Σ∣∆n−1∣;

(2) if γ ∈ ∣S ∣ for some S = (I1, . . . Im) ∈ Fm−2, then Ψ̄K maps
{γ} ×Cone(Σ∣K ∣) to a subspace of
Σ∣KI1 ∗⋯ ∗KIm ∣ ⊆ Σ∣∆n−1∣.
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Theorem D
K is coherently homotopy Golod Ô⇒ ZK is a co-H-space.
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Extractible complexes are coherently homotopy Golod:

K is extractible if K/{i} is a simplex for some i, or (recursively) each
K/{i} is extractible and

⋁
i

Σ∣K/{i}∣ includeÐ→ Σ∣K ∣

has a right homotopy inverse. This was the most general class of Golod
complexes for which ZK is known to be a co-H-space.

Highly complete complexes are coherently homotopy Golod:

K is highly complete if every subset of at most ⌊n
2
⌋ vertices is a face of

K, where n is the number of vertices of K.

Highly complete but not extractible:

Let
K = (∂∆2 ∗ ∂∆1) ∪∂∆1 ∆1.

K has 5 vertices, and every pair of vertices is connected by an edge, so
K is highly connected, therefore homotopy Golod. But H2(∣K ∣) ≅ Z,
while H2(∣K/{i}∣) = 0 for each i ∈ [5], so K cannot be extractible.
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K is homotopy Golod if it satisfies a homotopy version of
Golodness, i.e. the suspended inclusions

Σn+1ιI,J ∶ Σn+1∣KI∪J ∣Ð→ Σn+1∣KI ∗KJ ∣

are nullhomotopic for each I ∩ J = ∅.

Theorem E
ZK is a co-H-space Ô⇒ K is homotopy Golod.
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weaker

��

K is: ZK is a co-H-space?
coherently homotopy Golod sufficient

weakly coherently homotopy Golod necessary and sufficient
homotopy Golod necessary

Golod necessary

Question:

K Golod⇐⇒ homotopy Golod

⇐⇒K weakly coherently homotopy Golod?

In particular:

If each ιI,J induces trivial maps on cohomology, then is each Σn+1ιI,J
nullhomotopic?
A counterexample to this would be a counterexample to conjecture: K Golod iff ZK co-H-space.
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(Grbić, , Iriye, Kishimoto) Sometimes direct topological proofs are easier:

Let ∆I denote the (∣I ∣ − 1)-simplex on vertex set I ⊆ [n]. Given a simplicial complex
L on vertex set J and L′ on vertex set J ′, let

K = (L ∗∆J) ∪L∗L′ (∆J′ ∗L′).

Then ZK is the homotopy pushout:

ZL ×ZL′
include//

include

��

ZL × (D2)×∣J′ ∣

��
(D2)×∣J ∣ ×ZL′ // ZK .

Since the inclusions are up to homotopy equivalence the projection maps onto the left
and right factor of ZL ×ZL′ ,

ZK ≃ ZL ∗ZL′ ≃ ΣZL ∧ZL′

i.e. ZK is a co-H-space ⇒ K Golod. Combinatoral proof K Golod seems more
difficult, no direct proof known that K is weakly homotopy Golod.
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Problem:
For general K, determine the homotopy type or CW -structure of
ZK combinatorially in terms of K.

Do this by describing the attaching maps in terms of the
combinatorics of K (and perhaps familiar maps such as higher
Whitehead products).



Introduction Configuration Spaces Back to Polyhedral Products Homotopy Golodness More Problems

Say K on vertex set [n] is `-Golod if KI is Golod whenever ∣I ∣ ≤ n − `.
So Golod is the same as 0-Golod.

Filtration
G0 ⊂ G1 ⊂ ⋯ ⊂ G∞ = {all finite complexes},

where G` = {all ` −Golod complexes}.

minimally non-Golod complexes

Certain connected sums of sphere products

ZK = #α(Siα × Sjα)

correspond to certain sphere triangulations K ∈ (G1 − G0) (McGavran,
Bosio, Meersseman). G1 − G0 is the set minimally non-Golod
complexes.
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Homotopy types for K minimally non-Golod:

Let K be minimally non-Golod. Let W =Wn = (Dk, Sk−1)K , then

C(ι̂) ∂ //

≃

��

ΣDn(Wn−1)
include
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If moreover we assume each K/{i} is weakly homotopy Golod, then

ΣDn(Wn−1) ≃ ⋁
partitions I1∪⋯∪IN=[n],N>1

Σnk−N+2∣KI1 ∗⋯ ∗KIN ∣,

and if k ≥ 2, then ∂ is a suspension, so ∂ is determined by each map

Σnk ∣K∣Ð→ Σnk−N+2∣KI1 ∗⋯ ∗KIN ∣.

What are these maps?
The vertical map φ can be determined with respect to the above splitting.
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In the interest of finding configuration space models for mapping
spaces between manifolds:

Question:

When is a manifold a coordinate suspension? When is the
coordinate suspension of a manifold embedded into a product of
1-disks a manifold?

This is true for connected sums of sphere products, or for the
manifold ZK when K is a sphere triangulation.
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Thank you!
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