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1 Introduction
Geometry is the study of metric spaces. There are many metric spaces around
us: the surface of the table, the surfaces of walls and ceilings in the room
we sit in, the surface of our bodies, the surface of the bonnet of a car, the
surface of the Earth, the space and the space-time around us etc. These are
examples of metric spaces we can see and/or we can touch. This course aims
at presenting the part of geometry which is related and applicable to such
spaces.
The surfaces around us can be approximated by surfaces built from rigid
convex polygons. In the first part of the course we will deal with such polyg-
onal surfaces while in the second part we will study smooth surfaces in the
three-dimensional space. In the process we will also investigate more general
and more abstract examples. We will generalise many geometric concepts
we know from Euclidean geometry to the world of reasonably general metric
spaces. These include the concept of a straight line, an angle, a triangle, the
number π and others.
One of the guiding concepts for this course is curvature. We intuitively
know whether a surface is curved either by looking at it or by touching it.
This, however, can be misleading. For example, we will learn that the surface
of a cylinder is intrinsically flat, so what we really see and feel is that it is
only curved in the three-dimensional space. We will make the concept of
the curvature mathematically precise and amenable to computations. We
will also learn about the intimate connection between the curvature and
topology.
Our spatial intuition and imagination play an important role in studying
geometry. They are mostly related to two of our senses: the sight and the
touch. However, a few millions years ago we reduced our quite involved three-
dimensional intuition to nearly two-dimensional Euclidean one. Although it
was highly beneficial from the general evolutionary point of view, we lost a
lot. Just see and admire apes moving gracefully in the trees or tigers who
never get lost and compare it with us getting lost in the mountains or cities
not to mention even slightly complicated corridors.
Can we do something to regain our geometric intuition? One of the greatest
geometers of all times, Bill Thurston, used to practice “visualising things”
every day. Let me quote Benson Farb, a student of Thurston: Bill was
probably the best geometric thinker in the history of mathematics. Thus it
came as a surprise when I found out that he had no stereoscopic vision, that
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is, no depth perception. Perhaps the latter was responsible somehow for the
former? I once mentioned this theory to Bill. He disagreed with it, claiming
that all of his skill arose from his decision, apparently as a first grader, to
“practice visualizing things” every day. – from On being Thurstonized.
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2 Recollection on metric spaces
Definition 2.1. A metric or a distance on a set X is a function

d: X ×X → R

such that it satisfies each of the following conditions for all points x, y, z ∈ X:
1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
2. d(x, y) + d(y, z) ≥ d(x, z);
3. d(x, y) = d(y, x).
The pair (X, d) is called a metric space.

Remark 2.2. This definition reflects our intuitive understanding of a distance:
it is always non-negative, and positive between distinct places (1), it satisfies
the triangle inequality (2) and it is symmetric (3). Observe, however, that
in practical situations distances are not always symmetric. For example, a
distance in a town with one way roads, when we are driving a car.

2.3 Lp-metrics

Example 2.4. Let R2 denote the set of all pairs of real numbers. The
function defined by

d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2

is a metric which is easy to check. It is called the Euclidean metric on the
plane. We imagine this metric space as a flat plane. ♣

Example 2.5. The function dp : R2 ×R2 → R defined by

dp((x1, x2), (y1, y2)) = p
√
|x1 − y1|p + |x2 − y2|p

is a metric which is (not so) easy to check. It is called the Lp-metric on
the plane. Observe that d2 is the Euclidean metric. These metrics have an
obvious generalisation to spaces Rn for all natural n. Notice that on the set
R of real numbers they are all equal. ♣

Example 2.6. The function d∞ : R2 ×R2 → R defined by

d∞((x1, x2), (y1, y2)) = max{x1 − y1, x2 − y2}

is a metric which is also easy to check. It is called the L∞-metric on the
plane. ♣
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Definition 2.7. Let (X, d) be a metric space, let x ∈ X, and let r ∈ R. The
subset

B(r, x) := {y ∈ X | d(x, y) ≤ r}

is called the closed ball of radius r centered at x. The subset

S(r, x) := {y ∈ X | d(x, y) = r}

is called the sphere of radius r centered at x.

2.8 Induced and intrinsic metrics

Definition 2.9. Let (X, d) be a metric space and let Y ⊂ X be a subset. The
induced metric dY on Y is defined by dY (x, y) := d(x, y) for all x, y ∈ Y .

Example 2.10. Let X = R2 − B(1, (0, 0)) be the complement of a closed
disc on the plane, a plane with a hole. Suppose it is equipped with a metric
induced from the Euclidean metric on the plane. Then the distance between
A = (−2, 0) and B = (2, 0) is equal to four. However, our intuition is that
in order to get from A to B we have to avoid the hole so the distance should
be bigger. ♣

Example 2.11. Let S1 ⊂ R2 be the unit circle on the plane. The distance
between points x, y is defined to be the length of the shortest arc from x to
y. Concretely, if x = (cosα, sinα) and y = (cos β, sin β), where α, β ∈ [0, 2π)
then

d(x, y) = min{|α− β|, 2π − |α− β|}.

This is called the intrinsic metric on the circle.
We also have the metric induced from the plane for which the distance
between x and y is the length of the line segment between them. That is

dind(x, y) =
√

(cosα− cos β)2 + (sinα− sin β)2.

♣

Example 2.12. Let S2 = {(x, y, z) ∈ R2 |x2 + y2 + z2 = 1} be the unit
sphere in three dimensional space. The natural intrinsic metric is defined
as follows. The distance between two points is the length of the shorest arc
joining them and contained in the (unique) great circle through these points.
This and the previous example generalise to higher dimensions. ♣
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Convention: When there is no metric mentioned, the sphere Sn is
always meant to be equipped with its intrinsic metric. Similarly, Rn is
meant to be endowed with the Euclidean metric.

Example 2.13. Let X be a graph and we define a metric d on X by saying
that every edge of X is isometric to the interval [0, 1] with its natural metric
induced from R. Let’s consider a few concrete examples:
1. Let X be the union of vertices and edges of a regular tetrahedron. The

distance between any two distinct vertices is equal to one.
2. Let X be the union of vertices and edges of a cube. Then the distance

between any two distinct vertices is equal eiter to one, two, or three.
3. Let X be the union of vertical and horizontal lines on the plane pass-

ing through point with integer coefficients (infinite squared paper). The
distance from (k, l) to (m,n) for k, l,m, n ∈ Z is equal to |k−m|+ |l−n|.

4. Let X be an infinite rooted tree pictured below.
Observe that every vertex can be uniquely described as a string of letters L
and R, or O if it is the origin. Namely, to get from the origin to a vertex we
follow the unique path and list the left and right turns. For example, the
vertex v is denoted by LRLR. The distance between LRLRLLLLLRRR
and LRLRRRRLL is equal to thirteen. In general, in order to compute
the distance we cross out the same beginings from both strings and sum
up the amout of remaining letters.

♣

O

V

Rooted tree
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2.14 Maps of metric spaces

Definition 2.15. A map f : (X, dX) → (Y, dY ) is called Lipschitz if there
exists a number C > 0 such that

dY (f(x1), f(x2)) ≤ C dX(x1, x2)

holds for every x1, x2 ∈ X. The number C is called a Lipschitz constant
of f .

Example 2.16. The inclusion ι : S1 → R2 of the circle in the Euclidean
plane is Lipschitz with respect to the intrinsic metric on the circle. The
Lipschitz constant of ι is equal to 2/π. ♣

Definition 2.17. A map f : (X, dX)→ (Y, dY ) is called an isometric em-
bedding if

dX(x1, x2) = dY (f(x1), f(x2))

holds for every x1, x2 ∈ X. If an isometric embedding f has an inverse
g : Y → X which is also an isometric embedding then f is called an isome-
try.

Example 2.18. The inclusion of a subset A ⊂ X is an isometric embedding
with respect to the metric induced from X.
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EXERCISES

1. Read carefully all examples and provide more details and make relevant
drawings if possible. For each example draw a few balls of various radii
centered at various points.

Make a list of things you don’t understand and a list of mistakes and
errors on this section.

2. Draw a circle of radius one centered at the origin of (R2, dp) for p ∈
{1, 2, 3, 4,∞}.

3. Draw two balls of radius one centered at the north pole of the unit sphere
S2. The first with respect to the metric induced from the Euclidean metric
on R3 and the second with respect to the intrinsic metric.

4. For which r the unit sphere S1 ∈ R2 endowed with the intrinsic metric is
isometric to the circle of radius r with the induced metric?

5. Prove that the set of all isometries of a metric space is a group with respect
to the composition.

6. For each example in this section give an example of a nontrivial isometry of
finite (infinite) order in the group of isometries, provided such an isometry
exists.

7. Prove that f : R→ R2 given by f(t) = x+ tv is an isometric embedding,
provided v is a vector with (the Euclidean) norm equal to one and x ∈ R2

is a point.
8. Give an explicit formula for the intrinsic metric on the unit sphere S2 ⊂ R3.

Generalise your solution to Sn ∈ Rn+1.
9. Prove that f : S1 → S2 given by f(cos t, sin t) = (cos t, sin t, 0) is an iso-

metric embedding. Prove that the inclusion of any great circle is an iso-
metric embedding.

10. Show that the inclusion ι : S1 → R2 is not an isometric embedding. Show
that it is Lipschitz and compute the Lipschitz constant.

8



3 Geodesics

3.1 The length of a path

Definition 3.2. Let (X, d) be a metric space and let [a, b] ∈ R be an interval
endowed with metric induced from the standard metric on the line R. A
continuous function

c : [a, b]→ X

is called a path or a curve. If c1 : [a1, b1]→ X and c2 : [a2, b2]→ X are two
paths then their concatenation is a path c : [a1, b1 + b2 − a2] → X defined
by

c(t) :=

{
c1(t) if t ∈ [a1, b1]

c2(t+ a2 − b1) if t ∈ [b1, b1 + b2 − a2]

The concatenation of more than two paths is defined inductively.

Definition 3.3. Let c : [a, b]→ (X, d) be a path. Its length is defined to be

L(c) := sup
a=t0<t1<···<tn=b

n∑
i=1

d(c(ti−1), c(ti)),

where the supremum is taken over all partitions (possibly infinite) of the
interval [a, b]. A path c is called rectifiable if its length is finite.

Example 3.4. Let c : [0, b]→ Rn be a straight interval. That is, c(t) = x+tv,
where x ∈ Rn is a point and v is a vector attached at x. Then L(c) = d2(x, y),
where y = x + bv. Indeed, any partition of [0, b] gives the same sum in the
above definition. ♣

Definition 3.5. Ametric space (X, d) is called a length space if the distance
between any two points x, y ∈ X is equal to the infimum of the lenghts of
rectifiable paths joining them. The metric d of a length space is called the
length metric.

Example 3.6. The plane with a hole (equipped with the induced metric)
is not a length space. The plane R2 with the metric dp is a length space.
Observe that a segment of a Euclidean straight line is a path of length equal
to the distance between its endpoints. ♣
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3.7 Geodesics

Definition 3.8. Let (X, d) be a metric space. A path γ : [a, b]→ X is called
a geodesic if for every c ∈ [a, b] there exists an ε > 0 such that for every
s, t ∈ (c− ε, c+ ε) we have that d(γ(s), γ(t)) = |t− s|.

Remark 3.9. If γ is a geodesic then L(γ|[s,t]) = d(γ(s), γ(t)) for s, t as in
the above definition. It means that a geodesic locally minimises the distance
or that locally a geodesic is the shortest path between its endpoints. It is
sometimes useful to imagine that the light in a metric space X travels along
geodesics.

Example 3.10. A segment of a straight line in the Euclidean Rn is a
geodesic. More precisely, a path γ : [0, a]→ Rn given by the formula γ(t) =
x+ tv, where x, v ∈ Rn, is a geodesic. Notice that γ′ : [0, a/2]→ Rn defined
by γ′(t) = x + 2tv has the same image as γ (which is a line segment) but it
is not a geodesic. ♣

Remark 3.11. We should not confuse a path with its image. Intuitively
speaking, we should imagine a path γ : [a, b] → X as a moving point in X
where t ∈ [a, b] can be thought of as time. Then the condition d(γ(s), γ(t)) =
|t− s| tells us that a point is moving with the speed one.

Example 3.12. Let S1 be the unit circle with its intrinsic metric. A path
γ : [0, 3]→ S1 defined by γ(t) = (cos t, sin t) is a geodesic. Observe, however,
that the distance between γ(0) and γ(3) is not equal to three but to 2π −
3. This example shows that, in general, a geodesic does not minimise the
distance globally. ♣

Definition 3.13. Let X be a metric space. If for every two points x, y ∈ X
there exists a geodesic from x to y then X is called a geodesic metric space.

Example 3.14.
1. The plane with a hole is not a geodesic metric space.
2. Let X ⊂ Rn be a subset of the Euclidean space equipped with the induced

metric. It is a geodesic metric space if and only if it is convex.
3. The circle with its intrinsic metric is a geodesic metric space.
4. A connected graph is a geodesic metric space.

♣
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3.15 The angle between geodesics

Recall that if ∆ ⊂ R2 is a triangle on the Euclidean plane then the law of
cosines states that

c2 = a2 + b2 − 2ab cos(γ),

where a, b, c are lengths of the sides of ∆ and γ is the angle oposite side c.
Thus if we know the lengths of the sides of an Eulidean triangle then we can
compute the angle by

γ = arccos
a2 + b2 − c2

2ab
.

Definition 3.16. Let (X, d) be a metric space and let γ, γ′ : [0, a] → X be
two geodesics from a point p. That is, γ(0) = γ′(0) = p. If the limit

lim
t,s→0

arccos

(
s2 + t2 − d(γ(s), γ′(t))2

2st

)
exists then it is called the angle between γ and γ′ at p and it is denoted by
∠p(γ, γ

′) and it is a number in [0, π].

Example 3.17. The angle between two geodesics in the Euclidean space
issuing from the same point is equal to their Euclidean angle. ♣

Lemma 3.18. If γ : [−1, 1]→ X is a geodesic then the angle at the midpoint
γ(0) between two parts of γ is equal to π.

Proof. Let γ1, γ2 : [0, 1] → X be defined by γ1(t) = γ(t) and γ2(t) = γ(−t).
It follows from definition of a geodesic, that there exists an ε > 0 such that
for every s, t ∈ (−ε, ε) we have that d(γ(s), γ(t) = |s − t|. Hence we have
that d(γ1(s), γ2(t)) = d(γ(s), γ(−t)) = |s− (−t)| = |s+ t|. Consequently,

∠(γ1, γ2) = arccos

(
s2 + t2 − d(γ1(s), γ2(t))2

2st

)
= arccos

(
s2 + t2 − |s+ t|2

2st

)
= arccos

(
s2 + t2 − s2 − 2st− t2

2st

)
= arccos(−1) = π,

which proves the statement.
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Example 3.19. Let X be the surface of a cube and let γ : [0, 1] → X be a
(red) geodesic contained in a diagonal of the top face and such that γ(0) = v
is a vertex of X. Let γ′ : [0, 1] → X be a geodesic such that γ′(0) = γ(0).
Let us compute the angle between γ and γ′ at v. The following figure shows
several possibilities. Let us look at the angles:

Alexandrov angles

1. ∠(red,blue)= arccos( 3√
10

) ∼= 0.32175.

2. ∠(red,magenta)= π/4.
3. ∠(red,green)= π/2.
4. ∠(red,brown)= 3π/4.
We figure out these angles without making any computations. We just unfold
the neighbouring faces to make them flat and we look at the Euclidean angle.
We see that the maximal possible angle is 3π/4 < π. Consequently, no
path passing through a vertex of a cube can be a geodesic, according to
Lemma 3.18. Hikers know it very well: there is always a shortcut avoiding
the summit. ♣

Example 3.20 (Slit plane). Let X = R2 \D, where D = {(x, y) ∈ R2 | x =
y, x > 0}, be equipped with the length metric d. Let γ1, γ2 : [0,∞) → X
be geodesics rays defined by γ1(t) = (t, 0) and γ2(t) = (0, t). These are just
geodesic parametrising the rays of coordinate axes. Observe that the distance
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d ((s, 0), (0, t)) = s+ t. This implies that

∠(γ1, γ2) = arccos

(
s2 + t2 − d(γ1(s), γ2(t))2

2st

)
= arccos

(
s2 + t2 − |s+ t|2

2st

)
= arccos

(
s2 + t2 − s2 − 2st− t2

2st

)
= arccos(−1) = π.

In simple words this example says that the angle between the positive rays
of coordinate axes on the slit plane is equal to π. ♦

Proposition 3.21. Let (X, d) be a metric space and let γ1, γ2, γ3 : [0, 1]→ X
be geodesics issuing from the same point p ∈ X. Then

∠(γ1, γ3) ≤ ∠(γ1, γ2) + ∠(γ2, γ3),

provided that the angles are defined.

Proof. Suppose that the statement is not true. Then there exists a δ > 0
such that

∠(γ1, γ3) > ∠(γ1, γ2) + ∠(γ2, γ3) + 3δ.

Let fij(s, t) = arccos
(
s2+t2−d(γi(s),γj(t))

2

2st

)
for i, j ∈ {1, 2, 3}. Since the angle

∠(γi, γj) is the limit of fij as s, t→ 0, there exists ε > 0 such that

f12(s, t) < ∠(γ1, γ2) + δ

f23(s, t) < ∠(γ2, γ3) + δ

f13(s, t) > ∠(γ1, γ3)− δ > 0

for all 0 < s, t < ε. Let α > 0 be such that f13(t1, t3) > α > ∠(γ1, γ3) − δ
for some 0 < t1, t3 < ε. Let x1, x3 ∈ R2 be such that dR2(0, x1) = t1,
dR2(0, x3) = t3 and the Euclidean angle between the segments [0, x1] and
[0, x3] is equal to α. Observe that the inequality f13(t1, t3) > α implies that

dR2(x1, x3) < d(γ1(t1), γ3(t3)).

On the other hand, the inequality α > ∠(γ1, γ3)− δ yields

α > ∠(γ1, γ2) + ∠(γ2, γ3) + 2δ
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which implies that there exists x2 ∈ [x1, x3] such that the angle α1 be-
tween [0, x1] and [0, x2] is bigger than ∠(γ1, γ2) + δ (respectively the an-
gle α3 between [0, x2] and [0, x3] is bigger than ∠(γ2, γ3) + δ). It follows
that d(γ1(t1), γ2(t2)) < dR2(x1, x2) and d(γ2(t2), γ3(t3)) < dR2(x2, x3), where
t2 = dR2(0, x2) < ε.
Finally we get that

d(γ1(t1), γ3(t3)) > dR2(x1, x3) = dR2(x1, x2) + dR2(x2, x3)

> d(γ1(t1), γ2(t2)) + d(γ2(t2), γ3(t3))

which violates the triangle inequality in (X, d). This contradiction finishes
the proof.
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EXERCISES

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

Make a list of things you don’t understand and a list of mistakes and
errors in this section.

2. Let R2 be the Euclidean plane and let γ : R → R2 be defined by γ(t) =
xt + y, where x = (x1, x2), y = (y1, y2) ∈ R2. Prove that γ is a geodesic
if and only if ‖x‖2 =

√
|x1|2 + |x2|2 = 1. State and prove the analogous

criterion for the dp metric on R2.

3. Consider the space pictured right
and compute the angles of between
the black geodesic and every other
geodesic drawn. Which concatena-
tions are geodesics?
Compute the distance between any two vertices.

4. What is the circumference of a circle of radius r centered at the interior
vertex of the space from the previous part.

5. Let γi for i = 1, 2, 3 be geodesics starting from the same point of a metric
space. Suppose that the angle ∠(γ1, γ2) = ∠(γ2, γ3) = 3π/4. What can
you say about the angle ∠(γ3, γ1)?

6. Draw all geodesics between diagonal vertices on the surface of the unit
cube.

7. Draw balls of radii ranging between zero and three and centered at a
vertex or at the centre of a face of the surfac eof the unit cube. Compute
the circumference in several cases.

8. Let X be the lateral surface of a right cone of directrix d and unit gener-
atrix. Let p and q be points in the base circle. Draw a geodesic between
p and q and compute the distance between them.

9. Let X = S1 × R ⊂ R3 be the infinite cylinder based on the unit circle.
Give a formula for the intrinsic metric and investigate geodesics.

10. State and prove the converse of Lemma 3.18.
11. Let 0 = t0 < t1 < . . . < tn < . . . be an infinite sequence of numbers

converging to 1. Let X = [−1, 1] and let c : [0, 1] → X be any path
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stisfying the following conditions: c(0) = 0 and c(tn) =
∑n

k=1(−1)k+1/k.
Show that c is not rectifiable.

Hint: Its length is bounded below by the sum of harmonic series.
12. The plane R2 equipped with the d1 metric is called the Manhattan

plane. Recall that, d1(x, y) = d1 ((x1, x2), (y1, y2)) = |x1− y1|+ |x2− y2|,
where x = (x1, x2) and y = (y1, y2) are points on the plane R2. Moreover,
let ‖x‖1 = d2(x, 0) = |x1|+ |x2|.

(a) Let γ : R→ R2 be given by γ(t) = xt+ y. Show that γ is a geodesic
if and only if ‖x‖1 = 1.

(b) Deduce from the previous item that the Manhattan plane is a geodesic
metric space.

(c) Let γ, γ′ : [0,∞)→ R2 be defined by γ(t) = (t, 0) and γ′(t) = (at, bt),
where a, b ≥ 0 and a+ b = 1. Show that the angle between γ and γ′
does not exist in general (for example, when a = b = 1

2
).

(d) The upper angle between geodesics γ and γ′ is defined similarly to
the angle with the limit replaced by limit superior. Compute the
upper angle between geodesics from the previous item.

(e) How many geodesics are there between (0, 0) and (1, 1)? How many
of them are distance minimising?

(f) How many geodesics are there between (0, 0) and (1, 0)? How many
of them are distance minimising?
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4 Polygonal complexes
Definition 4.1. A polygonal complex X is a union of convex polygons
(called faces of X)

X =
⋃
i∈I

Pi

such that if i 6= j then the intersection Pi ∩ Pj is either empty or it is a
common edge or it is a common vertex of Pi and Pj.

Example 4.2. The surface of the cube is a polygonal complex. It has six
faces, each being a square. Similarly the surface of any regular solid in the
three dimensional space is a polygonal complex. ♣
Example 4.3. The plane can be subdivided (or tiled) into infinitely many
squares such that exactly four meet at any vertex. This is also a polygonal
complex. Similarly the plane can be regularly tiled by equilateral triangles
or by regular hexagons. ♣
Example 4.4. Let X be a square complex (i.e. a complex in which all faces
are squares) such that each vertex belongs to exactly five squares.

Square complex with five squares at each vertex
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Let us try to understand this complex briefly by constructing it step by step.
Start with a square (black) and attach the next generation of twelve squares
(dark cyan); imagine a street intersection with four tower blocks around it.
The next generation (light cyan, only few of them drawn) will consist of sixty
squares. The physical construction would be very difficult to continue due
to exponentially growing number of squares. This complex provides a good
intuition of what does the hyperbolic plane look like. ♣

4.5 Metrics on polygonal complexes

The purpose of this section is to define a natural metric on a polygonal
complex X. Let c : [a, b] → X be a path for which there exist numbers
a = a0 < a1 < a2 < · · · < an = b such that each restriction c|[ai,ai+1] is a
rectifiable path in a face ofX, where each face is equipped with the Euclidean
metric. We define the length of c by

L(c) =
n∑
i=1

L(c|[ai−1,ai]),

where the lengths on the right hand side are computed with respect to the
Euclidean metric on the faces on X. In simple words, we compute the Eu-
clidean lengths of pieces of the path c contained entirely in the faces of X
and take the sum.

Example 4.6. Suppose that the cube below has edges of length four. Then
the length of the red curve is equal to

√
20 + 1 + π +

√
5 = 1 + 3

√
5 + π. ♣

Length of a curve on a cube.
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Definition 4.7. Let X be a polygonal complex. We define a metric d on X
by

d(x, y) = inf
c
L(c),

where the infimum is taken over all paths c : [a, b]→ X from x to y.

Remark 4.8. The polygonal metric d defined above is the maximal metric on
X such that the inclusion of each face is an isometric embedding.

4.9 The Euler characteristic

Definition 4.10. Let X be a finite polygonal complex or a finite graph. The
number

χ(X) := V − E + F,

where V is the number of vertices, E the number of edges, and F the number
of faces, is called the Euler characteristic of X.

Example 4.11. The Euler characteristic of a regular tetrahedron, a cube,
a regular octahedron, a regular dodecahedron and a regular icosahedron is
equal to two. ♣

Example 4.12. Let X be a polygonal complex in pictured below. Its faces
are trapezia and there are sixteen of them. Its Euler characteristic is equal
to zero. ♣

Euler characteristic zero.
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Example 4.13. The following figure shows a polygonal complex with Euler
characteristic equal to −4. ♣

Euler characteristic −4.

Definition 4.14. Let X be a polygonal complex. A subdivision of X is
a polygonal complex obtained from X by applying finitely many times the
following two operations:
1. adding a vertex to an edge;
2. adding an edge contained in a face and joining two existing vertices.

Example 4.15. The following figure shows a cube subdivided in such a way
that the top face consists of four squares, the left hand side face consists of
a square and three triangles and the front face consists of four triangles. ♣

Subdivision of the cube.
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Theorem 4.16. Let X be a finite polygonal complex and let X ′ be a subdi-
vision of X. Then χ(X) = χ(X ′).

Proof. The subdivision X ′ arises by adding vertices and edges to X. Observe
that placing an additional vertex on an existing edge does not change the
Euler characteristic. Indeed, this operation increase the number of vertices
by one and the number of edges also by one. Next observe that adding an
edge connectig two vertices and contained in a face also does not change the
Euler characteristic. It increases the number of edges by one and the number
of faces also by one.

Example 4.17. The following figure shows the power of Theorem 4.16. The
Euler characteristic of this polygonal complex is equal to two.

A polygonal sphere

All you need to observe is that it is a subdivision of, for example, a cube.
Of course, this sphere has no shape of a cube, but what matters is the
combinatorial structure (the number of vertices, edges and faces). ♣

Theorem 4.18. If P is a finite polygonal complex isometric to a convex
polygon then its Euler characteristic is equal to one.

Proof. Let P be a finite polygonal complex isometric to a convex polygon
Q. We can thus assume that P ⊂ R2 is a subset of the plane. Since P is
finite, it has finitely many edges E1, E2, . . . , Ep. Let E ⊂ P be an edge and
let L ⊃ E be a straight line on the plane containing E. Let E ′ = L ∩ P .
The intersection E ∩ Ei is either a single point or the whole Ei. Let PE be
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the subdivision of P obtained by adding vertices for each of the above sigle
point intesection and adding the edges of the form E ∩ Fj, where Fj ⊂ P
are faces of P . Repeat this procedure for every edge of P . Observe that
the resulting subdivision P ′ is a subdivision of the polygon Q and hence
χ(P ) = χ(P ′) = χ(Q) = 1.

Proposition 4.19. The Euler characteristic of a tree is equal to one.

Proof. Let T be a tree, i.e. a connected graph without circuits. The proof
is by induction on the number of vertices. If T has one vertex (and hence
no edges) then its Euler characteristic is obviously one. Suppose that the
statement is true for every tree with n vertices. Let T be a tree with n + 1
vertices. Then T has a vertex that belong to exactly one edge (a leaf).
Discarding this vertex and its edge does not change the Euler characteristic
and T becomes a tree with n vertices. It follows from the induction hypothesis
that χ(T ) = 1, which proves the proposition.

Corollary 4.20. If G is a connected graph then its Euler characteristic is
at most one.

Proof. Let T ⊂ G be a minimal subgraph of G containing all the vertices
of G. Any such T is a tree because if it had a circuit then it would not
be minimal. Thus T and G have the same number of vertices and G has
at least as many edges as T which shows that χ(G) ≤ χ(T ) = 1, due to
Proposition 4.19.

4.21 Polygonal surfaces

Definition 4.22. A polygonal complex X is called a polygonal surface if
every point in X has a neighbourhood homeomorphic to a neighbourhood of
a point in a convex polygon. The union of edges belonging to exactly one
face is called the boundary of X. If X has finite number of faces and has
no boundary then it is called closed.

Example 4.23. The following polygonal complexes are not polygonal sur-
faces. The first has an edge belonging to four faces and the second has a
vertex that belongs to faces which do not share an edge.
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These are not surfaces.

Theorem 4.24. If X is a closed connected polygonal surface then its Euler
characteristic is at most 2.

Proof. At a price of a suitable subdivision we may assume that X is a tri-
angular closed surface. Remove one face from X; the Euler characteristic
has decreased by one. We have now a triangular surface X ′ with bound-
ary. Apply the following procedures as long as the Euler characteristic is not
changed:
1. Remove a triangle with only one edge adjacent to the exterior. This

removes one face and one edge and hence does not change the Euler char-
acteristic.

2. Remove a triangle with two edges shared by the exterior. This removes
one face, two edges and one vertex and so does not change the Euler
characteristic.

Remark 4.25. The Euler characteristic could be changed if at some stage
there was a vertex shared by exactly two triangles. Then removing one of
these triangles would increase the Euler characteristic.
Let T be a triangle in the resulting complex. Apply the following procedures
provided they don’t change the Euler characteristic:
1. Remove a vertex, two edges and interior of T ; it leaves just an edge of T .
2. Remove an edge and the interior of T ; it leaves the union of two remaining

edges.
In the proces our complex is not a polygonal complex anymore, it is a union of
edges and faces. After the procedure terminates we are left with a connected
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graph G. Since χ(G) ≤ 1, due to Corollary 4.20, we obtain that

χ(X) = χ(X ′) + 1 = χ(G) + 1 ≤ 2

as claimed.

4.26 Constructing surfaces with given Euler character-
istic

Let X and Y be polygonal surfaces. Suppose that X and Y contain an
isometric n-gonal face (for example, a triangular face which we can always
achievie by a suitable subdivision). Remove such a face from both X and Y .
We obtain surfaces X ′ and Y ′ with n-gonal holes. Define a new polygonal
surfaceX#Y to be the union ofX ′ and Y ′ with the boundaries of the n-gonal
holes identified.

Definition 4.27. If X and Y are polygonal surfaces then the surface X#Y
is called a connected sum of X and Y .

Proposition 4.28. The Euler characteristic of a connected sum of surfaces
X and Y is equal to

χ(X#Y ) = χ(X) + χ(Y )− 2.

Proof. The Euler characteristic of X (respectively Y ) with a hole is equal
to χ(X) − 1 (respectively χ(Y ) − 1). Thus the Euler characterictic of their
disjoint union is equal to χ(X) − 1 + χ(Y ) − 1. The connected sum is
obtained from the disjoint union by identifying suitable edges and vertices
and the number of edges and vertices is decreased by n which do not change
the Euler characteristic.

Example 4.29. The g-fold connected sum of a polygonal torus has Euler
characteristic equal to 2 − 2g. Such a complex is called a polygonal surface
of genus g. ♣
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Polygonal Möbius band.

Example 4.30. The figure above shows a polygonal Möbius band. Its
boundary (drawn in red) is a sixteen-gon. Let X be a closed polygonal
surface obtained from the above Möbius band and a polygonal 16-gon by
identifying the boundaries. In other words we take a polygonal 16-gon and
attach it to the Möbius band along the boundary. This cannot be physically
done in three dimensional space. We can quickly calculate that the Euler
characteristic of the surface X is equal to one. Such a surface is called a
polygonal projective plane. ♣

Example 4.31. Taking a connected sum of a polygonal surface of genus
g with a polygonal projective space we obtain a closed surface with Euler
characteristic equal to 2− 2g − 1. ♣

The above examples prove the following result.

Theorem 4.32. For any integer k ≤ 2 there exists a closed polygonal surface
X with χ(X) = k.

Remark 4.33. There is a theorem stating that the above examples are all
possible closed surfaces up to a homeomorphism. The proof uses a very
basic algebraic topology.
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EXERCISES

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

2. Let X be a square surface obtained as follows. Take a solid cube sub-
divided into 27 equal cubes. Remove the central cube and each cube
containing the centre of a face of the big cube (seven cubes removed). Let
X be the surface of the remaining solid. Compute the Euler characteristic
χ(X).

3. Construct a triangular closed surface with the Euler characteristic equal
to zero.

4. Let X be a polygonal surface such that all faces of X are k-gons for some
k > 2 and m faces meet at each vertex. Proof the following statements:

(a) 2E = kF ; (b) 2E = mV ; (c) kF = mV .

5. Take a polygonal surface of genus g (for example g = 2), remove one face,
subdivide, and glue in the Möbius band. What is the Euler characteristic
of the resulting surface?

6. Take two Möbius bands and glue them together by identifying their bound-
aries. What is the Euler characteristic of the resulting surface?

7. The surface from the previous part has zero Euler characteristic. Prove
that it is not homeomorphic to a torus.

8. Suppose that X is a triangular closed surface such that six triangles meet
at each vertex. What is the Euler charateristic of X?

9. Suppose that X is a triangular closed surface such that k triangles meet
at each vertex. What is the Euler charateristic of X?

10. Construct a closed square surface made from 12 squares in which 6 squares
meet at each vertex. You can do this as follows. Take two cubes as in
the picture below. Cut them open along the thick black lines. Glue the
white face of the right hand side cube to the green face of the left hand
one and the yellow face to the red one. Repeat the procedure at all edges
parallel to the thick black one (four in total in each cube). Thus the
two orange vertices of both cubes become one in which six squares meet:
white-green-blue-yellow-red-black-white. This procedure is impossible in
our three dimensional space. Compute the Euler characteristic of the
constructed polygonal surface.
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Construction of a square complex in which 6 squares meet at each vertex

11. Try to give a rigorous definition of the above surface. For example, the
expressions cut open or glue the face to another face are mathematically
meaningless. We could say that our surface is obtained from a disjoint
union of 12 squares by introducing an appropriate equivalence relation on
the set of the boundary points of the squares.

12. Let C be the surface of the unit cube and let A ∈ C be a vertex. Is there
a geodesic γ : [a, b]→ C such that γ(a) = γ(b) = A?

13. The same question as in the previous exercise for the case of surfaces of
other Platonic solids (tetrahedron, octahedron, dodecahedron and icosa-
hedron).
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5 The Gauss-Bonnet theorem for polygonal com-
plexes

Definition 5.1. Let v ∈ X be an interior vertex of a polygonal surface. The
curvature of X at v is defined to be

K(v) := 2π − (α1 + α2 + . . . αn),

where αi are all angles at the vertex v. We also say that X is
• positively curved at v if K(v) > 0;
• flat at v if K(v) = 0;
• negatively curved at v if K(v) < 0.

Example 5.2. The picture shows examples of positively curved (the curva-
ture of a vertex in a cube is equal π/2), flat and negatively curved (here the
curvature is −π/2) polygonal surfaces. ♣

Positive curvature Flat Negative curvature

The following theorem is a simple example of a profound connection between
geometry and topology. A version of it was known to Gauss and a special
case was published by Bonnet. The interplay between geometry and topology
has been extensively studied since then.

Theorem 5.3. Let X be a closed polygonal surface. The sum of curvatures
at all vertices of X is equal to 2π times the Euler characteristic of X.

Proof. Let αi denote an angle and let αi(v) denote an angle at a vertex v and
let αi(f) denote an angle of a face f . Let Fk denote the number of k-gonal
faces of X.
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∑
v

K(v) =
∑
v

(2π −
∑

αi(v)) (5.1)

= 2πV −
∑

αi (5.2)

= 2πV −
∞∑
k=3

Fk(k − 2)π (5.3)

= 2πV −
∞∑
k=3

(πkFk − 2πFk) (5.4)

= 2πV + 2πF − π
∞∑
k=3

kFk (5.5)

= 2πV + 2πF − 2πE (5.6)
= 2π(V − E + F ) = 2πχ(X) (5.7)

Let us explain each equality in the above calculation:
1. This is just the definition of the curvature.
2. We are summing up all the angles at all vertices and hence we are summing

up all the angles of X.
3. We rearange the sum in such a way we are summing up the angles of all

faces. Since the complex is finite the sum is actually finite.
4. Direct computation.
5. Again.
6. We use the fact that the sum

∑
kFk is equal to twice the number of edges

(exercise).
7. The rest is obvious.

The amazing thing of the Gauss-Bonnet theorem is that it tells us what is
the topology of a closed surface from from the geometric information about
the curvature of vertices. For example, if we know that all vertices are
nonegatively curved and some of them are positively curved then the surface
has to be a polygonal sphere!
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5.4 The Gauss-Bonnet theorem for non-closed surfaces

Definition 5.5. If v is a vertex on the boundary of a polygonal surface then
its curvature is defined to be

K(v) = π − (α1 + . . .+ αk),

where αi are angles at v.

The follwoing result is a general form of the Gauss-Bonnet theorem for
polygonal surfaces. Its proof is left as an exercise.

Theorem 5.6. If X is a finite polygonal surface then∑
v

K(v) = 2πχ(X)

30



EXERCISES

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

2. Prove the general version of the Gauss-Bonnet theorem.
3. Let X be a closed triangular surface in which six triangles meet at each

vertex. What is the Euler characteristic of X?
4. What can you say about the Euler characteristic of a closed polygonal

surface made of k-gons where k ≥ 6?
5. Let X be a closed heptagonal surface in which three faces meet at each

vertex. Show that the number of vertices is divisible by seven.
6. Let X be a k-gonal surface in which three faces meet at each vertex.

Show that (6− k)V = 2kχ(X). Derive interesting consequences for some
concrete values of k. For example, if k = 11 then the number of vertices
is divisible by 22 and |χ(X)| is divisible by five.

31



6 Geometric meaning of curvature
In this section we are going to examine some geometric features of polygonal
surfaces and how the curvature affetcs them.

Definition 6.1. A polygonal surface is called:
• non-positively curved if all internal vertices have non-positive defects;
• non-negatively curved if all internal vertices have non-negative defects.

Remark 6.2. We don’t define positively or negatively curved polygonal sur-
faces because they are flat almost everywhere (every face is a flat polygon).
Later we will define a different notion of a curvature and we will see examples
of nowhere flat surfaces (e.g. a sphere).

6.3 Perimetrer

We know that the perimeter of a disc of radius r on the Euclidean plane is
equal to 2πr, where π ' 3.14.... Let X be a polygonal surface and let D(p, r)
denote the ball of radius r centered at p. In the sequel, we shall call it a disc
of radius r centered at p. Let πX : X × [0,∞)→ R be a function defined by

πX(p, r) =
Perimeter(D(p, r))

2r
.

In the case of the Euclidean plane the function is constant and equal to the
number π.

Example 6.4 (The cube). If X is the unit cube then we have the following
situation. If D(p, r) does not contain a vertex then its perimeter is equal to
2πr and the disc itself is isometric to the Euclidean disc of the same radius.
Suppose that p is a vertex and r ≤ 1. We see that the perimeter of the
disc is now equal to 3

4
(2πr). For a radius bigger than one the formula for the

perimeter is more complicated, although the values of πcube are not bigger
than π and that for r ≥

√
5 the value πcube(p, r) = 0. ♣

Example 6.5 (Negative curvature). Let X be a square surface such that
five squares meet at each vertex as in Example 4.4. If p is a vertex then we
see that the perimeter of a disc of radius at most one is equal to 5

4
(2πr) and

in general the function πX grows exponentially fast with the radius. ♣
We see in the above examples that in the case of positive curvature disc
tend to have smaller perimeter than flat discs of the same radius and in the
case of negative curvature they tend to have bigger perimeter.
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6.6 Geodesics and geodesic polygons

Let X be a geodesic metric space and let x, y ∈ X be two points. Since X
is a geodesic space there exists a path of length d(x, y) from x to y. The
image of this path is called a geodesic segment and it is denoted by [x, y].
Notice that the notation [x, y] does not specify a unique geodesic segment as
there may be many of them. A closed geodesic in an isometric embedding
S1(R)→ X of the circle of radius R.

Definition 6.7. Let X be a geodesic metric space. A geodesic n-gon
consists of n points x1, . . . , xn ∈ X called vertices and n geodesic segments
[x1, x2], . . . , [xn−1, xn], [xn, x1] called edges. A geodesic n-gon is called de-
generate if it has a pair of edges intersecting at infinitely many points.

A geodesic (n−1)-gon can be made into an n-gon by adding a vertex to the
interior of an existing edge. If an n-gon is not obtained from an (n− 1)-gon
by this procedure it is called proper. In other words, in a proper n-gon the
angle between geodesic segments meeting at a vartex is different from π.

Example 6.8. A geodesic 3-gon is called a geodesic triangle. A geodesic
triangle in the Euclidean plane is the usual triangle. A geodesic triangle on
a sphere is called spherical triangle. A geodesic 2-gon is called digon or
a diangle. Only degenerate digons exist on the Euclidean plane. However,
on the plane with the d1-metric there are infinitely many pairwise distinct
digons between any two distinct pooints. The same is true for the sphere.
For example there are infinitely many digons between any pair of antipodal
points. A 1-gon is called a unigon. They do not exist on the euclidean
plane. A 0-gon is the image of a closed geodesic. ♦

Let γ, γ′ : [0,∞)→ X be two geodesic rays starting at p = γ(0) = γ′(0). In
the following examples we discuss a typical behaviour.

Example 6.9 (The cube). Let γ and γ′ be two distinct geodesic on the cube
starting at a vertex v and initially contained in the same face. Assume that
the angle of both γ and γ′ with the diagonal of this face at v is α < π

10
.

Observe that γ and γ′ intersect again forming a digon.

Example 6.10. If we have two distinct geodesic rays on the Euclidean plane
starting from the same point then they go away from each other and they
never meet again. So there are no diangles on the Euclidean plane (as we
always knew). ♣
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Let’s investigate consequences of existing of a diangle in a polygonal surface.
Let D ⊂ X be a polygonal subcomplex such that its boundary is a diangle
with vertices p, q ∈ X. Let α and β be the internal angles of D at p and q
respectively. It follows from the Gauss-Bonnet theorem that

2πχ(D) =
∑
v

K(v)

= π − α + π − β +
∑

v∈int(D)

K(v)

= 2π − (α + β) +
∑
v∈intD

K(v).

Since the Euler characteristic of a polygonal diangle is at most one we obtain
the following inequality. ∑

v∈intD

K(v) ≤ α + β.

That is, the sum of the curvatures at the internal vertices of D is at most
α + β.

Corollary 6.11. If X be a non-positively curved polygonal surface then it
does not contain polygonal diangles of Euler characteristic one.

Corollary 6.12. If X is a simply connected non-positively curved polygonal
surface then it does not contain diangles. In particular, two distinct geodesics
starting from the same point never meet again.

Corollary 6.13. Let X be a simply connected non-positively curved polygonal
surface. If γ is a geodesic between p and q then it is unique.

6.14 Triangles

A polygonal triangle in a polygonal surface is a subcomplex whose bound-
ary is a geodesic triangle whose edges intersect only at the vertices of the
triangle.
We have a reasonably good intuition for triangles on the Euclidean plane.
For example, we know that the sum of internal angles is equal to π and many
other nice things. Let us try to gain some intuition for triangles in positive
and negative curvature. We will do it by looking at our usual examples.
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Example 6.15 (The cube). Let T be a triangle on the unit cube with internal
angles α, β, γ. It’s Euler characteristic is equal to one and by applying the
Gauss-Bonnet theorem we get that

2π = 3π − (α + β + γ) + k
π

2
,

where k is the number of vertices of the cube contained in the interior of T .
This implies that

α + β + γ = π + k
π

2
.

Hence if a triangle contains a vertex of the cube then the sum of its internal
angles is bigger that π. ♣

p

q

r

A triangle in a negatively curved complex

Example 6.16 (Negative curvature). Let X be the square complex from
Example 4.4. That is, simply connected square complex in which five squares
meet at each vertex. Let γ and γ′ be perpendicular geodesic rays (drawn in
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red) starting at the middle p of a face and parallel to its sides. We are
interested in the triangle with vertices p, q := γ(s) and r := γ′(t). If s, t are
small then the triangle is isometric to an Euclidean triangle (its third side
is drawn in bright green). However, if s, t are big then the triangle looks
much different from an Euclidean triangle. Observe that the yellow line is a
geodesic from q to r. The only thing we need to check is that the angle when
it passes through a vertex near p is equal to π and this is an easy exercise.
It means that the yellow ’shortcut’ from q to r is almost of the same length
as the red route. ♣

Example 6.17. Suppose we have a triangle with angles α, β and γ in a
non-positively curved and simply connected polygonal surface. The simple
connectivity implies that the subcomplex enclosed by the triangle has Euler
characterictic equal to one. The Gauss-Bonnet formula implies that the sum
of angles α + β + γ is at most π. ♣

6.18 A ’practical’ application

Imagine a region in the Highlands and approximate it with a polygonal com-
plex. Observe that positively curved vertices are the summits and kettles and
most of the region are mountain passes which are negatively curved. This
implies that there are hardy any shortcuts in the mountains and hence it is
very easy to get lost if we rely on our Euclidean intuition. Let’s look at an
example presented in the following figure. Suppose we want to go for a hike
from point r through p (where we take a right turn) to q and return. We
take a decision based on our Euclidean intuition to take a 45◦ turn at q and
go along the yellow path. At the point o we loose our confidence and we ask
for a shortest path back to r. It is the green path which looks like we almost
need to go back.
Of course, in the reality mountains are not as negatively curved as our
example.
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q

r

o

Getting lost in polygonal mountains
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EXERCISES

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

2. Give a formula for πX(r, v) where X is the surface of

(a) the cube,
(b) the regular tetrahedron,
(c) the regular octahedron,

and v is a vertex and r ≥ 0 is arbitrary. In the case of the cube work out
the case when v is the centre a face.

3. Give a formula for πS2(r, p).
4. Give a formula for πR2(r, 0), where R2 is equipped with either L1.
5. Construct a closed surface with all its vertices negatively curved.
6. Construct a closed surface in R3 with all its vertices negatively curved.

Remark 6.19. When a professional geometer is asked a question:

Does there exist a closed polygonal surface in R3 with all vertices negatively
curved?

most of them answer in the negative (including myself a few years ago).
This is because the analogous statement for smooth surfaces in R3 is not
true: a smooth closed surface in R3 always has regions where it is pos-
itively curved. An earlier version of this course had an exercise which
asked for a proof that such a polygonal surface cannot exist in R3. Only
when I was challenged by the students I came up with examples. Since
then it is one of my favourite geometric problems. The first geometer who
gave the right answer straight away was Anton Petrunin and he included
this problem in his book.

7. Prove Corollaries 6.11, 6.12 and 6.13.
8. Let X be the lateral surface of a right circular cone with unit generatrix

and directrix equal to 3π/2. Is a neighbourhood of the apex isometric to
a neighbourhood of a vertex of a cube?

9. Let X and Y be the lateral surfaces of right circular cones with unit
generatrices. When do their apices have isometric neighbourhoods?
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7 Spheres and hyperbolic spaces

7.1 The intrinsic metric on a sphere

Recall that the Euclidean scalar product on the space Rn+1 is defined by

〈x, y〉 =
∑

xiyi,

where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). It can be used to de-
fine the Euclidean angle between nonzero vectors x and y by the following
identity:

∠(x, y) = arccos
〈x, y〉
‖x‖‖y‖

,

where ‖x‖ =
√
〈x, x〉. Let Sn(R) = {x ∈ Rn+1 | 〈x, x〉 = R2} be the sphere

of radius R centered at the origin in the Euclidean space. The sphere of
radius one will be simply denoted by Sn. The following formula defines a
metric on Sn(R):

d(x, y) = R arccos
〈x, y〉
R2

.

In particular, if R = 1 then the distance between x and y is simply the angle
between them.

Lemma 7.2. The above formula defines a metric on Sn(R).

Proof. Observe that it is enough to prove it for the unit sphere. We have that
d(x, y) if and only the scalar product 〈x, y〉 = 1 which implies that the angle
between x and y is zero which means that x = y. The symmetry follows from
the symmetry of the scalar product and the triangle inequality follows from
a general fact that if γ1, γ2, γ3 are geodesics in a metric space with angles
between all pairs of them defined then

∠(γ1, γ3) ≤ ∠(γ1, γ2) + ∠(γ2, γ3),

see Proposition 3.21 or the spherical Laws of Cosines we shall prove later.

Lemma 7.3. The following statements hold true for Sn(R):
1. The diameter of Sn(R) is equal to πR.
2. The geodesics are arclength parametrisations of the great circles.
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3. The restriction of an othogonal linear transformation of Rn+1 is an isom-
etry of Sn(R).

4. There are diangles: for example, two meridians between the north and the
south poles form a diangle.

5. Between any two antipodal point there are infinitely many geodesics (like
meridians between the poles).

Proof. Exercise.

Example 7.4 (Visual thought experiment). Imagine our 3D-space is not the
Euclidean R3 but the sphere S3(R) of a large radius, so that we don’t notice
that we leave on the sphere. In the same way early people did not notice they
were living on the surface of a sphere. Also assume that the radius R is not
so big so that the light can travel between antipodal point within seconds or
minutes. Remember that the light travels along geodesics. Imagine two of us
staring at each other and assume the retina of your eye is exactly at the north
pole of the spere. Imagine I am moving away from you towards the south
pole. What do you see? Initially you roughly see whatever would happen
in the Euclidean space: I get smaller and smaller linearly. This continue,
although not linearly, until I reach the equator. When I move further, you
see me bigger and bigger; initially only slightly bigger but then I grow much
faster. From your point of view it is the same as if I moved towards you from
the equator. When I approach the south pole I am covering almost all your
visual horizon and when I reach the south pole you see me all over the place
(as if I was touching your eye). This is because the geodesics (light rays)
from the south pole to the north pole cover the whole sphere. ♦

7.5 The two dimensional unit sphere

We restrict our attention to the two-dimensional unit sphere and we develop
some basic trigoonometry in this section.

Proposition 7.6. The area of a geodesic triangle with internal angles on the
unit sphere is equal to α+ β+ γ− π, where α, β and γ are internal angles of
the triangle. In particular, the sum of angles is bigger than π.

Remark 7.7. Notice that the notion of the area is not defined on a metric
space in general. We shall precisely define it later for certain class of metric
spaces. If you took the course on Measure Theory in the first semester
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then you may defined the area on the sphere as a certain Lebesgue measure.
Alternatively, it can be defined as an appropriate surface integral.

Proof. Let’s take for granted the fact (known to Archimedes) that the total
area of the unit sphere is equal to 4π. (We can prove it by calculating the
appropriate integral). It then follows that the are of a diangle Dα with
internal angles equal to α is equal to 2α.
Let T denote a triangle with internal angles α, β and γ and vertices A,B
and C respectively. In the following figure we see that the sphere is a union
of six diangles of the respective areas equal to 2α, 2β and 2γ overlaping on
the triangle with vertices A,B and C.

A

B

C

c’

b’

a’

A spherical triangle

The triangle T and its antipodal twin (with vertices a′, b′, c′) are covered by
three layers from diangles. Thus when expressing the total area of the sphere
as the sum of the areas of diangles we count the area of the triangle T four
times too much,

4π = 4(α + β + γ)− 4 Area(T ),

which gives that Area(T ) = α + β + γ − π, as claimed.

Example 7.8 (The function πS2). First notice that the function πS2 does
not depend on the choice of the point on S2. This is due to the fact that for
every two points p, q ∈ S2 there exists an isometry f such that f(p) = q.
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Observe that the circumference of a disc of radius r (the red circle in the
figure below) on the sphere S2 is equal to 2π sin(r) and hence we have

πS2(p, r) =
π sin(r)

r
.

This means that the perimeter of a circle on the sphere is always smaller
than the perimeter of the Euclidean circle. We also see that if the radius r
is very small then the function π is very close to the Euclidean π. ♣

r

R

The function π on the sphere.

Corollary 7.9. The sphere S2 is not locally isometric to the Euclidean plane.
This precisely means that there is no nonempty open subset of S2 isometric
to a subset of the Euclidean plane.

In ’practice’ this result tells us that we can’t glue a post-stamp on a sphere.
There will always be folds and wrikles (try it!). However, we can easily glue
a stamp on a cylinder. A more serious practical observation is that it is
impossible to make an accurate map of the Earth. By accurate we mean
that it is an isometry up to a scaling factor. Since most of our geographical
knowledge comes from studying maps our intuition is distorted. For example,
we find it surprising that a plane from Heathrow to New York flies over
Greenland.

Corollary 7.10. An nonempty open subset U ⊂ S2(r) is isometric to an
open subset V ∈ S2(R) if and only if r = R.
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7.11 The spherical law of cosines

Theorem 7.12. Let T ⊂ S2 be a spherical triangle with vertices A,B,C and
the corresponding angles α, β, γ and side lengths a, b, c. Then the following
two laws of cosines hold:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ)

cos(α) = − cos(β) cos(γ) + sin(β) sin(γ) cos(a).

Proof. We think of A,B,C as of unit vectors in R3. The angle γ is the angle
between (unit vectors) TA, TB located at C and tangent to the geodesics join-
ing C with A and B respectively. They can be computed in a straighforward
way and we have that

TA =
A− C〈A,C〉
‖A− C〈A,C〉‖

=
A− C〈A,C〉

sin a
,

TB =
B − C〈B,C〉
‖B − C〈B,C〉‖

=
B − C〈B,C〉

sin b
.

C T
A

A

The vector TA.
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It then follows that

cos(γ) = 〈TA, TB〉

=
〈A− C〈A,C〉, B − C〈B,C〉〉

sin(a) sin(b)

=
〈A,B〉 − 2〈A,C〉〈B,C〉+ 〈A,C〉〈B,C〉

sin(a) sin(b)

=
cos(c)− cos(b) cos(a)

sin(a) sin(b)

and we get that

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ).

Corollary 7.13 (Pythagoras’s theorem on the sphere). If γ = π/2 then

cos(c) = cos(a) cos(b).

7.14 The hyperbolic space

The Lorentz scalar product on Rn+1 is defined by

〈x, y〉 =
n∑
i=1

xiyi − xn+1yn+1.

The real hyperbolic space is defined to be

Hn = {x ∈ Rn+1 | 〈x, x〉 = −1 and xn+1 > 0}.

The hyperbolic metric on Hn is defined by

d(x, y) := arccosh〈x, y〉.

The metric space (H2, d) is called the hyperbolic plane. By a model of
the hyperbolic plane we mean a metric space (X, dX) which is isometric to
(H2, d).
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7.15 The hyperbolic plane

We start by presenting two useful models of the hyperbolic plane: the half-
plane model and the disc model. We will make a choice of the model accord-
ing to the problem we investigate. For example, for understanding the group
of isometries of the hyperbolic plane we will invastigate the half-plane and
for computing the area of a triangle we will work with the disc model. Both
models can serve as a definition of the hyperbolic plane.

The hyperplane model. Let H = {z ∈ C | Im(z) > 0} be the upper half
of the complex plane. The hyperbolic metric is defined by

d(z, w) = arccosh

(
1− 2|z − w|2

(z − z)(w − w)

)
.

In the Euclidean coordinates it has the follwoing form

d(z, w) = arccosh

(
1 +

(x1 − x2)2 + (y1 − y2)2

2y1y2

)
,

where z = x1 + iy1 and w = x2 + y2.

The disc model. Let D ⊂ C be the unit Euclidean disc on the complex
plane. We equip it with the metric given by

d(z, w) = arccos

(
1 +

2|z − w|2

(1− |z|2)(1− |w|2)

)
.

Isometries of the hyperbolic plane (in the half-plane model)

In this section we work with the half-plane model. The following result is
straighforward to prove.

Lemma 7.16. For every matrix A = ( a bc d ) ∈ GL+(2,R) with positive deter-
minant the map fA : H→ H defined by

fA(z) =
az + b

cz + d
(7.1)

is an isometry of the hyperbolic metric.
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The map given by (7.1) is called either a fractional transformation or a
Möbius transformation.

Example 7.17. Observe that the following maps are isometries of the hyper-
bolic plane (for each of them write a matrix of the fractional transormation):
• scaling: z 7→ az, a > 0;
• horizontal translation: z 7→ z + b, b ∈ R;
• negative inverse: z 7→ −1

z
.

♦

Example 7.18. Let L ∈ H be a vertical line, x = a. The reflection of H
with respect to L is the map given by

z 7→ z + 2(a− Re(z)) = −z + 2a.

This reflection is an isometry. Since horizontal translations are isometries it
is enough to check that the map z 7→ −z is an isometry, which is done by
a direct computation. Observe that the above reflection is not a fractional
transformation (why?). ♣

Example 7.19. The isometry f(z) = −1/z is the composition of the inver-
sion in the unit circle with the reflection in the imaginary axis, f = R ◦ I.
Since the reflection is an isometry, so is the inversion I = R−1 ◦ f . It then
follows that the inversion in any circle centered in the real axis is an isom-
etry because it is conjugate to the above inversion I by a composition of a
translation and a scaling. ♣

Corollary 7.20. The inversion in a half-circle perpendicular to the real axis
is an isometry of the hyperbolic plane.

Remark 7.21. It is perfectly fine to think about a vertical line in H as of a
half-circle (of infinite radius). The inversion is then the ordinary reflection
which is an isometry.

Geodesics of the hyperbolic plane (in the half-plane model)

Proposition 7.22. If γ : [a, b]→ H is a geodesic then its image is contained
either in a vertical line or in a circle perpendicular to the real axis. More
precisely, every geodesic γ : R→ H is given either by

γ(t) = a+ iet or by γ(t) =
ae2t + b

e2t + 1
+

(a− b)et

e2t + 1
i,
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where a > b are real numbers.

Proof. Let us proof that γ(t) = a+ iet defines a geodesic. We shall show that
d(γ(s), γ(t)) = |s− t| for all s, t ∈ R. Assume that s ≥ t and use the formula
for the distance in the Euclidean coordinates in the following computation.

d(γ(s), γ(t)) = d(a+ ies, a+ iet)

= arccosh

(
1 +

(es − et)2

2eset

)
= arccosh

(
e2s + e2t

2es+t

)
= s− t

This computation shows that γ(t) = a+ iet defines a globally distance min-
imising geodesic for any a ∈ R.

Geodesics on the hyperbolic plane

Let a > b be two points on the real line and let fA : H → H be given by
A = ( a b1 1 ) ∈ GL+(2,R). Take the geodesic defined by γ(t) = iet and compose
it with fA. Since fA is an isometry the composition fA ◦γ is a geodesic and it
is straightforward to check that its image is a half-circle perpendicular to the
real axis and intersecting the real axis at a and b. It is given by the formula

(fA ◦ γ)(t) =
ae2t + b

e2t + 1
+

(a− b)et

e2t + 1
i.
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We have to postpone the proof of the fact that all geodesics have the above
form until we develop more tools.

Remark 7.23. In the above proof we used the usual trick: we found one
geodesic and then composed it with isometries in order to find many more.

Corollary 7.24. The hyperbolic plane is a geodesic metric space.

Proof. Let w, z ∈ H. If their real parts are equal then there is a vertical
geodesic between them. If the real parts are distinct then there is a half-
circle containing w and z, and perpendicular to the real line.

Corollary 7.25. The geodesics in the disc model D of the hyperbolic plane
are either diameters or arcs of circles perpendicular to the boundary of D.

Proof. Recall that an inversion carries circles to circles (here we think that
a line is a circle of infinite radius) and preserves angles. Since the isometry
between H and D is given by an inversion, the images of geodesics in H are
lines and circles perpendicular to the boundary of D.

The hyperbolic area. In the case of a sphere or the Euclidean plane we
intuitively know what is an area (roughly, the amount of paint you need
to cover a subset of the physical sphere or the plane). In the case of the
hyperbolic plane we don’t know. We will define the notion of the area later.
As in the case of the sphere where we used that the total area of the unit
sphere was 4π, here we take for granted than the area of an ideal triangle is
equal to π.

The area of a hyperbolic triangle

Definition 7.26. The ideal boundary of the hyperbolic plane is the bound-
ary of the disc D. An ideal triangle on the hyperbolic plane is the union
three geodesics which meets on the ideal boundary.

In the hyperplane model the ideal boundary is the union of the real axis
and {∞} (an ideal end of all vertical geodesics). As above an ideal triangle
is the union of three geodesics meeting on the ideal boundary.

Lemma 7.27. If ∆1,∆2 ⊂ H are ideal triangles then there exists an isometry
ψ : H→ H such that ψ(∆1) = ∆2.
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Proof. Let x, y, z ∈ R ∪ ∞ be ideal vertices of the triangle ∆1. Suppose
without losing generality that x < y < z. We will prove that there is a
fractional transformation fA such that fA(x) = 0, fA(y) = 1, fA(z) =∞.
First, there exists a horizontal translation f1 such that f1(x) = 0. Next
there exists a scaling f2 such that f2(0) = 0 and f2(y) = 1. It remains
to show that there exists a fractional transformation fA which satifies the
following conditions: fA(0) = 0 and fA(1) = 1 and fA(z′) = ∞, where
z′ = f2(f1(z)) > 1. Let A = ( a bc d ). The first condition implies that b = 0,
the second that d = a− c and the third that c = a

1−z′ . Thus fA is associated
with the matrix

A =

(
z′ − 1 0
−1 z′

)
and the required isometry is the composition fA ◦ f2 ◦ f1.
The same argument yields an isometry taking ∆2 to the ideal triangle with
vertices 0, 1,∞. The composition of the first with the inverse of the second
gives the required ψ.

Corollary 7.28. The area of any ideal triangle is equal to the are of the
triangle with ideal vertices 0, 1,∞.

Theorem 7.29. Let Tα,β,γ ⊂ D be a hyperbolic triangle with internal angles
α, β, γ. Then its area is equal to

Area(Tα,β,γ) = π − (α + β + γ).

In particular, the sum of the internal angles in a hyperbolic triangle is smaller
than π.

Proof. In this proof we consider the disc model of the hyperbolic plane. We
take for granted the fact that the area of every ideal triangle is equal to π
(we will prove this later).
The first step is to prove that Area(Tα,0,0) = π−α. Let f(α) = Area(Tπ−α,0,0).
The function f satisfies the following identity:

f(α) + f(β) = f(α + β − π) + π,

which can be proven by looking at the picture below.
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π − α π − β

A

Area of a triange with two ideal vertices

Moreover, we know that f(0) = 0 (degenerate triangle) and f(π) = π (ideal
triangle). Consider the following observations:

f
(π

2

)
+ f

(π
2

)
= f(0) + π = π =⇒ f

(π
2

)
=
π

2

2f

(
3π

4

)
= f

(π
2

)
+ π =⇒ f

(
3π

4

)
=

3π

4

f

(
3π

4

)
+ f

(π
2

)
= f

(π
4

)
+ π =⇒ f

(π
4

)
=
π

4

In general, if f
(
kπ
2n

)
= kπ

2n
then f

(
(2n+1−1)π

2n+1

)
= (2n+1−1)π

2n+1 which is proven
by induction. It follows that f(α) = α for all α ∈ [0, π] which are dyadic
multiples of π. The general case is a consequence of the continuity of the
area.
Consider a general triangle Tα,β,γ and observe (by extending its edges to
infinity) that is it contained in an ideal triangle and this ideal triangle is a
union of Tα,β,γ and three triangles of the form Tπ−α,0,0,Tπ−β,0,0 and Tπ−γ,0,0.
Consequently,

π = Area(Tα,β,γ) + α + β + γ,

which implies that Tα,β,γ = π − (α + β + γ).
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EXERCISES

1. Compute the radius of the Earth.

Hint: Go to the beach and using the law of cosines measure the distance
from your eyes to the horizon (you need two people and two protractors
and a ship on the horizon). Then apply the Pythagoras theorem.

2. Compute the distance from Aberdeen to New York. Use the following
data: Aberdeen coordinates - 57N, 2W , New York coordinates - 40N, 74W ,
and the radius of the Earth is approximately 6384km. Hint: Look at the
spherical triangle with vertices in Aberdeen, New York and the North
Pole.

3. Let A = [a1, a2, a3], B = [b1, b2, b3], C = [c1, c2, c3] ∈ S2 be three points on
the sphere. Give a formula for the area of a geodesic triangle with vertices
A,B,C in terms of the coordinates of the vertices. Notice that you need
to make choices for this problem. For example, a sensible choice to to
assume that the edges of the triangle are the shorter geodesics between
the vertices. Try special cases first.

4. Let Ip,r : R2 − {p} → R2 − {p} be an inversion in the circle of radius r
centered at p ∈ R2. Write the formula for I(x, y).

5. Prove that an inversion preserves circles and straight lines (the image of
a circle is either a circle or a line and the image of a line is either a line
or a circle).

6. Prove that the half-plane model and the disc model are isometric.
7. Let A ∈ GL+(2,R) and let fA : H → H be the corresponding Möbius

transformation. Express fA as the composition of translations, inversion,
and scaling. Deduce that a Möbius map shares all good properties with
an inversion.

8. Draw ten pairwise non-isometric geodesic triangles on the hypebolic plane.
9. Take for granted the fact that the angle between geodesics on the hyper-

bolic place is equal to the Euclidean angle between their tangent lines at
the intersection point (we will prove it later). Compute the angle between
the following geodesics:

(a) γ(t) = a + iet for −1 ≤ a ≤ 1 and the geodesic parametrising the
unit circle.

(b) The unit circle centered at the origin and the unit circle centered at
0 < a ≤ 2.
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(c) The unit circle centered at the origin and the circle of radis r > 0
centered centered so that they intersect.

Convince yourself that you can compute the angle between any two geodesics.
10. Compute the area of the hyperbolic triangle with vertices:

(a) i, ei
π
4 ,∞;

(b) i, ei
π
3 ,∞;

(c) i, ei
π
6 ,∞;

(d) i, eit,∞, where 0 ≤ t ≤ π
2
;

(e) eis, eit,∞, where 0 ≤ s < t ≤ π.

11. Provide a detailed and efficient algorithm for computing the area of the
hyperbolic triangle with vertices A,B,C. That is, your input consists of
three complex numbers with positive imaginary part the output is the
area of the triangle. If you have experience, write a suitable computer
program.

12. Read wikipedia article on models and the history of the hyperbolic plane.
13. Google the artwork by M.C.Escher and admire those related to the hy-

perbolic plane.

52



8 Surfaces in the three dimensional space
The aim of this and the next sections is to develop tools for understanding
smooth surfaces in the Euclidean 3-dimensional space. The first step is to
define such a surface as a subset that can be locally parametrised by maps
defined on open subsets of the plane. Next we restrict the standard Eulidean
scalar product in R3 to tangent spaces of a surface S ⊂ R3. This allows to
define lengths of paths on S and the metric. The geometry of the intrinsic
metric of S is then investigated using linear algebra of tangent vectors. This
is an example of a Faustian bargain: we sell geometry for algebra. After the
deal is made we can calculate a lot of fantastic things but we can’t see and
touch anymore.
Throughout this section 〈X, Y 〉 denotes the standard Euclidean scalar prod-
uct on R3.

8.1 Basic definitions

Let TuRm denote the space of vectors located at u ∈ Rn. It is canonicaly
isomorphic to the vector space Rm. If Rn is a differentiable map then its
differential (or the tangent map) at u ∈ Rm is a linear map dfu : TuR

m →
Tf(u)R

n. In the standard basis the differential is represented by the Jacobi
matrix (dfi/duj).

Example 8.2. Let f : R2 → R3 be a differentiable map defined by f(u, v) =
(u2, u + 2v, eu + v3). Then its tangent map at (u, v) is given by the matrix(

2u 0
1 2
eu 3v2

.
)

♣

Definition 8.3.
1. Let U ⊂ R2 be an open subset. A differentiable map f : U → R3 such

that the differential dfu : TuR
2 → Tf(u)R

3 is injective for all u ∈ U is
called a surface patch. We say that a patch f parametrises f(U).

2. A surface in R3 is a subset S ⊂ R3 satisfying the following conditions:

(a) for every point p ∈ S there exist a surface patch f : U → S such
that p ∈ f(U)

(b) if fi : Ui → S are surface patches then the map

fij : Uj ∩ f−1
j (fi(Ui))→ Ui ∩ f−1

i (fj(Uj))

given by fij = f−1
i ◦ fj is a diffeomorphism (see the figure below).
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Notice that f(U) is a surface.
3. The two-dimensional subspace dfu(TuR2) ⊂ Tf(u)R

3 is called the tangent
space of S at f(u) and it is denoted by Tf(u)S. Elements of Tf(u)S are
called tangent vectors to S.

4. The symmetric bilinear form I : TpS × TpS → R defined by I(X, Y ) =
〈X, Y 〉 is called the first fundamental form of S. Consequently, if
c : [a, b]→ S is a differentiable path then its length is computed by

L(c) =

∫ b

a

I(ċ(t), ċ(t)) dt

(this is simply the Euclidean length of c considered as a path in R3). It
follows that the intrinsic metric on S is defined as

d(x, y) = inf{L(c) ∈ R | c(a) = x, c(b) = y}.

f f ji

f ij

Patches of a sphere.

Example 8.4.
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1. If x, y ∈ R3 are linearly independent vectors then f : R2 → R3 defined
by f(u, v) = x0 + ux + vy parametrises a plane in the three dimensional
space.

2. Let U = {(u, v) ∈ R2 |u2 + v2 = 1}. The function defined by f(u, v) =
(u, v,

√
1− u2 − v2) parametrises the upper hemisphere of radius one cen-

tered at the origin.
3. Let U = (−π/2, π/2) ×R. The function given by the formula f(u, v) =

(cosu cos v, cosu sin v, sinu) parametrises the unit sphere minus the poles
S2 − {0, 0,±1}.

4. Let f : R2 → R3 be defined by the following formula
f(u, v) = ((a + b cosu) cos v, (a + b cosu) sin v, b sinu), where a > b > 0.
This parametrises the torus. Also, this example shows that a patch does
not have to be injective.

5. The function f(u, v) = (v cosu,−v sinu, au) parametrises a helicoid.
♣

a

b

A torus
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8.5 Vectors associated with a surface patch

Let u, v : R2 → R be the standard coordinates on the plane and denote by
eu = (1, 0), ev = (0, 1) ∈ T(u,v)R

2 the the basis of the tangent space at a
point (u, v) ∈ R2. Let f : U → R2 be a surface patch and let fu = df(eu)
and fv = df(ev), where the derivatives are computed at a point (u, v). The
vectors fu, fv are tangent to the surface f(U) at p = f(u, v) . The normal
unit vector to f(U) at p is defined by

np =
fu × fv
‖fu × fv‖

,

where p = f(u, v) and × denotes the vector product in R3.

f

u
U

e

eu

v
v

f

f

u

vf(U)

Np

p

The normal unit vector

The second derivatives fuu, fuv, fvv are not tangent to the surface f(U) in
general. To measure their deviation from being tangent we project them
onto the normal vector. That we compute the scalar products

L = 〈fuu,np〉,
M = 〈fuv,np〉 = 〈fvu,np〉,
N = 〈fvv,np〉
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Definition 8.6. The bilinear form on Tpf(U) defined by the matrix ( L M
M N )

with respect to the basis fu, fv is called the second fundamental form of
f at p. It is denoted by II. It can be also considered as a bilinear form on
T(u,v)R

2 represented by the same matrix with respect to the basis eu, ev.

Example 8.7. Let f : R2 → R3 be given by f(u, v) = (u, v, 0). That is, f
parametrises the horizontal plane through the origin. We have:

fu = (1, 0, 0) fuu = (0, 0, 0)

fv = (0, 1, 0) fuv = (0, 0, 0)

n = (0, 0, 1) fvv = (0, 0, 0)

It follows that the first fundamental form is represented by the identity matrix
and the second fundamental form is identically zero. ♦

Example 8.8. Consider the parametrisation f : U = (−π/2, π/2)×R→ R3

of the sphere (without poles) given by f(u, v) = (cosu cos v, cosu sin v, sinu).
In this case we have

fu = (− sinu cos v,− sinu sin v, cosu)

fv = (− cosu sin v, cosu cos v, 0)

I =

(
1 0
0 cos2 u

)
n = −(cosu cos v, cosu sin v, sinu)

fuu = (− cosu cos v,− cosu sin v,− sinu)

fuv = (sinu sin v,− sinu cos v, 0)

fvv = (− cosu cos v,− cosu sin v, 0)

II =

(
1 0
0 cos2 u

)
♦

The procedure in the above examples is as follows:
1. Write the formula for the surface patch.
2. Compute the first derivatives.
3. Get vectors fu and fv and compute n and I.
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4. Compute the second derivatives.
5. Get vectors fuu, fuv and fvv.
6. Compute 〈fij,n〉 and get II.

8.9 Abstract surfaces

Let f : U → S ⊂ R3 be a surface patch. The first fundamental form can be
defined directly on U by

I(u,v)(X, Y ) = 〈df(u,v)(X), df(u,v)(Y )〉

for any X, Y ∈ T(u,v)U . This defines the lengths of paths c : [a, b]→ U by

L(c) =

∫ b

a

√
Ic(t)(ċ(t), ċ(t)) dt

and hence a metric d(x, y) = inf{L(c) | c(a) = x, c(b) = y}. In other words,
the set U is given a metric such that (U, d) is locally isometric to the surface
f(U) with its intrinsic metric.

HOWEVER

We can define a symmetric bilinear positive definiete form g(u,v) : T(u,v)U ×
T(u,v)U → R directly without pulling it back from the Euclidean space and
define lengths of paths and a metric as above using g instead of I. In this
approach we get a metric on U which does not necessarily correspond to a
surface in R3. Thus g is a function whose value at (u, v) is an inner product
on T(u,v)U . It is called a metric tensor.

Example 8.10. Let U =
(
−π

2
, π

2

)
× (a, b) and let g(u,v) be defined by the

matrix (
1 0
0 cos2 u

)
.

The map f : U → R3 parametrising the sphere without poles defines a local
isometry between U and S2 \ {(0, 0,±1)}. If |a− b| ≤ π then f is a genuine
isometry between U and f(U) ⊂ S2. If |a− b| > π then f is local isometry.
For example, the distance in U between (0, 0) and (0, 2π) is 2π and the
distance between f(0, 0) = (1, 0, 0) and f(0, 2π) = (1, 0, 0) is zero. If we
take (a, b) = R then we obtain a metric on an infintie strip which is locally
isometric to the sphere. ♦
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Example 8.11. Let H = {(x, y) ∈ R2 | y > 0} be the upper half-plane. Let

g(x,y) =
1

y2

(
1 0
0 1

)
be the metric tensor. It is the standard Euclidean scalar product scaled by
1
y2
. Thus the length of a curve c : [a, b]→ H is computed by

L(c) =

∫ b

a

gc(t)(ċ(t), ċ(t)) dt

=

∫ b

a

√
c′1(t)2 + c′2(t)2

c2(t)
dt.

For example, if c(t) = (0, et) then

L(c) =

∫ b

a

√
02 + e2t

et
dt =

∫ b

a

dt = b− a.

In fact, the metric induced by g is isometric to the hyperbolic metric. ♦

8.12 The area form of a surface

Let (U,g) be an abstract surface with a metric tensor g. The area of a subset
A ⊂ U is defined by

area(A) =

∫
A

√
detg(u,v) dudv.

Observe that this formula gives the standard area of a subset of the Euclidean
plane. Also, if f : U → R3 is a surface patch then (U,g) is isometric to f(U)
equipped with the intrinsic metric and the above formula corresponds to the
standard surface intergral.

Proposition 8.13. The area of an ideal hyperbolic triangle is equal to π.

Proof. Consider the ideal triangle T ∈ H with vertices (−1, 0), (1, 0),∞ in
the half-plane model. Since for the hyperbolic plane we have detg = 1

y4
(see

Example 8.11), we need to compute the integral
∫
T
dxdy
y2

which, according to
Green’s Theorem, is equal to the path intgral∫

∂T

dx

y
,
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where ∂T is the path (in fact three paths) parametrising the edges of the
triangle T . Since two of these edges are vertical the above integral will
vanish on them and we are left with the integral over the edge which is a
half-circle from (−1, 0) to (1, 0). It has the following parametrisation

c(t) =

(
e2t − 1

e2t + 1
,

2et

e2t + 1

)
,

(see the section about geodesics on the hyperbolic plane). We now finish the
computation of the area of the triangle T .

area(T ) =

∫
c(R)

dx

y
=

∫ ∞
−∞

c′1(t)

c2(t)
dt

=

∫ ∞
−∞

4e2t

(e2t+1)2

2et

e2t+1

dt

=

∫ ∞
−∞

2et

e2t + 1
dt = π.

Since all ideal hyperbolic trangles are isometric, the above computation fin-
ishes the proof.
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EXERCISES

1. Let A,B,C ∈ R3 be point not on the same line. Write a parametrisation
of the plane through A,B,C.

2. Let A,B,C ∈ R3 be as above. Prove that there exist infinitely many
distinct spheres containing A,B,C.

3. Let A,B,C,D ∈ R3 be points not included in a plane. Prove that there
exists a unique sphere containing these points. Determine the centre of
this sphere and its radius.

4. Let h : (a, b)→ R be a differentiable function. Consider a parametrisation
f : (a, b) ×R → R3 defined by f(u, v) = (h(u) cos v, h(u) sin v, u). Draw
the surface parametrised by f for h defined by:

(a) h(u) = u+ 1;
(b) h(u) = u2 + 1;

(c) h(u) = u3 + 1;
(d) h(u) = cosu;

(e) h(u) = 1
x+2

.

Observe that this surface is obtained by first drawing the graph of x = h(z)
in the xz-plane and then rotating it around the z-axis.

5. Let h, k : (a, b)→ R be differentiable functions and let u 7→ (h(u), 0, k(u))
be a parametrisation of a curve in the xz-plane. Let f : (a, b)×R→ R3 be
a parametrisation defined by f(u, v) = (h(u) cos v, h(u) sin v, k(u)). Draw
the surface parametrised by f for h, k defined by:

(a) h(u) = cosu+ 2, and k(u) = sinu;
(b) h(u) = α cosu+ 2, and k(u) = β sinu, where 0 < α < 2 and β > 0.

Similarly, this surface is swept out by the curve (h(u), k(u)) in the xz-plane
by rotating it around the z-axis.

6. Compute the second fundamental form of the following surfaces:

(a) a plane;
(b) a sphere of radius r > 0;
(c) a general surface of revolution as in the previous exercise provided

that (h′)2 + (k′)2 6= 0 and h 6= 0. Evaluate your formula on all
examples in the previous two exercises.

61



9 Curvature

9.1 The Gauss map

Let f : U → S ⊂ R3 be a surface. The map ν : U → S2 defined by

ν(u, v) = nf(u,v)

is called the Gauss map. Its value is the unit normal vector at p = f(u, v)
relocated to the origin and hence defining a point on the unit sphere.
Proposition 9.2. Let f : U → R3 be a surface and let p = f(u, v). The
image of dν(u,v) : T(u,v)R

2 → TpR
3 is included in TpS ⊂ TpR

3.
Proof. The image is spanned by the vectors defined by the partial derivatives
nu := dν(eu) and nv := dν(ev). Since the normal vector is of unit length we
have that 〈ν(u, v), ν(u, v)〉 = 1. Differentiating this equality yields

〈nu(u, v), ν(u, v)〉 = 0

〈nv(u, v), ν(u, v)〉 = 0.

This means that both nu and nv are tangent to S as claimed.

9.3 The Gauss map and the second fundamental form

Proposition 9.4. Let f : U → S ⊂ R3 be a surface. The second fundamental
form satisfies the following equality

II(X, Y ) = −〈dν(X), df(Y )〉.
Proof. Since n and fu are perpendicular, we have the following computation

0 = ∂u〈n, fu〉 = 〈nu, fu〉+ 〈n, fuu〉 = 〈nu, fu〉+ L.

And similarly for M and N (see the definition of the second fundamental
form). We obtain that

L = −〈nu, fu〉
M = −〈nv, fu〉
N = −〈nv, fv〉

which means that the bilinear form

(X, Y ) 7→ −〈dν(X), df(Y )〉
is represented by the same matrix as the second fundamental form with
respect to the same basis which means the two froms are equal.
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9.5 Principal directions and principal curvatures

Let T 1
pS = {X ∈ TpS | 〈X,X〉 = 1} be the circle of unit vectors tangent to

S at p. A vector X0 ∈ T 1
pS is called a principal direction if X0 is a critical

point of the function κ : T 1
pS → R defined by

κ(X) := II(X,X).

The value κ(X0) is called a principal curvature at p ∈ S.

Proposition 9.6. Let X ∈ T 1
pS. It is a principal direction if and only if it

is an eigenvector of the map Wp : TpS → TpS defined by

Wp(X) = −(dν ◦ df−1)(X).

The map Wp is called the Weingarten map.

Proof. Let X0 be a principal direction. The differential of the function X 7→
II(X,X) − κ(X0)〈X,X〉 at X0 is trivial (the first summand by definition
of the principal direction and the second summand because 〈X,X〉 = 1 is
constant). On the other hand, both summands are quadratic forms and hence
we get that

0 = d(II− κ(X0)〈 , 〉)X0(Y ) = II(X0, Y )− κ(X0)〈X0, Y 〉.

Since II(X, Y ) = 〈Wp(X), Y 〉 the above observation implies that

−〈dn(df−1(X0)), Y 〉 = II(X0, Y ) = κ(X0)〈X0, Y 〉,

for all Y ∈ T 1
pS. Consequently Wp(X0) = κ(X0)X0 which means that X0 is

an eigenvector of Wp with eigenvalue κ(X0).
Conversely, assume that W (X0) = κ(X0)X0. Let X0 + εY be a unit vector
(notice that Y here varies with ε). We consider the Taylor expansion of κ
at X0:

κ(X0 + εY ) = κ(X0) + εdκX0(Y ) + ε2(. . . ) + . . .

and our aim is to prove that dκX0 vanishes, which means thatX0 is a principal
direction.
In the following computation we use the fact that X0 + εY is a unit vector,
that is, 〈X0 + εY,X0 + εY 〉 = 1. Since X0 is also a unit vector, we get that
2ε〈X0, Y 〉+ ε2〈Y, Y 〉 = 0.
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κ(X0 + εY ) = II(X0 + εY,X0 + εY )

= II(X0, X0) + 2εII(X0, Y ) + ε2II(Y, Y )

= κ(X0)− 2ε〈dν(df−1X0), Y 〉+ ε2II(Y, Y )

= κ(X0)〈X0 + εY,X0 + εY 〉+ 2ε〈Wp(X0), Y 〉+ ε2II(Y, Y )

= κ(X0)
(
〈X0, X0〉+ 2ε〈X0, Y 〉+ ε2〈Y, Y 〉

)
+ 2ε〈Wp(X0), Y 〉+ ε2II(Y, Y )

= κ(X0)
(
〈X0, X0〉 − 2ε〈X0, Y 〉 − ε2〈Y, Y 〉

)
+ 2ε〈κ(X0)X0, Y 〉+ ε2II(Y, Y )

= κ(X0)− 2ε〈κ(X0)X0, Y 〉+ 2ε〈κ(X0)X0, Y 〉+ ε2
(
II(Y, Y )− κ(X0)〈Y, Y 〉

)
= κ(X0) + ε2

(
II(Y, Y )− κ(X0)〈Y, Y 〉

)
.

This shows that the linear term in the Taylor expansion of κ at X0 vanished
which proves that dκX0 = 0 as claimed.

Corollary 9.7. The second fundamental form is either proportional to the
induced Riemannian structure (II = κg), in which case every direction is
principal, or there exists exactly two (up to sign) principal directions orthog-
onal to each other.

Proof. Let κ1 and κ2 be the largest and the smallest principal curvatures
associated with principal directions X1 and X2 respectively. We have

κ1〈X1, X2〉 = II(X1, X2) = κ2〈X1, X2〉.

Therefore either κ1 = κ2 which means that κ is constant, or κ1 > κ2 and
〈X1, X2〉 = 0. If X0 is a principal direction then either 〈X,X1〉 = 0 or
〈X,X2〉 = 0 which implies that either X0 = ±X1 or X0 = ±X2.

9.8 The Gauss and the mean curvature

Definition 9.9. Let f : U → R3 be a surface. The Gauss curvature
K : U → R and the mean curvature H : U → R are functions defined by

K(u) := κ1(u)κ2(u) H(u) :=
1

2
(κ1(u) + κ2(u)),

where κi are the principal curvatures.
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Proposition 9.10. Let [gij] be the matrix of the first fundamental form of
a surface f : U → R3 and let [gij] denote its inverse. Let [hij] be the ma-
trix of the second fundamental form. Then the matrix [wij] representing the
Weingarten map is given by

wij =
∑
k

hikg
kj.

Consequently,

K(u) =
det II

det g
=

det[hij]

det[gij]
=
LN −M2

EG− F 2
,

H(u) =
1

2
=
∑
i,j

hijg
ij.

Proof. Let ei and fi denote the standard basis vectors of T(u,v)U and Tf(u,v)S
respectively. We have∑

k

wijfj = W (fi) = −dn(df−1(fi) = −dn(ei) = −ni.

Taking the inner product with fk we obtain∑
wijgjk = hik

This is equivalent to the matrix equation [wij][gjk] = [hik]. Multiplying
both sides by the inverse [gkj] we obtain the claimed formula for the matrix
representing the Weingarten map.
The formulae for K and H follows because K is equal to the determinant
of the Weingarten map and H is equal to the half of the trace.

EXERCISES

1. Let V be a real vector space and let β : V → R be a quadratic form
corresponding the a symmetric bilinear form β′ : V × V → R. Show
that the differential dβX : TXV = V → Tβ(X)R = R satisfies dβX(Y ) =
2β′(X, Y ).

2. Show that if A = [aij] is a symmetric, positive definite, nondegenerate
matrix (hence it defines a scalar product) then detA > 0.
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3. Write the formula for the induced Riemannian structure for the sphere,
the torus, and a general surface of revolution.

4. Compute the Gauss and the mean curvature for the sphere, the torus and
a general surface of revolution.

5. Give an example of a surface for which the Gauss curvature is: (a) nega-
tive, (b) zero, (c) positive, (d) constant negative, (e) nonconstant posi-
tive.

6. Consider the standard torus as in the previous examples. Determine the
subsets of the torus for which the Gauss curvature is negative, zero, pos-
itive. Hint: Since det[gij] > 0 according to the exercise (2) all you need
to check is the sign of the determinant of the second fundamental form.
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10 Theorema Egregium
When computing the Gaussian curvature we consider the surface S as a
geometric object in the Euclidean space. There is an important question
if the curvature can be computed in terms of intrinsic data only. In other
words, can the curvature be computed by a creature living entirely on the
surface and being oblivious to the existence of the ambient Euclidean space?
Gauss’s Theorema Egregium says that the answer is yes.
There are many versions of the Theorema Egregium. We will provide a ver-
sion that is related to functions π we saw in earlier sections. More precisely,
we will prove that the Gauss curvature can be computed by measuring the
circumference of circles on a surface. On the one hand the circumference of
a circle is purely intrinsic and geometric feature of a surface considered as a
metric space. On the other hand the Gauss curvature is an algebraic device
which depends on the choice of the surface patch. The fact that it depends
only on the metric of the surface is not obvious at all. Gauss was so fasci-
nated by this fact that he gave this special name to the result. Nowadays
we are more used to the fact that an abstract nonsense can have a nontrivial
physical meaning.

10.1 The induced metric on a surface in R3

The length of a curve c : [a, b]→ R3 is equal to

L(c) =

∫ b

a

‖ċ(t)‖dt =

∫ b

a

√
〈ċ(t), ċ(t)〉dt.

Let S ⊂ R3 be a surface. The induced metric is defined by

d(x, y) = inf
c
L(c),

where the infimum is taken over all smooth curves c : [a, b] → S from x to
y. Observe that ‖ċ(t)‖ = g(ċ(t), ċ(t)), where g is the induced Riemannian
structure on S.

10.2 Covariant derivative and geodesics

Definition 10.3. Let c : (a, b)→ S ⊂ R3 be a curve and let X : (a, b)→ TS
be a smooth family of vectors tangent to S along c (that is, X(t) ∈ Tc(t)S).
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Such an X is also called a vector field along c. The vector field

∇X
dt

:= pr

(
dX

dt

)
,

where pr : TpR
3 → TpS is the orthogonal projection is called the covariant

derivative of X along c.

Proposition 10.4. A curve c : [a, b]→ S is a geodesic of the induced metric
d if and only if

∇ċ(t)
dt

= 0 for all t ∈ [a, b].

Proposition 10.5. There exists a positive number a > 0 such that for every
tangent vector X ∈ TpS there exists a geodesic γX : (−a, a)→ S with ˙γX(0) =
X.

10.6 Exponential map and normal coordinates

Suppose that X ∈ TpS is a vector such that the corresponding geodesic γX
is defined for t = 1. Let U ⊂ TpS be the set of all vectors with this property.
Observe that this set U contains an open neighbourhood of the zero vector.
The map exp: U ⊃ TpS → S defined by exp(X) = γX(1) is called the
exponential map.

Lemma 10.7. The differential d exp: T0(TpS) = TpS → TpS is equal to the
identity.

It follows from Lemma 10.7 (and the inverse function theorem) that there
exist a negibourhood U of the zero vector in TpS such that the restriction
of the exponential map to U defines a surface patch. This patch is also
known as normal coordinates. More precisely, the surface patch is given by
f : (0, a)× (0, 2π)→ S by f(r, θ) = exp(P (r, θ)), where P : (0, a)× (0, 2π)→
TpS are the polar coordinates in TpS.
Observe that if C(0, r) ⊂ TpS = R2 is a Euclidean circle of small radius r
centered at the origin then its image exp(C(0, r)) is a circle in S centered
at p (of radius possibly different from r). This implies that the induced
Riemannian structure has a very simple form in the polar coordinates (r, θ)
on TpS. Indeed, we have ‖∂r‖ = 1, 〈∂r, ∂θ〉 = 0 and ‖∂θ(r, θ)‖ = G(exp(r, θ)).
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Lemma 10.8. In the polar coordinates the Gauss curvature has the following
form

K = − 1√
G

∂2
√
G

∂r2
.

Notice that G is a function on the surface patch.

Remark 10.9. The proof of this lemma is a lengthy computation which can be
found in Spivak’s “A Comprehensive Introduction to Differential Geometry
II” on page 138.

Our task is to compute the circumference of a circle centered at p ∈ S and
express it using the Gauss curvature.

10.10 The circumference of a circle

Let (r, θ) be the polar coordinates in TpS and let c : [0, 2π] → TpS be the
parametrisation of the circle of radius r. That is, c(θ) = (r, θ). We are coing
to compute the length of the curve exp ◦c which is a circle in S centered at
p (the radius is in general different from r). Since

L(exp ◦c) =

∫ 2π

0

‖d exp(r,θ)(∂θ)‖dθ

=

∫ 2π

0

√
G(exp(r, θ))dθ

=

∫ 2π

0

(
r − K(exp(r, θ))r3

6

)
dθ +

∫ 2π

0

o(r3)dθ

= 2π

(
r − K(exp(r, θ))r3

6
)

)
+ o(r3)

= 2πr +
πK(exp(r, θ))r3

3
+ o(r3)

We thus have proved the following result.

Theorem 10.11 (Bertrand-Puiseux, 1848). Let p ∈ S be a point on a surface
in the Euclidean space R3. Let C(p, r) be the circumference of the circle of
radius r centered at p. Then

C(p, r) = 2πr − π

3
K(p)r3 + o(r3).
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Corollary 10.12 (Theorema Egregium). The Gaussian curvature can be
computed in terms if intrinsic geometry of the surface. More precisely,

K(p) = lim
r→0

6πr − 3C(p, r)

πr3
.

Recall that the function πS : S × [0,∞) → R is defined by πS(p, r) =
C(p, r)/2r. It follows from the above version of the Theorema Egregium
that if the Gauss curvature is positive (negative) at a point p ∈ S then
πS(p, r) < π (πS(p, r) > π) for sufficiently small r. The case when the Gauss
curvature is zero at a point is more complicated.

Corollary 10.13. Let S and Σ be surfaces. If their Gauss curvatures are
distinct then the surfaces cannot be isometric. More precisely, if F : S → Σ
is a smooth map and KS(p) 6= KΣ(F (p)) then F is not a local isometry at p.

Example 10.14. Let us discuss some more practical consequences of the
Gauss theorem.
1. It is impossible to draw an accurately scaled map of the Earth on a flat

piece of paper.
2. Bending a surface does not change the Gauss curvature. This has a nice

experimental feature that a corrugated surface is rigid. If we want to lift
a sheet of paper (almost) horizontally we create a little bent which makes
the paper rigid. This is because the Gauss curvature is zero. On the other
hand it is a product of principal curvatures. By creating a bent we make
one of them nonzero and hence the other must remain zero. We use this
fact when eatnig a wedge of pizza with hands. It is also the reason that a
cardboard (or more precisely a corrugated fibreboard) is quite rigid.

♣
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11 What does a surface look like?
Let F : R2 ⊃ U → R be a smooth function. It defines a surface patch
f : U → R3 by f(u, v) = (u, v, F (u, v)) that parametrises the graph of F .
Observe that in such a case the computation of the second fundamental form
is relatively easy. Let us do a concrete example.

Example 11.1. Let F (u, v) = 1
2
(au2 + bv2). We have

fu = (1, 0, au)

fv = (0, 1, bv)

g =

(
1 + a2u2 abuv
abuv 1 + b2v2

)
fuu = (0, 0, a)

fuv = (0, 0, 0)

fvv = (0, 0, b)

II =

(
a 0
0 b

)
Thus the Weingarten map at the point (0, 0) is equal to the second funda-
mental form and we get that the principal curvarures are a and b and hence
the Gauss curvature K(0, 0) = ab. If a and b are both nonzero and of the
same sign the surface is an elliptic paraboloid, if they are both nonzero and
of oposite signs then the surface is a hypebolic paraboloid. If either a or b
is zero but not both then we have an parabolic cylinder and if they are both
zero then we have a plane. ♣

The aim of this section is to prove that surfaces locally look more or less
like those in the above example.
Let f : U → R3 be a surface patch. We can apply an appropriate Euclidean
translation an get that f(0, 0) = (0, 0, 0). We want to find a diffeomorphism
ψ : V → U0 for some open neighbourhoods V, U0 ⊂ U of the origin such that
the composed surface patch f ◦ ψ : V → R3 will have a nice form.
Let n0 ∈ T0R

3 be the unit vector normal to f(U). The vectors f1, f2 and n0

form a basis of R3 and we want to express the surface patch with respect to
this coordinate system. We thus have

f(u) = x(u)f1 + y(u)f2 + z(u)n0.

Since ∂if(0) = fi we get that ∂1x(0) = 1 = ∂2y(0) and 0 = ∂2x(0) = ∂1y(0) =
∂iz(0). Moreover we have x(0) = y(0) = z(0) = 0. By computing the second
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partial derivatives we get that ∂ijz(0) = hij(0) are the coeffients of the second
fundamental form. Since z(0) = ∂iz(0) = 0 we obtain the Taylor series for z

z(u) =
1

2

∑
i,j

hij(u)uiuj + o(‖u‖2).

Consequently, our surface patch has the following Taylor expansion

f(u) =
∑
i

ui∂if(0) +
1

2

∑
i,j

hij(0)uiujn0 + o(‖u‖2)

=
∑
i

uifi(0) +
1

2

∑
i,j

hij(0)uiujn0 + o(‖u‖2)

which means that up to higher order terms the surface is equal to one of
those in Example 11.1.
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APPENDICES

12 Further definitions

12.1 Graphs

A graph is a pair (V,E), where V is a set and E ⊂ V × V is a symmetric
relation. An element v ∈ V is called a vertex and an element (u, v) ∈ E is
called an edge between vertices u and v.
The topological realisation of a graph (V,E) is the topological space E×

[0, 1]/ ', where the relation ' is the minimal equivalence relation satisfying
(u, v, 1) ' (u′, v′, 0) whenever (v, u′) ∈ E. The topological realisation of a
graph is also called a graph. And this is what usually we imagine as a graph
(a collection of vertices joined by edges).
A path from v0 to vm in a graph (V,E) is a sequence of vertices v0, v1, . . . , vn
such that (vi, vi+1) ∈ E. A graph is called connected if for every pair of
vertices there is a path between them.
A circuit in a graph is a path v0, v1, . . . , vn, v0 such that n ≥ 2 and the
vertices vi are pairwise distinct.
A tree is a connected graph without circuits.

12.2 Simply connected spaces

A path connected space X is called simply connected if every continuous
map f : S1 → X extends to a map f̂ : D2 → X. This means that the map f̂
restricted to the boundary circle is equal to f .
A polygonal complex is simply connected if and only if every circuit made
from edges bounds a subcomplex homeomorphic to a disc.
The following spaces are simply connected:
• the surface of a convex solid in R3;
• a sphere Sn for n ≥ 2;
• Rn;
• the hyperbolic plane;
• a tree.
The following spaces are not simply connected:
• a polygonal surface of positive genus;
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• projective plane;
• the plane with a hole;
• the circle;
• a surface with nonempty boundary and not homeomorphic to a disc;

12.3 Curvature and torsion of a curve

Let c : (a, b) → R3 be a differentiable curve parametrised by the arc length.
The latter means that ‖ċ(t)‖ = 1. The curvature of c at t ∈ (a, b) is defined
to be

κ(t) = ‖c̈(t)‖.

It is the norm of the accelleration vector of c. For example, if c is a segment of
a straight line then ċ is constant and hence c̈ = 0. So the curvature measures
the deviation of a curve of being straight.
The vector n(t) = c̈(t)

κ(t)
is called the principal vector normal to c and

b(t) = ċ(t)× n(t) is called
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12.4 Inversion

An inversion in a circle of radius r and centered at p ∈ R2 is a map
I : R2 − {p} → R−{p} defined on the following figure.
An inversion has the following properties:
1. it is an involution, that is, I ◦ I = Id;
2. the image of a circle avoiding the centre is a circle avoiding the centre;
3. the image of a circle containing the centre is a straight line;
4. the image of a straight line is a circle containing the centre;
5. it preserves angles;
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13 Trigonometric functions

sinh(t) =
et − e−t

2
=

e2t

2et − 1

cosh(t) =
et + e−t

2
=

e2t

2et + 1
et = sinh(t) + cosh(t)

1 = sinh2(t)− cosh2(t)
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14 Isometries
The proof of the following results is left as an exercise.

Theorem 14.1. Let f : (X, dX)→ (Y, dY ) be an isometry. Then the follow-
ing statements hold:
1. Diameter(X, dX) = Diameter(Y, dY );
2. if γ : [a, b] → X is a rectifiable path then f ◦ γ is also rectifiable and
L(γ) = L(f ◦ γ);

3. if γ : [a, b] → X is a geodesic then f ◦ γ is also a geodesic and L(γ) =
L(f ◦ γ);

4. X is geodesic if and only if Y is geodesic;
5. if f is a polygonal isometry then for every vertex v ∈ X the image f(v)

is a vertex in Y and D(v) = D(f(v));
6. if P ⊂ X is a geodesic polygon then f(P ) is a geodesic polygon in Y ;
7. πX(p, r) = πY (f(p), r) for all p ∈ X
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15 Hints, answers and solutions
Warning 15.1. Reading a solution without trying solving the problem is
pointless for at least two reasons. First, you learn less and second you are
depriving yourself from finding your individual solutions which is often better
then the one presented here. Also, I don’t think that my slutions are the best.

Section 2

1. Read carefully all examples and provide more details and make relevant
drawings if possible. For each example draw a few balls of various radii
centered at various points.

Make a list of things you don’t understand and a list of mistakes and
errors on this section.

2. Draw a circle of radius one centered at the origin of (R2, dp) for p ∈
{1, 2, 3, 4,∞}.
Answer. https://en.wikipedia.org/wiki/Lp_space#The_p-norm_in_
finite_dimensions

3. Draw two balls of radius one centered at the north pole of the unit
sphere S2. The first with respect to the metric induced from the Eu-
clidean metric on R3 and the second with respect to the intrinsic metric.

Hint. The circle with respect to the intrinsic metric is included in the ball
enclosed by the circle with respect to the induced metric.

4. For which r the unit circle S1 ∈ R2 endowed with the intrinsic metric is
isometric to the circle of radius r with the induced metric?

Hint. Look at points between two antipodal points in both spaces.

Answer. For none.

Solution. For none. Let C(r) ⊂ R2 be the circle of radius r centered at
the origin. The diameter of S1 is equal to π and the diameter of C(r) is
equal to 2r. Thus if the spaces were isometric we would have that r = π

2
.

Suppose that ψ : S1 → C
(
π
2

)
is an isometry. Since for both spaces the

distance between x and −x is equal to the diameter we obtain that ψ
carries antipodal points to antipodal points. More precisely, we have that
ψ(−x) = −ψ(x).
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Let x = (0, 1). If y ∈ S1 has the property that d(x, y) = d(−x, y) then this
distance is equal to π

2
. Informally, a point between two antipodal points

on S1 is within distance π
2
from both of them. In the induced metric, if

p ∈ C
(
π
2

)
is such that d(ψ(x), p) = d(−ψ(x), p) this distance is equal to

π
2

√
2 which implies that ψ cannot be an isometry.

5. Prove that the set of all isometries of a metric space is a group with respect
to the composition.

Hint. This is a standard exercise on verifying the defining axioms.
6. For each example in this section give an example of a nontrivial isometry of

finite (infinite) order in the group of isometries, provided such an isometry
exists.

7. Prove that f : R→ R2 given by f(t) = x+ tv is an isometric embedding,
provided v is a vector with (the Euclidean) norm equal to one and x ∈ R2

is a point.

Solution: Let x = (x1, x2) and v = [v1, v2]. Let s, t ∈ R. The following
computation shows that f is an isometric embedding.

dR2(f(s), f(t)) = dR2((x1 + sv1, x2 + sv2), (x1 + tv1, x2 + tv2))

=
√

(s− t)2v2
1 + (s− t)2v2

2

= |s− t|‖v‖ = |s− t| = dR(s, t).

8. Give an explicit formula for the intrinsic metric on the unit sphere S2 ⊂ R3.
Generalise your solution to Sn ∈ Rn+1.

Hint. Do it for S1 first.

Answer. d(x, y) = arccos〈x, y〉, where 〈 , 〉 denotes the standard scalar
product in Rn+1.

9. Prove that f : S1 → S2 given by f(cos t, sin t) = (cos t, sin t, 0) is an iso-
metric embedding. Prove that the inclusion of any great circle is an iso-
metric embedding.

Hint. The first part is a direct computation (using the formula from the
previous exercise). The second uses the fact that any rotation of R3 with
respect to an axis through the origin restricts to an isometry of S2.
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10. Show that the inclusion ι : S1 → R2 is not an isometric embedding. Show
that it is Lipschitz and compute the Lipschitz constant.

Solution. We have, for example, that dR2((1, 0), (0, 1)) =
√

2 and that
dS1((1, 0), (0, 1)) = π/2, which shows tha the inclusiuon ι is not an iso-
metric embedding.

We shall show that for every x, y ∈ S1 we have

dR2(x, y) ≤ dS1(x, y).

Assume without loss of generality that x = (1, 0) and y = (cos(t), sin(t)).
Then we have that dR2(x, y) =

√
2− 2 cos(t) and dS1(x, y) = t, so we

need to show that
√

2− 2 cos(t) ≤ t for t ∈ [0, π] which is enough. Geo-
metrically we are proving an obvious fact that a cord is shorter than the
corresponding arc.

Observe that the derivative of the function f : [0,∞)→ R given by f(t) =
t2 +2 cos(t)−2 is equal to f ′(t) = 2t−2 sin(t). In particular f ′(0) = 0 and
f ′(t) > 0 for t > 0. Thus the function f is increasing and f(0) = 0 which
implies that it is nonegative f(t) ≥ 0. We thus get that t2 ≥ 2− 2 cos(t)
as required.

Section 3

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

2. Let R2 be the Euclidean plane and let γ : R → R2 be defined by γ(t) =
xt + y, where x = (x1, x2), y = (y1, y2) ∈ R2. Prove that γ is a geodesic
if and only if ‖x‖2 =

√
|x1|2 + |x2|2 = 1. State and prove the analogous

criterion for the dp metric on R2.

Hint. This is a standard verification. The condition for the second part
is ‖x‖p = 1.

3. Consider the space pictured right
and compute the angles of between
the black geodesic and every other
geodesic drawn. Which concatena-
tions are geodesics?
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Compute the distance between any two vertices.

Answer. The angles are

∠(black,white) =
π

4
∠(black, greenish) =

π

2

∠(black, pink) =
3π

4
∠(black, yellow) = π

∠(black, purple) = π ∠(black, turquoise) = π

∠(black, red) =
3π

4
∠(black, blue) =

π

2

∠(black, green) =
π

4

4. What is the circumference of a circle of radius r centered in the interior
vertex of the space from the previous part.

Answer. 5π
2
r.

5. Let γi for i = 1, 2, 3 be geodesics starting from the same point of a metric
space. Suppose that the angle ∠(γ1, γ2) = ∠(γ2, γ3) = 3π/4. What can
you say about the angle ∠(γ3, γ1)?

Answer. Nothing. For each α ∈ [0, π] you can construct a space (similar
to the one in Exercise 3) for which ∠(γ3, γ1) = α.

6. Draw all geodesics between diagonal vertices A,B on the surface of the
unit cube.

Hint. If you find one geodesic γ then you can obtain more geodesic as the
compositions of γ with isometries preserving the vertices A,B. This way
you should find 6 geodesic which are the shortest. Drawing all geodesics
is impossible because there are infinitely many of them. However, deter-
mining all of them (for example, in terms of the angle such a geodesic
makes with an edge containig the starting vertex) is possible and not too
difficult.

7. Draw balls of radius r ∈ [0, 3] centered at a vertex or at the centre of a
face of the surfac eof the unit cube. Compute the circumference in several
cases.

Hint. A ball of suitably big radius centered at the center of a face is a
diamond-like shape contained in the oposite face.
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8. Let X be the lateral surface of a right cone of directrix d and unit gener-
atrix. Let p and q be points in the base circle. Draw a geodesic between
p and q and compute the distance between them.

Solution. Let A be the apex of the cone and let 0 be a point fixed on the
base of the cone. Let p1 = |Ap| and p2 be the (positive) angle from the
ray A0 and the ray Ap (and define q1 and q2 analogously).

Cut the cone open along a ray Ap and flatten in on the plane. The distance
between p and q is then equal to the length of the shortest seqment joining
the points in the flattened cone (there may be two such segments). We
obtain a triangle with vertices p, q, A with the angle at A equal to |q2−p2|
or 2π − |q2 − p2| and sides from containing A of lenghts p1 and q1. The
third side is the distance we are looking for and it can be computed by
applying the cosine formula.

9. Let X = S1 × R ⊂ R3 be the infinite cylinder based on the unit circle.
Give a formula for the intrinsic metric and investigate geodesics.

Solution. Let (w, s) and (z, t) be two points on the cylinder S1 × R2.
Cut the cylinder open along {w} × R and flatten it on the plane. The
distance we are looking for is then the Euclidean distance and it is equal
to
√

dS1(w, z)2 + (s− t)2, where dS1 denotes the intrinsic metric on the
unit circle.

By flattening the cylinder we see that the geodesic are straigth lines.
Formally, they are compositions of straight lines on the Eulclidean plane
R2 with the projection R2 → S1 ×R given by (x, y) 7→ (xmod2π, y).

10. State and prove the converse of Lemma 3.18.

Solution. If the angle between two geodesics γ1, γ2 : [0, 1] → X is equal to
π then γ : [−1, 1]→ X defined by

γ(t) =

{
γ1(−t) t ≤ 0

γ2(t) t ≥ 0

is a geodesic.
11. Let 0 = t0 < t1 < . . . < tn < . . . be an infinite sequence of numbers

converging to 1. Let X = [−1, 1] and let c : [0, 1] → X be any path
stisfying the following conditions: c(0) = 0 and c(tn) =

∑n
k=1(−1)k+1/k.

Show that c is not rectifiable.

Hint. Its length is bounded below by the sum of harmonic series.

82



12. The plane R2 equipped with the d1 metric is called the Manhattan
plane. Recall that, d1(x, y) = d1 ((x1, x2), (y1, y2)) = |x1− y1|+ |x2− y2|,
where x = (x1, x2) and y = (y1, y2) are points on the plane R2. Moreover,
let ‖x‖1 = d2(x, 0) = |x1|+ |x2|.

(a) Let γ : R→ R2 be given by γ(t) = xt+ y. Show that γ is a geodesic
if and only if ‖x‖1 = 1.

(b) Deduce from the previous item that the Manhattan plane is a geodesic
metric space.
Solution. For x, y ∈ R3 a geodesic between them is, for example,
γ : [0, d1(x, y)]→ R2 given by

γ(t) =
y − x
‖y − x‖1

t+ x.

(c) Let γ, γ′ : [0,∞)→ R2 be defined by γ(t) = (t, 0) and γ′(t) = (at, bt),
where a, b ≥ 0 and a+ b = 1. Show that the angle between γ and γ′
does not exist in general (for example, when a = b = 1

2
).

Hint. Show that the limit defining the angle does not exist by com-
puting it for s = t and for s = 2t.

(d) The upper angle between geodesics γ and γ′ is defined similarly to
the angle with the limit replaced by limit superior. Compute the
upper angle between geodesics from the previous item.
Answer. ∠(γ, γ′) = arccos(a− b).

(e) How many geodesics are there between (0, 0) and (1, 1)? How many
of them are distance minimising?
Answer. Infinitely many. Infinitely many.

(f) How many geodesics are there between (0, 0) and (1, 0)? How many
of them are distance minimising?
Answer. Infinitely many. One.

Section 4

1. Read carefully all examples and provide more details and make relevant
drawings if possible.

2. Let X be a square surface obtained as follows. Take a solid cube sub-
divided into 27 equal cubes. Remove the central cube and each cube
containing the centre of a face of the big cube (seven cubes removed). Let
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X be the surface of the remaining solid. Compute the Euler characteristic
χ(X).

Answer. χ(X) = −8.
3. Construct a triangular closed surface with the Euler characteristic equal

to zero.

Hint. This can be done in many ways. Take, for example, two nets of
a regular tetrahedron and try to construct a net of a surface in which 6
triangles meet at each vertex.

4. Let X be a closed polygonal surface such that all faces of X are k-gons
for some k > 2 and m faces meet at each vertex. Proof the following
statements:

(a) 2E = kF ; (b) 2E = mV ; (c) kF = mV .

Solution of (a). Each k-gonal face contributes k-edges to the total number
of edges. Since an edge belongs to exactly two faces, each each has been
counted twice in the previous count. This shows that 2E = kF . This
argument proves more. If X is any closed surface then 2E =

∑∞
k=3 kFk,

where Fk denotes the number of k-gonal faces.

Hint. The remaining solutions are similar.
5. Take a polygonal surface of genus g (for example g = 2), remove one face,

subdivide, and glue in the Möbius band. What is the Euler characteristic
of the resulting surface?

Answer. 1− 2g.
6. Take two Möbius bands and glue them together by identifying their bound-

aries. What is the Euler characteristic of the resulting surface?

Answer. 0.
7. The surface from the previous part has zero Euler characteristic. Prove

that it is not homeomorphic to a torus.

Hint. This is not so easy without sophisticated tools. Hoever, the intuition
is the following. Our surface contains the Möbius band as a subsurface. If
it was homeomorphic to the torus then the torus would contain a Möbius
band. If we consider the torus T2 as a surface in R3 then the complement
R3\T2 has two connected components. This implies that the torus has two
sides corresponding to this connected components (intuition: the torus can
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be painted white from the inside and black from the outside). If the torus
contained the Möbius band it would have only one side (intuition: if you
start painting the Möbius band with white then you paint is all white).

8. Suppose that X is a triangular closed surface such that six triangles meet
at each vertex. What is the Euler charateristic of X?

Answer. 0.
9. Suppose that X is a triangular closed surface such that k triangles meet

at each vertex. What is the Euler charateristic of X?

Solution. We have 3F = 2E = kV . Thus

F − E + V = F − 3F/2 + 3F/k = F (3/k − 1/2).

This is all we can say. This identity has many interesting consequences.
For example, if k > 6 the Euler characteristic is negative; if k is odd then
F is even etc.

10. Construct a closed square surface made from 12 squares in which 6 squares
meet at each vertex. Compute the Euler characteristic of the constructed
polygonal surface.

Answer. χ = −6.
11. Try to give a rigorous definition of the above surface.
12. Let C be the surface of the unit cube and let A ∈ C be a vertex. Is there

a geodesic γ : [a, b]→ C such that γ(a) = γ(b) = A?
13. The same question as in the previous exercise for the case of surfaces of

other Platonic solids (tetrahedron, octahedron, dodecahedron and icosa-
hedron).

Section 5

(5) We have 7F = 2E = 3V and we compute that F − E + V = 3V/7 −
3V/2 + V = −V/14.

(6) By the same reasoning as above we get that the Euler characteristic is
equal to (6− k)V/2k.
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Section 6

(6) The answer is yes. Cut the cone open along a generatrix and flatten on
the plane. Consider a disc of radius one centered at a vertex on the unit
cube. Cut it open along the edge and flatten on the plane. It is isometric
to the flatten cone.

(7) Again, cut open along generatrices, flatten on the plane. It is now clear
that some neighbourhoods are isometric if and only if their directrices are
equal.

Section 7

(3) Let P = (p, q) and let X = (x, y). Then

IP,r(x, y) =
r2

(x− p)2 + (y − q)2
(x− p, y − q).

(5) See the section Decomposition and elementary properties in the wi-
pedia article on Möbius transformation.

(7) The hyperbolic angle is equal to the Euclidean angle. Hence to compute
the hyperbolic angle we draw tangent (Euclidean straght) lines to the
sides of the triangle at a vertex and compute the Euclidean angle between
them.

Section 8

(2) The points A,B,C ∈ R3 define uniquely a plane P ⊂ R3. Moreover,
there is a unique circle on the plane P though the points A,B,C. Let
O ∈ P be the centre of this circle and let L ⊂ R3 be a line perpendicular
to P and intersecting P at O. Any point on L is equidistant from A,B
and C and defines uniquely a sphere in R3 containing the points A,B,C.

(3) Use the previous problem. Let D ∈ R3 be the fourth point. Find a point
Q on the line L such that it is equidistant from A and D. This is the
centre of the sphere we are looking for.
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Section ??

Section 9

Section 10
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