MA1006 ALGEBRA – Week 2

In all the questions below when asked about the image or preimage give three types of answer: describe the set using the mathematical notation, draw it and describe it in words. In all questions justify your answer.

- 1. Read the wikipedia articles about the Cartesian coordinate system, a function and the image of a function.
- **2.** Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined by $f(x) = -x^2 + 3$.
 - **a.** Draw a graph of the function f.
 - **b.** Is the function *f* injective?
 - **c.** Is the function *f* surjective?
 - **d.** What is the image of the function f.
 - **e.** What is the image of the interval [-1,3] with respect to the function f?
 - **f.** What is the preimage of the interval (0,1)?
 - **g.** What is the preimage of the interval [3,10] and the interval (3,4)?
- **3.** Let $f: \mathbf{R} \to \mathbf{R}^2$ be a map defined by $f(x) := (\cos(x), \sin(x))$.
 - **a.** What is the image of the map f?
 - **b.** What is the image of the interval [0,1] with respect to the map f?
 - **c.** What is the image of the interval [0, 10] with respect to the map f?
 - **d.** Is the map *f* injective?
 - **e.** Is the map *f* surjective?
 - **f.** Try to draw the graph of f. Notice that the graph is a subset of three dimensional space which makes it quite difficult to draw.
 - **g.** What is the preimage of the subset $\{(1,0)\}$ with respect to f?
- **4.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f(x, y) = x^2 + y^2$.
 - **a.** Is *f* injective?
 - **b.** Is *f* surjective?
 - **c.** What is the image of f?
 - **d.** What is the preimage of the point $1 \in \mathbf{R}$?
 - **e.** What is the preimage of the interval [0,1]?
 - **f.** What is the preimage of the interval [-3,1]?
 - **g.** What is the preimage of the integval [1,2]?
- **5.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a map defined by f(x, y) = |x y|.
 - **a.** Is f injective?
 - **b.** Is *f* surjective?
 - **c.** What is the image of f?

- **d.** What is the preimage of the point $1 \in \mathbf{R}$?
- **e.** What is the preimage of the interval [0,1]?
- **f.** What is the preimage of the interval [-3, 1]?
- **g.** What is the preimage of the integval [1,2]?
- **6.** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a map defined by f(x, y) = (x + y, y).
 - **a.** Is *f* injective?
 - **b.** Is *f* surjective?
 - **c.** What is the image of the square on the plane with vertices at (0,0), (1,0), (1,1), (0,1)?
 - **d.** What is the image of the *x*-axis? What is the image of a horizontal line?
 - **e.** What is the image of the *y*-axis? What is the image of a vertical line?
 - **f.** Write the formula for the composition of f with itself.
- **7.** Let $f, g: \mathbf{R} \to \mathbf{R}$ be functions defined by f(x) = ax + b and g(x) = cx + d, where $a, b, c, d \in \mathbf{R}$ and $a \neq 0$ and $c \neq 0$. Write the formulae for the compositions $f \circ g$ and $g \circ f$ and for the inverse functions f^{-1} and g^{-1} .
- **8.** Give an example of a map $f: \mathbb{R}^2 \to \mathbb{R}$ such that the preimage of the set {1} is equal to:
 - **a.** the *x*-axis;
 - **b.** the *y*-axis;
 - **c.** the circle of radius one centered at the origin;
 - **d.** the circle of radius r > 0 centered at (a, b);
 - **e.** the boundary of the square of area one with vertices on the axes.

Summary of Week 2:

- Coordinates in many dimensions.
- Maps and functions.
- Image and preimage.