CS4025: Morphology and the Lexicon

- Words
- The Lexicon
- Morphology

Reading: J&M (chapter 3 in both editions)

Types of Words

- Nouns (open-class, content words)
- Verbs
- Adjectives
- Adverbs
- Function (closed-class) words
 - prepositions, determiners etc.
- See J&M, sect 8.1

Lexicons

- Lexicons are databases of word information.
- “Dictionary” of NLP system
- A good lexicon is critical to performance
 - “the system with the bigger lexicon always wins”

Dictionary: Child

The following is, of course, written for humans:

- child \ chi-(*)ld\ n p/children[ME, fr. OE cild] 1a: an unborn or recently born person 1b: dialect: a female infant 2a: a young person of either sex esp. between infancy and youth 2b: a childlike or childish person 2c: a person not yet of age...
 - [From Webster’s on-line dictionary]

Word Information

An NLP system needs to know

- Spelling
- Category and subcategory
- Inflections (plurals, past, etc)
- What word corresponds to in DB or KB
- Statistical information
- maybe pronunciation
- probably not derivation

Example: Person

- Person
 - Category: noun
 - Subcategory: count noun
 - Inflections: plural = people
 - Database correspondence: person class.
 - Frequency: .03%
Word Meaning

- What do these words mean
 - He told a lie
 - The temperature fell in the afternoon
- Many subtleties, difficult to represent
- Most NLP systems ignore, use very simple models of meaning

Digression: Two approaches to word meaning

1. Create a network of all possible word senses, with links between them (e.g. for hyponym, antonym). A word then has a number of these possible senses (WordNet) - this is an expensive undertaking.
2. Try to decompose word senses into complex expressions involving primitive concepts (Schank, Jackendoff) - only possible in limited sense areas. In either case, the senses/concepts need to be related to domain objects (e.g. database fields)
[See later lecture on Semantics]

1. Network of words and senses

2. Decomposition of meaning into primitives

KILL =
 CAUSE TO die =
 CAUSE TO NOT LIVE

THROW =
 project WITH hand =
 (CAUSE to MOVE) WITH BODYPART

General inference rules can be formulated in terms of CAUSE, NOT, WITH etc.

Lexicon Structure

- Object-oriented representation
 - Noun, Verb, etc are classes
 - Individual words are instances
 - Slots (data members) hold information.
- Use of inheritance
 - Members of a class inherit properties (e.g. values of slots, applicable rules)
 - Multiple inheritance is common

Example: Lexicon Structure

Word

- Noun
- Verb
- Adjective

- Intransitive
- Transitive
- Btransitive

sleep eat have give
Morphology

- Variations of a root form of a word
 » prefixes, suffixes
- Inflectional morph - same core meaning
 » plurals, past tense, superlatives
 » part of speech unchanged
- Derivational morph - change meaning
 » prefix re means do again: reheat, resit
 » suffix er means one who: teacher, baker
 » part of speech changed

Noun Inflections

- Nouns are inflected to form plurals, usually by adding
 s
- Example
 » chair - Tom has one chair
 » chairs - John has 2 chairs
- Also possessive inflection with 's
 » The boy's mother

Adjective Inflections

- Adjectives are inflected to form comparative (er) and superlative (est) forms.
- Example:
 » fast - A Sun is fast
 » faster - A Sun is faster than a PC
 » fastest - The Cray is the fastest computer

Verb Inflections

- Tense and aspect
 » infinitive (root) - I like to walk to the store
 » past (ed) - I walked to the store
 » past participle (ed or en) - I have walked to the store
 » present participle (ing) - I am walking to the store.
- Agreement with subject
 » pres/3ing (s) - John walks to the store

Spelling Changes

- Some spelling changes are automatically made when adding a suffix to a word.
- Delete final "e" when ending starts with a vowel
 » write + ing = writing, not writing
- Change final "y" to "i"
 » fry + ed = fried, not fryed
Irregular forms

- Some words have irregular forms that must be looked up in a dictionary
 - plural of child is children, not childs
 - past of eat is ate, not eated
- Irregular forms are usually maintained when a prefix is added
 - past of rethink is rethought

Tasks

- Morphological analysis
 - Replace inflected forms by root+inflection
 - The children ate apples becomes
 - The child+s ate+ed apple+s
- Morphological generation
 - Replace root+inflection by inflected forms
 - The child+s ate+ed apple+s becomes
 - The children ate apples

Implementation - 1

- Standard endings, spelling changes
 - 2 pages of code
 - Porter stemmer in Information Retrieval
- Dictionary of special cases
 - 1500 special case rules (Sussex morpha)
- More complex processing is needed for languages with complex morphology.

Real Morphology (Turkish)

- Uygarlaşmaklarimizden misiniz casina
 - uygar - civilized
 - +las BEC (become)
 - +tir CAUS (cause to)
 - +ama NEGABLE (not able)
 - +dik PART (past tense)
 - +lar PL (plural)
 - +dan ABL
 - +mis PAST
 - +siniz 2PL
 - +casina ASIF
 - "(behaving) as if you are among those whom we could not
civilize/cause to become civilized"

Implementation - 2

- Express possible word analyses as simple concatenations of morphemes, e.g. "im-probable+ly" (can express allowable combinations via a finite state automaton)
- Represent the principles of a particular spelling change (e.g. "imp - imp") in a mapping between this and the surface form which enforces this but leaves everything else unchanged
- Require that any surface form is accepted by all the spelling change mappings
- Mappings can be implemented by finite state transducers, which can efficiently test correctness.

Morphology as tape-tape mapping

Different (partial) mappings involved:
- n_to_m: Knows about when to legally transform n to m
- y_to_i: Knows about when to legally transform y to i
- ...
Finite State Transducers (FSTs)

- A finite state transducer is like a finite state automaton, except that it accepts two tapes, rather than one.
- Each transition has a label $a:b$ where a is a symbol to appear on the first tape and b on the second.
- Abbreviations can be used to specify sets of symbols (the actual FST will have multiple transitions corresponding to each of these). E.g., $=$ means all symbols.
- FSTs can be used to express a mapping between the first tape and the second.

FST – n to m ($B = \{b, p\}$)

(Accepts a pair of tapes, and can be used to generate one from the other)

Parallel FSTs for morphology

(Con compile a set of parallel FSTs into one giant FST)

Summary

- The lexicon is a vital part of an NLP system
- Lexicons need to be organised properly to ease creation and maintenance (e.g., object oriented)
- Various information needs to be stored about a word
- Words belong to classes and change in form according to rules of morphology (2 kinds)
- Simple analysis of regular morphology is quite easy for English (Porter stemmer)
- Other languages or more complete coverage may require more sophisticated techniques (FSTs)