Generating Vague Descriptions

Kees van Deemter University of Aberdeen

- Vagueness: a challenge for NLP/NLG
- Simple things first: Vague Descriptions
- Problems
- Vagueness: still a challenge

Seminar, Ohio State University, 13 Oct. 2006

Generating Vague Descriptions

Kees van Deemter University of Aberdeen

- Vagueness: a challenge for NLP/NLG
- Simple things first: Vague Descriptions
- Problems
- Vagueness: still a challenge

Acknowledgement: Richard Power

Seminar, Ohio State University, 13 Oct. 2006

Linguists/formal semanticists usually think in **Boolean** terms: Y/N

But many NL statements admit boundary cases, e.g.

Many statements are ...
Linguists usually think ...
... is near ...
... is only a girl

Understand meaning & use.

Linguists/formal semanticists usually think in **Boolean** terms: Y/N

But many NL statements admit boundary cases, e.g.

Many statements are ...

Linguists usually think ...

... is near ...

... is only a girl

Understand meaning & use.

For now: focus on gradable/degree adjectives

Gradable adjectives (Quirk et al. 1972)

- 1. can be intensified by *very*
- 2. can take comparative and superlative form.

E.g., small, interesting

- smaller, smallest
- more interesting, most interesting

Degree adjectives are acquired early

Degree adjectives are among child's first dozens of words (Peccei 1994)

'Perceptual' context-dependence is typically understood at 2 years (Ebeling & Gelman 1994)

Degree adjectives are highly frequent

BNC's 10 most frequent adjectives:

[last], [other], new, good, old, great, high, small, [different], large

2. Vagueness is a challenge (for NLG)

Problem 1.

Equivalence of Observationally Indifferent Entities (EOI, Kamp 1981):

If x is big and $x \sim y$ then y is big

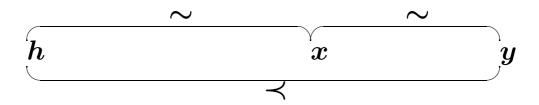
EOI leads to Sorites paradox.

(Cf. mathematical induction)

Problem 2. Just Noticable Differences

JNDs are widely used in psychophysics

But *Help Elements* imply unlimited discrimination (Dummett 1975):



Problem 3. Why do speakers use vagueness?

Natural Language Generation (NLG) offers a useful perspective:

Suppose a generator has numerical input (e.g., from measurements) then how/when/why should it produce vague output?

NB: This is NLG from **raw data** (not from complex logical forms)

Vague expressions in NLG

1. FOG system (Goldberg et al. 1994)

In: quantitative data (E.g., rainfall = 45mm)

Out: 'Heavy rain (fell on Tuesday)'

- Context-sensitivity not modeled.
- EOI not modeled: $heavy\ rain = 30 50mm$
- No rules for deciding whether to use vagueness
- 2. SUMTIME system: similar, though user can define boundaries (Reiter and Sripada 2002)
- 3. DYD system: context-dependence is modelled. 'A famous sonata' ⇒ more recordings

than average sonata (Van Deemter and Odijk 1997)

Simple things first!

- start with numerical KB
- generate vague descriptions (cf. Pinkal 1979)

TYPE(x)=TYPE(y)=dog
SIZE(x)=43cm
SIZE(y)=30cm

$$x \rightarrow The large dog$$

In the vet's surgery, with two dogs: 'The large dog has stomach problems'

'The large dog' is effectively a crisp description

'The 43 cm. dog' would be

- unnecessarily detailed (information overload), and
- hard to interpret (measurement vs. comparison!)

3. Generation of Referring Expressions

- Some referents don't have commonly-known names (trains, particles, trees, furniture, ...)
- Generation of Referring Expressions (GRE): computer "invents" a description
- Lots of simplifying assumptions, e.g.
 - description needs to be 'distinguishing'
- Such assumptions have made GRE one of the most advanced areas of NLG.

This talk:

• **Any** GRE algorithm can be extended to *vague* descriptions (although one algorithm works most smoothly).

van Deemter (2006). "Generating Referring Expressions that Involve Gradable Properties". *Computational Linguistics* 32 (2), 2006.

Incremental Algorithm (Dale & Reiter 1995)

Target = r

 \mathcal{P} = list of properties in order of preference

Algorithm delivers set $L=\{P_1,...,P_n\}$ such that $P_1\cap...\cap P_n=\{r\}.$

- Start with first property in ${\cal P}$
- If it's any good then include it
- Move on to next property in ${\cal P}$
- And so on, until properties jointly characterise r.

Incremental Algorithm: plural version (van Deemter 2000)

Replace $\{r\}$ by arbitrary set S:

$$C:= ext{Domain}$$
 $L:=igotimes$ For each $P_i\ \epsilon\ P$ do If $S\subseteq [[P_i]]\ \&\ C
ot\subseteq [P_i]]$ then do $L:=L\cup \{P_i\}$ $C:=C\cap [[P_i]]$ If $C=S$ then Return L

Return Failure

Example of 'crisp' GRE, using IA:

Dog: $\{c_1, c_2, c_3, c_4, p_5\}$ White: $\{c_1, c_2, p_5\}$ Brown: $\{c_3, c_4\}$

British: $\{c_2, c_4, p_6\}$

To describe $\{r\} = \{c_4\},$ $L = \{\text{Dog, Brown, British}\}$ 'The brown British dog'

To describe $S=\{c_2,c_4\},\ L=\{ ext{Dog, British}\}$ 'The British dogs'

Limitation: Standard GRE algorithms do not treat context dependence

large chihuahua $\neq large$ dane

Can properties in KB be contextualised?

First idea: "when deciding whether large(x), consider TYPE(x)"

Obstacle 1: other properties in the description: Suppose TYPE(x) = chihuahua. Then large chihuahua \neq the large dog

Obstacle 2: numerals etc: (See next slide)

Suppose Domain= $\{2cm, 5cm, 7cm, 9cm\}$

- The large mouse = 9cm
- The two large mice = 7cm, 9cm
- The three large mice = 5cm, 7cm, 9cm

This shows:

the (one) large \neq the two large \neq the three large

Root of the problem: KB cannot anticipate in what context a gradable concept will be used!

Context-dependent properties do not belong in a KB

Same observations affect formal theories

Theoretical accounts of vagueness focus on **comparison sets**:

"x is large with respect to A": large A(x). For example,

- larger than average over A
- larger than most in A, etc.

But standards are largely a matter of fiat

Kennedy 1999; van Deemter 2000; DeVault and Stone 2004

Experiments with human subjects

(very briefly!)

- By and large, readers understand
 'the ADJ' as 'the ADJ-est'
 E.g., 'the large mouse' = 'the 1 largest mouse'
- In fact, it's hard to find any differences in usage between

```
'the ADJ' (base form)
'the ADJ-er' (comparative form)
'the ADJ-est' (superlative form)
```

• Exceptions: predicative and anaphoric uses

'is the largest mouse in the house'

'a large mouse' ... 'the large mouse'

Eyetracking experiment (Sedivy et al. 1999)

- \bullet Materials: 1 target referent + 1 distractor
- E.g. Two cups of different sizes. **Target** = the tallest of the two,
 described as 'the tall cup'
- Hearers spot target easily in all cases. (Low latency times.)

Intrinsically small cup: first spotted after 554 ms. Intrinsically tall cup: first spotted after 538 ms.

• This suggests: intrinsic size is hardly relevant (It's all about comparison)

So: "Vague descriptions" are not so vague after all

Unclarity arises when numerals are omitted:

The large(st) mice: The largest n = ?

Ambiguous between all values $n \geq 2$

sizes
$$3, 3, 5, 7, 8$$
 $cm \Rightarrow$
The large(st) mice = $\{7, 8\}$ or $\{5, 7, 8\}$

sizes
$$3, 3, 3, 7, 8 \ cm \Rightarrow$$

The large(st) mice = $\{7, 8\}$

Caveat: All measurement is imprecise ...

'Proof of concept' system

VAGUE was implemented in SICSTUS PROLOG by Richard Power

Load KB, then ask VAGUE to describe a referent

Sample outputs: (including some stilted ones)

'The largest one among the white mice'

'The white mice whose size is 3cm'

'The fast ones among the four largest ones among the white animals'

A sketch of how VAGUE works:

Incremental Algorithm modified: vague descriptions

Let size have numerical values, e.g,

$$size = 10cm, 20cm, ...$$

This allows us to generate a description based on $L=\{$ yellow, chihuahua, 30cm $\}$ iff r is the only yellow chihuahua with size 30cm

Inference step:

If 30cm is maximal among yellow chihuahuas then replace 30cm by $largest_1$:

 $L = \{ \text{ yellow, chihuahua, largest}_1 \}$

Plural descriptions

The largest n chihuahuas

What if the *n* chihuahuas have different sizes?

Compile a new KB, with information of the form SIZE(x) > a (for a in old KB). First generate

$$L = \{P_1, ..., P_m, Q\}$$
, where $Q = \lambda x: ext{SIZE}(x) > a.$

Inference step:

Replace Q by $largest_n$, where $n=\|S\|$ (the largest n objects in $P_1\cap ...\cap P_m$)

Output: 'the largest $n P_1 \cap ... \cap P_m$ '

Example

'The largest 2 chihuahuas'

TYPE = chihuahua: c1, c2, c3, c4

TYPE = poodle: p5

SIZE = 30cm: c1

SIZE = 50 cm: c2

SIZE = 80 cm: c3

SIZE = 90cm: c4, p5

New KB

TYPE = chihuahua: c1, c2, c3, c4

TYPE = poodle: p5

SIZE >80cm: c4, p5

SIZE >50cm: c4, c3, p5

SIZE >30cm: c4, c3, c2, p5

Suppose $S = \{c3, c4\}$

Then $L = \{chihuahua, > 50cm\}$

After revision: $L' = \{chihuahua, Largest_2\}$

Combinations of vague adjectives:

TYPE= chihuahua: c1, c2, c3, c4

TYPE= poodle: p5

SIZE >80cm: c4, p5

SIZE >50cm: c4, c3, p5

SIZE > 30cm: c4, c3, c2, p5

WEIGHT<50kg: c1, p5

WEIGHT < 80 kg: c2, c1, p5

WEIGHT < 90 kg: c3, c2, c1, p5

 $\{c3\} = \{Chihuahua, Largest_2, Lightest_1\}$

 $L = \{Chihuahua, Largest_2, Lightest_1\}$

Possible wordings include

a. 'The chihuahua that's larger than 50cm but lighter than 90kg'

b. 'The lightest one of the largest two chihuahuas'

VAGUE chooses (b.) (never using inequalities)

Lots of other choices ... and linguistics is of remarkably little help

- 1. When to use 'exact' measures, when adjectives?
 - 'The 3cm mouse' vs.
 - 'The small mouse'
- 2. When to omit the numeral?
 - 'The small(est) mice' vs.
 - 'The three small(est) mice'
- **3.** Use superlatives, comparatives, or base forms?
 - 'The smallest mouse' vs.
 - 'The smaller mouse' vs.
 - 'The small mouse'

Answers implemented in VAGUE:

- **1.** 'Exact' measures when one measure suffices, while one *adjective* is not enough:
 - 'The large mouse'
 - 'The 3cm mouse' (neither largest nor smallest)
- 2. Only the last-added adjective goes without numeral
 - 'The tall ones among the 5 large mice'
- **3.** Base form iff the size of the gap is 'sufficient' (to be determined interactively)
 - This is where Kamp's EOI returns
 - Many small experiments (Paper at INLG-2004)

Algorithm (using IA)

- 1. Replace equalities by inequalities in KB
- 2. Determine preference order (Default: gradables come last)
- 3. Run IA_{Plur}
- 4. Apply Inferences
- 5. Perform Linguistic Realisation

Inferences:

- Replace combinations of inequalities by one exact Value
- Replace inequalities by properties that involve cardinality
- (etc.)

Algorithm (using any GRE algorithm G)

- 1. Replace equalities by inequalities in KB
- 2. Apply G
- **3a.** Impose linear ordering on properties generated by *G*. (*Default: gradables come last*)
- **3b.** Delete superfluous inequalities
 - 4. Apply Inferences
 - 5. Perform Linguistic Realisation

4. Possible extensions

- 1. Beyond degree adjectives
- 2. References with pointing
- 3. Degrees of salience

1. Beyond degree adjectives

Maybe 'British' and 'brown' are vague after all ...

- 1. Suppose x is closer to prototypical brown than y. Then 'the brown dog' = x
- **2.** x is 'the British dog'

OWNER(x)= John; OWNER(y)= Sarah

NATIONALITY(John)= NATIONALITY(Sarah)=UK

TYPE(x)= German shepherd

TYPE(y)= Border collie

3. Nouns like 'girl', 'academic', ...

Maybe vagueness is the rule not the exception (e.g. Prototype Theory, Rosch et. al. 1976)

'the academic' = element most typical of academics

2. Beyond text. Suppose W denotes women:

'The woman' (+ pointing) = e

Treatment: 'vaguify' Van der Sluis & Krahmer (measure proximity to center of pointing)

3. Salience.

Some distractors are more salient than others the red mouse = the most salient red mouse in D (Krahmer & Theune 2002).

Observe: Salience itself is gradable: an implicit gradable adjective. **Treatment:**

- ullet Model degrees of salience numerically: SALIENCE $(x) \in \mathcal{N}$
- Test whether new property removes any distractors that are at least as salient as r.
- Stop when no distractors are left that are at least as salient as r.
- Do not *realise* salience in words.

5. A problem: Multidimensionality

1. Iterations of degree adjectives:

'The large hairy dog'

- The dog that is largest & hairiest?
- The largest dog that is hairier than average?
- The dog who scores highest on 'large & hairy'?
- **2.** Recursive use of degree adjectives: 'The large dog in the small barn'

When vague properties are combined, **expect trouble!**

3. We saw that **salience** acts like an implicit gradable adjective

So: Problems in combination with other gradables: 'the large mouse' =?=

- the largest mouse that's salient enough?
- the most salient mouse that's large enough?

Even without overt vagueness: 'the railway station' (size or importance?)

Overall conclusion regarding GRE:

Referential success becomes hard to predict!

Conclusions

Some successes but problems remain:

- 1. Multidimensionality (Cf. Masthoff 2004)
- 2. Is 'the large mice' understood correctly? (Possible answer: perceptual grouping (Thorisson 1994; Gatt 2006a, 2006b.)
- **3.** What about other sources of vagueness? E.g. vague quantifiers: *many*, *few*.

(*Possible answer*: Moxey & Sanford's work on speaker's expectations and goals)

Relevant for adjectives and nouns too: 'The large dog was barking' 'This is no civil war'

4. Vague **descriptions** are exceptional. Elsewhere, **vagueness implies loss of information**

Experiments: Vague expressions are understood differently by different people (e.g. Toogood 1984)

Informativity and digestibility need to be balanced

Compare: the term 'ease of use' in HCI masks what an interface can achieve

4. Vague **descriptions** are exceptional. Elsewhere, **vagueness implies loss of information**

Experiments: Vague expressions are understood differently by different people (e.g. Toogood 1984)

Informativity and digestibility need to be balanced

Compare: the term 'ease of use' in HCI masks what an interface can achieve

More empirical work is needed!