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ABSTRACT: We perform numerical simulations on fluidized dense suspensions of solid
spheres, solid cylinders, and hollow cylinders in a Newtonian liquid. The simulations are
three-dimensional and time-dependent and aim to resolve the flow around and�for the
hollow particles�inside individual particles. We use a lattice-Boltzmann scheme that
includes an immersed boundary approach for imposing no-slip at solid surfaces. The
overall solids volume fraction is 0.5 for the solid particles and 0.375 for hollow cylinders.
The latter have a length over outer diameter aspect ratio in the range of 0.56−1.58, while
the ratio of outer to inner diameter is 2. Archimedes numbers of the order 103−104 are
such that we expect inhomogeneous fluidization with wave-type voidage instabilities. We
have a particular interest in the flow through the inner diameter of the hollow cylinders
and the extent to which it could contribute to liquid−solid mass transfer.

1. INTRODUCTION
Fixed and fluidized beds are workhorses for achieving mass and
heat transfer in many industrial applications and therefore are
the subject of an extensive body of research, design, and
technological development. A primary application of gas
fluidization is fluid catalytic cracking.1 A trickle bed reactor is
an example of a fixed bed with the solids providing surface area
for heterogeneous reactions of species contained in a gas and in a
liquid phase.2 Liquid fluidization is used for purposes such as
particle classification and backwashing of filter material.3 It also
is an important test bed for fundamental studies on the onset and
characterization of instabilities in fluidization.4,5

In fixed beds, the design of particle shapes with the aim of
enhancing their transfer performance is an active area of research
of an experimental6 as well as computational nature.7 In
fluidization, the motivation for studying particles with shapes
(very) different from spheres usually is the feedstock supplied to
the process. A prominent example is biomass conversion8 with
the biomass in the form of a fibrous particulate material. To
enable fluidization of biomass, it often is co-fluidized with sand
particles.9,10

The author is not aware of studies on the design of shapes of
particles (other than spherical) to be used in fluidization and
with the aim of enhancing transfer properties or flow
characteristics. One likely reason for this is concern about the
mechanical strength of the particles.11 Given frequent and
potentially vigorous collisions between particles in dense
fluidized beds, breakage and attrition of particles might render
the benefits of a carefully designed particle shape ineffective.
Despite such concern it seems a useful exercise to probe
potential benefits of particle shape in fluidization, specifically
when it comes to mass transfer performance.

The above is the motivation of this paper. It describes a purely
computational exercise on, eventually, the contribution of the
flow within the internal diameter of a hollow cylindrical particle
to mass transfer in a liquid fluidized bed. One reason to consider
liquid fluidization is to ground the fluidization characteristics in
experimental data from the literature4 and to build upon
previous computational work of ours.12 The hollow cylinders are
short (length over outer diameter aspect ratio up to ∼1.6) and
relatively thick-walled (outer over inner diameter equal to 2) in
order to try not to compromise their potential for mechanical
strength.
We first study fluidization of a liquid−solid system with

spherical particles all having the same size and demonstrate that
the simulations quantitatively correctly exhibit the wave
instability observed in experiments.4 In the second step we
replace the spheres by solid cylinders with aspect ratio 1 and
volume equal to the spheres and generate a similar instability
which is�admittedly only circumstantial�evidence that we are
able to deal realistically with nonspherical particle fluidization in
our simulation methodology. The third step is to fluidize hollow
cylinders that, again, show wave instabilities under certain
circumstances. With the hollow cylinders we embark on a
parameter study in which we vary the length over diameter ratio
of the cylinders as well as the Archimedes number and focus on
the flow inside their inner diameter and its potential

Special Issue: Vivek Ranade Festschrift

Received: December 10, 2022
Revised: January 18, 2023
Accepted: January 19, 2023
Published: January 31, 2023

Articlepubs.acs.org/IECR

© 2023 The Author. Published by
American Chemical Society

19197
https://doi.org/10.1021/acs.iecr.2c04464

Ind. Eng. Chem. Res. 2023, 62, 19197−19204

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
A

B
E

R
D

E
E

N
 o

n 
N

ov
em

be
r 

16
, 2

02
3 

at
 1

2:
36

:0
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacobus+Johannes+Derksen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.2c04464&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c04464?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c04464?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c04464?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c04464?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.2c04464?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
https://pubs.acs.org/toc/iecred/62/45?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.iecr.2c04464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


consequences for solid−liquidmass transfer at the inner cylinder
surface.
Since particle shape is the primary focus of this paper, our

simulations must be able to resolve the fluid flow around the
individual particles. This thus requires what has been termed
PRS (particle-resolved simulation);13 the grid on which fluid
flow is solved has a spacing that is smaller by 1 order of
magnitude as compared to the particle length-scales so that no-
slip at particle surfaces can be imposed explicitly. PRS with
spherical and nonspherical particles is a quickly growing branch
in multiphase flow research. Given their relevance in process
engineering, the motivation of many PRS’s comes from gas−
solid systems, with studies that include (reactive) gas−solid heat
and mass transfer.14−18 Simulations of gas flow through static
assemblies of particles are not only relevant for fixed bed
reactors. Given the high Stokes numbers associated with
particles suspended in gases, the time scales on which particle
assemblies evolve are much larger than flow time scales, which
renders credit to a static particle approach in the first instance.
This is different for solid−liquid systems that have Stokes
numbers of order unity which create a tighter coupling between
fluid and solids dynamics and the need for simulations in which
the suspended particles freely translate, rotate, and collide.
Compared to solid−gas systems, inclusion of mass transfer is
more challenging for solid−liquid systems. With Schmidt
numbers (Sc) of order 1, as for gases, the resolution
requirements for numerically solving scalar transport are
comparable to those for fluid dynamics. Liquids have Sc ≫ 1
and therefore need significantly higher resolution, at least for the
scalar transport part of the simulation approach.19

PRS’s are computationally expensive on a per-particle basis
(of the order of 103−104 grid cells/nodes per particle for
resolving their interaction with fluid flow), which means that we
cannot even simulate a lab-scale fluid bed. Instead we perform
simulations in triperiodic domains containing ∼3000 particles
that mimic a sample away from walls and internals in a larger
fluidized system.

2. FLOW SYSTEM
The flow domain is periodic in all three Cartesian coordinate
directions. Its size is nx× ny× nzwith nx = ny = nz/2 and gravity
acting in the negative z-direction (g = −gez). It contains
Newtonian fluid with kinematic viscosity ν and density ρ as well
as n identical solid particles. Three types of particles have been
considered: solid spheres with diameter d; solid cylinders with
diameter dc and length l; and hollow cylinders with outer
diameter do, inner diameter di, and length l. The density of the
particles is denoted as ρs. We define the density ratio as γ = ρs/ρ.
In all cases γ > 1. Given the different types of particles, the
Archimedes number is defined based on particle volume V: Ar =
(γ − 1)gV/ν2. This makes for fairer comparison between
particles of different shape in systems having the same Ar. The
overall solids volume fraction is ⟨ϕ⟩ = nV/(nx · ny · nz). To
maintain an overall force balance over the periodic system, the
net gravity felt by the particles is compensated for by a body
force on the fluid acting in the positive z-direction: f = ⟨ϕ⟩(γ −
1)ρgez.12

3. SIMULATION PROCEDURE
The systems considered are inherently three-dimensional and
time-dependent, and so are the simulations. The simulations are
particle-resolved with particles free to move and rotate; the

dimensions of the particles are significantly larger than the
spacing of the mesh on which the fluid flow is solved. We then
are able to explicitly impose no-slip at the surfaces of the
particles and thus account for the actual shape of the particles
moving through the fluid.
The five key elements of the simulation procedure are (1) the

flow solver that includes (2) an immersed boundary method20

for imposing no-slip at particle surfaces; (3) solvers for the
particle translational and rotational dynamics including (4)
close-range interaction forces and collision forces between
particles; (5) the kinematics of particle motion which is
straightforward for translation but less so for keeping track of
particle orientation for which quaternions21 have been used.
This procedure has been followed in a number of our recent
papers. The details, including parameter settings, are available in
ref 22. The Supporting Information gives further details about
the close-range interaction and collision forces. Below is a brief
overview guided by the five elements identified above.
(1) The flow solver is based on the lattice-Boltzmann scheme

as proposed in refs 23 and 24. An important feature is that it
operates on a uniform cubic lattice with spacing Δ, with
distribution functions defined in nodes at the (cubic) cell
centers. Flow variables such as velocity, pressure, and viscous
stress are derived from the distribution functions.25 The flow
evolves in time explicitly with a time step Δt according to a
discrete form of the Boltzmann equation.25

(2) An immersed boundary method imposes no-slip at the
solid particle surfaces. For this the surfaces are represented by a
set of off-lattice marker points with nearest neighbor spacing in
the range of 0.5−0.6Δ. The fluid velocity at the marker points is
determined through interpolation from the lattice nodes and
compared to the solid surface velocity. A force on the fluid is
applied at each marker point that drives the difference between
fluid and solid surface velocity to zero at that surface location.26

Integration of the force distribution over each particle surface
results in the force and torque exerted by the fluid on each
particle.
(3) Newton’s (translation) and Euler’s (rotation) equations

are solved by explicit, split-derivative time stepping27 so as to
update linear and angular velocities of the particles. The time
step is the same as the time step Δt that updates the flow field.
The forces contained in Newton’s equation are the hydro-
dynamic force provided by the immersed boundary method, net
gravity, and close-range interaction forces, to be discussed
directly below. The torques in Euler’s equation are the
hydrodynamic torque from the immersed boundary method
and the torque stemming from close-range interaction. To make
use of the symmetry properties of the particles, the equations of
rotational motion are solved in a reference frame attached to the
each particle.
(4) Close-range interaction and contact forces have two

functions. In the first place, they compensate for a lack of grid
resolution. When the surfaces of two different particles moving
relative to one another come within a distance Δ, the flow solver
is not able anymore to accurately capture the fluid flow in the
space between them and therefore their hydrodynamic
interaction. To compensate for this, a lubrication force is
added to the equations of motion for each of the two particles.28

In the second place, they perform a “dry” collision between
particles and thereby prevent overlap of their volumes. For this, a
repulsive elastic spring force is activated upon the distance
between two particles falling below 0.15Δ (which is of the order
of 10−2 times the particle size). Collision detection for cylinders
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is more complicated than for spheres. As the immersed
boundary method, the algorithm for determining distance and
relative velocity between particle surfaces makes use of marker
points on particle surfaces22 so that particle shape is explicitly
accounted for when particles collide. In order to determine the
direction of the interaction forces, eachmarker point is equipped
with the outward normal vector of the particle surface at that
location. In the present study only radial close-range interaction
forces have been considered. At least for spheres, radial
lubrication forces are significantly higher than tangential
lubrication forces.29 Having only radial�and therefore no
tangential�dry collision forces implies that we assume the
particle surfaces to be smooth and thus the friction coefficient to
be zero. In the Supporting Information, expressions for close-
range interaction forces and values of associated parameters are
given.
(5) After updating particles’ linear and angular velocity, their

location and orientation need to be updated. Particles are being
translated by a simple Euler forward rule. For keeping track of
the particle orientation, each one of them has a quaternion21 that
is updated every time step according to the solution given in ref
30. The quaternions are specifically helpful for exchanging
information (location, velocity, force, torque) between the
(overall) inertial reference frame and the reference frames
attached to the individual particles.31

4. SET-UP OF SIMULATIONS
As a reference case for which experimental data is available,4

fluidization of spherical particles all having the same diameter d
is considered. The spatial resolution is such that d/Δ = 16; the
temporal resolution is such that Δtν/d2 = 7.81 × 10−5. The
domain size is 12d × 12d × 24d in x, y, and z directions,
respectively. With n = 3300 spheres this results in an overall
solids volume fraction ⟨ϕ⟩ = 0.50. The density ratio is γ = 4. The
Archimedes number is Ar = 5.63 × 103. To put this in
perspective, this mimics fluidization of d ≈ 700 μm spheres in
water in the earth’s gravitational field.4

The solid cylindrical particles that have been studied have the
same density as the spheres, the same volume as the spheres (to a
good approximation), and have an aspect ratio l/dc = 1. This
then implies that l/Δ = dc/Δ = 14. The equivalent diameter of the

solid cylinders is defined as d d l3 /2e c
23= and for these

cylinders is equal to the diameter dof the spheres. With the same
kinematic viscosity of the fluid and the same gravitational

acceleration these solid cylinders are characterized by the same
Archimedes number as the spheres.
Three variants of hollow cylinders have been simulated.

Hollow cylinders have three dimensions: outer diameter do,
inner diameter di, and length l. All three cylinder variants have
do/di = 2. The first variant has do = dc and l/do = 1 so that its
volume is 3/4 that of the solid cylinder. With the same number n
= 3300 of particles, this means ⟨ϕ⟩ = 0.375. By giving this hollow
cylinder a density ratio γ = 5, it has the same Ar as the solid
cylinders (as well as the spheres). The other two hollow
cylinders have the same volume and density as the first one (and
therefore again the same Archimedes number) but differ in their
length-over-outer-diameter aspect ratio. One has l/do = 0.56; the
other one has l/do = 1.58. It is important to note at this stage that
we might have somewhat compromised our spatial resolution
given that for the hollow cylinder with l/do = 1.58, the inner
diameter spans only six lattice spacings (di/Δ = 6).
Care has been given to initialize the particle configurations in

a random fashion and so to speed up reaching a dynamically
steady fluidization state. At the high solids volume fractions
studied here, it would take significant (simulation) time for a
system to “forget” its initial orderly state if it were initialized that
way. To facilitate a random initial configuration, first we build
random assemblies of spheres by placing them at random
locations in a nonoverlapping way. This can only be done up to
⟨ϕ⟩ ≈ 0.332 so that we subsequently need to compress the
domain to reach the desired solids volume fraction. For (hollow)
cylinder simulations we give the spheres a diameter of d lo

2 2+
so that the sphere would completely encapsulate a cylinder.
When starting the compression those spheres are replaced by
randomly oriented cylinders, and we continue compressing until
the desired volume fraction is reached.
For the hollow cylinders a parameter variation study has been

conducted. As described above, there are three variants of
hollow cylinders with l/do = 0.56, 1.0, and 1.58, respectively. All
have the same volume, and all have γ = 5 and do/di = 2. In
addition to the base-case Archimedes number of Ar = 5.63× 103,
three other values of Ar have been considered: 2.82× 103, 8.45×
103, and 1.13 × 104.

5. RESULTS
5.1. Fluidization of Spheres, Solid Cylinders, and

Hollow Cylinders. In order to relate to previous simulation
work of ours12 and to experimental results,4 a reference case of
liquid fluidization of solid spheres was designed that�in a

Figure 1. Single realizations of particles with their centers within a distance d from the xz-midplane and liquid velocity magnitude in the xz-midplane,
and the associated profiles of the solids volume fraction averaged over x and y as a function of z. (a) Spheres with diameter d. (b) Solid cylinders with l/
dc = 1 and de = d. (c): Hollow cylinders with l/do = 1, di/do = 0.5, and do = dc. In panels a−c, Ar = 5.63 × 103. (d) As in panel c, however, now Ar = 1.13×
104. The overall solids volume fraction of the spheres and solid cylinder system is ⟨ϕ⟩ = 0.50; for the hollow cylinder system, it is 0.375.
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physical sense�is almost identical to one of the simulation cases
discussed in ref 12. The main numerical difference is the collision
algorithm that previously was hard-sphere and now is soft-
sphere because that same soft-“sphere” (soft-particle) algorithm
has been used in subsequent simulations of nonspherical particle
fluidization. Another numerical difference compared to previous
work is the domain size which is now twice as large in the lateral
directions and 1.2 times larger in the vertical direction.
It is reassuring to see the development of a voidage wave

traveling in the positive z-direction in the current simulation
(see Figure 1a). Such waves have been observed experimentally
in liquid fluidization in narrow columns4 and were reproduced
well previously by the algorithm that included hard-spheres.12 It
is important to note that the realizations in Figure 1 (and also in
Figure 3) do not show all particles but only particles with their
center in a 2d thick slice. The other panels of Figure 1 show that
also fluidized cylindrical particles develop waves. In Figure 1b
one sees an instantaneous realization of the voidage wave for
fluidized solid cylinders with l/dc = 1 and the same Archimedes
number as the spheres. The wave in the fluid bed of hollow
cylinders has less contrast in terms of solids volume fraction as a
function of vertical location ϕ(z) (see Figure 1c). An increase of
the Archimedes number deepens that wave (Figure 1d).
A quantitative analysis of the waves as shown in Figure 1 is

presented in Figure 2. In its left panel it is illustrated how wave

speeds have been determined. Solids volume fraction profiles
ϕ(z) having a spatial resolution of one sphere diameter d (such

as the ones shown in Figure 1) of a large number (∼1.2× 103) of
realizations after dynamic steady state was reached were
determined, and their minimum ϕ values were identified. The
z-locations of the minima are plotted as a function of time, and a
linear function was fitted to them. The slope of that line
represents the wave speed c which for the spheres was found to
be cd/ν = 33.3. This is almost identical to the speeds found in the
earlier hard-sphere simulations12 (cd/ν = 33.7 for ⟨ϕ⟩ = 0.505
and 33.2 for ⟨ϕ⟩ = 0.488) and close to the experimental value of
29 ± 1.4.4 Given the so determined wave speeds, average wave-
profiles can be determined by taking a series of instantaneous
profiles ϕ(z) at times ti and shifting them in the negative z-
direction over a distance cti (taking into account the periodic
boundaries) and then averaging them. Examples of average wave
profiles are shown in the right panel of Figure 2. The wave for the
solid cylinders is at least as deep as the one for the spheres; its
speed is significantly smaller (as noted in the caption of Figure
2). Given the holes in the hollow cylinders, their average volume
fraction is less by 25% than that of the solid cylinders and the
spheres. Their wave amplitude is less than 0.5 times the
amplitude of both types of solid particles.
The fluidization characteristics of the other two hollow

cylinders (with l/do = 0.56 and l/do = 1.58l/do = 1.58) are shown
in Figure 3. The most remarkable observation is that the longer
hollow cylinders do not develop a wave if Ar = 5.63 × 103 and
only a very shallow one if the Archimedes number is twice as
high.
The results presented so far are for systems that are in a

dynamic steady state. The development toward this state has
been monitored by keeping time series of domain-average
quantities. In Figure 4 we show two examples for solid
cylindrical particles with l/dc = 1: a time series of the domain-
averaged slip velocity of the cylinders and their domain-averaged
orientation angle. In addition, the figure shows time series of slip
velocity and angle for one particle. The domain-average
quantities get stable after a very short start-up period that lasts
less than 0.5de2/ν. Judging from the single-particle data, the
velocity fluctuation levels are much higher than the average
velocity. The periodicity that can be discerned from the single-
particle velocity time series is due to that particle periodically
encountering the voidage wave, with the negative spikes in
velocity the moments the particle is falling through the void.
The orientation angle distributions of cylinders (solid and

hollow) are in Figure 5 with the angle ψ the angle between the
vertical direction and cylinder centerline. An isotropic
orientation distribution has sin ψ as its distribution function.

Figure 2. Left: symbols are z-locations of the minima in the ϕ(z)
profiles at subsequent instantaneous realizations; the line is a linear fit
taking into account periodic conditions in the z-direction; fluidization
of spheres. Right: average voidage wave forms for the cases shown in
Figure 1a,b,c. The dimensionless wave speeds for these cases are cd/ν =
33.3, cde/ν = 24.3, and cdo/ν = 20.2, respectively. Given periodic
conditions, the locations of the waveforms on the abscissa are arbitrary.

Figure 3. Single realizations of hollow cylinders with their centers within a distance d (the sphere diameter) from the xz-midplane and liquid velocity
magnitude in the xz-midplane, and the associated profiles of the solids volume fraction averaged over x and y as a function of z. (a) l/do = 0.56 and Ar =
5.63 × 103. (b) l/do = 1.58 and Ar = 5.63 × 103. (c) l/do = 0.56 and Ar = 1.13 × 104. (d) l/do = 1.58 and Ar = 1.13 × 104.
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One generally observes approximately isotropic distributions,
very different from the preferentially vertical orientation of tall
cylinders in settling suspensions.22,33 In some cases shown in
Figure 5, horizontal orientation is slightly overrepresented as
compared to an isotropic distribution.
5.2. Flow in the Hollow Cylinders and Consequences

for Mass Transfer. One reason for fluidizing hollow cylinders
instead of solid cylinders (or solid particle in general) could be
enhancement of transfer processes as a result of the flow within
their inner diameter di. To investigate this internal flow we
consider an instantaneous realization of the entire flow system.

We identify the lattice nodes within the inner diameter of each
cylinder, determine the fluid velocity at these nodes relative to
the velocity of the cylinder, and focus on the relative velocity
component in the axial direction of the cylinder (that we call the
“1” direction). For each node inside the cylinder we determine
its radial location relative to the centerline of the cylinder and its
axial location relative to the middle of the cylinder. Averaging in
the axial direction then gets us fluid velocity profiles u1(r) as in
Figure 6. These are akin to Poiseuille profiles.

The average axial velocity in each cylinder ⟨u1⟩ follows from
integration of u1(r) over the cross sectional area of its inner part.
Before performing a more quantitative analysis regarding the
flow through the cylinders we first make a few qualitative
observations regarding ⟨u1⟩. Figure 7 correlates the cylinder

orientation angle ψ with |⟨u1⟩|. We see large scatter which is the
result of the random nature of particle and fluid motion and the
resulting wide orientation angle distribution (see Figure 5).
Overall, however, there is a trend of higher flow through
cylinders that are oriented with smaller ψ, i.e., are closer to being
vertical. This makes sense given that the mechanisms driving the
flow are vertical (net gravity on particles down, body force f =
⟨ϕ⟩(γ − 1)ρgez on fluid up). Figure 8 shows how flow through
cylinders is sensitive to the uneven distribution of solids over the
domain as a result of the voidage wave. In this figure we compare

Figure 4.Time series of volume average data (black) and sample single-
particle data (blue) for (top) the angle ψ of the centerline of cylinders
with the vertical and (bottom) the vertical particle slip velocity upsz; t = 0
is the start of the simulation with fluid and particles at rest. Solid
cylinders with l/dc = 1, de = d, and Ar = 5.63 × 103.

Figure 5. Probability density functions of the orientation angle ψ for
solid cylinder (top) and hollow cylinder (bottom). From left to right l/
dc = 0.56, 1, and 1.58 (solid) and l/do = 0.56, 1, 1.58 (hollow). In all
cases Ar = 5.63 × 103. The red curve is sin ψ, which is what an isotropic
distribution of angles would look like.

Figure 6. Radial profiles of fluid velocity inside six randomly selected
hollow cylinders in an instantaneous realization of the flow system;
u1(r) is the axial velocity component as a function of the radius r
averaged over the length of the cylinder. Flow system with l/do = 1 and
Ar = 5.63 × 103.

Figure 7. Each dot in this graph represents the orientation angle ψ of a
cylinder versus the absolute value of the relative average axial flow
velocity |⟨u1⟩| inside the cylinder for a single realization of the system
with l/do = 1 and Ar = 5.63 × 103.
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two Ar values, with the higher value developing a much stronger
wave than the lower one. This translates into a more
inhomogeneous distribution of the strength of flow through
cylinders with, interestingly, a larger probability for higher |⟨u1⟩|
there where the solids volume fraction gradient |dϕ/dz| is
largest, i.e., at the leading and trailing sides of the wave. At the
leading edge, particles accelerate when they enter the void; at the
trailing edge, they decelerate when�after falling through the
void�fall onto the denser region, apparently leading to
somewhat stronger flow through the cylinders. No such
observation can be made for the weaker wave at the lower
Archimedes number.
It is now hypothesized, as inspired by the velocity profiles in

Figure 6, that the flow through the inner diameter of the
cylinders can be described as a Poiseuille flow. To test this, we
determined the driving force of the flow through each of the
cylinders for single realizations of the simulations. This driving
force has two contributions: in the first place, the component of
the body force f in the axial direction (the 1-direction) of each
cylinder ( f1 = |f| cos ψ); in the second place, the component of
the pressure gradient −∇p = −Γ in that same direction (−Γ1).
The sum of these contributions would lead to an average velocity

in the 1-direction of uP
f d

1
( )

32
i1 1
2

= (with the subscript P in uP1
indicating that this is the Poiseuille velocity estimate).
In Figure 9, ⟨u1⟩ and ⟨uP1⟩ are compared for the three hollow

cylinder variants for one instantaneous realization each. There is
a clear correlation between ⟨u1⟩ and ⟨uP1⟩ with their level of
quantitative agreement dependent on l/do. The more relevant
aspect ratios are l/di, the length of the channel in the cylinder
divided by its diameter. Given that in all cases di/do = 0.5, l/di is
3.16, 2.0, and 1.12 from left to right in Figure 9. One then can
appreciate that the relatively good agreement between ⟨u1⟩ and
⟨uP1⟩ for l/di = 3.16 is a result of the weaker influence of entrance
and exit effects for these longer channels. Along the same line of
reasoning, the fact that very often |⟨uP1⟩| > |⟨u1⟩| for l/di = 1.12 is

due to extra pressure drop (better, extra driving force
requirements) at the entrance and exit of the channel.
Based on the above we for now assume that to a good

approximation the flow inside the hollow cylinders is a Poiseuille
flow. This then opens an avenue for estimating mass transfer at
the inner hollow cylinder surface. The main focus of this paper is
on liquid fluidized systems, which means we are interested in
mass transfer at high Schmidt numbers, i.e. at low mass (Fick)
diffusion coefficients, which sets this work somewhat apart from
much of the heat andmass transfer work that often involves gas−
solid systems and Prandtl or Schmidt numbers of order
one.16,17,34 In the following it will be assumed that the Schmidt
number Sc = ν/κ = 1 × 103 with κ the diffusion coefficient. If it is
then inferred that fluid residence time in the cylinder l/|⟨u1⟩| is
small compared to the time to achieve radial diffusion di2/κ, we
can use solutions to the Graetz problem35 for estimating mass
transfer coefficients (symbol k). The consequence of the
solution when having a constant (inner cylinder) wall

concentration can be expressed as ( )Sh 1.62 u d
l

1/3
i1
2

= | |

with the Sherwood number defined as Sh = kdi/κ and the angled
brackets denoting an average over the length l of the channel. As
a rule of thumb it is demanded that 0.05l

u di1
2 <

| |
for the above

Sherwood correlation to be reasonably accurate. If a Reynolds
number is defined as Re = |⟨u1⟩|di/ν, the Sherwood correlation
can also be written as ⟨Sh⟩ = 1.62Re1/3Sc1/3(l/di)−1/3.
We now take instantaneous realizations of our simulations

and determine |⟨u1⟩| for every hollow cylinder. We check the
condition 0.05l

u di1
2 <

| |
and, if it holds, calculate ⟨Sh⟩ for that

cylinder and include it in the determination of the volume-
average Sherwood number ⟨⟨Sh⟩⟩. The results are shown in
Figure 10. Each of the symbols in that figure is the average of four

Figure 8. Top: the relative average axial flow velocity |⟨u1⟩| inside the
hollow cylinders correlated with their z-location. Bottom: the
corresponding instantaneous solids volume fraction profile. Cylinders
with l/do = 1. Left: Ar = 11.3 × 103; right Ar = 5.63 × 103.

Figure 9. Actual average velocity ⟨u1⟩ in hollow cylinders versus an
estimate based on Poiseuille flow ⟨uP1⟩. Each panel represents a single
realization, and each dot represents one cylinder. From left to right l/do
= 1.58, 1, 0.56. For all three cases Ar = 5.63 × 103.

Figure 10. Average Sherwood number associated with mass transfer
inside hollow cylinders as a function of Archimedes number for three
values of l/do as indicated and for a Schmidt number of Sc = 1 × 103.
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instantaneous realizations. The differences in ⟨⟨Sh⟩⟩ between
realizations are very small (less than 1%) so that error bars in the
figure would be smaller than the size of the symbols. At least 99%
of the cylinders satisfy the criterion 0.05l

u di1
2 <

| |
in any of the

realizations involved in Figure 10. Most (of the few) cylinders
that do not satisfy the criterion have l/do = 1.58. These are the
ones with the longest and narrowest channels.
Average Sherwood numbers ⟨⟨Sh⟩⟩ are in the range 15−35,

and they increase with increasing Ar. The three hollow cylinders
we compare all have the same volume. Decreasing the l/do has a
profound positive effect on ⟨⟨Sh⟩⟩ inside the cylinders. If we
think, however, in terms of ka, i.e., mass transfer coefficient times
(specific) surface area, we find that ka∝ ⟨⟨Sh⟩⟩lκ and the larger l
then compensates the lower ⟨⟨Sh⟩⟩ for the longer cylinders.
It is beyond this paper to performmass transfer calculations at

the outer surfaces of the cylinders and compare their Sherwood
numbers with the internal ones. It would require solving a scalar
transport equation in conjunction with our flow simulation
with−given the high Schmidt number−a spatial resolution
much higher than the resolution of the flow dynamics
simulation. We previously have attempted this for spherical
particles at lower solids volume fractions (⟨ϕ⟩ up to 0.30) by
using coupled overlapping domains where a very fine spherical
mesh is used to solve the (scalar) convection diffusion equation
around each particle.19 It is possible to follow a similar strategy
for particles with shapes different from spheres. However, it
needs further investigation to find out how the strategy would
perform at the higher solids volume fractions of ⟨ϕ⟩ = 0.5 that
have a much closer spacing between particles.
In order to have an order-of-magnitude estimate of mass

transfer at the outer cylinder surfaces we revert to the correlation
proposed by Gunn:36

Sh (7 10 5 )(1 0.7Re Sc )

(1.33 2.4 1.2 )Re Sc

p

p

2 0.2 1/3

2 0.7 1/3

= + +

+ +

with ε = 1 − ⟨ϕ⟩ the voidage and Rep a particle-based Reynolds
number. The correlation is applied to the system considered in
Figure 4 that has solid cylinders with l/dc = 1 and Ar = 5.63 ×
103. For Rep in the Gunn-correlation we take the absolute value
of the steady part of the average dimensionless velocity time
series: Rep ≈ 4 (i.e., we take the equivalent diameter de as the
length scale in Rep). With ε = 0.5 and Sc = 1 × 103 this gives
⟨⟨Sh⟩⟩ ≈ 40. The hollow cylinder with the samemass and aspect
ratio at the same Archimedes number has an internal Sherwood
number of ⟨⟨Sh⟩⟩ ≈ 20 so that the internal surface would
contribute significantly to the overall mass transfer performance
of the particle.

6. CONCLUSIONS
In this paper we explore, through particle-resolved simulation,
the liquid fluidization behavior of short cylindrical particles
(solid and hollow) building upon experiments4 and simulations
of liquid fluidization of spheres under similar conditions. In the
simulations the particles are free to translate and rotate. They
collide by means of a soft-particle algorithm. To compensate for
lack of resolution of the flow in the narrow spaces between
particles, radial lubrication forces are included in the equations
of motion of each particle. Conditions are such that instabilities
develop with the waveforms for solid cylinders comparable to
those for spheres but with different wave speeds. The wave
speeds for the spheres system compare favorably with

experimental data.4 At the same Archimedes numbers, hollow
cylinders generate waves that are less pronounced than their
solid cylinder counterparts or do not generate waves at all. The
orientation distribution of the short cylinders is close to
isotropic.
It is demonstrated that the flow inside the inner diameter of

hollow cylinders is akin to Poiseuille flow given the shape of its
axial fluid velocity profile with radial location, as well as the way
the average axial velocity scales with the driving force. The
average velocity in the cylinders is sensitive to their orientation
angle with, on average, higher speeds for more vertically oriented
cylinders and is sensitive to inhomogeneities induced by the
voidage waves.
Under the assumption of Poiseuille flow and with liquids with

high Schmidt numbers (Sc = 1 × 103 in this paper), we make use
of solutions to Graetz problems to estimate the mass transfer
potential of the inner cylinder surfaces and study the
dependency of Sherwood numbers on Archimedes number
and on aspect ratios of the hollow cylinder geometries. We
observe inner cylinder Sherwood numbers that are of the same
order of magnitude as those to be estimated for the external
particle surfaces so that mass transfer enhancement is to be
expected with hollow cylinders as compared to solid ones.
It is one of the intentions of this paper to try and raise the

interest of experimentalists for generating and sharing
experimental data on systems similar to the ones studied in
this paper that could be used for comparison with numerical
results: wave speeds and wave forms and their sensitivity to
particle shape. We also would welcome experimental data that
could challenge some of the trends regarding mass transfer as
identified in this paper�additional mass transfer for hollow
cylinders and the effects of hollow cylinder aspect ratios on mass
transfer. Future work on the simulation side will initially deal
with computational efficiency to be able to enhance the
resolution and thereby the accuracy of the simulations.
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