
1.  Introduction
Zeta potential is a physicochemical property of interfaces between aqueous solutions (termed brines or elec-
trolytes for simplicity) and minerals or other fluid phases. The mineral-brine zeta potential is interpreted from 
the measured streaming potential that arises due to pressure gradients in rocks saturated with electrolytes 
(Hunter, 1981; Jackson et al., 2012). Many experimental and modeling studies have reported the importance of 
the zeta potential for a broad range of applications for silica-brine systems, due to abundance of such formations. 
These applications include CO2 geo-sequestration (CGS, e.g., Moore et al., 2004), hydrocarbon recovery (e.g., 
Jackson et al., 2016), geothermal resources (Jardani et al., 2008; Revil & Pezard, 1998), characterization of flow 
through fractured systems (Jougnot et al., 2020; Vinogradov et al., 2022), and management of groundwater aqui-
fers (e.g., MacAllister et al., 2018).

The zeta potential of sandstone saturated with electrolytes at various conditions has been widely investi-
gated experimentally covering high salinity (Walker & Glover,  2018), elevated temperature (Vinogradov & 
Jackson, 2015), multi-phase flows (Revil & Cerepi, 2004; Sprunt et al., 1994) and complex composition of brines 
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(Thanh & Sprik, 2016). However, the only published data on zeta potentials of natural sandstones at CGS condi-
tions (elevated temperature, high pore pressure, high CO2 content) are limited to quartz dominated rock sample 
(Hidayat et al., 2022, hereafter referred to as H22), where measurements were carried out on a “clean” Fontaineb-
leau (>99%wt quartz) sample at pore pressures up to 10 MPa and temperatures up to 40°C were reported. The 
authors found that the zeta potential remained negative, decreased with increasing content of dissolved CO2, 
which resulted in a lower equilibrium pH. Many natural sandstone reservoirs comprise a broad range of various 
minerals, including clays, micas, feldspars and carbonates. These minerals are known to have a significant impact 
on the zeta potential (e.g., Hoxha et al., 2016; Peng et al., 2020) through the electrochemical interactions between 
individual minerals and ionic species at the mineral-water interface. These interactions result in establishment 
of micro-scale local zeta potentials for each mineral, which combined together define to the so-called effective 
or macro-scale zeta potential that is measured in cm-scale porous rocks with complex mineralogy (Collini & 
Jackson, 2022). The dependence of the macro-scale zeta potential on mineralogy of clayey sandstones under 
varying pore pressure, brine concentration and CO2 content conditions, relevant to CGS remains largely unknown.

In the absence of experimental data of the zeta potential at such conditions, we report for the first time zeta poten-
tials measured for a natural sandstone comprising quartz, feldspars, and clay minerals, in contact with CO2-rich 
NaCl solutions. The experimental pore pressure and temperature conditions were varied between 0.2 and 10 MPa 
and between 23°C and 40°C, respectively. We demonstrate that the zeta potential response to varying pore pres-
sure is unique and different from that of clean sandstone samples.

2.  Materials and Methods
A cylindrical San Saba sandstone sample was used in this study. The petrophysical properties of the sample are 
provided in Table 1.

Prior to conducting the streaming potential measurements, the sample was cleaned following the procedure 
reported by Alroudhan et al. (2016) and at compatible with clay minerals conditions (see Supporting Informa-
tion S1, and refer to McPhee et al., 2015). The porosity of the sample was measured using the gas (N2) expansion 
method in AP-608 Automated Permeameter and Porosimeter (Coretest System Inc, USA). The liquid permeabil-
ity and the formation factor (using NaCl solutions of concentration ranging between 0.05 and 1.0 M, M = mol/L) 
were calculated following the procedure reported in Vinogradov et al. (2010).

The experiments were conducted using NaCl aqueous solutions of varying ionic strength and were divided into 
two main groups corresponding to the electrolyte conditions: dead and live solutions. The former relates to a 
synthetic aqueous solution fully equilibrated with atmospheric CO2, whereas the latter solution prepared under 
ambient pressure and temperature is brought into contact with pure CO2 in a mixing reactor establishing thermo-
dynamic equilibrium at elevated temperatures and pressures (for further details, refer to H22). To prepare dead 
and live electrolytes, we followed the experimental protocol reported by H22 to make sure the dead and live 
solutions reached full chemical equilibrium with the rock sample before the experiment commenced. The pH and 
conductivity of the dead electrolytes were regularly measured using a FiveGo pH meter (Mettler Toledo, accuracy 
of 0.01 pH units) and a Jenway 4520 conductivity meter (Cole-Palmer, 0.5% accuracy), respectively. Further-
more, an in-line high pressure pH meter (Corr Instruments, LLC) was used to measure pH of live electrolytes. 
The equilibrium pH and conductivity of all tested NaCl solutions are provided in Table 2.

The streaming potential measurements were conducted in a high pressure-high temperature (HPHT) coreflooding 
apparatus (see Figure 1 in H22). The streaming potential coupling coefficient (𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ) was determined from the 
ratio between the stabilized voltage, 𝐴𝐴 Δ𝑉𝑉  , and the stabilized pressure difference, 𝐴𝐴 Δ𝑃𝑃  , across the sample following 
paired-stabilized method (Vinogradov & Jackson, 2011). We confirmed that the effect of surface conductivity 
was negligible in all our experiments (refer to Supporting Information S1) and therefore, the zeta potential (𝐴𝐴 𝐴𝐴 ) was 
calculated using the classical Helmholtz-Smoluchowski equation (Jouniaux & Pozzi, 1995) while disregarding 
the Overbeek's correction for the surface conductivity (Glover, 2015):

𝐶𝐶𝑆𝑆𝑆𝑆 =
Δ𝑉𝑉

Δ𝑃𝑃
=

𝜀𝜀𝜀𝜀

𝜇𝜇𝜇𝜇𝑤𝑤

� (1)

where 𝐴𝐴 𝐴𝐴 is the electrolyte permittivity, μ is the electrolyte dynamic viscosity, and 𝐴𝐴 𝐴𝐴𝑤𝑤 is the conductivity of the 
electrolytes (Table 1). The permittivity (𝐴𝐴 𝐴𝐴 ) and dynamic viscosity (𝐴𝐴 𝐴𝐴 ) of dead electrolytes were evaluated using 
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an empirical correlation reported by Saunders et  al.  (2012). The dynamic 
viscosity of live electrolytes was calculated using the correlation reported by 
Islam and Carlson (2012).

3.  Results
The zeta potentials measured with dead NaCl solutions of ionic strength 
between 0.05 and 1.0 M are shown in Figure 1. The zeta potential of San 
Saba remained negative and became larger in magnitude with increasing 
salinity until 0.2 M, after which it decreased back. This behavior contrasted 
most of previously published data obtained with sandstones containing other 
than quartz minerals (e.g., Stainton and St. Bees in Vinogradov et al., 2010 
and Jaafar et al., 2009; Berea in Walker & Glover, 2018). However, a similar 
anomalous salinity dependence of the zeta potential was observed in Berea 
sandstones reported by Li et al. (2018) thus suggesting that our results were 
not an experimental artifact.

Figure 2 reports the measured zeta potentials and pH of dead (a–d) and live 
(e–f) solutions as a function of pore pressure and temperature. The results 
presented in Figures 2a and 2b demonstrate that the zeta potentials and pH of 
dead electrolytes remained independent of the pore pressure, similar to the 
results on Fontainebleau (H22). Note, that all dead electrolyte experiments 

were conducted in a closed system (Vinogradov et al., 2018), hence preventing contact with air and eliminating 
the possibility of enhanced dissolution of CO2. Therefore, the amount of dissolved CO2 and the electrolyte pH 
(Figure 2b) remained constant in all our dead electrolyte experiments, which resulted in the zeta potential to stay 
independent of the pore pressure.

The temperature dependence of the zeta potential and pH of dead electro-
lytes is shown in Figures 2c and 2d and compared with the published results 
for the clean Fontainebleau sample (H22). The zeta potential of dead elec-
trolytes became smaller in magnitude with increasing temperature reflect-
ing a decrease in pH of the solutions with increasing temperature. These 
observations were qualitatively consistent with published data on sandstones 
at elevated temperature (e.g., Vinogradov et  al.,  2018; H22). However, a 
weaker temperature dependence of zeta potential in San Saba was observed 
in comparison with Fontainebleau as evidenced by the slopes in Figure 2c 
(i.e., with the change in the experimental temperature from 23°C to 40°C, an 
increase of +2.0 mV was observed for the zeta potential in San Saba while 
a change of +4.3 mV was reported for Fontainebleau). Similarly, a smaller 
variation of the equilibrium pH of dead electrolytes saturating San Saba was 
observed with increasing temperature compared with the results reported for 
Fontainebleau (Figure 2d).

We finish by reporting the measured zeta potential and pH of live electrolytes 
in San Saba for three different pore pressure (4.5, 7.5 and 10 MPa) at 40°C 
with 0.05 M NaCl solutions (Figures 2e and 2f). The zeta potential of San 
Saba saturated with live solutions remained negative and became smaller in 
magnitude with increasing pressure (Figure 2e). The pH dependence of the 
zeta potential in San Saba was significantly different form that observed in 
Fontainebleau sample (H22) as evidenced by a distinct difference in respec-
tive slopes of the linear regressions. At the same time, the equilibrium pH of 
live electrolytes saturating San Saba decreased with increasing pressure at the 
same rate as that of Fontainebleau (Figure 2f) reflecting an increased amount 
of dissolved CO2 that led to increased acidity of the electrolyte (Adamczyk 
et al., 2009; Peng et al., 2013).

Sample San saba

Mineralogy 87.7% wt. – 95.2% wt. quartz

2.3% wt. – 6.2% wt. microcline

1.9% wt. – 4.0% wt. albite

1.1% wt. – 3.3% wt. kaolinite

0.9% wt. – 1.0% wt. illite

Porosity 21.0% ± 1.0%

Liquid permeability 35.0 ± 1.0 mD

Dimensions Length = 7.61 cm

Diameter = 3.82 cm

Formation factor, F 159 ± 8

Note. Mineralogy of the sample is provided as a range of the main constituents 
based on published studies of Connolly et  al.  (2019) and Al-Shajalee 
et  al.  (2020) and independently confirmed from X-ray diffraction and 
Scanning Electron Microscopy Analyses carried out in this study.

Table 1 
Petrophysical and Mineralogical Properties of the San Saba Sample Used 
in This Study

Ionic strength, M P, MPa T, °C Solution σw, S/m pH values

0.05 0.2 23 Dead 0.550 6.80 ± 0.1

4.5 0.557 6.75 ± 0.1

7.5 0.553 6.75 ± 0.1

10.0 0.555 6.80 ± 0.1

0.2 40 0.601 6.50 ± 0.1

4.5 0.601 6.55 ± 0.1

7.5 0.601 6.50 ± 0.1

10.0 0.601 6.55 ± 0.1

4.5 Live 0.505 3.72 ± 0.05

7.5 0.496 3.43 ± 0.05

10.0 0.493 3.26 ± 0.05

0.10 0.2 23 Dead 1.015 6.60 ± 0.1

0.20 1.982 6.60 ± 0.1

0.50 4.110 6.70 ± 0.1

1.00 8.090 6.70 ± 0.1

Note. P is the mean pore pressure which was kept 2–3  MPa below the 
confining pressure. T is the temperature during the experiment, which was 
controlled by the oven. The live electrolyte conductivity was evaluated using 
an empirical correlation reported by Börner et al. (2015).

Table 2 
The Equilibrium pH and Conductivity of Tested Electrolytes in This Study
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4.  Discussion
A summary plot of the zeta potential as a function of pH for both live and dead NaCl solutions is presented in 
Figure 3. The zeta potentials of San Saba were found to be more positive compared with the values of clean 
Fontainebleau sandstone for live and dead NaCl electrolytes. We observed a steeper slope of zeta potential versus 
pH in San Saba (blue dashed line, Figure 3) compared with Fontainebleau (black dashed line, Figure 3) when 
the temperature changed from 23°C to 40°C for the dead electrolytes. Note, that the amount of dissolved CO2 
remained constant during these dead brine experiments at both temperatures. At the same time, a shallower slope 
of the zeta potential versus pH was observed in San Saba (purple dash line, Figure 3) saturated with live NaCl 

Figure 1.  (a) The zeta potential of San Saba (red circles) compared with the published experimental data of clayey 
sandstones. The solid black line in (a) describes the empirical correlation published by Vinogradov et al. (2010). Panel (b) 
shows the same data as (a) but presents the averaged values of Jaafar et al. (2009), Vinogradov et al. (2010) and Walker and 
Glover (2018) described by respective trendlines over the salinity range between 0.001 and 1 M NaCl. The blue trendline 
corresponds to the experiment with Berea 2 sample from Li et al. (2018), while results for other Berea samples from the 
study are excluded since their salinity dependence of the zeta potential was qualitatively identical to the blue trendline but 
offset to larger or smaller in magnitude values. All trendlines in panel (b) are only used to qualitatively describe the salinity 
dependence of the zeta potential, thus they are based on polynomial regressions drawn through the respective excremental 
datapoints with R 2 ≥ 0.99.
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solutions compared with Fontainebleau (green dashed line, Figure 3) over the range of tested experimental pore 
pressures between 4.5 and 10.0 MPa. Since the zeta potentials of San Saba and those of clean Fontainebleau 
samples were obtained under identical conditions of pore pressure, temperature and CO2 content, we attributed 
differences in respective zeta potentials to the presence of clays and feldspars in San Saba.

A recently published study (Alarouj et al., 2021) suggested that the effective macro-scale zeta potential was an 
average of the micro-scale zeta potentials from each individual mineral-brine interface. That is, if the mineralogy 
of the rock sample was dominated by a single mineral such as quartz, then the micro- and macro-scale zeta poten-
tials would be identical. If, on the other hand, various minerals were distributed along the pore walls, as in the 
case of San Saba sandstone, then the local micro-scale zeta potentials would vary from one mineral to another, 
and the macro-scale zeta potential would be an average of the micro-scale values depending on the portion of pore 
walls lined by different minerals.

To evaluate the impact of different minerals on the effective zeta potential of San Saba, additional investigations 
of the sample were carried out. From X-ray diffraction analysis (XRD), we found the mass fractions of minerals 
of the bulk sample, in which clays (kaolinite and illite), feldspars (albite and microcline) and quartz were iden-
tified as the main components (Table 1). However, the XRD analysis did not provide the necessary insights on 
how the identified minerals were distributed in the pore space. To address this question, we used the scanning 
electron microscopy (SEM), from which the same minerals were identified as the main constituents (Figure 4).

SEM image presented in Figure  4c identified a minor inclusion of chrome spinel, which appeared to be an 
extremely uncommon locality and was only found in a single spot of the thin section. Kaolinite and illite were 
found to extend toward the middle of large pores. Thus, kaolinite and illite were exposed to electrolyte during 
the streaming potential experiments and were expected to influence both micro- and macro-scale zeta potentials. 

Figure 2.  Zeta potential (a, c and e) and electrolyte pH (b, d and f) as a function of salinity, temperature and pore pressure. Zeta potentials (a) and pH (b) for the dead 
solutions were independent of pore pressure since the experiments were conducted in a closed system while the solutions were prepared with atmospheric level of 
CO2 corresponding to partial CO2 pressure of 10 −3.44 atm (Li et al., 2016). Temperature dependence of the zeta potential (c) and pH (d) for dead solutions is compared 
with previously published data. Live brine zeta potential (e) and pH (f) are compared with previously published data. Green sybos correspond to pore (hence, partial 
CO2) pressure of 4.5 MPa, red symbols stand for 7.5 MPa and yellow symbols denote experiments at 10 MPa. The Fontainebleau data presented in these figures were 
extracted from H22.

Figure 3.  Summary of zeta potentials versus pH for dead and live electrolytes. The purple symbols correspond to live 
electrolytes; the blue and red symbols correspond to dead electrolytes at temperature of 23°C and 40°C, respectively. The 
previously published data for Fontainebleau sample saturated with dead and live NaCl solutions under the same experimental 
conditions are denoted by black symbols, and these values were extracted from H22.
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Similar situation was observed with albite, which was found to extend toward major pores thus interacting with 
brines during the experiments (Figures 4a and 4c). Hence, albite was also expected to contribute to the overall 
macro-scale zeta potentials. On the other hand, the microcline grains were primarily locked between quartz grains 
(Figures 4a and 4b) or had a small area exposed to large pores (Figure 4c), thus limiting the mineral's interaction 
with electrolytes during the experiments. Therefore, the contribution of microcline to overall macro-scale zeta 
potentials was expected to be insignificant despite its relatively significant concentration of c. 2%–6%.

To understand the impact of each mineral, we compared the previously reported zeta potentials of the minerals 
with that of quartz. Yukselen-Aksoy and Kaya (2011) reported zeta potentials of kaolinite and quartz for pH 
range of 3–11 in water and found kaolinite zeta potentials to be less negative than quartz. Hussain et al. (1996) 
conducted zeta potential measurements with kaolinite and illite in water for pH range of 2.5–11 and found that 
the magnitude of illite zeta potentials was smaller than that of kaolinite. Furthermore, Wainipee et al.  (2013) 

Figure 4.  Images from scanning electron microscopy analysis of San Saba sandstone, in which the unmarked gray areas correspond to quartz. The abbreviations used 
in the figure are: qz for quartz, kl for kaolinite, ab for albite, il for illite, kp for K-feldspars (microcline), and crp for chrome spinel. The black color corresponds to pores 
in the rock sample.
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measured zeta potentials of illite and kaolinite with 0.001 and 0.7 M NaCl and pH range of 1–9, and found that 
the zeta potentials of illite were less negative compared to kaolinite. Therefore, we concluded that the impact of 
kaolinite and illite on the negative zeta potentials should lead to the following relative magnitudes |ζ illite | < |ζ 
kaolinite | < |ζ quartz |, all shifting the macro-scale zeta potential of San Saba to more positive values compared with 
clean Fontainebleau.

A study by Vidyadhar and Rao (2007) reported that microcline zeta potential was more negative than quartz in 
water for pH range of 1.5–11. On the other hand, the zeta potential of albite was measured to be less negative 
than quartz in water for pH range of 1.5–11 (Vidyadhar et al., 2002; Wang et al., 2018). Demir et al.  (2001) 
investigated the effect of ionic strength of NaCl electrolytes on the zeta potentials of albite and microcline over 
a wide salinity range (0.0001–0.1M NaCl), and found that zeta potential in albite was less negative compared to 
microcline. Based on these findings, we concluded that the magnitude of the negative zeta potential of albite is 
the smallest, followed by quartz and microcline (|ζ albite | < |ζ quartz | < |ζ microcline |).

Numerous experimental studies investigated dissolution of kaolinite and albite, and the dissolution rates were 
reported to increase with increasing temperature and decreasing pH (Cama et al., 2002; Carroll & Walther, 1990; 
Harley & Gilkes, 2000; Palandri & Kharaka, 2004). Thus, we hypothesize that kaolinite, albite and illite dissolved 
during our experiments releasing multi-valent cations such as Ca 2+, Mg 2+, Al 3+ (Cama et al., 2002; Li et al., 2018; 
Yuan & Pruett, 1998), which caused their adsorption and/or exchange at the quartz surface of San Saba making 
the zeta potential more positive, as was suggested by published studies of the zeta potential on clayey sandstones 
(Alarouj et al., 2021; Li et al., 2018).

All in all, based on the bulk composition (Table 1) and pore-scale distribution of main minerals of San Saba 
(Figure 4) we concluded that the main impact on the macro-scale zeta potential came from kaolinite and albite, 
both of which had higher presence in the bulk (c. 1%–3% wt. and 2%–4% wt., respectively), and larger available 
surface area for interactions between ionic species of brines and minerals (i.e., substantial exposure of mineral 
surfaces to pore fluid in larger pores). Conversely, a smaller amount of illite (c. 1% wt.) and limited exposure 
to flowing brines of microcline made their contribution to the macro-scale zeta potential negligible. The exper-
imental results of this study confirmed the hypothesized individual contribution of minerals and demonstrated 
that both, kaolinite and albite of San Saba made the effective macro-scale zeta potentials in this study more 
positive compared with Fontainebleau (H22). Moreover, these minerals were more reactive with NaCl solutions 
thus making the pH dependence of the zeta potential significantly different compared with quartz data across the 
tested range of pH and temperature (Figure 3).

5.  Conclusions
We report for the first time zeta potentials measured on intact clayey San Saba sandstone sample saturated with 
NaCl solutions of various concentrations and under conditions of temperature, pH, dissolved CO2 content and 
pore pressure consistent with CGS. The zeta potential of San Saba was negative for all tested solutions, but when 
in contact with live electrolytes it decreased in magnitude with increasing pore pressure due to increased amount 
of dissolved CO2 and the corresponding decrease in pH. Conversely, the zeta potential of San Saba and dead elec-
trolytes was found to be independent of the pore pressure condition but decreased with increasing temperatures 
reflecting respective changes in pH. Furthermore, the zeta potential with both, dead and live solutions was less 
negative when compared with previous experimental and modeling studies of clean sandstones at similar condi-
tions. An anomalous salinity dependence of the zeta potential was observed with dead NaCl of ionic strength 
0.05–1.0 M, which is uncommon but qualitatively similar to the previously reported data on a different clayey 
sandstone (Li et al., 2018).

We found that mineralogy of San Saba played a key role in defining the micro- and macro-scale zeta potentials. 
Specifically, a larger content of kaolinite and albite combined with their substantial presence in large pores made 
these minerals to chemically interact with flowing brines, which led to a smaller in magnitude macro-scale zeta 
potential compared with that of pure quartz. Furthermore, increased dissolution rate of kaolinite, illite and albite 
at elevated temperature and low pH (around 3) likely resulted in appearance of multi-valent cations in the elec-
trolyte, which further led to specific adsorption and/or ion exchange at the mineral surface, eventually leading to 
smaller in magnitude zeta potentials compared with quartz-NaCl systems. On the other hand, microcline, mostly 
locked between quartz grains, and small concentration of illite in San Saba did not have noticeable impact on 
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the macro-scale zeta potential. Our results demonstrate that mineralogy of sandstones has a noticeable impact 
on electrochemical interactions at the mineral-brine interface and must be investigated to predict and explain the 
salinity, composition, pH and temperature dependence of the effective macro-scale zeta potentials.

The results of this study are novel and essential for a broad range of applications including underground gas 
storage (CO2/H2), monitoring of subsurface flows, geothermal sources and hydrocarbon recovery. However, addi-
tional measurements of zeta potentials are required and planned to investigate the effect of electrolyte compo-
sition, concentration, pore pressure, temperature and CO2 content over extended ranges and in other clayey 
sandstone samples.

Data Availability Statement
Detailed information on rock sample preparation and petrophysical characterization is available for download in 
the Supporting Information S1. Summarized experimental data of San Saba sandstone in this study is available 
for download at https://doi.org/10.5281/zenodo.6477225.
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