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Abstract

We performed two-dimensional simulations of the slicing of a rising droplet by

a vertical knife and by two knives. We used a free-energy lattice Boltzmann

method. Most simulations are for an Eötvös number of 3.96 and a Morton

number of 1.24 � 10�4. We carefully probed effects of the spatial resolution

on the rising speed and slicing process. The effect of wettability of the knife(s)

was studied by varying the equilibrium contact angle of the drop on the knife

in the range of 45� to 135�. Slicing time as well as fine droplet fragments stay-

ing behind on the knife depend on the knife’s wettability.
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1 | INTRODUCTION

There are many natural and technological examples
where liquid droplets are dispersed in a continuous fluid.
In engineered systems the droplet size or—better—the
droplet size distribution is an important process parameter.
For example, in the production of inhalers,[1] careful con-
trol of droplet size is necessary to ensure effective deliv-
ery of medication to the lungs. Additionally, in spray
drying,[2] smaller droplets can result in faster drying
times, higher yields, and reduced production costs. In
agriculture, optimizing spray coverage and penetration of
pests[3] and weeds[4] may be achieved through controlling
droplet size and distribution. Whether it is delivering
medication to the lungs or optimizing spray coverage,
careful consideration of droplet size is crucial for efficient
and effective production.

In recent years, there has been an increasing
amount of research on the collision of droplets with

solids with different surface properties. In terms of
numerical simulation, Raman et al.[5] simulated drop-
let impact on solid substrates and found that the gradi-
ent wetting solid induced directional behaviour of
impacting droplets. Tembely et al.[6] found that the
wetting properties of the solid matrix impacted by
droplets affect the evolution of droplet spreading
diameter. Tilehboni et al.[7] found that droplets do not
separate from hydrophilic walls at low Eötvös numbers
(Eo ≤ 6), but separate from the wall in the total range
of Eötvös numbers examined on hydrophobic walls.
Additionally, Ma et al.[8] used the lattice Boltzmann
method (LBM) to simulate the impact process of over-
saturated fuel droplets on inclined blade surfaces in
superheated gas, and found that impact angle, surface
wetting properties, and Weber number influence drop-
let deformation and evaporation. The effect of impact
angle on droplet velocity was more significant than
other factors. Liang et al.[9] studied the impact of
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droplets on hydrophilic or hydrophobic pore surfaces
and found that at lower Weber numbers, droplets are
not easily passed through the pore, and liquid plugs are
formed in hydrophilic pores due to capillary action on
the pore surface. At high Weber numbers, droplets would
break when impacting the pore plate. In the field of
experimental research, Abubakar et al.[10] conducted an
experimental study of the effect of droplet diffusion on
the wetting state of a hydrophobic surface. Liu et al.[11]

found that when the impact velocity of a droplet is con-
stant, an increase in the surface hydrophobicity value is
detrimental to the spreading of the liquid film across the
tubular surface. The larger the surface contact angle, the
greater the likelihood of droplet rebound. Naveen et al.[12]

investigated the morphology and diffusion phenomena of
water droplet collisions on hydrophilic, hydrophobic, and
superhydrophobic surfaces and found that some differ-
ences exist. By simulating or experimenting with the
effects of collisions of droplets on different wettable sur-
faces and a variety of other factors, it was found that wet-
tability plays an important role in the spreading of
droplets and changes in contact angle.

There is a strong connection between experimental
work on droplet collisions and numerical simulations.
Experimental work can provide valuable insights into the
behaviour of droplet collisions and experimental results
can be used to verify and validate simulation models.
Simulations can help to analyze the complex physical
phenomena involved in droplet collisions. It can be used
to improve the experimental setup and to obtain more
accurate and reliable data. The impact of a droplet on a
solid surface is a highly dynamic process involving the
deformation of the droplet, the rebound or deposition of
the droplet, and the angle of contact between the droplet
and the solid surface.[13–17] To accurately capture the
details of this process in numerical simulations requires
high resolution and careful consideration of the rele-
vant physical phenomena. The properties of the solid
surface, such as the wettability[18,19] and chemical
composition,[20–22] greatly influence the behaviour of drop-
lets on its surface. Capturing these effects in numerical
simulations requires accurate modelling of surface
properties.

We study the cutting behaviour of binary systems,
focusing in particular on the slicing of clean droplets.
However, it is important to consider the potential influ-
ence of surfactants that may be adsorbed on the surface
of the droplet. Surfactants can reduce the interfacial ten-
sion between a droplet and its surroundings, making it
easier to deform the droplet and facilitating the slicing
process.[23] Lower interfacial tension allows easier pene-
tration of cutting tools and reduces the energy required
to cut. Alternatively, the surfactant may form a protective

layer on the surface of the droplet, effectively shielding it
from direct contact with the cutting tool.[24] This may
hinder the effectiveness of the cutting action and result
in incomplete or non-uniform slices.

In our previous research work,[25] the LBM was used
to numerically simulate a rising droplet being cut by a
thin vertical surface (a knife). The study investigated the
effect of simulation domain and grid resolution on drop-
let ascent, as well as symmetric and asymmetric cutting.
The current paper builds on this work to explore in depth
methods for effective control of droplet size and size
distribution. Two different fluids are modelled by
means of a phase field theory implemented in lattice
Boltzmann.[26,27] The kinematic viscosities of the two
fluids are identical and the density difference is
accounted for as a body force only (Boussinesq approxi-
mation). The effect of grid resolution on droplet slicing is
first verified and then the sensitivity of knife height, con-
tact angle, rise velocity and deformation to boundary con-
ditions is systematically discussed, as is the effect of two
knives interacting with a single droplet. This simulation
can help optimize the cutting process to achieve more
accurate and consistent cuts. By carefully controlling the
size of the droplets in the simulation, researchers can bet-
ter understand the underlying physics of the droplet cut-
ting process and develop more accurate models to predict
the behaviour of real-world cutting processes.

2 | FLOW SYSTEM

This paper presents a numerical simulation of a rising
droplet being cut by one or two vertical thin surfaces
(knife). The simulations are two-dimensional with a
buoyant circular drop released near the bottom of the
domain and one or two knives located near the top of
the domain (See Figure 1). Under the influence of gravity
and buoyancy, the droplet begins to rise from rest and
eventually reaches a stable ascent speed u. The droplet is
then cut by the knife and the effect of the equilibrium
contact angle and the use of one or two knives on the cut-
ting of the droplet is investigated. Figure 1 also defines
the coordinate system to be used throughout the paper.

In the fluid system, the density of fluid 1 is
ρd ¼ 0:9�103 kg=m3, and the kinematic viscosity is
vd ¼ 3:34�10�6 m2=s. The density of the fluid
2 is ρc ¼ 1�103 kg=m3, and the kinematic viscosity is
vc ¼ 3:34�10�6 m2=s (the subscripts d and c indicate the
dispersed and continuous phases, respectively). The
density difference between the droplet and the fluid
is Δρ¼ ρc�ρd ¼ 1�102 kg=m3, with the dispersed
phase being slightly lighter than the continuous phase.
The surface tension between them is σ¼ 1�10�3 N=m.

2 CAO ET AL.
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The equivalent diameter of the droplet volume is
d¼ 4S=πð Þ1=2, where S is the area of the droplet. In the
actual simulation, we refer to the data obtained by Clift
et al.[28] through experiments to estimate the shape of the
droplet and the stable rising speed u when the Eötvös
(Eo) and Morton (Mo) numbers are given. We use a set
of dimensionless parameters to determine the simulation
system, where g is the acceleration due to gravity.

Reynolds number: Re ¼ udρc
μc

;

E€otv€os number:Eo¼ gΔρd2

σ
¼We j 1� λ j

Fr
;

Morton number:Mo¼ gΔρν4cρ2c
σ3

¼ gΔρμ4c
ρ2cσ

3
;

Weber number:We¼ ρcu
2d
σ

, Froude number:Fr¼ u2

gd
;

Density ratio: λ¼ ρd
ρc
, kinetic viscosity ratio: η¼ μd

μc
:

The Reynolds number determines the flow characteristics
of viscous fluids. The Eötvös and Morton numbers are
used to describe the shape of a droplet in moving fluids,

with the Eötvös number being the ratio of buoyancy to
surface tension and the Morton number being a constant
for a given binary liquid system. The Weber number rep-
resents the ratio of inertial forces to surface tension
effects, and the Froude number is a dimensionless
parameter that characterizes the relative magnitudes of
fluid inertia and gravity.

3 | NUMERICAL METHOD

3.1 | Governing equations

Phase field theory is the result of the further development
of classical field theories such as van der Waals[29] and
Cahn–Hilliard.[30,31] In phase field theory, the local state
of matter at any point in time can be represented by a
single variable called the order parameter φ r, tð Þ, which
is a function of the position vector r and time t and is
used to describe the state of the system. For binary liquid
phase systems, the part related to phase transitions can be
expressed as the free energy that is dependent on the order
parameter φ r, tð Þ, which is represented as follows[32]:

F ϕð Þ¼
Z
V

F φð Þþ1
2
k rφj j2

� �
dr, ð1Þ

Here, V represents the volume occupied by the system;
1
2k rφj j2 is the surface energy density, where k is a posi-
tive constant; F φð Þ represents the bulk energy density,
corresponding to the two phases of the fluid, each having
two minimum values. The chemical potential μφ is
defined as the variation of the free energy with respect to
the order parameter φ:

μφ ¼
δF φð Þ
δφ

¼F0 φð Þ�kr2φ, ð2Þ

where F φð Þ¼ dF φð Þ=dφ. Van der Waals[29] assumed
that the equilibrium interface profile can be obtained
by minimizing F φð Þ, that is, the equilibrium distribution
satisfies μφ ¼F0 φð Þ�kr2φ¼ 0, which can be regarded as
the controlling equation for the sequence parameter in
equilibrium. The evolution of φ satisfies the following trans-
port equation, which takes the following form[30,31,33,34]:

∂φ

∂t
¼Mr2μ�u � rφð Þ, ð3Þ

where M is the mobility coefficient and u is the velocity
field.

In the phase-field model, the interface between fluids
is represented by a thin, finite transition region where

FIGURE 1 Schematic diagram of simulation domain and

boundary conditions: The outer surface of the rectangular domain

has periodic boundary conditions; all the boundaries of the knife

are no-slip boundary conditions. At t = 0, the droplet is located at

the centre near the bottom of the simulation domain and is

circular. (A) One knife cutting a single rising droplet. (B) Two

knives cutting a single rising droplet.
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the fluids can mix. In each phase, the order parameter
φ remains constant and changes continuously within the
range of �1,1½ � in the finite transition region. For isother-
mal binary fluids (as in this study), φ represents the rela-
tive concentration of the two components.[30,35] This
study employs continuity and momentum equations,
combined with the convection–diffusion equation pro-
posed by Cahn and Hilliard[30,31] to describe the fluid
dynamics of this binary mixture (See Appendix A2).

3.2 | Free-energy lattice Boltzmann
method

In 1995, Swift et al.[33] proposed an LBM called the
free-energy lattice Boltzmann method to solve
Equations (A1a) and (A1b). Based on the LBM, all sys-
tem parameters in our study are expressed in lattice
units lu½ �. For the method used in this study, a uniform
cubic mesh with a mesh spacing of Δx and a time step of
Δt is adopted, where c¼Δx=Δt is the lattice velocity. The
discrete velocity set is defined as e0�8.

ex0�8

ez0�8

� �
¼

0 c 0

0 0 c

�c 0 c

0 �c c

�c �c c

c �c �c

" #
,

The particle distribution functions f r, tð Þ and g r, tð Þ
are used in this study, where f r, tð Þ is used to solve the
continuity Equation (A1a) and the Navier–Stokes
Equation (A1b), and the fluid density and momentum
are represented by ρ¼P8

i¼0 f i and ρu¼P8
i¼0 f iei

respectively. The function g r, tð Þ is used to solve the
convection–diffusion Equation (A1c), and represents
the order parameter φ¼P8

i¼0gi in the binary fluid system,
where φ distinguishes the two fluids, with φ¼ 1 in fluid
1 and φ¼�1 in fluid 2, and �1<φ<1 at the interface
between the two fluids, φ satisfying Equation (3). The
model used in this study employs the single-relaxation-time
collision operator (known as the Bhatnagar–Gross–Krook
[BGK] model),[36] and the discrete lattice Boltzmann
equations take the following form:

f q rþeqΔt, tþΔt
� �¼ f q r, tð Þ� f q r, tð Þ� f eqq r, tð Þ

τf
þFq,

ð4Þ

gq rþeqΔt, tþΔt
� �¼ gq r, tð Þ� gq r, tð Þ� geqq r, tð Þ

τg
, ð5Þ

where the subscript q represents the discretized velocity
direction; f q rþeqΔt, tþΔt

� �
and gq rþeqΔt, tþΔt

� �

represent the post-collision particle distribution functions,
which represent the movement of particles from lattice site
r, tð Þ to neighbouring lattice site rþeqΔt, tþΔt

� �
along

direction q; f q r, tð Þ and gq r, tð Þ are the pre-collision parti-
cle distribution functions; f eqq and geqq represent the equi-
librium distribution functions (see Appendix A2);
eq represents the discretized velocity in the q direction;
τf and τg are dimensionless relaxation parameters; and
Fq is the force acting on the particles. See Appendix A2
for details.

3.3 | Equilibrium contact angle

One focus of this paper is to simulate the cutting of rising
liquid droplets on surfaces with different wettability. To
vary the wettability properties of the cutting surface, the
liquid–solid interaction parameter in the LBM model can
be modified. This parameter determines the strength of
the interaction between the fluid molecules and solid
surfaces. By modifying this parameter, we can simulate
different degrees of wettability of the cutting surface,
from hydrophilic to hydrophobic properties.[37]

�
ffiffiffiffiffi
2κ
A

r
∂φ

∂n
¼ φ2�1
� �

cosθ: ð6Þ

To achieve no-slip boundary conditions on the solid
walls, the halfway bounce back rule was employed as the
flow boundary condition. The equilibrium contact angle
θ of the knife surface is related to the gradient in the nor-
mal direction of the order parameter φ on the solid sur-
face ∂φ

∂n. We use the following equilibrium boundary
condition,[38] also referring to Appendix A2 for (κ and A).

In the simulation, we use a rectangular solid ‘knife’
to cut the liquid droplet. As shown in Figure 2, we apply
boundary conditions at the surface of the knife and use
the lattice points inside the knife to determine the nor-
mal derivative of the order parameter. At the vertical sur-
face of the knife, we set ∂φ

∂n¼ ∂φ
∂x and approximate the

gradient as ∂φ
∂n ≈

φe�φi
∂n , where Δ= 1. Based on the bound-

ary conditions, we obtain the following:

φi ¼φe�
ffiffiffiffiffi
A
2κ

r
1�φe

2
� �

cosθ ð7Þ

Equation (7) represents an approximate energy
minimization that neglects some higher-order terms in
the free energy; see the work of Lee and Lin[39] for
details. This condition successfully creates an ideal
equilibrium contact angle θ. For example, by setting
φi ¼φe, we assume that cosθ¼ 0, meaning we assume

4 CAO ET AL.
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that the surface of the knife has an equilibrium contact
angle of θ¼ 90

�
. Therefore, through boundary conditions,

we can study the influence of different equilibrium con-
tact angles on droplet cutting.

4 | RESULTS

4.1 | Mesh resolution

Suitable dimensionless input parameters (Eo, Mo, λ, η)
were determined based on a previous paper.[25] In the
simulations presented in this paper, the lattice unit for a
droplet with a diameter of 2:0 mm is represented by
~d¼ 60 lu½ �. After determining the simulation system with
Eo ¼ 3:96, Mo¼ 1:24�10�4, η¼ 1, and λ¼ 0:90, the sim-
ulation parameters are determined using the scaling fac-
tors in Appendix A3. The mesh step or linear scale factor
Cd ¼ 3:33�10�5 m, and the time step or scale factor of
time Ct ¼ 6:05�10�6 s.

The value of the droplet diameter ~d represented by
the lattice unit determines the mesh resolution, and its

different conversion choices have a significant impact on
the computational results and time aspects. Refer (again)
to Appendix A3 that says that this � symbol means a
quantity in lattice units. To verify the effect of mesh reso-
lution on the rising velocity Reynolds number and slicing
process, we take a range of resolutions: ~d¼ 36�96 lu½ � to
represent d¼ 2:0mm. When changing the physical
length represented by the lattice unit, it is necessary to
recalculate the simulation parameters. The numerical
scaling factor f m is set to change the droplet diameter
~df m (~d2 ¼ f m~d1,0 < f m). On this basis, the values of
Eo and Mo must be kept constant, while keeping the liquid
viscosity constant fμc2 ¼ fμc1, fμd2 ¼ fμd1. All dimensionless
parameters remain constant and the interface thickness
is constant. The interface thickness ξ (see Appendix A3)
is fixed at 1.14 lu½ �.[40]

In this simulation, the parameters (~σ, gΔρg ,κ, A) were
varied according to the droplet diameter ~d with the
numerical scaling factor f m, using the formula for Eötvös
and Morton numbers, while varying the simulation
domain size (nx,nz). The simulation parameters are
shown in Table 1.

Two sensitivity analyses were performed for the mesh
resolution: mesh refinement (f m >1:0) and mesh coars-
ening (0< f m <1:0). The blue dots in Figure 3 indicate
the evolution of Reynolds number with dimensionless
time for the original simulation condition droplet diame-
ter ~d¼ 60. The dimensionless time Td ¼ ~ts ~vc

~d
2 ,where ~ts is

the current time step, and ~vc is the kinematic viscosity of
the continuous phase (see Appendix A3). The dimension-
less height of the knife Hk ¼ ~Hk=~d, and the dimension-
less width of the knife Wk ¼ ~Wk=~d. Because Hk and Wk

are dimensionless, the dimensions of the knife vary with
the resolution in the lattice unit. The two-dimensional
simulation domain is 20~d�4~d. The equilibrium contact
angle for the surface properties of the knife is 90�.

In the formula for calculating the rising velocity
Reynolds number shown in Figure 3, where u¼Δz=Δt,
Δz being the distance travelled by the centre of the drop-
let during each time step calculated using the order

FIGURE 2 Schematic diagram of boundary conditions applied

to the knife. On the right side of the knife, we show how we apply

boundary conditions using the mesh point i inside the knife.

TABLE 1 f m and other corresponding parameters for 2.0mm diameter droplets representing different mesh resolutions in the

simulation.

f m �½ � ~d lu½ � ~σ lu½ � Δfρg lu½ � κ lu½ � A lu½ � nx lu½ � nz lu½ � Eo �½ � Mo �½ �
0.6 36 1.66 � 10�3 5.07 � 10�6 1.42 � 10�3 �2.186 � 10�3 144 720 3.96 1.24 � 10�4

0.8 48 1.245 � 10�3 2.14 � 10�6 1.065 � 10�3 �1.639 � 10�3 192 960 3.96 1.24 � 10�4

1.0 60 1.00 � 10�3 1.10 � 10�6 0.855 � 10�3 �1.316 � 10�3 240 1200 3.96 1.24 � 10�4

1.2 72 0.83 � 10�3 6.34 � 10�7 0.71 � 10�3 �1.093 � 10�3 288 1440 3.96 1.24 � 10�4

1.4 84 0.712 � 10�3 4.00 � 10�7 0.609 � 10�3 �0.937 � 10�3 336 1680 3.96 1.24 � 10�4

1.6 96 0.623 � 10�3 2.68 � 10�7 0.533 � 10�3 �0.820 � 10�3 384 1920 3.96 1.24 � 10�4

CAO ET AL. 5
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parameter φ. The range for calculating the Reynolds
number is from the start of the droplet’s ascent to when
it is cut and leaves the knife. At the beginning, the drop-
let remains circular. This is followed by an accelerated
ascent phase, where the droplet’s rate of rise increases
rapidly and the droplet appears deformed. As the droplet
becomes flatter, the rate of ascent slows down, and a
steady state is reached. After this, the droplet’s rate of
ascent decreases as it hits the knife. The droplet leaves
the knife and completes the measurement of the rising
velocity Reynolds number.

Based on the comparison between the original sim-
ulation and the mesh refinement, the droplets start to
be cut at a relative deviation of 2.3%–4.3% of the time
point. Therefore, the time deviation of the start of the
cutting process is small and the original simulation
( f m ¼ 1:0) can be used because it achieves a good
balance between simulation accuracy and simulation
time. We also perform a simulation check of mesh
coarsening with the corresponding mesh step range
Cd ¼ 4:16�10�5�5:55�10�5 m. The results show that
the relative deviation of the dimensionless time for the
droplet to start being cut falls by 4.8% between ~d¼ 60 lu½ �
and 48 lu½ � and by 9.1% between ~d¼ 60 lu½ � and 36 lu½ �. By
reducing the size of the simulation domain through mesh
coarsening, the simulation time is reduced in the simula-
tion, and the results obtained are generally consistent
with the finer mesh. The deviation from the original sim-
ulation by mesh refinement and mesh coarsening is less

than 10% in terms of the droplet rise Reynolds number at
steady state.

In the experimental data of Bertakis et al.,[41] when
the diameter of the liquid droplet was 2:0mm and
reached a stable state after rising, the Reynolds number
was 81.0 (indicated by the dashed line in Figure 3). In
our simulation, the discrepancy between the Reynolds
number at the stable state reached under different mesh
resolutions and the simulation results of Bertakis et al.[41]

is less than 20%. It should be noted that our simulations
are two-dimensional whereas the experiments are—
obviously—three-dimensional, which likely explains the
deviations observed.

4.2 | The effect of height of the knife

We need to make sure that the knife is sufficiently long
so that it can complete the droplet cutting. The various
parameters are in the row with f m ¼ 1:0 in Table 1. The
surface equilibrium contact angle of the knife was 45�.

Here we study the effect of knife height and width on
cutting droplets. In Figure 4, we show drop slicing sce-
narios for a range of knife heights and widths. The simula-
tion results can be divided into four categories: (1) When
using a knife with a small width and height, the drop is not
cut by the knife (Figure 4C–E). (2) When the width of the
knife is small and the height is large, the droplets are suc-
cessfully cut into two parts while small droplets are formed
eventually leave the knife. (Figure 4I). (3) When increasing
the width of the knife, the droplets are able to be cut into
two parts (Figure 4A,B,D,E,G,H). (4) When the width of the
knife is large, the residual small droplets will adhere to the
knife (Figure 4G,H).

To verify the effect of knife height on the cutting time,
the dimensionless width of the knife was fixed at 0:167. At
this width, the cutting of the droplet can be completed even
if the height of the knife is small. The other simulation con-
ditions were kept constant. We define four time points to
better observe the process of the droplet being cut. (T1) is
the first contact between the droplet and the knife, where
the first three-phase contact line is formed at the bottom
of the knife. (T2) is when the second three-phase contact
line is formed at the bottom of the knife. (T3) is when the
first three-phase contact line leaves the knife. (T4) is
when the second three-phase contact line leaves the knife.

In Figure 5, we show the four time points T1 to T4 as
a function of the height of the knife for a fixed equilib-
rium contact angle of 45� and for a knife width
of Wk ¼ 0:167. The location of the bottoms of the knives
is all the same, and the droplet rises the same distance
under the action of gravity and buoyancy. Therefore, as
the droplet rises and is cut, the knife at different heights

FIGURE 3 Evolution of Reynolds number at dimensionless

time for simulated droplet ascent cutting at different mesh

resolutions, Eo¼ 3:96, and Mo¼ 1:24�10�4. Width of the

knife Wk ¼ 0:167, height of the knife Hk ¼ 0:517. The dashed line

in the figure is the Reynolds number reference value obtained by

Bertakis et al.[41] at Eo¼ 3:40 and Mo¼ 1:22�10�6. The end point

of each time series is the moment when the droplet leaves the knife

after it has been cut.

6 CAO ET AL.
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has the same time to form the first three-phase contact
line and the second three-phase contact line between the
droplet and the bottom of the knife. When the knife
height is very small (0:033≤Hk ≤ 0:1), the first three-
phase contact line that is formed between the droplet and
the knife will leave the knife before the second three-
phase contact line is formed, and the droplet will be cut
in the shortest time. When the knife height is
(0:183≤Hk ≤ 0:267), the first three-phase contact line
formed at T1 time point will leave the knife first, and
after that, the droplet will continue to rise and be cut,
and both three-phase contact lines will leave the knife.
When the knife height is (0:35≤Hk), neither of the two
three-phase contact lines formed at times T1 and T2

reach the top of the knife. Due to the separation of the
droplet and the small droplet adhered to the knife, both

three-phase contact lines leave the knife simultaneously,
resulting in the absence of a T3 time point. As the height
of the knife continues to increase, the position of the
droplets separating from the small droplets adhering to
the knife does not change, so the T4 time point remains
unchanged. Additionally, when the height of the knife
is Hk ¼ 0:267, the appearance of the T4 time point occurs
later than when the height of the knife is greater
than Hk >0:267. This is because during the cutting process
of the droplet by the knife, the three-phase contact line
formed at time T1 disappears first due to the insufficient
height of the knife and the influence of the equilibrium
contact angle. The three-phase contact line formed at
time T2 disappears due to the separation of the droplet
and the small droplet adhered to the knife.

4.3 | Contact angle

In this section, the effect of the equilibrium contact
angle (θeca) of the knife on the slicing of the droplet will
be investigated, and various parameters in Table 1 are
used for the simulation system. The study includes the
dynamic contact angles of droplets (advancing and reced-
ing contact angles), the droplet velocity after being cut at
different equilibrium contact angles, as well as the drop-
let morphology and the droplet contact length with the
knife when being cut. The advancing contact angle is
measured from T1 time point to T3 time point; the reced-
ing contact angle is measured from T2 time point to T4

time point. The dynamic contact angles are determined
by fitting the droplet profile to a tangent line taken at the
intersection of the three-phase contact line. The value of
the contact angle is affected by several factors, including
the droplet velocity, the equilibrium contact angle of the
knife, and the characteristics of the droplet itself

FIGURE 5 Time points of the three-phase contact line for

droplets cut by knives of different heights. The width of the knife

is Wk ¼ 0:167. The equilibrium contact angle of the knife is 45�.

FIGURE 4 Cutting of droplets at

different knife heights (Hk) and widths

(Wk); Hk and Wk have been made

dimensionless with the initial drop

diameter. Each point shows an image of

the state of the droplet during and

after the cut. The equilibrium contact

angle of the knife is 45�.
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(viscosity and surface tension). Lee et al.[42] found that
dynamic contact angles are usually higher than equilib-
rium contact angles and that statically wetted surfaces
can become less wetted or even unwetted by dynamic
droplet impact. During droplet cutting, the measured
dynamic contact angle can differ from the equilibrium
contact angle due to the complex interactions between
these factors. The equilibrium contact angle is deter-
mined by the balance of intermolecular forces at the
interface of the droplet in the static case. When the
droplet is in motion, the droplet is rapidly deformed by
the knife and subjected to high shear stresses, causing
the contact angle of the droplet to change.

To verify the effect of mesh resolution on the dynamic
contact angle, the variation of the advancing and receding
contact angles when the droplet is cut by a knife with an
equilibrium contact angle of 90� has been simulated with
results shown in Figure 6 for four mesh resolutions in
Table 1. As the mesh resolution increases, the value of
the advancing and receding contact angle does not
change much. Therefore, changing the mesh resolution
has only a limited effect on the measurement of dynamic
contact angles.

We expect that the larger the equilibrium contact
angle, the easier the droplet is cut. Here we consider
droplets cut on knives with different wettability levels,
that is, hydrophilic and hydrophobic. The surface proper-
ties of the knife exhibit hydrophobicity when θeca > 90�

and hydrophilicity when θeca < 90�. The simulated system
parameters are the ones with f m ¼ 1:6 in Table 1. The
height of the knife Hk ¼ 0:85 and the width Wk ¼ 0:167.
In Figure 7, the evolution of the contact angle on the
advancing and receding of the droplet with time is shown

to illustrate the differences between the five types of sur-
faces during the droplet cutting process. All simulation
parameters are the same except for the equilibrium con-
tact angle. If the equilibrium contact angle increases, the
advancing and receding contact angles are slightly
higher. Looking at the results of the droplet cutting times
in Figure 8, ΔTd is the length of time that the advancing
and receding contact angles appear (ΔTda ¼T3�T1 or
ΔTdr ¼T4�T2). It is clear that the advancing contact
angle time ΔTda is greater than the receding
contact angle time ΔTdr for the five surfaces. As the
equilibrium contact angle increases, the cut lengths of
the advancing and receding contact angles both decrease.
In agreement with Son et al.,[43] the variation in the
length of time a droplet is separated or cut is related to

FIGURE 6 Evolution of the advancing and receding contact

angles (θ) of droplets with time for different mesh resolutions at

θeca ¼ 90�. The height of the knife Hk ¼ 0:517, the width of the

knife Wk ¼ 0:167, and the droplet diameter d¼ 2:0mm.

FIGURE 7 Evolution of the contact angle (θ) between the

advancing and receding of the droplet with dimensionless time t for

different equilibrium contact angles (θeca) with mesh

resolution f m ¼ 1:6.

FIGURE 8 Variation of cutting time of droplets at different

equilibrium contact angles for mesh resolution f m ¼ 1:6. The red

part shows the cutting time for the advancing contact angle and the

purple part shows the cutting time for the receding contact angle.
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the equilibrium contact angle; as the equilibrium contact
angle increases, the shorter the contact time between the
droplet and the surface of the rectangle or knife, and the
easier it is for the droplet to separate away.

We now investigate the effect of equilibrium contact
angle on the rising velocity Reynolds number of liquid
droplets after the T4 time point. We continue to simulate
the motion of the cut droplet at different equilibrium
contact angles with a mesh resolution of f m ¼ 1:6. The
height of the knife is Hk ¼ 0:85 and the width
is Wk ¼ 0:167. The droplet is cut equally into two parts
and the Reynolds number formula is based on the droplet
diameter is ~d=

ffiffiffi
2

p
. As shown in Figure 9, after the two

parts of the cut droplet leave the knife, the Reynolds
number of the droplet quickly rises and then gradually
stabilizes. As the equilibrium contact angle increases, the
droplet leaves the knife earlier and the droplet appears
less deformed (see Figure 10), the droplet has less contact
area with the fluid, the droplet rises with less resistance
and therefore leaves the knife with a slightly higher
Reynolds number. After levelling off, there is a slight dif-
ference in the Reynolds number of the droplet continuing
to rise after cutting at different equilibrium contact angles.
At equilibrium contact angles θeca < 90�, the droplet is cut
by the knife with small droplets adhering to the knife. The
volume of the two rising droplets is therefore reduced, and
the Reynolds number of the continuing ascent velocity is
slightly reduced. Some noise was found in the variation of
the Reynolds number distribution of the droplet’s continued
rise velocity with dimensionless time. As the mesh resolu-
tion increases, the number of meshes in the simulation
domain increases. The simulation becomes more sensitive

FIGURE 9 Evolution of Reynolds number with dimensionless

time after T4 time point for different equilibrium contact angles

with mesh resolution f m ¼ 1:6.

FIGURE 10 Evolution of droplet morphology and contact

width with time for different equilibrium contact angles of droplets

during the cutting process at a mesh resolution f m ¼ 1:6.

(A) Evolution of the droplet deformation height with time.

(B) Evolution of the droplet deformation width with time.

(C) Evolution of the contact width between the droplet and the

knife with time. (D) Schematic diagram of the droplet deformation

height (dh), width (dw), and contact width (bw).

CAO ET AL. 9
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to small perturbations in the initial or boundary conditions,
causing droplet velocity fluctuations.

We define the cutting process of the droplet in
Figure 10 as the period between T2 and the time point
T4. The asymmetry in the deformation of the droplet dur-
ing the cutting process is more pronounced due to factors
such as the surface characteristics of the knife, the drop-
let being cut by the knife and the rate of rise of the
droplet. Figure 10A,B shows the evolution of the dimen-
sionless height (dh ¼ ~dh=~dÞ and dimensionless width
(dw ¼ ~dw=~dÞ of the droplet deformation with time. The
larger the equilibrium contact angle, the smaller the
increase in width and height of the droplet. The final
height and width of the droplet deformation at the end of
the cutting process are indicated by the points repre-
sented by the different equilibrium contact angle colours.
Figure 10C shows the evolution of the dimensionless con-
tact width (bw ¼ ~bw=~dÞ between the droplet and the knife
during the cutting process as a function of time. During
the droplet cutting process, when the surface property of
the knife is hydrophobic, the contact width of the droplet
and the knife decreases rapidly to 0, and there is no drop-
let residue on the surface of the knife. When the surface
of the knife is hydrophilic, the contact width between the
droplet and the knife is not reduced to 0. After the drop-
let has finished cutting and left the knife, a small droplet
remains on the surface of the knife. Figure 10D shows a
diagram of the droplet deformation height (dh), width
(dw), and contact width (bw), and x and z are coordinate
systems and their values are dimensionless. x and z are
scaled by the undeformed droplet diameter, where
x¼ ~x=~d, z¼~z=~d. The lattice cells with order parameter
φ>0 are the lattice cells inside the droplet, and we use
the φ filter to obtain the coordinates of all the positions
of the lattice cells occupied by the droplet. The maximum
and minimum values of the z-axis coordinates in the set
of all coordinates are calculated to obtain dh. The set of
position coordinates of the x-axis coordinates out of the
set of all coordinates is filtered out to be smaller than the
x-axis of the knife, and the maximum and minimum values
of the x-axis coordinates in the set are calculated to obtain
dw. The position coordinates of the knife are known, and
the position coordinates of the droplets adjacent to the knife
are calculated to obtain bw. Due to discretization/grid
effects in the plot of the dimensionless height, the

dimensionless width and the dimensionless contact
width as a function of time appear as steps.

Bakhshan et al.[44] studied the impact of liquid drop-
lets on obstacles, considering three different surface con-
ditions: hydrophilic (θeca ¼ 45�), neutral (θeca ¼ 90�), and
hydrophobic (θeca ¼ 135�). The horizontal and vertical
expansion trends of the droplets after impacting the dif-
ferent surfaces were found to be the same as in our simu-
lations. The contact width between the droplet and the
knife during the cutting process was as we observed.
Table 2 shows a comparison between this paper and the
simulated data of Bakhshan et al.[44] Time t and deforma-
tion height dh are dimensionless. The time t for the drop-
let to leave the obstacle after impact and the deformation
height of the droplet on the three different surfaces dh.
The expansion height of the droplet decreases as the
equilibrium contact angle increases.

4.4 | Two knives interacting with a
single droplet

In this section, we show results with two knives to cut
through the rising droplets to see the different slices. The
simulation system is according to Table 1 for f m ¼ 1:0,
where Hk ¼ 0:517 and θeca ¼ 90�. The state of the droplet
when it is cut and the state of the cut part of the
droplet was studied by varying the width of the two kni-
ves and the distance between the two knives (kd ¼ ~kd=~d).
The situation before and after cutting is shown in
Figure 11.

Two knives cut a droplet into three parts, with differ-
ent slices for different knife widths and distances
between the two knives. When cutting with the mini-
mum knife distance and maximum knife width in the
figure, the droplet is sliced into two parts, with no droplet
in the middle part of the two knives (Figure 11A). By
increasing the distance between the two knives and
decreasing the width of the knife, the droplet was suc-
cessfully cut into three parts, with the droplet in the parts
on either side of the two knives continuing to rise and
the droplet between the two knives remaining on the
knife (Figure 11B–D). Afterwards, the width between
the two knives is further increased and the droplet is cut,
and the three parts of the droplet still coalesce into one

TABLE 2 Comparison of the time t

for a droplet to leave an obstacle and

the deformation length dh of a droplet

after a simulated droplet impact on

three different surfaces in this paper

with Bakhshan et al.[44]

θeca ¼ 45� θeca ¼ 90� θeca ¼ 135�

t dh t dh t dh

This paper 1.8 1.152 1.55 1.134 1.267 1.109

Bakhshan et al.[44] 2.88 2.2 <2.88 <1.65 <2.88 <1.5
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droplet and continue to rise (Figure 11F,G); when the
width of the two knives is very large, the cut droplet
remains on the knife (Figure 11H,I).

As shown in Figure 12, the droplet can be cut in three
parts by two knives, the leftmost droplet of the two kni-
ves (sv1), the rightmost droplet of the two knives (sv2),
and the droplet in the middle of the two knives (cv). The
volume ratio (VrÞ is defined as follows:

Vr ¼ cv
sv1

ð8Þ

Given the left–right symmetry, the droplet volumes of
sv1 and sv2 are equal. As expected, the volume ratio

increases monotonically as the distance between the two
knives increases. Increasing the width of the two
knives, the volume ratio remains approximately
unchanged when the distance between the two knives
is small, and increases as the distance between the two
knives increases.

5 | CONCLUSIONS

Based on the free energy lattice Boltzmann model, this
paper studies the height of knife, contact angle, and the
numerical simulation of two knives cutting a droplet as it
rises. The simulation system parameters are determined
for different resolutions using numerical scaling factors
and scaling procedure. The equilibrium contact angle of
the knife is achieved using the order parameter in the
normal (vertical) direction of the solid surface.

In this study, the influence of mesh resolution on the
start time of droplet cutting by the knife and the rising
speed Reynolds number of the stable state is analysed by
mesh coarsening and refinement analysis. For droplets
with a diameter of 2.0 mm, the deviations from the origi-
nal simulation in terms of droplet cutting start times
were 9.1% and 4.3% for the coarsest and finest meshes
obtained, respectively. The deviation from the original
simulation by mesh refinement and coarsening is less
than 10% when the droplet rise Reynolds number reaches
a steady state. By varying the mesh resolution, the time
at which the droplet starts to be cut and the steady state
results of the rising Reynolds number deviate little from
each other.

To investigate the effect of the knife height on droplet
cutting, four time points are defined to observe the cut-
ting process more effectively. By varying the height and
width of the knife, it is possible to achieve a droplet that

FIGURE 11 Different distances

between two knives (kd) and different

widths (Wk) to simulate the cutting of a

liquid drop. The height of the knife

is Hk ¼ 0:517. The equilibrium contact

angle of the knife is θeca ¼ 90�.

FIGURE 12 Volume ratios of cutting droplets for different

knife widths and for different distances between the two knives.

The height of the knife is Hk ¼ 0:517. The equilibrium contact

angle of the knife is θeca ¼ 90�. The dots represent individual
simulations, and the curves are quadratic fits.
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is cut into one or two parts. Changing the height of the
knife allows for no small droplets to remain after
the droplets have been cut. The height of the knife affects
the time it takes for the two three-phase contact lines to
leave the knife. By reducing the height of the knife, the
cutting time of the droplet is effectively reduced and the
consumables for the knife are reduced.

We studied the effect of the knife’s surface character-
istics (i.e., equilibrium contact angle) on droplet slicing.
The equilibrium contact angle affects the cutting time of
the droplet and its shape changes. If the knife is hydro-
phobic, the cutting time of the droplet is relatively short,
the length and width changes of the droplet are small,
and there is no residue of small droplets on the knife. If
the knife is hydrophilic, the cutting time of the droplet is
long, the length and width changes of the droplet are sig-
nificant, and there is a residual droplet on the knife. The
size of the droplets remaining on the knife after the drop-
lets have been cut by a knife with different surface char-
acteristics varies, making the final droplets smaller in
size. As a result, there is a slight difference in the drop-
let’s continued rise rate after the Reynolds number has
reached stability.

In the numerical simulation of cutting droplets with
two knives, we observed a series of cutting situations. By
controlling the distance between the two knives while
keeping their width constant, the cutting of the droplet
into three parts can be achieved, and the middle part of
the droplet will remain between the two knives. Simulta-
neously controlling the distance between two knives, the
droplets will be cut into two parts or coalesce into one
droplet after cutting. Increasing the distance between the
two knives increases the volume ratio of the droplet.

In this simulation study, some findings and insights
were obtained on the control of droplet size by varying
the height of the knife, contact angle, and using two kni-
ves. This may provide some guidance for the design of
microchannel technology and spray application in related
applications such as droplet size control. The research in
this paper is based on simulations carried out in two
dimensions. For the time being, no in-depth research has
been carried out on the three-dimensional, real-life drop-
let rise and cut problem. In order to provide a more accu-
rate description of the actual flow problems in
engineering, we will carry out future research on the
three-dimensional droplet rise and cut problem. In
the simulation of using two knives to cut the droplets,
the middle part of the droplet stays between the two kni-
ves. In the next stage of the work, we plan to achieve the
continued upward movement of the middle part of the
droplet after being cut by changing the knife (height and
shape) and the surface characteristics of the knife. Our
current work separately investigates the effects of knife

size and contact angle on cutting behaviour. Future work
considering their combined effect on the slicing process
may be interesting in order to obtain a more general
study that will eventually provide correlations in terms of
cutting time. Currently, only one droplet is used in the sim-
ulation to be cut by the knife, and the impact of residual
droplets on the next droplet cutting cannot be determined.
Therefore, in the next stage of the work, we will set a larger
simulation domain, release multiple droplets to achieve
continuous cutting, and study the impact of residual drop-
lets on droplet cutting. The properties of the droplets and
the stable velocity of the droplets after rising are also impor-
tant factors that affect cutting and can be compared and
studied for different parameter impacts in the future.

NOMENCLATURE

A,κ parameters connected with surface ten-
sion and interface thickness

bw (dimensionless) contact width
~bw contact width ( lu½ �)
C scaling factor
c2s speed of sound squared in lattice

units (m2=s2)
d equivalent diameter (mm)
~d equivalent drop diameter in lattice

units ( lu½ �)
dh (dimensionless) droplet deformation height
~dh droplet deformation height ( lu½ �)
dw (dimensionless) droplet deformation width
~dw droplet deformation width ( lu½ �)
eaq discrete velocity (mm=s)
Eo (dimensionless) Eötvös number
f m a factor (when changing the drop diame-

ter d)
f eqq ,geqq discrete Maxwell–Boltzmann distributions

(or equilibrium distributions)
F ϕð Þ free energy functional
f r, tð Þ,g r, tð Þ particle distribution functions
Fq forcing term (Fq ¼ gΔρ,N)
F φð Þ the bulk energy density
Fr (dimensionless) Froude number
g gravitational acceleration (m2=s)
Hk (dimensionless) height of the knife
~Hk height of the knife ( lu½ �)
kd (dimensionless) distance between two knives
~kd distance between two knives ( lu½ �)
M mobility parameter
Mo (dimensionless) Morton number
p0 bulk pressure (Pa)
Pαβ full pressure tensor (Pa)
Pchem
αβ ‘chemical’ pressure tensor (Pa)

Pth
αβ ‘thermodynamic’ pressure tensor (Pa)

12 CAO ET AL.
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Re (dimensionless) Reynolds number
~ts the current time step ( lu½ �)
Td dimensionless time
Vr droplet volume ratio
Wk (dimensionless) width of the knife
~Wk width of the knife ( lu½ �)

We (dimensionless) Weber number
θeca equilibrium contact angle (�)
τf ,τg dimensionless relaxation parameters
ωq weight coefficients
� parameters in lattice units
Δρ density difference (kg=m3)
q discretized velocity direction
t time (s)
u rising velocity (mm=s)
r position vector (mm=s)
Γ coefficient of mobility
Δt time step (s)
Δx mesh step (mm)
η dynamic viscosity ratio
θ contact angle (degree)
λ density ratio
μ dynamic viscosity (Pa s)
μ φð ) chemical potential (Pa)
ν kinematic viscosity (m2=s)
ξ diffuse interface ( lu½ �)
ρ density (kg=m3)
σ interfacial tension (N=m)
φ order parameter of phase field
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APPENDIX A

A1 | Phase field description of a binary fluid
system
The phase-field model is only applicable to fluids with
small density differences. In this study, the relative den-
sity difference between the two liquids is only 10%, so the
Boussinesq approximation[45] is used to determine
the net gravity. For the present system, the hydrodynam-
ics of this binary mixture are described as follows:

∂ tρþ ∂α ρuαð Þ¼ 0, ðA1aÞ

∂ t ρuαð Þþ ∂β ρuαuβ
� �¼�∂βP

th
αβþ ∂βν ρ∂αuβþρ∂βuα

� �þgΔρ ,

ðA1bÞ

∂ tφþ ∂α φuαð Þ¼M∂2ββμ , ðA1cÞ

Here, ρ is the density, the kinematic viscosity of the mix-
ture is ν, and the subscripts α represent the Cartesian
directions x, y, and z. uα is the velocity field. μ is the
chemical potential (see Equation 2). A symmetric double
well potential is used to describe the phase separation.

V ¼A
2
φ2þB

4
φ4: ðA2Þ

The chemical potential μ in Equation (2) is defined as
follows[40]:

μ φð Þ¼Aφ�Aφ3� κ∂2ααφ, ðA3Þ

Here, A is a parameter of the free energy model with A
value less than 0, and A and κ are parameters related to
surface tension and interface thickness.

Pth
αβ represents the ‘thermodynamic’ pressure tensor,

which includes two parts[40]: an isotropic contribution
Pδαβ to describe the pressure of ideal gas, and the other
part is the ‘chemical’ pressure tensor Pchem

αβ defined as
follows:

Pchem
αβ ¼ δαβ φ

δV
δφ

�V� κ φ∂2yyφþ
1
2
∂αφj j2

� �	 

þ κ ∂αφð Þ ∂βφ

� �
:

ðA4Þ

A2 | Lattice Boltzmann method and parameters
The discrete Equations (4) and (5) can be solved in two
steps: collision step and streaming step.

Collision step: f 0q r, tð Þ¼ f q r, tð Þ� 1
τf

f q� f eqq
h i

þFq

g0q r, tð Þ¼ gq r, tð Þ� 1
τg

gq� geqq
h i

ðA5Þ

Streaming step: f q rþeqΔt, tþΔt
� �¼ f 0q r, tð Þ

gq rþeqΔt, tþΔt
� �¼ g0q r, tð Þ ðA6Þ

The forcing term is incorporated as follows:

Fq ¼ωq eq �F
� �

, ðA7Þ

where F is the macroscopic force and ωq is the weighting
factor[46]:
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ω1�6 ¼ 1
6
, ω7�18 ¼ 1

12
,

ωxx
1�2 ¼ωyy

3�4 ¼ωzz
5�6 ¼

5
12

, ωxx
3�6 ¼ωyy

1�2,5�6 ¼ωzz
1�4 ¼�1

3
,

ωxx
7�10 ¼ωxx

15�18 ¼ωyy
7�14 ¼ωzz

11�18 ¼� 1
24

,

ωxx
11�14 ¼ωyy

15�18 ¼ωzz
7�10 ¼

1
12

, ðA8Þ

ωxy
1�6 ¼ωyz

1�6 ¼ωzx
1�6 ¼ 0, ωxy

7,10 ¼ωyz
11,14 ¼ωzx

15,18 ¼
1
4
,

ωxy
8�9 ¼ωyz

12�13 ¼ωzx
16�17 ¼�1

4
, ωxy

11�18 ¼ωyz
7�10 ¼ωzx

7�14 ¼ 0:

For equilibrium distribution functions f eqq and geqq for
1≤ q≤ 18, the following equations are used[46]:

geqq ¼ωq

c2
Γμþeαqρuαþ 3

2c2
eαqeβq� 3

c2
δαβ

	 

φuαuβ

� �
ðA9bÞ

and the equilibrium distribution function at q¼ 0 is as
follows:

f eq0 ¼ ρ�
XQ�1

q¼1
f eqq , ðA10aÞ

geq0 ¼φ�
XQ�1

q¼1
geqq : ðA10bÞ

For a two-phase interface, the value of φ is deter-
mined by the following equation:

φ xð Þ¼φ0tanh
x
ξ
, ðA11Þ

φ is the value of the order parameter at the interface of
the two phases. φ0 is the order parameter value in the
bulk of the two phases, φ0 ¼ 1.

The thickness ξ of the two-phase interface is given by
the following:

ξ¼ 2κ
�A

� �1
2

: ðA12Þ

The surface tension σ follows the equation:

σ¼ 4
3
κ
φ2
0

ξ
: ðA13Þ

The local density ρ, the local momentum ρu, and the
local order parameter φ of the fluid at a single lattice
point are the result of summing over all directions q:X

q
f q ¼ ρ , ðA14aÞ

X
q
eqf q ¼ ρuþΔt

2
F , ðA14bÞ

X
q
gq ¼φ : ðA14cÞ

The pressure p0 in Equations (A9a) and (A9b) is cal-
culated as follows:

p0 ¼ c2sρþ
A
2
φ2�3A

4
φ4 ðA15Þ

τf is determined by the kinematic viscosity of the
mixture:

τf φð Þ¼ v φð Þ
c2sΔt

þ1
2

ðA16Þ

The kinematic viscosity v of the mixed liquid is
expressed as a function of the order parameter φ:

f eqq ¼ωq

c2

�
p0� κφ ∂2xx þ ∂2yyþ ∂2zz

� �
þ eαqρuαþ 3

2c2
eαqeβq� c2

3
δαβ

	 

ρuαuβ

þ κ

c2
ωxx
q ∂xφ∂xφþωyy

q ∂yφ∂yφþωzz
q ∂zφ∂zφþωxy

q ∂xφ∂yφþωxz
q ∂xφ∂zφþωyz

q ∂yφ∂zφ
� ��

ðA9aÞ
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v φð Þ¼ vc
1�φ

2
þ vd

1þφ

2
ðA17Þ

vc and vd are the kinematic viscosities of the continuous
and dispersed phases, respectively.

The mobility M, the flow coefficient Γ, and the relaxa-
tion parameter τg are related by the following equation[47]:

M¼ΔtΓ τg�1
2

� �
ðA18Þ

The mobility M is determined by the flow coefficient
Γ, where c2s ¼ 1

3, which represents the square of the speed
of sound in the lattice unit.

A3 | Scaling procedure
Numerical simulations based on the lattice Boltzmann
method require the correct matching of lattice units to
physical units and numerical systems, which can be
achieved by using a proportionality factor. By equating
the physical and lattice dimensions, the value of the pro-
portionality factor can be obtained. In this study, the
symbol � is used to indicate that this parameter is
expressed in lattice units. Using Equation (A13), the for-
mula for κ is obtained:

κ¼ 3ξ
4φ2

0

σ

Cσ
# ðA19Þ

Here, after κ has been determined, the value of A can be
calculated by Equation (A12). φ0 ¼ 1 and Cσ is scale fac-
tor for surface tension, whose scale factor can be written
as follows:

Cσ ¼ σ

~σ
ðA20Þ

The Boussinesq approximation[45] states that if the
density difference is much smaller than the density of the
two actual liquids, then density variations only play a
role in the force Δρg. The proportionality factor for the
force is determined by the definition of the Eötvös num-
ber (Eo¼ gΔρd2=σ):

~Δρg¼ ~σ

~d
2 Eo ðA21Þ

where ~σ can be obtained from Equation (A20) and ~d
denotes the diameter of the droplet in the lattice unit.

The dynamic viscosities of the continuous and dis-
persed phases were determined from the definition of the
Morton number

�
Mo¼ gΔρμ4c

� �
= ρ2cσ

3
� ��

and the viscos-
ity ratio η (η¼ μd=μc):

~μc ¼ ~ρ2c~σ
2~d

2Mo
Eo

� �1=4

~μd ¼ η ~μc ðA22Þ

The kinematic viscosity is as follows:

~νc ¼ ~μc
~ρc

~νd ¼ ~μd
~ρd

ðA23Þ

We therefore introduce the following scale factors:

Density:Cρ ¼ ρ

~ρ
;

Kinematic viscosity:Cν ¼ νc
~νc
; ðA24Þ

Force:Cforce ¼Δρg
~Δρg

:

Using the definitions of the Froude number
(Fr¼u2=gd), Reynolds number (Re ¼ udρc=μc) and
Weber number (We¼ ρcu

2d=σ), and the above scaling
factors, the scaling factors for velocity, length and time
can be determined as follows:

Length:Cd ¼C2
νCρ

Cσ
;

Velocity:Cu ¼ Cσ

CνCρ
; ðA25Þ

Time:Ct ¼
C3
νC

2
ρ

C2
σ

;
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