
AR T I C L E

Adding active particles for overall aggregation in a mixing
tank: A computational study

Jee Wen Lim | Jos J. Derksen

School of Engineering, University of
Aberdeen, Aberdeen, UK

Correspondence
Jos J. Derksen, School of Engineering,
University of Aberdeen, Aberdeen, UK.
Email: jderksen@abdn.ac.uk

Abstract

In order to achieve flocculation in a dense agitated solid-liquid suspension of

nonaggregating particles, we explore scenarios where we add a limited amount

of aggregative (ie, active) particles that can bind the nonaggregative particles.

The performance of this process hinges on the competition between mixing

(spreading the active particles over the flow volume) and aggregation among

the active particles, with the latter reducing their effectiveness. The research

has been conducted in a computational manner: direct simulations of transi-

tional flow in a mixing tank (at an impeller-based Reynolds number of 4000)

are two-way coupled with the dynamics of a collection of spherical, equally

sized particles that are given specific aggregative properties. The overall solids

volume fraction is 10%. A small fraction of all solid particles (5.8%) is active.

Aggregation is quantified by means of the average coordination number as

well as the aggregate size distribution. The way the active particles are released

in the tank volume has a significant effect on the overall levels of aggregation,

specifically for active particles with a strong aggregative force.
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1 | INTRODUCTION

Many natural and engineered systems involve mixtures
of liquid and fine solid particles. Sediment transport in
rivers is an example from the natural environment; the
production of high-purity pharmaceutical powders from
a supersaturated solution is an example from industry.
Understanding and predicting the dynamics of solid-
liquid suspensions therefore has relevance in a wide
range of applications. The aspect we are focusing on in
this paper is aggregation of particles. In many solids-
liquid suspensions, particles have a tendency to stick
together and form aggregates. There is a variety of rea-
sons for particles to stick to other particles. Physical rea-
sons include van der Waals interactions. Some types of
particles have long-chain molecules at their surface that

have a tendency to entangle thereby forming aggre-
gates.[1] In crystallization processes, supersaturation in
between closely spaced crystals can cause the formation
of a solid bridge between them.[2] Aggregation processes
are intimately connected to the (fluid) dynamics of solid-
liquid suspensions. In order for particles to aggregate
they first need to collide. For non-colloidal particles, as
will be the subject of this paper, relative motion between
particles brought about by fluid flow is the major source
of collisions.[3] At the same time, fluid flow and fluid
deformation, and its associated stresses, provide mecha-
nisms to disrupt aggregates.[4,5]

There are various approaches to model aggregation.
Seminal work was done by Von Smoluchowski.[6] It high-
lights the role of shear in irreversible aggregation of parti-
cles. The Von Smoluchowski equation has been modified
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to include several other parameters, for instance the role
of shear has been generalized to turbulent flow by relat-
ing effective shear to the energy dissipation rate.[7] The
population balance equation (PBE) is an important way
to model and keep track of size distributions.[8–11]

From an applications point of view, aggregation is a
major influencer of the particle size distribution. Product
quality and processability are directly linked to the parti-
cle size distribution. Aggregation is a desired phenome-
non if one wants to quickly grow particles in order to
separate them more easily from the liquid phase. The
usual way of inducing aggregation is by adding a floccu-
lant, a chemical agent that promotes aggregation by, for
instance, shrinking the electrical double layers of parti-
cles thereby suppressing electrostatic repulsion.[12] In this
paper we follow an alternative route to aggregation and
are interested in promoting aggregation of an initially
nonaggregative system by adding aggregative particles
(that from now on we will call active particles or A-parti-
cles) that bind to nonaggregative particles (NA-particles),
as well as to other A-particles. This is done in an agitated
tank under transitional (weakly turbulent) flow condi-
tions by means of numerical simulations.

The success of such an aggregation process is
expected to depend on the speed of mixing as compared
to the speed of aggregation. Mixing is important to dis-
perse the A-particles over the tank volume; if this is not
done sufficiently fast, A-particles will attach to nearby
other A-particles thereby making them less effective for
binding NA-particles. The scenario we explore starts with
a fully developed agitated flow of a non-aggregative solid-
liquid suspension (all particles in the suspension are NA-
particles). At a specific moment in time (t = 0) we turn a
small fraction of the NA-particles into A-particles and we
keep track of the aggregation process that then evolves.
In order to identify the role of mixing, we perform the
numerical experiments in two ways: (a) the particles
turning from NA-particles to A-particles at t = 0 are con-
fined to a narrow top layer of the tank, or (b) are ran-
domly distributed over the tank volume. The first
situation is akin to A-particles being sprinkled in the tank
at the top surface. In the second situation, which is hard
to achieve experimentally but easy in a simulation, the
A-particles are mixed throughout the tank from the start
of the flocculation process.

The simulations that have been performed are of an
Eulerian-Lagrangian nature. The volume averaged
Navier-Stokes (VANS) equations that govern the liquid
flow are solved on a uniform cubic grid (Eulerian) with
the lattice-Boltzmann method.[13,14] Individual primary
particles are tracked through the flow field (Lagrangian).
They move under the influence of hydrodynamic forces,
contact forces (including attractive aggregative forces)

and gravity. These are particle-unresolved simulations.
That is, the Eulerian grid is not sufficiently fine to allow
for a direct application of no-slip conditions at particle
surfaces and resolve the flow around each particle. This
grid spacing is, however, of the same order of magnitude
as the particle diameter, a situation we have explored in
previous papers.[15,16] Particle motion and fluid motion
are two-way coupled: hydrodynamic forces on the parti-
cles are fed back to the fluid and the displacement of
fluid volume by the particles is accounted for in the
VANS equations. While the primary particles move
through the mixing tank, the attractive forces the
A-particles are equipped with cause aggregation of parti-
cles in a fully reversible manner. Aggregates are identi-
fied as clusters of primary particles in contact with one
another. The simulations allow to assess the size and
structure of the aggregates formed as a function of pro-
cess conditions and particle properties.

The aim of this paper is to explore and quantify, in a
computational manner, aggregation processes induced by
a relatively small number of active, aggregative particles.
The process serves as an example of a strong interrelation
between the kinetics of aggregation and multiphase flow
dynamics that, we argue, can be effectively described
through Eulerian-Lagrangian simulations.

This paper is organized as follows. In the next section,
the flow system that has been used will be described in
detail and a set of dimensionless numbers characterizing it
will be defined. We then summarize the numerical proce-
dure that has been followed and refer to previous papers for
further details. Numerical setup and parameters are then
given in a subsequent brief section. When discussing results,
we focus on visualizing and quantifying the way aggregation
and flow are related. A final section summarizes conclusions
and provides an outlook to further work.

2 | SOLIDS-LIQUID FLOW SYSTEM

Our mixing tank is cubic with side length T. It has solid
walls all around where we apply the no-slip boundary
condition. Figure 1 defines the flow configuration and
the coordinate system used throughout this paper. Grav-
ity points in the negative z-direction: g = − gez. The
impeller revolves around the vertical centre line of the
tank and is placed with an off-bottom clearance C = T/3.
It is a pitched-blade impeller with four 45� inclined
blades and has diameter D and revolves with
N revolutions per unit time. It pumps the suspension in
the negative z-direction. The choice of a cubic tank has
been made with a view to (future) validation by quantita-
tive visualization experiments. Undistorted optical access
is much helped by planar side, top, and bottom walls.
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The tank contains a Newtonian liquid with density ρ
and kinematic viscosity v. The solids in the tank are
equally sized spheres with diameter d and density ρs > ρ.
As alluded to above, we distinguish between A-particles
and NA-particles. A-particles have an attractive interaction
with other A-particles as well as with NA-particles. NA-
particles have no attractive interaction with other NA-par-
ticles. The attractive force, if present, has the same charac-
teristics as in our previous paper.[17] It has two
parameters, one (β) defining the strength of interaction,
the other (δ0) the distance over which interaction occurs:

Fij = β
δ0−δ

δ0

xj−xi
� �

xj−xi
�� �� if 0 < δ< δ0, and Fij = β

xj−xi
� �

xj−xi
�� �� if δ≤ 0

ð1Þ

where Fij is the force particle j exerts on particle
i (if j and/or i is an A-particle); δ = |xj − xi| − d the dis-
tance between the two particle surfaces; and xi and xj
their centre locations. From δ = δ0 to δ = 0 the magni-
tude of the (attractive) force increases linearly from 0 to
β; if the particles overlap (δ < 0) the force saturates at β.
Beyond δ = δ0 there is no aggregative force between parti-
cle i and j. The total aggregative force experienced by par-
ticle i is the sum over particles j within the δ0vicinity of i:
Fi =

P
j 6¼ iFij. In addition to aggregative forces, particles

also interact through lubrication forces, as well as
through soft-sphere repulsive interaction forces. These
will be discussed in the next section.

Our flow system has been defined in terms of a set of
dimensionless numbers. The impeller-based Reynolds
number Re = ND2/v characterizes the overall flow condi-
tions in the tank. A Shields number θ= ρN2D2

gd ρs−ρð Þ reflects
the competition between inertial liquid stresses (propor-
tional to ρN2D2) suspending particles and net gravity

pulling them down. The overall solids volume fraction is
ϕh i= nπ

6d
3=T3 , where n is the total number of particles

(A-particles plus NA-particles) in the tank. The density
ratio ρs/ρ quantifies the inertia of the solids relative to
the liquid. The interaction distance of the aggregation
force has been nondimensionalized by the diameter of
the particles: δa = δ0/d. The strength of the aggregation
force has been scaled with the weight of a particle:
βa = β=gρs

π
6d

3 . Finally, the symbol f is used for the frac-
tion of A-particles, that is, the number of A-particles
divided by the total number of particles in the tank.

Table 1 lists the values of the dimensionless numbers.
The major variable in this study is the aggregation
strength βa that was in the range 1-9. In previous
work,[17] it was shown that the distance of aggregative
interaction had limited effect on the levels of aggregation
and on the overall flow behaviour of the solids-liquid sus-
pension. For that reason, we gave δa a fixed value.

3 | NUMERICAL PROCEDURES

The equations to be solved, the numerical procedures, as
well as the models that are used for the solids-liquid flow
dynamics are similar to those in other work.[15,16] The
additional feature of an aggregative force has been dis-
cussed in Lim and Derksen.[17] At the core of the simula-
tion process is solving the volume-averaged continuity
and volume-averaged Navier-Stokes equations[18]:

∂

∂t
ρϕcð Þ+r� ρϕcuð Þ=0 ð2Þ

∂

∂t
ρϕcuð Þ+r� ρϕcuuð Þ=ϕcr�π+ f s ð3Þ

where ϕc ≡ 1 − ϕ is the liquid phase volume fraction and
ϕ the solids volume fraction; u the interstitial liquid

FIGURE 1 Mixing tank geometry: side view (left) and top

view (right). The pitched-blade impeller rotates clockwise and

thereby pumps liquid in the negative z-direction. The origin of the

Cartesian coordinate system is in the centre of the bottom wall. The

thickness of the impeller blades is tb = 0.021D

TABLE 1 List of dimensionless numbers and their values/

ranges

D/T 0.436

C/T 0.333

Re = ND2/v 4000

ϕh i= nπ
6d

3=T3 0.0983

f = nac/n 0.058

ρs/ρ 2.23

βa = β=gρs
π
6d

3 1-9

δa = δ0/d 0.40

θ = ρN2D2/gd(ρs − ρ) 260
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velocity; π the liquid’s stress tensor (that obeys Newto-
nian rheology); and fs the force per unit volume the solid
particles exert on the liquid. The fluid flow thus feels the
presence of particles through the volume displaced by the
particles (the ϕc terms in Equations (1) and (2)) as well as
through the solids-liquid interaction force fs. Solving this
set of equations is done numerically by means of an
extended lattice-Boltzmann method on a uniform, cubic,
three-dimensional grid with grid spacing Δ.[19] Time
advances in a discrete manner with a time step Δt.

The solids volume fraction in each grid cell is
acquired from the location of the particles. Assigning
solid volume to a grid cell involves a mapping
process,[15,20] where, in three dimensions, clipped fourth-
order polynomials centred around the centre location of
a particle are used as a weighing function to distribute
solids volume over grid cells in the direct vicinity of the

particle.[21] As previously,[15] we have set the mapping
function’s half-width to λ = 1.5d. An important attribute
of this mapping process is that it allows the particle size
to be of the same order as the grid spacing, d = O(Δ).[15]

As a result, we can choose the grid spacing independent
of the particle size. This is important in cases where the
choice of grid spacing is dictated by the (turbulent) char-
acteristics of the liquid flow and not directly by the parti-
cle size.[16]

Where above mapping has been used to assign
Lagrangian information (particle locations) to the solids
volume fraction distribution over the (Eulerian) grid,
mapping has also been used to transfer Eulerian proper-
ties to Lagrangian properties. For determining the drag
force FD on each particle we need the fluid velocity ufin
the direct vicinity of the particle. This we map from the
Eulerian velocity field on the grid (u) to the location of

FIGURE 2 Snapshot of particles in yz slice with thickness

d through the centre of the tank for the TA system (left) and RDA

system (right), both with βa = 1 and δa = 0.4: tN = 2, 10, 50 (top to

bottom). Colour coding: red: active particles; black: single particle;

green: a doublet; cyan: a triplet; yellow: a quartet; blue: a quintet;

magenta: an aggregate of six or more particles

FIGURE 3 Snapshot of particles in yz slice with thickness

d through the centre of the tank for the TA system (left) and RDA

system (right), both with βa = 9 and δa = 0.4: tN = 2, 10, 50 (top to

bottom). Colour coding: red: active particles; black: single particle;

green: a doublet; cyan: a triplet; yellow: a quartet; blue: a quintet;

magenta: an aggregate of six or more particles
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the particle with the same mapping functions as used
above.

The drag force is written as follows:

FD =3πρvd uf −up
� �

F Rep,ϕ
� � ð4Þ

where Rep = (1 − ϕ)|uf − up|d/v is the particle-based
Reynolds number; and up the particle velocity. The func-
tion F, that represents the way drag depends on the
Reynolds number and the (local) solids volume fraction,
has been decomposed as F(Rep, ϕ) = p(Rep)q(ϕ), with
p Rep
� �

= 1+0:15Re0:687p

� �
the Schiller-Naumann correc-

tion to Stokes drag[22] and q(ϕ) = (1−ϕ)−2.65 the Wen
and Yu correlation.[23] Wen and Yu drag was demon-
strated to be suitable for solid-liquid systems that have
moderate Stokes numbers.[24] The drag force is fed back,
again through mapping, to the liquid as the hydrody-
namic force per unit volume exerted by the particles on
the liquid fs, see Equation (3).

The translational equation of motion for a particle
reads as follows:

mp
dup

dt
=FH +FC +FL +FA−

π

6
d3 ρs−ρð Þgez ð5Þ

dxp
dt

=up ð6Þ

where mp = ρs
π
6d

3 is the mass of a particle. The forces felt
by the particle are the hydrodynamic force FH = FD/

ϕc,[25] a soft-sphere linear elastic collision force FC, a
lubrication force FL, an aggregation force FA, and net
gravity. The way the aggregation force is calculated was
discussed in the previous section. Both contact and lubri-
cation force are assumed to be radial forces, that is, they
act on a line connecting the centres of two interacting
particles. For the collision force this implies smooth par-
ticles with zero friction. For the lubrication force it
means that we only consider radial lubrication and dis-
card tangential lubrication which, in general, is much
weaker than radial lubrication: radial lubrication is
inversely proportional to the distance between particle
surfaces, tangential lubrication with the logarithm of that
distance. Detailed expressions for FC and FL are given in
Derksen.[15] Equation (6) is solved for each individual
primary particle with an explicit discretization of the
acceleration term through mixed time derivatives[26];
mixed derivatives enhance stability. The time step used is
the same Δt as used to advance the LBM for the liquid
flow. We only solve the translational equations of motion
of the particles, not the rotational ones. This is justified
by the fact that we consider smooth collisions that do not
generate angular momentum as well as the weak back-
effect spherical particle rotation would have on the
liquid flow.

FIGURE 4 Average coordination number Cavg as a function of

time for nonaggregating, TA system and RDA system with

δa = 0.4: A, βa = 0, 1, 3; B, βa = 6, 9

FIGURE 5 Aggregate size distributions averaged over the

time-interval 40 ≤ tN ≤ 60 for TA system and RDA system: A,

βa = 1; and B, βa = 9. The symbol ψ indicates the volume of solids

contained in each size class divided by the total volume of solids
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The no-slip boundary conditions for the liquid flow at
the bounding planar walls of the cubic mixing tank have
been imposed by applying the halfway bounce-back rule
to the LB distribution functions.[14] An immersed bound-
ary method has been used to impose no-slip at the revolv-
ing impeller.[27] The collisions between particles and
solid walls (outer walls and impeller surface) use the
same linear elastic force as used for particle-particle
collisions.

4 | SET-UP OF SIMULATIONS

The spatial resolution with which we solve the liquid
flow is such that the side length of the tank spans 110 lat-
tice spacings: T = 110Δ and the impeller diameter
D = 48Δ. One impeller revolution is completed in 1600
time steps: N = (1600Δt)−1. With these settings the impel-
ler tip speed is vtip = πND = 0.094Δ/Δt. The tip speed is a
good measure for the highest liquid velocities in the tank.
Then the tip speed being an order of magnitude lower
than Δ/Δt implies we are solving nearly incompressible
flow with the (compressible) LBM [14]. In order to

achieve an impeller-based Reynolds number of 4000, the
viscosity was set to v = 3.6 � 10−4Δ2/Δt. This modest
Reynolds number was chosen to create mildly turbulent,
or at least transitional, flow while not needing a subgrid-
scale model. This way we avoid such questions as how to
deal with particle motion as a result of unresolved fluid
flow fluctuations.

The particle diameter has been set to d = Δ = D/48.
With n = 250, 000 particles we reach a tank-averaged solids
volume fraction of hϕi = 0.0983. The number of active parti-
cles is nA = 14, 584 so that f = nA/n = 0.058. With the den-
sity ratio set to ρs/ρ = 2.23 (eg, quartz sand in water) we set
gravitational acceleration to g = 3.06 � 10−6Δ/Δt2 in order to
have a Shields number of θ = 260.

Previous work[17] has shown that the reach of the
attractive force δa is not a critical parameter for the levels
of aggregation reached. It has a fixed value of δa = 0.4 in
this paper. The strength of the aggregative force βa is
decisive for the aggregative process[17]; it is the main
independent variable in this paper and has been varied in
the range 1-9.

The starting point of the simulations in this paper is a
fully developed system of nonaggregative particles. Given

FIGURE 6 Averaged

location of active and inactive

particles in z-direction for: A,

βa = 0; and TA system: B,

βa = 1; C, βa = 3; D, βa = 6; and

E, βa = 9
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its Shields number of θ = 260, this is a fully suspended
system (no particles resting on the bottom) that, however,
does show particle concentration gradients.[17] Then, at
time equal zero (t = 0) a fraction f of the total number of
particles is turned into A-particles according to two dif-
ferent scenarios. Scenario TA (top A-particles): all A-
particles are confined to the top of the tank in a layer
with thickness 4d. Scenario RDA (randomly distributed
A-particles): A-particles are randomly distributed over
the tank volume.

5 | RESULTS

Qualitative impressions showing some of the main fea-
tures of particle behaviour, aggregation, and its time
scales are given in Figures 2 and 3. The panels in each
figure show instantaneous realizations of particles in a
vertical cross section through the centre of the tank. In
Figure 2 we show a weakly aggregative system (βa = 1),
in Figure 3 a strongly aggregative system (βa = 9). In each
figure we compare the TA scenario on the left side with
the RDA scenario on the right side. The top panels of
Figure 2 (that are at tN = 2) clearly show the difference
in the way the active particles have been initialized. At
that moment of the aggregation process, most of the red
(is A) particles are still in the top part of the tank if they
were initialized there. In the later stages shown in
Figure 2, that is, tN = 10 and tN = 50, there is no obvious
difference between the TA and the RDA scenario. This is
much different for Figure 3. There the most striking dif-
ference between TA and RDA is that for TA a large part
of the A-particles persistently remains in the top region
of the tank where they have aggregated. We also see that
levels of aggregation in the RDA scenario are higher than
in the TA scenario after 50 impeller revolutions. Both sce-
narios show significant accumulations of solids under-
neath the impeller.

One quantitative measure of aggregation is the tank-
averaged coordination number, which is the average
number of other particles a particle is in contact with,
where contact is defined as touching or overlapping of
particles; δ ≤ 0 in the terminology of Equation (1). The
way the tank-averaged coordination number evolves in
time is shown in Figure 4. As a baseline, we include in
this figure a time series for a system without any aggrega-
tive particles (the line βa = 0 in Figure 4A). We see that if
βa = 1, TA as well as RDA systems are only marginally
aggregating with Cavg hardly rising above the noise com-
pared to the baseline. The data for βa = 3 (in Figure 4A)
hint at some interesting features: at this strength of the
aggregative force the systems are clearly aggregating. The

FIGURE 7 Time-averaged (over 40 ≤ tN ≤ 60) solids volume

fraction of active particles as a function of z for TA systems with

βa = 1 and βa = 9

FIGURE 8 Time-averaged solids volume fraction contours

over 20 impeller revolutions (40 ≤ tN ≤ 60) for TA system (left) and

RDA system (right) in a vertical plane through the centre of the

mixing tank for different aggregation strength βa = 1, 6, 9 (top to

bottom)
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eventual state of aggregation does not differ between TA
and RDA. The speed of aggregation is, however, signifi-
cantly faster for the RDA system. Where it takes ~1.4
impeller revolutions for the RDA system to reach 90% of
its eventual steady Cavg value, the TA system requires 4.7
impeller revolutions for this. Here we clearly observe the
interaction of mixing and aggregation. Where the TA sys-
tem needs time to spread (mix) the A-particles over the
tank volume, the already mixed RDA system is from the
beginning up to speed when it comes to aggregation.
The fact that the steady state Cavg values agree between
the TA and RDA scenario is an indication that the flow
in the tank is able to sufficiently distribute the A-
particles possessing βa = 3 over the volume.

In Figure 4B, the strength of the aggregative force is
increased further (where we must note the difference in
the scale of the vertical axis as compared to 4A). The
βa = 6 time series of Cavg show similar trends as the ones
for βa = 3, although now the steady-state Cavg for RDA is
slightly but consistently above its TA counterpart. For
βa = 9, the latter effect is strongly amplified: aggregation
in the RDA scenario clearly outperforms that in the TA
scenario. This suggests a situation where the activity of

the A-particles gets reduced because they aggregate
among one another before they have had the opportunity
to spread through the tank volume. This was anticipated
when discussing Figure 3, specifically its lower left panel.
It shows A-particles preferentially staying in the top part
of the tank, even after 50 impeller revolutions.

The aggregate size distributions given in Figure 5 con-
firm the observations on solids mixing and aggregation
made so far. For βa = 1 there is no significant difference
between TA and RDA scenarios. For βa = 9 the TA sys-
tem has aggregated less than the RDA system with a sig-
nificantly larger number of single particles for TA and
significantly higher numbers of larger aggregates (na ≥ 5)
for RDA.

Given that in the TA systems the A-particles and NA-
particles are initially segregated vertically with the A-
particles occupying the top layer with thickness 4d of the
tank, an effective way to quantify solids mixing is by
monitoring the average vertical location hzi of the two
particle types separately. We do so in Figure 6. This gives
further insight in the way aggregation and mixing inter-
act. In the TA scenario solids mixing is clearly achieved if
βa ≤ 3: In steady state the average z-location of A-

FIGURE 9 Time-averaged

(over 40 ≤ tN ≤ 60) liquid

velocity vectors in a yz plane and

the snapshot of particles through

the centre of the tank at tN = 60

for TA system with: A, βa = 1;

and B, βa = 9 and RDA system

with: C, βa = 1; and D, βa = 9.

Colour coding: red active

particles and blue inactive

particles
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particles and NA-particles is the same and close to 0.5H.
If, for these cases, we quantify the mixing time by the
moment hzi/H of A-particles and NA-particles is within
0.01, a slight increase of the mixing time is observed if
βa = 3 as compared to βa = 1 and βa = 0. For βa ≥ 6
proper solids mixing of the A-particles is not achieved
with, as we saw earlier, negative consequences for the
levels of aggregation.

Figure 7 reiterates how the aggregation strength influ-
ences solids mixing. Vertical profiles of the time-averaged
volume fraction of A-particles are shown for TA systems.
Over the time averaging window (40 ≤ tN ≤ 60) the sys-
tems are dynamically steady. For the strongly aggregating
system, the A-particles do not mix well. They preferen-
tially stay in the top region of the tank and are there not
effective for aggregating the NA-particles.

In general, aggregation has impact on the distribution
of solids throughout the tank.[17] For the systems we have
been dealing with, this is illustrated in Figure 8. We show

the time-averaged solids volume fraction distribution in a
vertical cross section in the mixing tank for six of the sys-
tems we have been simulating. From top to bottom the
aggregative strength βa is increased. The left column
shows TA scenarios; the right column RDA scenarios.
The most significant effect is the formation of a solids
cone underneath the impeller and resting on the bottom
of the tank for an aggregation strength of βa ≥ 6. This
means that the aggregation process “works”. The aggre-
gative particles are able to settle out a significant part of
the solids present in the tank. The difference between
βa = 6 and βa = 9 in terms of the solids cone is marginal;
it is much weaker than the effect of the initialization of
the A-particles. The more effective aggregation in the
RDA scenario brings much more solids to the bottom
region of the mixing tank.

The way the liquid flow feels the levels of aggregation
is the subject of Figures 9 (average flow) and 10 (turbu-
lent kinetic energy). In all cases, the overall flow pattern

FIGURE 10 Time-

averaged turbulent kinetic

energy (normalized by the

square of the impeller tip speed,

v2tip) in the vertical yz plane

through the centre of the tank.

Averaging over 20 impeller

revolutions, 40≤ tN≤ 60 for TA

system with: A, βa = 1; and B,

βa = 9; RDA system with: C,

βa = 1; and D, βa = 9
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shows a strong, inclined downward jet coming off the
impeller. The increased particle concentrations near the
bottom when βa = 9 make a weaker flow in the region
directly above the bottom as compared to βa = 1. It is
interesting to see in Figure 9 that for βa = 9 in the RDA
scenario the A-particles form the core of a number of
aggregates that, at this moment in time (tN = 60), are still
in the region above the impeller. Turbulent kinetic
energy is very inhomogeneously distributed in the mixing
tank with the impeller-swept volume and the impeller
outstream being hot spots (Figure 10). The, minor, differ-
ences in the panels of Figure 10 relate to the very bottom
region. With the weaker aggregative force of βa = 1, tur-
bulence coming from the impeller reaches closer to the
bottom compared to βa = 9 because in the latter case the
solids concentrations are much higher there.

6 | CONCLUSIONS

This paper focuses on the interaction between solids mixing
and aggregation in a computational manner. For this an
Eulerian-Lagrangian simulation method that allows for a
choice of the (Eulerian) grid spacing independent of particle
size has been used. We explore scenarios where we release a
relatively small number of active, aggregative particles in a
mixing tank in order to bind a much larger number of non-
aggregative particles. We demonstrate that spreading the
active particles through the mixing tank is a crucial step in
the aggregation process. We do this by comparing a pre-
mixed scenario with a scenario that, initially, has the active
particles segregated from the rest of the particles. The pre-
mixed case is a fictitious reference case that can only be real-
ized in a simulation, not in a practical (real) flow
configuration. The segregated case has the potential of being
mimicked in an experiment.

For active particles equipped with relatively weak
aggregation forces, aggregation time scales are long rela-
tive to the time scales of mixing. This allows the active
particles to spread through the tank volume before they
bind to one another. In these situations, there is hardly
any difference in the eventual aggregation performance,
for example, measured by means of the volume-average
coordination number, between premixed and segregated
initial conditions. Only the time to reach steady-state
aggregation levels is somewhat longer for the segregated
initial condition. The stronger the relative aggregation
force βa, the shorter it takes for active particles to bind to
another. This has significant consequences for overall
aggregation since now the active particles are unable to
spread through the tank and by binding to one another
become less effective for also binding inactive particles.

The levels of aggregation are found to have impact on
the distribution of solids through the mixing tank. High
levels of aggregation lead to the formation of a solids
cone on the bottom of the tank, underneath the impeller
which is an indication of the success of the aggregation
process if its purpose is to separate solids and liquid. The
formation of the solids cone has some minor effects on
the average flow patterns in the tank as well as on the
spatial distribution of turbulent kinetic energy.
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