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We analyze, through numerical simulations, the single-phase liquid flow and associated passive scalar mixing in a tubular reactor that is agitated by
lateral shaking,which induces themotion of a solidmixing element inside the reactor. The Reynolds number associatedwith the shakingmotion is in
the range 1200–5600. Dependent on its specific value, we perform direct or large eddy simulations. A fixed-grid lattice-Boltzmannmethod is used
for solving the fluid flow. The moving boundary condition at the surface of the mixing element is dealt with by means of an immersed boundary
method. To quantify mixing, a transport equation for a passive scalar is solved in conjunction with the flow dynamics.
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INTRODUCTION

Anovel type of continuous mixing system is shown in
Figure 1. It consists of an outer tube with circular cross
section that undergoes a sinusoidal motion in the lateral

horizontal direction. This in turn induces the lateral motion and
rotation of a solid internal mixing element (called “the internal” in
the remainder of this paper) that has the form of a round tube with
holes, as depicted in the figure. This through-flow mixing system
can be used as a reactor, a blender, as well as a system to promote
solid particle suspension and agitation. In this paper we only
consider its single-phase operation. Theworking fluid is a liquid of
constant density and viscosity.

The research described in this paper is purely numerical and of
an exploratory nature. The aim is to show the feasibility, as well as
the limitations, of our numerical approach to solve fluid flow and
scalar transport in this geometrically and kinematically complex
flow system under transitional and mildly turbulent conditions.
Such simulations then will allow us (in future work) to make
predictions of the performance of thismixing device under specific
process conditions that can be compared with experimental data,
as well as with the performance of other continuous flow mixing
devices at comparable conditions.

As can be judged from Figure 1, the dimensionality of the
parameter space of thismixing device is extensive and contains the
frequency and amplitude of the shaking motion, liquid properties,
the through-flow rate, gravitational acceleration and the density of
the internal, as well as geometrical (i.e. aspect) ratios. Numerical
simulations are an effective way to explore, for process design
purposes, large parts of the parameter space andwe plan to do so in
future research. Future research also should involve the assess-
ment of numerical effects, most importantly establishing grid
independence, as well as validation by means of experimental
data.

This brief paper is organized in the following manner: we will
start by defining the flow system and characterizing it in terms of a
set of dimensionless numbers. Then, we make a number of
simplifying assumptions. Subsequently turbulence treatment and
numerical methods are briefly discussed, with referencing to the
literature for further details. In the Results section the first part
describes flow field results, and the second part passive scalar
transport. The paper is closed with a Summary & Conclusions
section.

FLOW SYSTEM

The geometrical layout of the agitated tubular reactor is given in
Figure 1. The main geometrical parameters are the inner diameter
of the outer tube (D) and its length L, as well as the diameter of the
internal (Di). Mixing is enhanced by holes in the cylindrical
internal. The placement and diameters of the holes along with
further details are provided in Figure 1, which also defines the
coordinate system.

The internal has three degrees of freedom, as specified in
Figure 2. These are the lateral horizontal location of its centre xi, its
vertical location zi, and its rotation angle ai along the y-axis. The
internal does not touch the outer tube with its surface. It has
spacers that keep aminimumdistance equal to e between the inner
surfaces of the outer tube and the outer surface of the internal. The
working fluid is Newtonianwith kinematic viscosity n and density
r. The solid material that the internal is made of has a density of
rs ¼ 8:0r, except for one simulation that has a density ratio of 4.0.
The internal feels a net gravity force in the negative z-direction.

The entire system is agitated by shaking it in a sinusoidal way in
the x-direction: the displacement has an amplitude A and a
frequency f: Asin 2pftð Þ. This shaking induces motion of the
internal which in turn induces mixing. When in operation, the
mixer has a continuous through-flow in the y-direction with a
volumetric flow rate fV giving rise to a superficial velocity of
U � 4fV

pD2.
The above set of process parameters has been combined to a

set of non-dimensional numbers where the length scale is mostly
taken as the outer tube diameter D. Other dimensions of the
system can be derived from the aspect ratios, as given in
Figures 1 and 2. The through-flow Reynolds number is defined
as Ref � UD

n
; the shaking motion is characterized by a Reynolds

number Res � 2pfADi
n

, a Strouhal number Str � fD
U , and the

amplitude over diameter ratio A=D. The ratio of shaking inertia
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and net gravity of the internal is expressed as u � rA 2pfð Þ2
g rs�rð Þ . Finally,

we have the density ratio rs=r.
The simulations are performed in a reference frame that moves

with the shakingmotion. This implies that an inertial body force is
applied to the liquid: f ¼ �rA 2pfð Þ2sin 2pftð Þex. Furthermore, we
apply periodic conditions in the y-direction. This means that the
geometry, as shown in Figure 1, can be seen as a section taken
from a much longer mixing system. A major simplification in the

current study is that we set the volumetric flow rate fV ¼ 0. In this
case, the mixing is only due to the shaking motion. It also implies
thatRef ¼ 0 and that the Strouhal number becomes infinite and, in
this situation, is not a meaningful dimensionless parameter.
When the distance between the outer surface of the internal and

the inner surface of the tube equals e, the internal collides. In the
simulations we have applied two collision models. In the hard
model a fully elastic collision is performed and the velocity of the
internal changes instantaneously. In the soft model, once the
distance e is reached, an elastic spring is activated that applies a
normal repulsive force on the internal proportional to the overlap:
Fs ¼ k e� sð Þ, with k the spring constant and s < e the distance
between internal and outer tube. The hard aswell as the softmodel
assume frictionless collisions so that the angular velocity V of the
internal does not change upon collision.

NUMERICS

The lattice-Boltzmann method has been applied to solve the fluid
flow. The specific numerical scheme is due to Somers.[1] The
scheme applies a uniform, cubic (edge lengthD) gridwith the flow
variables defined in the cube centers. Off-grid boundary con-
ditions, such as the no-slip conditions on the tube surface and on
the internal, are enforced through an immersed boundary
method.[2] These surfaces are represented by a set of closely
spaced points (nearest neighbour spacing typically 0:7D); for the
internal this set of points is shown in Figure 3. At these points, we
force the fluid to have the same velocity as the local velocity of the
solid surface. The immersed boundary method used is based on
interpolation of velocities and extrapolation of forces.[2] Velocities
at the immersed boundary points are estimated by interpolation of
the surrounding grid velocities; the forces acting on the fluid at the
immersed boundary points are extrapolated to the surrounding
grid nodes. Integration of the immersed boundary forces over the
surface of the internal gives the total hydrodynamic force F and
torque T on the internal. The x and z component of F as well as the
y component of T are taken into account when solving the
equations of motion of the internal.
In this study, the cubic grid has a resolution such that the tube

diameterD spans 156 lattice spacings. This leads to an overall grid
node count of approximately 5 M. The number of immersed
boundary points on the internal is 270 000; on the outer tube it is
140 000. At this stage of the research, we have not yet considered
grid effects and thus are not able to show grid convergence. Time
stepping in lattice-Boltzmann methods is largely dictated by
constraints on the Mach number.[3] In the simulations presented
here, it takes 10 000 time steps to complete one shaking cycle, i.e.
fDt ¼ 1 � 10�4.
The three equations of motion of the internal (translational in x

and z direction, rotational along the y-axis) are solved with a split-
derivative method.[4] The forces on the internal are gravity and
hydrodynamic force F, as well as the collision force if a soft
collision model is applied. The hydrodynamic torque T on the
internal is included in the rotational equation of motion.
In addition to solving the flow and the dynamics of the internal,

we have solved the transport of a passive scalar according to a
convection-diffusion equation:

@c
@t

þ u � rc ¼ Gr2c ð1Þ

with c the scalar concentration,u the velocity field that is the result
of the lattice-Boltzmann flow solver, and G the diffusion

Figure 1. Flow geometry. An internal mixing element (in green) canmove
inside a tube of diameter D that is shaken in the x-direction. The internal
feels a net gravity force that acts in the negative z-direction. The overall
flow is in the y-direction; the simulations assume periodic conditions in y-
direction. The dimensions as given in the drawing relative to the tube
diameter are: Di ¼ 0:62D, L ¼ 1:28D, dh ¼ 0:25D, and ti ¼ 0:013D. The
origin of the coordinate system is at the centre of the outer tube and at its
front.

Figure 2. Schematic of the degrees of freedom of the internal (xi ; zi , and
angle a), the associated velocities (vx ; vz ; V), and the minimum distance
e between internal and tube; e ¼ 0:038D.
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coefficient. Equation (1) is discretized according to a finite volume
method on the same (uniform, cubic) grid as applied by the lattice-
Boltzmann scheme, and explicitly updated in time with the same
time step, as used in the lattice-Boltzmann method. We apply flux
limiters[5] to suppress false diffusion. In the present work, we set
G ¼ 0 so that the (limited) levels of diffusion observed in the
simulations are due to the finite resolution of the grid and (still)
somenumerical diffusion. Procedures similar to the ones proposed
in our previous work[6] were used for setting non-penetration
boundary conditions at the moving solid surfaces of the internal,
as well as for assigning scalar concentrations to grid nodes that are
uncovered due to the motion of the internal.

In this work, the Reynolds numbers associatedwith the shaking
motion (Res) were in the range 1200–5600. By default, it was
attempted to solve the flowwithout the use of a turbulence model.
Unphysical instabilities occurred when Res exceeded approxi-
mately 3000. In such situations, we switch to large eddy
simulations (LES) and apply a standard Smagorinsky subgrid
scale model[7] with a Smagorinsky constant CS ¼ 0:1. In the LES
cases, the scalar diffusion coefficient G is kept at zero level, i.e. we
do not apply a finite level turbulent Schmidt number.

RESULTS

Fluid Flow

A base case has been defined with the following dimensionless
parameters: Res ¼ 5,600, A=D ¼ 1.13, rs=r ¼ 8.0, and u ¼ 0:37,
and the geometry as defined in Figures 1 and 2. This case applies
hard collisions between internal and outer tube, and a large eddy
approach for turbulencemodelling. In Figure 4, impressions of the
flow field in a xz-cross section passing through four holes in the
internal (y ¼ L=4) are shown. The shaking motion is started with
the internal in the centre of the outer tube (xi ¼ zi ¼ 0) and fluid at
rest (u ¼ 0 everywhere). The velocity magnitude contour plots in
Figure 4 illustrate how the flow develops from this initial
condition. These and all subsequent images are in the reference
frame moving with the shaking motion. Initially (t ¼ 0:25=f), the

Figure 3. Representation of the internal mixing element by a closely
spaced set of points on its surface. The total number of points is
approximately 270 000.

Figure 4. Left: instantaneous velocity vectors in an xz cross section of the
flow at y ¼ L=4 after the flow is fully developed. Right: impressions of how
the flow starts in terms of velocity magnitude contours in the same xz-
plane. From top to bottom: tf ¼ 0:25;0:5;1:0;2:0. Base-case conditions.

Figure 5. Time series of the vertical (z) coordinate of the centre location of
the internal. Red curve: base-case (which has a density ratio rs=r ¼ 8.0);
blue curve: same as base-case except that rs=r ¼ 4.0.

Figure 6. Time series of the vertical (z) coordinate of the centre location of
the internal. Comparison between LES and DNS at Res ¼ 2300. The rest of
the conditions are the same as for the base-case.
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internal moves down due to net gravity and to the right since the
shaking motion starts to the left. In the subsequent frames we see
an overall increase in the velocity magnitude. The velocity vector
plot shows an instantaneous flow field after the system has fully
developed. It also gives an impression of the level of resolution of
the simulations.

Under base-case conditions, the motion of the internal quickly
settles in a periodic state, as can be judged from the time series of
the vertical (centre) location of the internal in Figure 5. For an
effective operation of this mixing device, inertia of the internal
appears important. If we change the density ratio from rs=r ¼ 8.0
(base-case) to 4.0 and keep all other parameters the same, the
internal gets hardly agitated (see the 2nd time series in Figure 5),
which has detrimental effects on the mixing performance.

AtRes ¼ 2300,we are able to get stable resultswithout the use of
a subgrid-scale model. If we compare these “direct” simulation
results with ones obtained with a Smagorinsky subgrid-scale
model at the same Reynolds number, we see hardly any difference
in the flow field as well as in the levels of agitation of the internal.
As an illustration, we show, in Figure 6, very close agreement of
the time series of the vertical position of the internal, as obtained

with LES and DNS. These results imply that our procedure is able
to represent in a smooth way the transition from laminar to
turbulent flow.
Modelling the collisions of the internal is an important aspect of

the simulations. In the hard collision model the velocity of the
internal changes instantaneously at the moment of the collision.
Given the slightly compressible nature of the lattice-Boltzmann
scheme,[3] this generates waves in the fluid. These waves are
unphysical if the intention is to simulate an incompressible flow.
The waves can be avoided by making the collisions “soft” and
using an elastic spring, which generates a repulsive force on the
internal to push it away from the outerwall. The choice of collision
model has some impact on the motion of the internal, as can be
seen in Figure 7. The soft model leads to some vibrations of the
internal. On average, however, the soft and hard model result in
very similar motion of the internal. Without any benchmark or
experimental data, it is hard to judge which collision model gives
more reliable results. In the remainder of this paper, when
discussing scalar transport, results have been generated by using
the hard model.

Passive Scalar Transport

In order to directly test the mixing performance of the agitated
tubular reactor, the transport equation of a passive scalar
concentration c (Equation (1)) was solved in conjunction with
the flow dynamics. The initial condition for the simulations
involving scalar transport is a fully developed flow field and a
segregated scalar concentration field. The latter means that we set
c ¼ 1 for z > 0, and c ¼ 0 for z < 0.
In Figure 8, impressions of themixing process are shown for two

different Reynolds numbers Res. We see the formation of scalar
concentration striations and, in the course of time, a homogeniza-
tion of the concentration field with faster mixing for the higher
Reynolds number. To quantify mixing, we define the scalar

variance as sc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc2i � hci2

q
=hci with hi denoting spatial averag-

ing over instantaneous realizations of the concentration field, so
that sc is a function of time. In Figure 9, we show an example of a
sc time series where the spatial average is taken over the centre
vertical (yz) plane. Given that at time zero the scalar is segregated,

Figure 7. Time series reflecting the differences as a result of collision
modelling; hard versus soft collisions. The parameter d is the distance of the
internal from the wall so that a collision takes place if d=e ¼ 1. Base-case
conditions except that Res ¼ 2300. DNS flow simulations.

Figure 8. Scalarmixing in the form of concentration contours in the xz-plane at y ¼ L=4. Top row: Res ¼ 5600 (LES); bottom row: Res ¼ 1200 (DNS). From
left to right tf ¼ 0:02;0:2;0:4;0:8;1:6 with at t ¼ 0 a fully developed flow and a segregated scalar field.
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the starting value of sc is approximately 1
2

ffiffiffi
2

p
. We see the decay of

scalar variance and it being faster for the higher Reynolds number.
If sc ¼ 0:02 is set as the level for a practically homogeneous
system, then for Res ¼ 5600 homogenization is achieved after
fewer than 10 shaking periods; for Res ¼ 1200, it takes at least 15
periods. The periodic fluctuations are due to the periodicmotion of
the internal.

SUMMARY & CONCLUSIONS

In this paper we have shown the feasibility of performing single-
phase flow and mixing simulations of a novel agitated tubular
reactor. Simulations so far have been on systems operating in the
transitional / early turbulent regime. It was shown that we can
make a smooth transition from direct (i.e. no turbulencemodel) to
large eddy simulations. The simulation procedure is able to apply a
hard aswell as a soft model for the collisions of the internalmixing
element with the outer tube wall. It was highlighted that the
internal mixing element needs sufficient inertia (i.e. mass) to be
sufficiently agitated by the shaking motion of the outer tube.
Including passive scalar variance calculations allows for directly
quantifying the mixing process, for instance in terms of the decay
time of scalar variance.

This paper describes a feasibility study so that much more work
needs to be done before applying the simulations for reactor
design. The next steps are verification (e.g. establishing grid
convergence) and validation (e.g. comparison with experimental
data). Then we will be including through-flow so that we will see
mixing not only due to the motion of the internal, but also due to
an average axial velocity. It will be interesting to quantify the
relative importance of these two contributions to mixing as a
function of operational conditions.

ACKNOWLEDGEMENT

Sincere thanks to Andrew Bayly and Yi He (University of Leeds,
UK) for bringing this flow system to my attention.

REFERENCES

[1] J. A. Somers, Appl. Sci. Res. 1993, 51, 127.
[2] J. Derksen, H. E. A. Van den Akker, AIChE J. 1999, 45, 209.
[3] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics

and Beyond, Clarendon Press, Oxford 2001.
[4] O. Shardt, J. J. Derksen, Int. J. Multiphas. Flow 2012, 47, 25.
[5] P. K. Sweby, SIAM J. Numer. Anal. 1984, 21, 995.
[6] J. J. Derksen, AIChE J. 2008, 54, 1741.
[7] J. Smagorinsky, Mon. Weather Rev. 1963, 91, 99.

Manuscript received January 2, 2018; revised manuscript received
February 27, 2018; accepted for publication March 8, 2018.

Figure 9. Time series of scalar variance sc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc2i � hci2

q
=hci in the yz-

plane with x ¼ 0 as a function of time for Res ¼ 5600 (blue curve) and
Res ¼ 1200 (red curve).
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