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Abstract

We have performed two- and three-dimensional phase field simulations using

the lattice-Boltzmann method of liquid drops rising through a continuous

phase liquid under the influence of buoyancy. In their upward motion, the

drops encounter a knife that is placed with the purpose of slicing the drops in

two. A range of scenarios has been observed when the drop hits the knife and

it has been investigated how the type of scenario depends on the dimensionless

parameters governing the motion and slicing of the drop: the Eötvös number,

the Morton number, and the ratio of the droplet size and the width of the

knife. We studied symmetric and asymmetric encounters between drop and

knife and kept track of the size distribution of the resulting fragments.
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1 | INTRODUCTION

Emulsions—systems of two or more immiscible liquids
in the form of droplets dispersed in a continuous phase—
are an essential part of many engineering processes and
products. Controlling and influencing the drop sizes and
drop size distributions often is essential for product qual-
ity and process efficiency. The desired direction of change
of droplet size depends on our objectives. Increasing
droplet size through coalescence could be helpful for
gravity-driven phase separation as in oil–water separation
devices.[1–3] Reducing the droplet size increases interfa-
cial area, which would benefit mass transfer between
phases in, for instance, extraction operations.[4,5] Another
example is herbicide toxicity which will increase when its
droplets get smaller, with smaller droplets creating a
larger number of contact points on the plant compared to
larger droplets.[6]

In this paper we will be exploring size reduction of
droplets by slicing them. Applications of slicing
(or cutting) droplets are mainly found in microfluidics[7]

and also—on a larger scale—in static mixers.[8] Forte
et al.[9] investigated the fundamental mechanisms of oil
droplet breakup in static mixers. They found that the
drop size decreased to a critical point when the continu-
ous phase (water) flow rate is increasing. It became diffi-
cult to reduce the oil drop size beyond the critical value.
Additionally, Jaworski et al.[10] modelled the process of
droplet breakup in a static mixer and predicted the drop
size evolution as a result of breakup. They found that
intensive drop breakage occurred inside the inserts,
resulting in a decrease of the average drop size. Ren
et al.[11] investigated the droplet breakup dynamics
through a bi-layer bifurcating microchannel by numeri-
cal and experimental method. In the works cited above
the drop motion is the result of a pressure driven flow,
bounded by walls. In our paper, we study slicing of a
freely rising drop in a periodic domain without bounding
walls. This is a relatively simple system that, however,
allows us to relate the starting point of our simulations
(a rising drop) to be extensively available for drop rise
velocities and drop shapes.[12]
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Since the 1970s, a computational fluid dynamics
(CFD) method based on solving the Reynolds-averaged
Navier–Stokes (RANS) equation has been widely used for
computing fluid flow and heat transfer.[13] In the last
25 years, the lattice Boltzmann method (LBM) has been
an efficient and powerful simulation method for various
transport phenomena and processes,[13–17] such as single-
phase flow, multi-phase flows, turbulence, heat transfer,
and phase change; it has also become a numerical tool to
solve nonlinear partial differential equations.[18–21] It has
many unique benefits compared with other numerical
methods.[22] Unlike traditional methods, LBM is based
on the perspective of micro-dynamics, taking macro
physical quantities as the result of statistical averages of
micro quantities. LBM has both microscopic and
mesoscopic characteristics. It makes the interaction
between particles easy to resolve and enables complex
macroscopic phenomena of multiphase flow to appear
naturally, thus providing an effective way to study the
mechanism of multiphase flow under complex
conditions.

There have been many studies using LBM to simu-
late droplet behaviour, including the droplet forma-
tion in micro-channels,[16] deformation and breakup
of a droplet exposed to a gas stream,[23] three-
dimensional (3D) binary droplet collisions,[24] and so
on. In addition to these, Zhou and Yu[25] firstly
addressed the dynamics of droplets in a static mixer
using obstacles and porous media by means of a modi-
fied LBM. They found that there is a critical obstacle
size, beyond which an obstacle is unfavourable for
generating small droplets.

The behaviour of a droplet rising through liquid
driven by buoyancy has been observed by experiment
and numerical simulations. Bertakis et al.[26] studied
the binary liquid system (n-butanol/water) by experi-
ment and numerical simulations. Watanabe and
Ebihara[27] used two-component two-phase LBM to
simulate the process of drop rising. Komrakova
et al.[28] performed numerical simulation of n-butanol
drop rising in water using the multiphase LBM, the
simulation results they obtained agree well with the
experimental data.

The focus of this study is the slicing of a rising
droplet by a thin, flat plate—a knife. It is the aim of
this study to investigate the feasibility of a knife as an
efficient and controllable way of reducing the droplet
size and to assist the design of process equipment for
this purpose. We expect that the quality of the slicing
process depends on the forces involved—buoyancy,
surface, and viscous forces—as well as the geometrical
details such as the sharpness and length of the knife.

The diffuse interface free energy LBM model will be
used.[29]

2 | FLOW CONFIGURATION AND
FLOW CONDITIONS

Numerical simulation of slicing a rising droplet is the
focus of the present study. A liquid drop of density ρd and
dynamic viscosity μd with equivalent diameter d is
suspended in another liquid of density ρc and dynamic
viscosity μc (subscripts d and c represent dispersed and
continuous phase, respectively). The density difference
between the two liquids is Δρ = ρc − ρd > 0. The interfa-
cial tension between the liquids is σ. At time t = 0, the
drop is motionless. The droplet begins to rise driven by
gravity and buoyancy and eventually attains a terminal
rise velocity u. Table 1 gives the physical parameters for
the binary benchmark system.

Along with gravitation acceleration g, the input
parameters translate in four dimensionless groups that
fully determine the problem. In this paper, we take for
these dimensionless numbers the Eötvös number
Eo= gΔρd2

σ , the Morton number Mo= gΔρν4cρ2c
σ3 = gΔρμ4c

ρ2cσ
3 , the

density ratio λ= ρd
ρc
, and the dynamic viscosity ratio η= μd

μc
.

Dimensionless numbers that involve the rise velocity
are output parameters: the Reynolds number Re= udρc

μc
,

the Weber number We= ρcu
2d
σ , and the Froude number

Fr= u2
gd. They characterize the relative importance of iner-

tia over viscous effects (Re), inertia and surface forces
(We), and inertia and gravity/buoyancy forces (Fr). Eo
quantifies the ratio of gravity/buoyancy and surface
forces. Mo is a constant for a given system; it does not
contain the drop size.

An important reference point in our work is the dia-
gram by Clift et al.[12] that allows one to determine the
Reynolds number (output parameter) as well as the drop
shape and its rising regime (steady, wobbling, etc.) from
Eo and Mo (input parameters).

We emphasize the importance of dimensionless num-
bers given that we use the LBM that is operated with its
own lattice units with length and time units for the lat-
tice spacing and time step, respectively. Translating
between physical (SI) units and lattice units makes use of
the dimensionless numbers; if a physical system and a
numerical (LBM) system have the same input dimension-
less numbers, they represent the same system. In this
paper, parameters in lattice units will be given a ~. For
example, the drop diameter in lattice units is denoted as
~d, which is the number of lattice spacings covered by the
drop diameter. Unit conversion/scaling has been dis-
cussed in detail in Section 3.3.
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The base-case simulation domain was a cuboid of
20~d× 3~d× 1 (for two-dimensional [2D] simulation) and
20~d× 3~d× 3~d (for 3D simulation). As shown in Figure 1,
the knife was placed at the top of the simulation
domain. Initially it was located in the top-centre with
the drop released on the centre line so that it was cut
through the middle. Then the knife was moved later-
ally to study what happens if the drop hits the knife
off-centre (see the details given in Section 5.2).
Figure 1 also defines a Cartesian coordinate system as
used throughout this paper.

To complete the definition of the flow system, bound-
ary conditions have to be specified. Periodic conditions
applied on all outer faces. No-slip conditions were
imposed on the knife, and we assume a 90� contact angle
on the surface of the knife.

3 | SIMULATION METHOD

3.1 | Governing equations

In this study, we use the diffuse interface model for simu-
lation of flow and interface dynamics. In diffuse interface
(which are also called phase field) methods,[30–32] we use
a thin transition layer to represent the phase interface.
An order parameter ϕ is used to describe the composition
of the system. It is a function of position vector r and
time t. The value of ϕ is constant in the bulk phase of
each fluid and varies continuously in the range [−1,1]
over the thin interface.

Order parameter ϕ represents the relative concentra-
tion of the two components for the system when describ-
ing the behaviour of a binary system by phase field.[33,34]

Cahn and Hilliard[34,35] proposed that continuity,
momentum, and convection-diffusion equations can be
used in combination for the simulation of fluid
dynamics:

∂tρ+ ∂α ρuαð Þ=0 ð1aÞ

∂t ρuαð Þ+ ∂β ρuαuβ
� �

= −∂βP
th
αβ + ∂βν ρ∂αuβ + ρ∂βuα

� �
+gαΔρ

ð1bÞ

∂tϕ+ ∂α ϕuαð Þ=M∂2ββμ ð1cÞ

where ρ is density; ν is kinematic viscosity of the mix-
ture; the index α stands for the Cartesian direction x, y,
or z so that uα is the velocity component in α direction;
and gα is the component of gravitational acceleration.
The parameter M is the mobility parameter. Here, Pth

αβ
is the thermodynamic pressure tensor, which contains
two parts[36]: an isotropic contribution Pδαβ that describes
the ideal gas pressure and the chemical pressure tensor
Pchem
αβ defined by the following:

Pchem
αβ = δαβ ϕ

δV
δϕ

−V−κ ϕ∂2yyϕ+
1
2
∂αϕj j2

� �� �
+ κ ∂αϕð Þ ∂βϕ

� �

ð2Þ

Phase separation is described by symmetrical double
well potential; we can find this by the following:

FIGURE 1 Simulation domain with a knife at the top and the

droplet released on the centre line

TABLE 1 Physical parameters for the simulated system

Density ρc = 1 × 103 kg/m3

Density difference Δρ = 1 × 102 kg/m3

Dynamic viscosity μc = 3.34 × 10−3 Pa s

Dynamic viscosity μd = 3.34 × 10−3 Pa s

Surface tension σ = 1 × 10−3 N/m
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V =
A
2
ϕ2−

A
4
ϕ4 ð3Þ

The chemical potential μ(ϕ) in Equation (1c) can be seen
as follows[37]:

μ ϕð Þ=Aϕ−Aϕ3−κ∂2ααϕ ð4Þ

where A < 0, and both A and κ are parameters connected
with surface tension and interface thickness as explained
in Section 3.2.

Given the relatively minor density difference
between continuous phase and disperse phase liquid
(10%, see Table 1) we apply the Boussinesq
approximation,[38] which can be applied for flows with
relatively small density differences. This means that
the density in Equations (1a) and (1b) is uniform
(ρ = ρc) and the density difference between drop and
surroundings only has an effect in the forcing term
gαΔρ in momentum Equation (1b).

3.2 | LBM implementation

The free energy model was proposed by Swift et al.[29] to
solve the system of Equation (1). This model is adopted
in the present study. Two particle distribution functions
are utilized: one function f(r, t) is used to solve the conti-
nuity Equation (1a) and the Navier–Stokes
Equation (1b), and the second one g(r, t) is used for the
convection-diffusion Equation (1c). The distribution
functions evolve with discrete time steps Δt. All simula-
tions were performed using a single relaxation time
collision operator (known as Bhatnagar–Gross–Krook
[BGK] model).[39] The discretized LBEs are given as
follows:

f q rα + cαqΔt, t+Δt
� �

= f q rα, tð Þ− f q r, tð Þ− f eqq r, tð Þ
τf

+Fq

ð5aÞ

gq rα + cαqΔt, t+Δt
� �

= gq rα, tð Þ− gq r, tð Þ−geqq r, tð Þ
τg

ð5bÞ

where index q is discretized velocity direction;
fq(rα + cαqΔt, t + Δt) and gq(rα + cαqΔt, t + Δt) are post-
collision particle distribution functions streamed from
(rα, t) to (rα + cαqΔt, t + Δt) along direction q; fq(rα, t) and
gq(rα, t) represent pre-collision particle distribution func-
tions; f eqq and geqq are the discrete Maxwell–Boltzmann
distributions (or equilibrium distributions); cαq denotes
the discrete velocity set and c = Δx/Δt is the lattice speed;
and τf and τg are dimensionless relaxation parameters.
τf is determined by the kinematic viscosity, as follows:

τf ϕð Þ= υ ϕð Þ
c2sΔt

+
1
2

ð6Þ

where c2s =
1
3 represents the square of sound speed in lat-

tice units.
The relationship between mobilityM, coefficient of mobil-

ity Γ, and relaxation parameter τg is given by the following[37]:

M =ΔtΓ τg−
1
2

� �
ð7Þ

where the order parameter mobility M is determined by
the parameter Γ as well as relaxation parameter τg. Fq is
the forcing term.

The D3Q19 lattice is adopted here to discretize the
velocity space.[40] Each site has 19 velocity directions.

As noted above, the LBM works in dimensionless lat-
tice units. We utilized uniform cubic lattices for the
method described here. The mesh step Δx is unit of
length, and the time step Δt is the unit of time. Here, we
give the discrete velocity set:

The local density, local fluid momentum, and local
order parameter of the fluid at lattice point are the results
of summations over all directions q at that location, these
can be seen as follows:

cx
cy
cz

0
B@

1
CA=

0 c −c

0 0 0

0 0 0

0 0 0

c −c 0

0 0 c

0 c −c

0 c c

−c 0 0

c −c 0

−c −c c

0 0 c

0 0 0

−c c −c

c −c −c

c −c c

0 0 0

c c −c

−c

0

−c

2
66666664

3
77777775

ð8Þ
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X
q
f q = ρ ð9aÞ

X
q
cqf q = ρu+

Δt
2
F ð9bÞ

X
q
gq =ϕ ð9cÞ

The forcing term is incorporated as follows:

Fq =ωq cq �F
� � ð10Þ

where F represents body force gΔρ and ωq are weight
coefficients.[41] Additional weighing coefficients ωαβ

q are
used for the equilibrium distributions; we can determine
them by the following (see Equation (15)):

ω0 = 1, ω1−6 =
1
6
, ω7−18 =

1
12

ωxx
1−2 =ωyy

3−4 =ωzz
5−6 =

5
12

, ωxx
3−6 =ωyy

1−2,5−6 =ωzz
1−4 = −

1
3

ωxx
7−10 =ωxx

15−18 =ωyy
7−14 =ωzz

11−18 = −
1
24

ωxx
11−14 =ωyy

15−18 =ωzz
7−10 =

1
12

ð11Þ

ωxy
1−6 =ωyz

1−6 =ωzx
1−6 = 0, ωxy

7,10 =ωyz
11,14 =ωzx

15,18 =
1
4

ωxy
8−9 =ωyz

12−13 =ωzx
16−17 = −

1
4
, ωxy

11−18 =ωyz
7−10 =ωzx

7−14 = 0

The full pressure tensor Pαβ is defined by the following:

Pαβ =
X
q
f qcqαcqβ ð12Þ

The equilibrium distributions must satisfy conditions
(9) and ϕ is advected by fluid, which can be given by the
following equation:

X
q
geqq cqα =ϕuα ð13Þ

The pressure tensor and chemical potential at equilib-
rium are as follows:

X
q
f eqq cqαcqβ = Pth

αβ + ρuαuβ ð14aÞ

X
q
geqq cqαcqβ =Γμδαβ +ϕuαuβ ð14bÞ

The equilibrium distributions[41] f eqq and geqq for
populations 1≤ q≤ 18 are calculated using the following
equations:

f eqq =
ωq

c2
ðp0−κϕ ∂2xxϕ+ ∂2yyϕ+ ∂2zzϕ

� �
+ cαqρuα

+
3
2c2

cαqcβq−
c2

3
δαβ

� �
ρuαuβ

+
κ

c2
ωxx
q ∂xϕ∂xϕ+ωyy

q ∂yϕ∂yϕ+ωzz
q ∂zϕ∂zϕ

�

+ωxy
q ∂xϕ∂yϕ+ωxz

q ∂xϕ∂zϕ+ ∂yϕ∂zϕ
� ð15Þ

geqq =
ωq

c2
Γμ+ cαqρuα +

3
2c2

cαqcβq−
3
c2
δαβ

� �
ϕuαuβ

� �

ð16Þ

while the distributions for q = 0 are given by the
following:

f eq0 = ρ−
XQ−1

q=1

f eqq ð17aÞ

geq0 =ϕ−
XQ−1

q=1

geqq ð17bÞ

The bulk pressure in Equation (15) obeys
p0 = c2sρ+

A
2ϕ

2− 3A
4 ϕ

4.
The kinematic viscosity υ is related to ϕ, which can

be seen as follows:

υ ϕð Þ= υc
1−ϕ

2
+ υd

1+ϕ

2
ð18Þ

where υc and υd are kinematic viscosity of the continu-
ous and dispersed phases, respectively. In this
paper, υc = υd.

For a planar interface at x = 0, ϕ evolves over the
interface as follows:

ϕ xð Þ= tanh
x
ξ

ð19Þ
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where ϕ = ± 1 is the value of ϕ in bulk phase at either
side of the interface.

The width of diffuse interface ξ is given by the following[37]:

ξ=
2κ
−A

� �1=2

ð20Þ

And the surface tension σ follows from Equation (21)[37]:

σ=
4
3

−A
2k

� �1=2

ð21Þ

We have to calculate the spatial gradients of ϕ to deter-
mine the equilibrium distributions. The stencils for gradi-
ents and Laplacian calculations are as follows[41]:

∂x =
1

12Δx

0 0 0

−1 0 1

0 0 0

0
B@

1
CA,

−1 0 1

−2 0 2

−1 0 1

0
B@

1
CA,

0 0 0

−1 0 1

0 0 0

0
B@

1
CA

2
64

3
75
ð22Þ

r2 =
1

6Δx2

0 1 0

1 2 1

0 1 0

0
B@

1
CA,

1 2 1

2 −24 2

1 2 1

0
B@

1
CA,

0 1 0

1 2 1

0 1 0

0
B@

1
CA

2
64

3
75
ð23Þ

where the left, middle, and right matrices are the slices
of the stencil when z = Δx, 0, and −Δx, respectively.

The discretized Equation (5) can be solved by two
steps:

Collision step : f 0q rα, tð Þ= fq rα, tð Þ− 1
τf

fq− f eqq
� �

+Fq g
0
q rα, tð Þ

= gq rα, tð Þ− 1
τg

gq−geqq
� �

ð24Þ

Streaming step : fq rα + cαqΔt, t+Δt
� �

= f 0q rα, tð Þ
gq rα + cαqΔt, t+Δt
� �

= g0q rα, tð Þ ð25Þ

3.3 | Scaling procedure

The LBM works in lattice space, which means the param-
eters should be translated into lattice units (lu). Scaling
factors are utilized to realize it. In this work, the parame-
ters with ~ represent those in lattice units.

The scaling factor for surface tension can be written
as follows:

Cσ =
σ

~σ
ð26Þ

There are two numerical parameters related to surface
tension, κ and A. The equation for κ is derived from
Equation (21):

κ=
3ξ
4

σ

Cσ
ð27Þ

In this work, the interface thickness ξ (see Equation (20))
was 1.14 lu for each simulation.[36] The value of A can be
calculated using Equation (20) once κ has been determined.

The density of liquid is ~ρc =1 and we can obtain the
density of droplet according to density ratio ~ρd = λ ~ρc.

Since the density difference is much smaller than
actual densities of the liquids, the density differences only
influence the forcing term Δρg in Equation (1b). This is
known as the Boussinesq approximation. The scaling fac-
tors for the forcing is based on the Eötvös number.
According to the equation of Eo, the forcing term
becomes the following:

~Δρg=
~σ

~d
2Eo ð28Þ

where ~d is the equivalent drop diameter.
In a similar way, based on the equation of Mo and η,

the dynamic viscosity is defined as follows:

~μc = ~ρ2c~σ
2~d

2Mo
Eo

� �1=4

~μd = η ~μc ð29Þ

And the kinematic viscosities are calculated by the
following:

~νc =
~μc
~ρc

~νd =
~μd
~ρd

ð30Þ

From the above, the following scaling factors have
been introduced and can be determined:

surface tension :Cσ =
σ

~σ
;

density :Cρ =
ρ

~ρ
;

kinematic viscosity :Cν =
νc
~νc
; ð31Þ

forcing :Cforce =
Δρg
~Δρg

:
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Utilizing the equations of Fr, Re, and We, as well as
the scaling factors (31), other scaling factors can be calcu-
lated as follows:

length :Cd =
C2
νCρ

Cσ
;

velocity :Cu =
Cσ

CνCρ
; ð32Þ

time :Ct =
C3
νC

2
ρ

C2
σ

:

The other parameters can be translated from physi-
cal units into lattice units according to the scaling
factors.

4 | VERIFICATION OF
SIMULATIONS

The computer code for these simulations has been devel-
oped using FORTRAN 90. It is based on our previous
study.[42]

The objective of the present study is to investigate
the behaviour of rising droplet being sliced by using
the above-described LBM model. Several factors that
may affect the process should be checked in advance.
The results of a set of test simulations facilitated deter-
mining the suitable input parameters (Eo, Mo, λ, η) as
well as the associated numerical settings. In this sec-
tion, results of verification computations for domain

size, mesh resolution, and dimensionality (2D versus
3D) are presented.

4.1 | Domain size influence

We used fully periodic boundary conditions for describ-
ing a single drop moving through a large volume of fluid.
We therefore need to make sure that the simulation
domain is large enough so that the drop does not interact
with itself and with the flow it creates over the periodic
boundaries. On the other side, the domain size should be
set reasonably to avoid excessive simulation time.

2D simulations of system with physical properties as
given in Table 1 and drops of d = 1.0 mm were per-
formed. The heights of the computational domain were
set to 8d to 16d to determine the proper height. The
width is equal to W = 3d, and D = 1 lu (2D simulations).
All computations were performed with a drop diameter
in lattice units of ~d=30 lu. The simulation parameters
(in lattice units) were determined according to the scaling
procedure as outlined in Section 3.3 after it was
established that the physical system has Eo = 1.0,
Mo = 1.24× 10−4, η = 1, and λ = 0.90.

The results are shown in Figure 2 in terms of the
Reynolds numbers and the vertical locations towards
reaching a steady speed.

The steady state Reynolds numbers reported in
Figure 2A are within 0.2% of Re = 5.6, so that the impact
of height on rising velocity can be negligible, which is
consistent with the 3D simulation.[28] The flow map due

FIGURE 2 The results for a d = 1.0 mm drop for different simulation domain heights in terms of the steady-state Reynolds number and

rising distance. The domain width is 3d, and depth is 1 lu; Eo = 1.0 and Mo = 1.24 × 10−4. The dashed line in the left panel indicates the

Reynolds number as derived from Clift et al.[12]
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to Clift et al.[12] indicates a Reynolds number of 5.0 for
the specific values for Eo and Mo, where it should be
noted that this map is based on (3D) experimental data.

The choice for the height H in the slicing simulations
is mainly determined by the distance it takes for the drop
to reach a steady speed. Figure 2B shows that this dis-
tance is approximately 2.16d. Because the drop is released
at z > 0, and to ensure the drop behaviour has fully
developed well before the drop hits the knife, a much
larger domain height is used in the slicing simula-
tions: H = 20d.

The verification simulations for the domain width
were carried out in the range W = 2d − 10d. The other
domain parameters are H = 10d, D = 1 lu (for 2D simula-
tions,) or W = D = 2d − 5d (for 3D simulations). All com-
putations were performed with drop diameter ~d=30 lu.

From comparing Figures 2 and 3 it is clear that the
width of the domain has a much stronger influence on
the rise velocity than the domain height. In 3D the rise
velocity becomes independent of the domain width
beyond W = D = 4d. Since H = 8d in Figure 2, these
results are also independent of domain height. The con-
verged Reynolds number in the 3D results in Figure 3 is
Re = 5.3 and is close to the Reynolds number Re = 5.0
that can be derived from the Clift et al.[12] flow map.

Compared to the 3D results, the 2D results show a
higher converged Reynolds number. This means the drag
on a 2D (cylindrical) droplet is smaller than on a 3D (spher-
ical) droplet. This has its analogy in flow around solid
spheres and cylinders that for Re < 30 shows slightly
smaller drag coefficients for cylinders than for spheres.

4.2 | Mesh resolution

The drop diameter ~d is a measure for the spatial resolu-
tion of the simulation and therefore has impact on the
computational effort. It may play an important role in
the accuracy of the result. For this we present results for
a drop of d = 1 mm represented by ~d=20−60 lu and
with Eo = 1 and Mo = 1.24× 10−4.

Changing the diameter in lattice units implies
rescaling simulation parameters. The idea is to change
the drop diameter ~d by a factor fm (~d2 = f m~d1 ). It is
important to keep the dimensionless numbers constant,
as well as viscosity and interface thickness:
~μc2 = ~μc1, ~μd2 = ~μd1, ξ2 = ξ1. The following relations make
sure the Eötvös and Morton numbers are unchanged
upon rescaling:

~σ2
~σ1

=
1
f m

~Δρg
� �

2
~Δρg

� �
1

=
1

f 3m

κ2
κ1

=
1
f m

A2

A1
=

1
f m

ð33Þ

The analysis was performed with simulations of
1.0-mm droplets with domain size 10~d× 3~d× 3~d in 3D
simulations and 10~d× 3~d× 1 in 2D simulations. The
resulting Reynolds numbers related to steady-state rise
velocities are plotted in Figure 4. We observe good grid
convergence behaviour for 2D as well as for 3D simula-
tions. In the subsequent section on droplet slicing, a
mesh resolution of ~d=30 lu for 1-mm drops is adopted.
In order to avoid extensive computations, 2D domains
have been used in the simulation of droplets sliced by a
knife. In Figures 3 and 4, we can see a reasonable

FIGURE 3 The results for a d = 1.0 mm drop for different

simulation domain widths in terms of the steady-state Reynolds

number. The domain height is H = 10d, and depth is 1 lu (for 2D

simulations) or W (for 3D simulations); Eo = 1.0 and

Mo = 1.24 × 10−4. The horizontal dashed line indicates the

Reynolds number as derived from Clift et al.[12]

FIGURE 4 The results for a d = 1.0 mm drop for different

drop diameter ~d in lattice space in terms of steady-state Reynolds

number; Eo = 1.0 and Mo = 1.24× 10−4
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agreement in terms of the Reynolds number based on the
rise velocity between 2D and 3D.

With ~d=30 lu (and d = 1 mm), the scaling factor of
surface tension is Cσ = 1.0 N/m. It gives the linear dimen-
sion scale factor Cd = 3.33× 10−5 m and time scale factor
Ct = 4.66× 10−6 s.

5 | RESULTS

In this work, the parameters for simulated system are:
λ = 0.9, η = 1, and Mo = 1.24 × 10−4; the values of Eo are
different for different drop diameters (see Table 2).
According to the diagram of Clift et al.,[12] the drops are
in the spherical (lower Eo) to ellipsoidal regime. Note
that this diagram reflects a 3D situation.

5.1 | The knife is at the centre

The numerical simulations of slicing rising droplets
have been carried out for d = 1.0–4.0-mm droplets, in
order to observe the different slicing scenarios. For each

droplet, the approach velocity, deformation, breakage,
and slicing results have been analyzed. The approach
velocity is the velocity at the moment the drop starts
feeling the knife.

A range of scenarios has been observed when the
drop hits the knife at centre, and it has been investigated
how the type of scenario depends on the dimensionless
parameters governing the motion and slicing of the drop
(the Eötvös number, the ratio of the droplet size, and the
width of knife).

The rising velocities for drops with diameter of
1.0–4.0 mm as a function of the vertical (z) location are
depicted in Figure 5. The rising velocities of drops
increase rapidly during the accelerating regime. Then,
the 1.0- and 2.0-mm drops enter steady regimes. The
velocity of a 1.0-mm drop decreases rapidly when it hits
the knife and the drop finally stops moving. The knife
hinders the 2.0-mm drop in rising, and finally slices the
drop into two parts. A different behaviour is noticed for
3.0- and 4.0-mm drops; oscillations appear both for drop
shapes (see Figure 6) and rising velocities (Figure 5) over
the rising period. The acceleration period becomes longer
with the increase of drop diameter. At the same time, the
amplitude of velocity and shape oscillation becomes
larger.

An increase in drop diameter results in obvious defor-
mation in early times and leads to the oscillation behav-
iour of drop rising velocity. The drop shapes are
presented in Figure 6 for 2.0-, 3.0-, and 4.0-mm drops.
The drop deformations at the initial moment are differ-
ent; at t = 0.1 s, the shapes of droplets are similar in the
three cases, whereas, at t = 0.3 s, the drops deform in dif-
ferent ways. The 2.0-mm drop changes its shape to ellipse
after deformation and maintains this shape until it
touches the knife. At the same time, the larger drops
(with diameter equals to 3.0 and 4.0 mm, respectively)
get convex shapes, after which shape oscillations appear.
The 4.0-mm drop develops two tails that then they break
away and form two small satellite droplets. Surprisingly,
during the ascent, they merge with the mother droplet
again.

The approach velocity is related to drop diameter (see
Figure 7). The aspect ratio E, which can be regarded as
the ratio of the two principal axes of the droplet, is a
description of the shape deformation quantitatively.
E = 1 means that the droplet has a circular shape.[43]

According to Michaelides,[43] the droplet is spherical if
E ≥ 0.95 (in this study, it is circular). Among the drop
diameters involved in this study, only d ≤ 1.5-mm drop
can be considered having a circular shape when it hits
the knife. Droplets with larger diameters are either
deformed or oscillating. The drops with diameter d ≥ 1.8
mm begin to deform, and d ≥ 2.8 mm begin to oscillate

TABLE 2 Drop diameter d (mm) and corresponding Eo

number considered in the present simulations

d (mm) Eo

1.0 1.00

2.0 3.96

3.0 8.91

4.0 15.84

FIGURE 5 The rising velocity of drops
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in shape and velocity. Besides, it is also found that the
approach velocity for 1.8–2.6 mm gets reduced, which
may be caused by deformation; the ellipse-shaped drops
are subject to greater resistance due to their greater
width.

The slicing behaviour is different for different drop
sizes. The smallest droplet of d = 1.0 mm stops on the
knife when sliced by knife, whether it is a sharp or a
more obtuse knife (Figure 8A,B). Larger drops are easier
to be sliced, and the slicing results do not depend much
on the knife width (Figure 8C–G).

The effects of the relative sharpness of the knife sr
have been studied. It is defined as follows:

sr =
wk

d
ð34Þ

where wk is the width of knife and d is the drop diameter.
The simulated data are plotted in the graphical correlation in
Figure 9.

Figure 9 shows the relationship between Eo and the
relative thickness of the knife for Mo = 1.24 × 10−4. The
results can be divided into three categories: (1) the drop-
let stops on the knife when sliced by relative blunt knife,
which happens especially for smaller droplets (the lower
Eo number); (2) the droplet passes the knife when it hits
a sharp knife, and is not broken into two pieces; and

FIGURE 6 The shapes of 2D droplets of

d = 2.0, 3.0, and 4.0 mm at different moments

after being released at t = 0 and before hitting

the knife
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(3) the droplet is sliced into two parts for larger drop
diameters / higher Eo.

The main conclusion of Figure 9 is that for a slicing
process to be successful we need to overcome a threshold
value of the Eötvös number of approximately Eo = 4.
This critical value does not depend on the relative knife
thickness, at least for sr < 0.1.

5.2 | The knife is off-centre

In this section, the scenarios have been studied when the
drops hit the knife off centre. The size of the simulation

domain is 20~d× 3~d× 1, and the relative thickness of the
knife is in the range sr = 0.025− 0.1. The droplets are
sliced into two unequal parts when the drop hits the
knife off centre. The situations before and after slicing
are presented in Figure 10.

In a range of off-centre distances, the volume ratios
(given the 2D nature of the slicing simulations, the term
volume ratio is actually a surface ratio, i.e., a ratio of vol-
umes per unit length in the 3rd direction) for sliced drops
increase with the deviation distances. Beyond this range,
the drops also are sliced in two parts, but the smaller

FIGURE 7 Approach velocities as a function of drop diameters

FIGURE 8 Slicing scenarios (A–G) as a function of drop size d and width of the knife wk

FIGURE 9 Map of slicing scenarios with on the horizontal axis

the relative thickness of the knife (sr =
wk
d ) and on the vertical axis

the Eötvös number (Eo)
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droplet remains on the knife and cannot escape
(Figure 10, r/d ≥ 5/12 for d = 2.0 mm). We note in Fig-
ure 10 that under certain conditions the drops with
d = 4.0 mm have developed satellites at the moment they
interact with the knife.

The volume ratio of the two drops formed after slic-
ing (the larger volume divided by the smaller volume)
is a function of the relative off-centre distance r/d (see
Figure 11). The data points correlate well according to
a quadratic relationship as can also be seen in
Figure 11. The coefficients of the fitting equations are

shown in Table 3, along with the R2 values that are all
above 0.99.

As expected, the volume ratio monotonically
increases with the off-centre distance. However, the trend
with respect to the drop diameter is not monotonic. The
largest volume ratios are found for d = 3 mm. Both d = 2
mm and d = 4 mm have smaller volume ratios for the
same r/d values. This effect is related to the shape of the
drops at the moment they start interacting with the knife.

6 | CONCLUSIONS

In this work, we performed numerical simulations of slic-
ing a rising droplet in liquid. 2D and 3D simulations have
been performed using a free energy LBM method. The
proposed scaling procedure was utilized to translate
the parameters into lattice units, which correspond to the
physical units of the simulated system.

The simulation parameters such as simulation
domain size, mesh resolution, and dimensionality

FIGURE 10 Slicing in case the drop approaches the knife off-centre by a relative distance r/d as indicated

FIGURE 11 Ratio of the volume of the two drops formed after

slicing as a function of the relative off-centre distance r/d. The dots

represent individual simulations, the curves are quadratic fits (see

Table 3)

TABLE 3 The fitting equations between volume ratio (y)

versus relative off-centre distance r/d (x) for different diameters

d (mm)

d (mm) Fitting equation

2.0 y = 8.32x2 + 2.07x + 1.01 (R2 = 0.9995)

3.0 y = 11.59x2 + 3.02x + 1.01 (R2 = 0.9999)

4.0 y = 1.11x2 + 2.98x + 1.01 (R2 = 0.9934)
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(2D versus 3D) were tested to verify the LBM model and
computer code. In order to make sure that the drop does not
interact with itself and with the flow it creates over the peri-
odic boundaries, the domain width should be at least three
drop diameters. The mesh resolution also plays an important
role in the accuracy of results. A diameter ~d=30 lu for
1mm is the best choice because it satisfies both accuracy
and simulation time. The results of 2D and 3D simula-
tions were also compared. 2D slicing simulations have
been adopted in order to avoid extensive computations.

We studied droplets with diameters of 1.0–4.0 mm,
which were distributed in regions of circular, deformed,
and oscillating. Our simulations captured shape deforma-
tion, rising velocity, and slicing results. The results of our
numerical simulations (the rising velocity and Reynolds
number) are consistent with the experimental data
obtained by Clift et al.[12]

A range of scenarios have been observed when the drop
hits the knife at the centre as well as off-centre. Droplet slic-
ing requires a threshold Eötvös number. Our simulations
suggest it to be Eo ≈ 4 if Mo = 1.24 × 10−4. This critical Eo
was independent of the thickness of the knife as long as it
was less than 0.1d. In case the drop hits the knife off-centre,
the volume ratio of the two resulting fragments depends
approximately quadratically on the off-centre distance.

It should be noted that the above conclusions are for
a viscosity ratio of one and a density ratio close to one.
We anticipate that the main effect of the density ratio is
an effect on the rise velocity which, through the Eötvös
number, impacts slicing. As for the viscosity ratio, its
impact is likely to be more complex, in line with a former
paper on the effect of the viscosity ratio of drop breakage
as a result of shear.[44]

ACKNOWLEDGEMENTS
This research was sponsored by Shanghai Sailing Pro-
gram (No. 20YF1416000) and SUES Distinguished Over-
seas Professor Program.

NOMENCLATURE
ρ density (kg/m3)
μ dynamic viscosity (Pa s)
d equivalent diameter (mm)
Δρ density difference (kg/m3)
t time (s)
σ interfacial tension (N/m)
u rising velocity (mm/s)
Eo (dimensionless) Eötvös number
Mo (dimensionless) Morton number
λ density ratio
η dynamic viscosity ratio
Re (dimensionless) Reynolds number
We (dimensionless) Weber number

Fr (dimensionless) Froude number
ϕ order parameter of phase field
r position vector (mm/s)
ν kinematic viscosity (m2/s)
gα gravitational acceleration (m/s2)
M mobility parameter
Γ coefficient of mobility
Pthαβ thermodynamic pressure tensor (Pa)
Pchem
αβ chemical pressure tensor (Pa)

Pαβ full pressure tensor (Pa)
μ(ϕ) chemical potential (Pa)
f(r, t), g
(r, t)

particle distribution functions

q discretized velocity direction
f eqq , g

eq
q discrete Maxwell–Boltzmann

(or equilibrium) distributions
cαq discrete velocity (mm/s)
τf , τg dimensionless relaxation parameters
A , κ parameters connected with surface tension

and interface thickness
c2s speed of sound squared in lattice units (m2/s2)
Fq forcing term (Fq = gΔρ, N)
Δx mesh step (mm)
Δt time step (s)
ωq weight coefficients
p0 bulk pressure (Pa)
ξ diffuse interface (lu)
C scaling factor
~ parameters in lattice units
~d equivalent drop diameter in lattice units (lu)
fm a factor (when changing the drop diameter ~d)
W the weight of simulation domain (mm)
H the height of simulation domain (mm)
D the depth of simulation domain (mm)
E aspect ratio of the droplet
wk width of the knife (mm)
sr the relative sharpness of the knife (sr = wk/d)
r off-centre distance of the knife (mm)
r/d relative off-centre distance
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