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Deformation and breakup of a liquid drop immersed in another immiscible liquid and flowing through a
single pore has been studied numerically using a conservative phase-field lattice Boltzmann method.
Several benchmarks were conducted to validate the code, including the recovery of Laplace pressure,
the layered flow of two immiscible liquids, and the implementation of wetting boundary conditions on
a curved surface. Gravity-driven motion of a drop through the pore space was qualitatively compared
to the available experimental results. Quantitative assessment of the pressure field across the interface
of the moving and deforming drop was performed. Our results show that high Weber number due to
low surface tension and low Reynolds number due to low velocity of the continuous liquid promote drop
breakage. More viscous drops break easier than less viscous drops. We present the phase charts (Weber
vs capillary number) and the critical conditions (Weber as a function of Reynolds number) of drop
breakage.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction
Multiphase flow in porous media is ubiquitous in nature and
engineering (Adler and Brenner, 1988; Jacob, 2018): some exam-
ples include groundwater flow and flow in geothermal engineer-
ing, drainage, and irrigation in agricultural engineering, the flow
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of oil, water and gas in oil reservoirs, flow in reactors in chemical
engineering, flow in fuel cells, filters and membranes
(Telmadarreie et al., 2016; Li et al., 2018; Perazzo et al., 2018;
Kim et al., 2020; Lee et al., 2020). In such systems, two key phe-
nomena occur at the microscopic or pore-scale that affect the
macroscopic behavior of the system: 1) motion of deformable
interface between the fluids (e.g. gas–liquid dispersion or liquid–
liquid emulsion); and 2) interaction of this interface with the sur-
rounding solid phase (contact line motion). A thorough under-
standing of pore-scale phenomena is crucial to make well-guided
decisions on entire system control and efficient operation. For that
reason, numerous experimental and numerical studies focus on the
investigation of multiphase flow in a simplified porous medium
and single pore.

Single drops motion in idealized pore geometries were studied
experimentally and numerically. The pore geometries range from
wavy-wall capillary tubes to single pores formed by spherical solid
particles. The common goal for the majority of these studies is to
identify the effect of the geometry on drop motion and breakup.
Olbricht and Leal (1983) experimentally studied the creeping flow
of an immiscible Newtonian drop through a horizontal circular
tube with a periodically varying diameter in the axial direction
(wavy-wall tube). The contribution of the drop to the local pres-
sure gradient and the velocity of the drop relative to the average
two-phase velocity were measured and then correlated to the
time-dependent change of the drop shape. Drop breakup was also
observed and analyzed primarily qualitatively.

The buoyancy-driven motion of viscous drops and gas bubbles
in a vertical periodically constricted capillary was studied experi-
mentally by Hemmat and Borhan (1996) to examine the role of
capillary geometry on drop deformation and breakup. The authors
reported the measurements of the average rise velocity of drops
and their shapes for a wide range of governing parameters and out-
lined mechanisms of drop breakup.

Olgac et al. (2006) performed a numerical study of buoyancy-
driven viscous drops though sinusoidally constricted capillaries
using a finite-volume/front-tracking method. After validation of
the method by comparison to the experimental results of
Hemmat and Borhan (1996), the authors studied the effects of
the drop size, the channel geometry, and Bond number on the
motion and breakup of viscous drops in constricted capillaries. Dif-
ferent breakup mechanisms were examined and analyzed
quantitatively.

The behavior of a non-wetting drop flowing through a pore
formed by two spherical solid particles was numerically studied
by Hellou and Vo (2015) using a volume of fluid method. The
authors described the deformation process of the viscous drop in
viscous fluid that was quiescent or moving with uniform velocity
in the direction of gravity. A comparison to experimental analysis
was performed to validate the method. Drop breakup conditions
were defined as a function of the size of the constriction.

A review on motion of deformable non-wetting liquid drops
flowing through well-defined porous media at zero Reynolds num-
ber was published by Zinchenko and Davis (2017). The authors
considered theoretical solutions and rigorous hydrodynamical sim-
ulations for both pore and large scale.

Ansari et al. (2018, 2019) conducted an experimental study of
liquid–liquid flow through a pore to determine the pressure field
by analysis of the velocity field and shape of the drop obtained
by the micro particle shadow velocimetry (m-PSV).

Patel et al. (2019) numerically studied the dynamics of a bubble
rising in a vertical sinusoidal wavy channel using a dual grid level
set method coupled with a finite volume-based discretization of
the Navier-Stokes equations. Bubble deformation and breakup
was correlated to a Reynolds number, Bond number, and the
amplitude of the channel wall.
2

The flow of dispersed drops and bubbles also finds numerous
applications in microfluidic devices with constrictions and contrac-
tions. For instance, as discussed by Zheng et al. (2020), microfluidic
channels with constrictions provide an effective and reliable way
to manipulate fluid particles especially in areas such as biology
and clinical diagnostics.

A review of bubbles and drops flowing in different microfluidic
geometrical elements was given by Cerdeira et al. (2020). Jensen
et al. (2004) and Chio et al. (2006) studied the dynamics of gas bub-
bles moving in liquid-filled microchannels with contractions. Flow
patterns and frictional pressure drop in a microchannel with alter-
nating expansions and constrictions were experimentally investi-
gated by Chai et al. (2015) for gas–liquid systems.

To the best of our knowledge, there is a limited number of pub-
lished experimental and numerical studies that report on the
behavior of liquid drops moving in another immiscible liquid
through contracted microchannels or microchannels with
constrictions.

A numerical parametric study of drop deformation through a
microfluidic contraction was studied by Harvie et al. (2005) using
a transient volume of fluid finite volume algorithm. The authors
covered the parameter ranges representative of micro-sized liq-
uid–liquid systems. The effects of the Reynolds number, interfacial
tension, and the dispersed to continuous phase viscosity ratio on
the deformation of the drop passing an axisymmetric contraction
were reported. The phase charts (capillary number as a function
of Weber number at different Ohnesorge numbers) of drop defor-
mation and breakup were presented. Later the study was extended
to cover low viscosity Newtonian drops (Harvie et al., 2006).

Mulligan et al. (2011) studied the effect of confinement-induced
shear on drop deformation and breakup in microfluidic extensional
flows. The behavior of de-ionized water drops in oil was considered
experimentally. Conditions to produce drops after breakage much
smaller than the parent drop were outlined.

Chung et al.(2008) performed a numerical study on the effect of
viscoelasticity on the drop in a planar contraction/expansion
microchannel using a finite element front tracking method with
the goal to propose the strategy to control the drop shape.

Izbassarov and Muradoglu (2016) computationally studied two-
phase viscoelastic systems in a pressure-drive flow in an axisym-
metric channel with a sudden contraction and expansion using a
finite-difference/front-tracking method. Drop dynamics were
examined in a wide range of governing parameters.

Zheng et al. (2020) carried out numerical simulations of bubbles
and drops flowing in a rectangular channel with obstruction focus-
ing on the disruption of the wake downstream of the obstruction
by the fluid particle and the trajectory of that particle.

As can be seen from the literature review above, most of the
available numerical studies are performed in the axisymmetric for-
mulation. Three-dimensional transient simulations of liquid–liquid
systems in pore geometry with curved boundaries are still missing
and should be performed as a necessary validation step towards
modeling of multiphase flow in realistic porous media.

In this work, we numerically study the time-dependent motion
of Newtonian liquid drops flowing through a single pore in a three-
dimensional microchannel in the continuous flow of another
immiscible Newtonian liquid. Our main goal is to outline the con-
ditions of drop breakup when it passes through a pore throat.
When the drop breaks, satellite and sub-satellite drops with a size
significantly smaller than the mother drop size can be generated.
For some processes, for instance, when it is eventually necessary
to separate the immiscible liquids or when the drop size distribu-
tion should be monodisperse, the production of small fragments is
highly undesirable. A map that indicates the conditions when drop
breakage occurs is necessary to better control the system of two
immiscible liquids flowing through porous media.
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We use a phase-field lattice Boltzmann method to perform the
simulations. To verify and validate our numerical code, we per-
formed a series of benchmark cases: recovery of the Laplace pres-
sure of a spherical drop, the layered flow of two immiscible liquids
with different viscosities, recovery of the contact angle at a curved
surface, the gravity-driven motion of a drop in ambient liquid in a
channel, and the gravity-driven drop motion in ambient liquid
through a pore space. Then the code was applied to investigate
the main subject of this study.

The rest of the paper is organized as follows: Section 2 contains
the governing equations, the numerical method to solve the equa-
tions, and the wetting boundary conditions scheme. The validation
of the numerical method is shown in Section 3. Results and discus-
sion are given in Section 4. Finally, the conclusions are presented in
Section 5.

2. Mathematical model

2.1. Governing equations

A conservative phase-field model proposed by Mitchell et al.
(2018) is used in this study to simulate the flow of two immiscible
liquids. The phase-field model corresponds to a class of diffuse
interface approaches where the sharp interface between the liq-
uids is replaced by a smooth region of finite width where fluid
properties vary continuously, but rapidly. An order parameter,
i.e., the phase-field /, describes the phase transition: its values
are constant in the bulk phases and vary smoothly across the inter-
face region. A phase-field equation that describes the evolution of
/ in the entire computational domain is derived based on thermo-
dynamically consistent theories. The phase-field model does not
require any explicit procedures to track the changes in the topol-
ogy of the interface. This reduces programming complexity and
decreases computational time related to the explicit reconstruc-
tion of the interface as in sharp interface methods. Any topological
changes of the interface are handled naturally due to thermody-
namic mechanisms involved. In this study, we use the conservative
phase-field model proposed by Chiu and Lin (2011) based on the
work of Sun and Beckermann (2007).

A system of coupled equations which are the continuity, Navier-
Stokes, and phase-field equation governs the dynamics of a two-
phase system of incompressible immiscible fluids:

r � u ¼ 0 ð1Þ

q
@u
@t

þ u � ru
� �

¼ �rpþr � l ruþ ruð ÞT
h i� �

þ F ð2Þ

@/
@t

þr � /uð Þ ¼ r �M r/� 1� 4 /� /0ð Þ2
n

n

 !
ð3Þ

where u is the macroscopic velocity, q is the density, t is the
time, p is the pressure; M is the mobility; n is the interface thick-
ness, andn ¼ r/

r/j j = is the unit vector normal to the interface. The

phase-field / takes two extreme values in the bulk phases: /H

and /L, representing the heavy and light phases, respectively. The
value of / at the interface is given by:

/0 ¼ /H þ /Lð Þ=2 ð4Þ
In this work, we set /H ¼ 1 for the heavy phase and /L ¼ 0 for

the light phase, which gives /0 = 0.5.
A simple linear interpolation is employed to calculate the local

density q from the phase field,

q ¼ qL þ / qH � qLð Þ ð5Þ
3

where qL and qH are the densities of the light and heavy phase,
respectively.

The volumetric forcing term in Eq. (2) is defined as F = Fb + Fs,
where Fb ¼ qg (g is the gravitational acceleration) and Fs are the
body and surface tension forces, respectively. The surface tension
Fs is defined as

Fs ¼ l/r/ ð6Þ
with the chemical potential l/ being defined as (Zu and He,

2013):

l/ ¼ 1:5r 32/ /� 1ð Þ /� 0:5ð Þ
n

� nr2/

� �
ð7Þ

where r is the surface tension.

2.2. Lattice Boltzmann formulation

The governing macroscopic equations (1)-(3) were solved using
the lattice Boltzmann method in the formulation proposed by
Mitchell et al. (2018). Two particle populations are necessary to
solve the system: f a x; tð Þ is used to solve the continuity and the
momentum equations, and the second function ga x; tð Þ is used to
solve the phase-field equation. These particle populations repre-
sent the density of fictitious particles with discrete velocity ea at
the position � and time t. The discrete velocity ea together with
the corresponding weighting coefficients xa form the velocity set
ea;xað Þ. For the f population, we use a D3Q27 set which indicates
that the number of spatial dimensions is D = 3 and the velocity set
involves Q = 27 velocity directions (a = 0:26). The D3Q15 set is
used for the g population. The lattice velocities ea and weights
xa used in this work are given in Appendix A.

The lattice Boltzmann equations discretized in the velocity
space, physical space and time are given as follows:

f a xþ eadt; t þ dtð Þ ¼ f a x; tð Þ

� M�1 S
^

MÞab f b x; tð Þ � f
�
eq
b x; tð Þ

h i
þ Fa x; tð Þ

� ð8Þ

ga xþ eadt; t þ dtð Þ ¼ ga x; tð Þ � ga x; tð Þ � g
�eq

a x; tð Þ
s/ þ 1=2

þ F/
a x; tð Þ ð9Þ

These equations state that the particle populations move with
the velocity ea to the neighboring sites xþ eadt at the next time
step t þ dt (streaming). The collision of particles on a given site is
governed by the collision operator (second term on the right-
hand side of equations (8) and (9)) which redistributes particles
among the populations. A weighted multiple-relaxation-time
(WMRT) collision operator is used for the f population since it
improves the isotropy, decreases the spurious velocity, and
increases the model accuracy (Fakhari et al., 2017a). A single-
relaxation-time Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al.,
1954) collision operator is used for the g population. The physical
mesh step dx and the time step dt denote a space and time resolu-
tion in lattice units which is an artificial set of units scaled such
that dx ¼ 1 and dt ¼ 1, and c ¼ dx=dt is the lattice speed. To convert
lattice units to a physical space in SI units we will match the gov-
erning dimensionless numbers.

The rest of the quantities in equations (8) and (9) are defined as
follows. The shifted equilibrium population due to forcing is

f
�
eq
a ¼ f eqa � 1

2
Fa ð10Þ

with the equilibrium population

f eqa ¼ xa p� þ ea � u
c2s

þ ea�u2

2c4s

�
� u � u

2c2s

����
ð11Þ
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where p� ¼ p=qc2s is the normalized pressure with cs is the

speed of sound in this system, cs ¼ c=
ffiffiffi
3

p
.

The equilibrium distribution g
�eq

a is also shifted including the
forcing term as

g
�eq

a x; tð Þ ¼ geq
a � 1

2
F/
a ð12Þ

where

geq
a ¼ /xa 1þ ea � u

c2s
þ ðea�uÞ2

2c4s
� u � u

2c2s

� 
ð13Þ

In Eq. (8), M is the WMRT transformation matrix given in

Appendix B; and bS is the diagonal relaxation matrix which is given
asbS ¼ diag 1;1;1;1; sv ; sv ; sv ; sv ; sv ;1; � � � ;1ð Þ ð14Þ

where sv ¼ sþ 0:5ð Þ�1 is the relaxation parameter related to the
hydrodynamic relaxation time s. The relaxation time could be cal-
culated by many forms of interpolations (Fakhari et al., 2017b). In
this study, s is calculated by a simple linear interpolation

s ¼ sL þ / sH � sLð Þ ð15Þ
where sH and sL are the bulk relaxation times in the heavy and

light fluids, respectively. The dynamic viscosity l is represented as

l ¼ qv ¼ qsc2s ð16Þ
where v is the kinematic viscosity.
For the g population, s/ ¼ M=c2s is the relaxation time of the

phase-field model.
The hydrodynamic forcing term Fa x; tð Þ in Eq. (8) is calculated as

Fa x; tð Þ ¼ xa
ea � F
qc2s

ð17Þ

where the total force term is

F ¼ Fb þ Fs þ Fp þ Fl ð18Þ
The pressure force Fp is determined by (Fakhari et al., 2017b)

Fp ¼ �p�c2s qH � qLð Þr/ ð19Þ
and the viscous force Fl is (Fakhari et al., 2017b)

Fl ¼ v qH � qLð Þ ruþ ruð ÞT
h i

� r/ ð20Þ

where the derivative of velocity is recovered from the second
moment of the hydrodynamic distribution function as

Fl;i ¼ �v qH � qLð Þ
c2s

ea;iea;j M�1bSM� �
@;b

f b � f eqb
� �� �

@j/ ð21Þ

where index a and b represent the ath and bth direction for the
lattice structure and index i and j represent the index Cartesian
coordinates directions x,y, z. Einstein summation convention is
applied in Eq. (21).

The forcing term in Eq. (9) is given as

F/
a x; tð Þ ¼ dt

4/ 1� /ð Þ
n

xaea � n ð22Þ

The particle distribution functions are defined such that the fol-
lowing summations over all directions a, at a single lattice point,
give the local normalized pressure, local fluid velocity and local
phase-field parameter, respectively:

p� ¼
X
a

f a ð23Þ
4

u ¼
X
a

f aea þ
F
2q

ð24Þ

/ ¼
X
a

ga ð25Þ

where u needs to be updated after the pressure.
The gradients and Laplacian of the phase-field variable / are

determined using all the neighboring nodes by the results of the
conservative LBE for solving the continuity equation and the
phase-field which will be introduced in the next section and are
given as (Mitchell et al., 2018)

r/ ¼ c
c2s dx

X26
a¼0

eaxa/ xþ eadt; tð Þ ð26Þ

r2/ ¼ 2c2

c2s dxð Þ2
X26
a¼0

xa / xþ eadt; tð Þ � / x; tð Þ½ � ð27Þ
2.3. Wetting boundary conditions

In this study, a single pore throat is represented by two curved
(cylindrical) surfaces. To investigate the drop behavior as it passes
through the pore and interacts with the wall, we need to define the
three-phase contact angle on flat and curved boundaries. To obtain
a specified contact angle at a solid wall, the boundary condition
proposed by Jacqmin (2000) is used here:bnw � r/jxw ¼ H/w 1� /wð Þ ð28Þ

where bnw is the unit vector outward normal to the wall, /w is
the value of the phase-field parameter at the solid wall and H is
a term related to the equilibrium contact angle hwhich is given by:

H ¼ �
ffiffiffiffiffiffi
2e
j

r
cosh ð29Þ

where coefficients e and j are related to the interfacial thick-
ness n and the surface tension r by e ¼ 12r=n and j ¼ 3rn=2
(Fakhari et al., 2017b).

To impose the wetting boundary conditions on a curved wall,
we need to apply Eq. (28) and calculate the value of /w at the wall.
We used unidirectional interpolations to calculate the unknown
value of the phase-field parameter at the boundary node (/i;j;k),
represented by a black point in Fig. 1. If the slope’s magnitude of
the vector normal to the boundary is greater than one, as shown
in Fig. 1(a), then a linear interpolation is conducted in the y-
direction; otherwise, the interpolation is conducted in the z-
direction as shown in Fig. 1(b), to obtain the /p value at point p
with green color. Finally, the value of /i;j;k is calculated as
(Fakhari and Bolster, 2017):

/i;j;k ¼
sþ h
2ah

1þ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ2 � 4a/p

q� �
� s
h
/p; a ¼ h

H–0 h–90
�� �

ð30Þ

where s ¼ xw � xi;j;k
		 		 is the distance between the solid wall and

the boundary node.

3. Model validation

3.1. Laplace pressure

In this benchmark case, we assess the ability of the method to
accurately recover the pressure change across the interface of the



Fig. 1. Wetting boundary conditions at a curved boundary when the slope’s magnitude of the vector normal to the boundary is (a) greater than one (b) less than one (()).
adapted from Fakhari and Bolster, 2017

Fig. 2. The pressure change across the interface of the drop Dp for different drop
radii and values of surface tension.
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spherical drop. The pressure change can be described by the
Laplace law:

Dp ¼ 2r
r

ð31Þ

where Dp is the pressure difference and r is the radius of the
drop. A series of simulations were performed to validate the pres-
sure difference over the interface for different drop radii and values
of surface tension. The simulations were performed in a fully-
periodic cubic domain with an edge length of 64 lattice units
(lu). The interface thickness n was set to 6 lu. Drop and the sur-
rounding liquid had matching density and viscosity. The drop
was placed at the center of the domain and let to equilibrate.
The maximum spurious velocities in these simulations are at the
order of 10-6, so we can ignore their effects. The pressure drop esti-
mated using Eq. (31) and predicted numerically for drop radii r (10,
16, and 20 lu) and surface tension r (0.01, 0.02, and 0.04 lu) are
shown in Fig. 2. The maximum deviation between the numerical
and analytical results is less than 3%.

3.2. Layered flow of immiscible fluids

The layered flow of two immiscible liquids was selected to test
the capability of the method to handle high viscosity ratios
between the liquids (Komrakova et al., 2015). The flow was simu-
lated in a pseudo-2D simulation domain of 3 � 3 � 40 lu, where 40
lu is the distance between two solid walls. Liquid 1 occupies the
lower half of the channel, Liquid 2 the upper half. The no-slip
bounce-back boundary conditions were applied at the top and bot-
tom walls, and periodical boundary conditions for the rest of the
boundaries. We applied a body force of 10-7 lu in the entire domain
to create a pressure gradient in the flow direction. The viscosity
ratios were g ¼ l1=l2 = 1, 10, 100 and 1000.

The analytical solution for the velocity in the channel as a func-
tion of the wall normal coordinate Z was calculated from the
Navier-Stokes equation (Schulz et al., 2019):

u ¼ dp
dy

1
2l1

z2 þ h l2 � l1


 �
2l1 l1 þ l2


 � z� h2

l1 þ l2

" #
� h 	 z 	 0 ð32Þ

u ¼ dp
dy

1
2l2

z2 þ h l2 � l1


 �
2l2 l1 þ l2


 � z� h2

l1 þ l2

" #
0 	 z 	 h ð33Þ
5

where dp
dy is the pressure gradient, 2 h is the channel height, y is

the direction of the flow and l1 and l2 are the dynamic viscosities
of the liquids that have the same density (q1 = q2 = 1.0 lu).

The comparison between the analytical and simulated results is
shown in Fig. 3. The velocity profiles obtained numerically coincide
with the analytical solution. The maximum deviation between the
numerical and analytical results is less than 1%. This demonstrates
that the method can be used to simulate the flow of liquids with
the viscosity ratio up to 1000. The L2 convergence analysis at
g = 100 is shown in Appendix C.

3.3. Contact angle

Since the interaction of the contact line with the solid surface of
the pore plays an important role in drop behavior, it is necessary to
make sure that the wetting boundary conditions at the curved sur-
face are implemented correctly. The following benchmark was
considered: a drop was placed on a cylinder and let to equilibrate.
The simulation domain was a 40 � 90 � 60 box. The no-slip simple
halfway bounce-back wall conditions were employed for curved



Fig. 3. Velocity profiles in two-phase layered flow with different viscosity ratio.
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walls and the top and bottom faces in the z-direction, and periodic
boundary conditions for the rest of the boundaries. The radius of
the drop (r) was 16 lu and the radius of the cylinder (Rs) was 50
lu. The interface thickness was 6 lu. The initial state of the system
in the x = 20 lu plane is shown in Fig. 4(a). The specified and sim-
ulated static contact angles between the drop and the curved wall
are shown in Fig. 4(b). The simulated angles agree well with the
specified angles because maximum deviation is less than 2%.
3.4. Mesh resolution

Mesh sensitivity analyses were performed using a benchmark of
gravity-driven drop motion in ambient surrounding liquid in a
channel. For drop diameters D = 24, 32, and 40 lu, the terminal
velocity was predicted. The simulation domain is shown in Fig. 5
(a). The density ratio between dispersed and continuous liquids
was qd/qc = 1.5 and the liquids had matching viscosities. The inter-
face thickness (n) was 6 lu and the surface tension (r) was 0.01 lu.
Periodic boundary conditions were employed for the top and bot-
tom faces and the no-slip bounce-back wall conditions for the rest
of the boundaries. In Fig. 5(b), we present the non-dimensional
drop velocity as a function of time for different drop diameters.

Time and velocity are non-dimensionalized as t
� ¼ t=

ffiffiffiffiffiffiffiffiffi
D=g

p
and

u
� ¼ u=

ffiffiffiffiffiffi
gD

p
, respectively. The gravitational acceleration is set to

�2.37 � 10-5, �1.0 � 10-5, and �5.12 � 10-6 in lu to achieve the
same Reynold number. for D = 24, 32, and 40 lu, respectively. As
we can see from Fig. 5(b), the drop velocity profiles almost overlap
when the drop diameter is larger than 32 lu. It indicates that rep-
resenting a drop diameter with 32 lu is sufficient resolution.
6

4. Results and discussion

The results are presented in two parts. First, we consider a drop
falling through a pore due to gravity in the ambient continuous liq-
uid phase and compare our results to the experimental data of
Ansari et al. (2018, 2019). This comparison is done for the purpose
of qualitatively validating our model. In addition, we verify the
prediction of the pressure change across the drop interface as it
passes through the pore. In the second part, we present the results
of drop breakup in the pore space when the carrier (surrounding)
liquid is in continuous flow. The influence of governing dimension-
less numbers (the Weber number, the Reynolds number, and the
viscosity ratio) on drop deformation and breakup is investigated.
A chart outlining the conditions for drop breakup is presented at
the end.
4.1. A drop falling through a single pore space due to gravity

Ansari et al. (2018, 2019) carried out an experimental study of a
Glycerol drop falling in ambient Canola oil through a pore using
micro particle shadow velocimetry (m-PSV). The simulation is set
up to replicate the experiment in a domain of 40 � 60 � 180 lu.
The droplet diameter D is 32 lu. The simulated system matches

experiment by the Eötvös number (Eo ¼ gDqD2

r ¼ 0:267) and Morton

number (Mo ¼ gDqv4
c q2

c
r3 ¼ 254 where vc and qc are the kinematic vis-

cosity and density of continuous phase, respectively). The mea-
sured velocity of the drop was of the order of 10-5 m/s and it
took more than 160 s for the drop to pass through the pore space.
If we match experimental conditions and replicate their results



Fig. 4. (a) Schematic of the contact angle between a drop and a curved wall in the x = 20 lu plane (b) Simulated and specified contact angles.

(a) (b)

Fig. 5. (a) Simulation settings for the dense drop in the continuous phase (b) Non-dimensional drop velocity as a function of time for three mesh resolutions.
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using our explicit scheme, the time step needs to be 1.04� 10-5 s. It
will require approximately 15,000,000 time steps which is equiva-
lent to 38,500 h of calculation time to complete the simulation by
15 cores (2.5 GHz). To accelerate the process, we increased the
body force that represents the effect of gravity by a factor of six
and qualitatively compared our results with their findings. The
three-phase contact angle at the curved wall is set to 180�, and
we use the static contact angle which we introduced in Section 2
to handle this problem. The comparison of the drop shape at differ-
ent time instances is shown in Fig. 6. Overall, the results are in
good agreement. Minor deviation in drop shape can be due to sev-
eral reasons. The complexity of the analysis of experimental data to
recover drop shape (see the original works of Ansari et al. (2019))
affects the drop shape. The properties of the liquids (viscosity, den-
sity, and interfacial tension) were not measured in the experimen-
tal study for the considered liquids and were taken from reference
data. As a result, there might be a slight discrepancy between the
experimental settings and our settings that were based on the ref-
erence values of liquid properties.

To verify our method quantitatively, we performed simulations
of a similar problem with the goal to check the capability of the
7

method to predict the pressure distribution inside the deforming
drop and correlate it with the drop shape. The flow configuration
is shown in Fig. 7: a drop moves along with the continuous phase
through the pore. The dimensions of the channel are
40 � 120 � 270 lu and the diameter of the cylindrical obstruction
on the pore is D1 = 50 lu. The density and viscosity of the drop
match the corresponding properties of the continuous phase:
q = 1.0 lu, l = 1/3 lu. The droplet diameter is 32 lu, the interface
thickness is 6 lu and the surface tension is r = 0.12 lu. The periodic
boundary conditions are set at the top and bottom faces of the
domain and the no-slip boundary conditions are set for the rest
of the boundaries. The three-phase contact angle at the curved wall
is set to 180�, meaning the drop is non-wetting.

The simulation run was performed as follows. First, the drop of
diameter D = 32 lu was injected upstream the pore area and let to
equilibrate during 1200 time steps. There was no body force
applied at this stage. The final equilibrium shape of the drop was
used as an initial condition for the second stage of the simulations
when a body force of qg = -2�10-5 lu in z-direction was applied to
the entire domain. During the run, the radii of the leading and
the trailing ends of the drop were measured using a curve-fitting



Fig. 6. (a) Experimental results of (Ansariet al., 2019) (Republished with permission of IOP Publishing, Ltd, from (Ansariet al., 2019); permission conveyed through Copyright
Clearance Center, Inc.) a and (b) numerical results of gravity-driven motion of a drop through the pore space. RT and RL denote radii of trailing and leading ends of the drop,
respectively.
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procedure. The details of notation are shown in Fig. 8. The droplet
surface was identified at/ = 0.5. A Matlab code for curve fitting
procedure was written to measure the radii of the leading and
trailing faces in the x = 20 lu and y = 60 lu planes.

Once the body force is turned on, the drop starts moving and

deforming downstream the channel (Fig. 9). Att
�
= 13.0, the drop

approaches the upper part of the pore. The leading end of the drop
is squeezed. The center of mass of the drop reaches the center of

the pore att
�
= 17.4. The drop is stretched in the z-direction, and

the leading and trailing ends are almost symmetrical. The drop

leaves the pore area att
�
= 21.8. Due to the expansion of the flow

after the pore, the velocity of the leading end is significantly smal-
8

ler than the velocity of the trailing end. This explains the change in
the drop shape: the drop is squeezed in the z-direction. Finally, the
drop restores the spherical shape and moves down the channel.

The main purpose of this verification case is to assess the cor-
rectness of the pressure field obtained numerically in case of drop
motion within a complex geometry in the presence of the body
force.

The estimated pressure difference between the leading and
trailing ends of the drop due to the surface tension is given by:

DPest�LT ¼ DPest�L � DPest�T ¼ r 1
RL1

þ 1
RL2

� �
� r 1

RT1
þ 1
RT2

� �
ð34Þ



Fig. 7. (a) 3D Computational domain 40 � 120 � 270 lu. (b) Cross-section of the
domain at x = 20 plane, dimensions in lu.

Fig. 8. The notation to determine the radii of the leading and the trailing ends of the
drop in (y-z) (left) and (x-z) (right) plane.
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The pressure difference between the leading end (DPLBM�L) and
trailing end (�DPLBM�T ) due to the surface tension can also be cal-
culated by the pressure fields in the LBM simulations minus the
effects of the velocity fields and Fb as follows:
Fig. 9. A drop passing through a po

9

DPLBM�L ¼ P Lþnð Þ � P L�nð Þ � 2n �q @uz

@t
þ l @2u2

@z2
þ Fbz

( )
ð35aÞ

DPLBM�T ¼ P T�nð Þ � P Tþnð Þ þ 2n �q @uz

@t
þ l @2u2

@z2
þ Fbz

( )
ð35bÞ

DPLBM�LT=DPLBM�L � DPLBM�T (35c)
where P Lþnð Þ and P L�nð Þ (See Fig. 8) are the pressure inside and

outside the leading end of the drop, respectively; P T�nð Þ and P Tþnð Þ
(See Fig. 8) are the pressure inside and outside the trailing face,
respectively.

As shown in Fig. 10, the pressure differences between the lead-
ing and trailing ends of the drop estimated using Eq. (34) and pre-
dicted numerically are in good agreement. This means that the
variations in the velocity and pressure fields reflect on the shape
of the drop correctly.

4.2. Drop breakup in the pore space

We used the same pore geometry as depicted in Fig. 7 to study
the conditions of drop breakup. In all cases, the continuous phase
was moving downward in the z-direction with the average velocity
in the z = 270 lu plane denoted as uavg. This motion was created by
applying a constant body force to the entire domain. For each case,
the steady-state velocity field of a single-phase flow was obtained
first. As an example, a velocity field in cross-section y = 60 for
Re = 0.26 is shown in Fig. 11(a). The average velocity in straight
sections of the channel (away from the pore space) is 0.0029 lu,
and the maximum velocity at the pore throat is 0.034 lu. Such
velocity fields were used as an initial condition for further two-
phase flow simulations.

The rest of the simulation parameters are as follows. The densi-
ties of the drop and the continuous phase are the same: q = 1.0 lu.
The contact angle was set to 180�, the thickness of the interface
was 6 lu, the mobility M = 0.2 (Mitchell et al., 2018).

Three forces define the behavior of the drop motion: surface
tension, inertial, and viscous forces. The following set of dimen-
sionless numbers can be used to describe the relative effect of
these forces: the Reynolds number Re (inertial vs viscous force),
Weber number We (inertial vs surface tension force), the capillary
number Ca (viscous to surface tension force), and the viscosity
ratio g:

Re ¼ qcuavgRh

lc
We ¼ qcu

2
avgRh

r
Ca ¼ lcuavg

r
g ¼ ld

lc
re waist in the x = 20 lu plane.



Fig. 10. The pressure difference between the leading and trailing ends of the drop
as it passes through the pore (DPest�LT and DPLBM�LT refer to Eq.(34) and Eq.(35c),
respectively).
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where qc is the density of continuous phase, uavg is the average
velocity of the single-phase flow of continuous liquid, Rh is the
hydraulic radius of the channel defined as 40�120

40þ120 = 30 lu, r is the
interfacial tension between the liquids, lc is the dynamic viscosity
of the continuous phase and ld is the dynamic viscosity of the
drop. For each case, we also estimated the Ohnesorge number

Oh ¼
ffiffiffiffiffiffiffi
We

p

Re
¼ lcffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qcrRh

p

Fig. 11. (a) Velocity field of the single-phase flow in x = 20 l

Table 1
Simulation cases and drop breakup output.

Case Re We Ca Oh

1 0.26 0.03 0.10 0.61
2 0.26 0.05 0.19 0.86
3 0.26 0.10 0.39 1.22
4 0.26 0.25 0.97 1.92
5 0.52 0.05 0.10 0.43
6 2.61 0.05 0.02 0.09
7 0.26 0.050 0.19 0.86
8 0.26 0.050 0.19 0.86

10
We conducted a series of simulations to investigate the influ-
ence of the surface tension (the Weber number), the average veloc-
ity of the continuous flow (the Reynolds number), and the viscosity
ratio (g) on drop deformation and breakup. The flow parameters
for each case are shown in Table 1. The simulation cases were cho-
sen as follows. Case 2 represents a baseline case: matching densi-
ties of liquids with q = 1, the viscosity of continuous phase lc = 1/3
and viscosity ratio g = 1 such that the corresponding relaxation
time sf = 1.0 everywhere in the domain, and the surface tension
r = 0.005. Cases 1, 3, and 4 retain parameters of Case 2 except
for surface tension, therefore Cases 1–4 show the effect of surface
tension (fixed Re and varying We). Cases 5 and 6 have baseline
parameters except for the viscosity of liquids, i.e. Cases 2, 5, and
6 provide data to explore the effect of Re at fixed We. Cases 7
and 8 retain the parameters of Case 2 except for the viscosity ratio.
Mesh sensitivity analysis of Case 1 is shown in Appendix D.
4.2.1. The effect of the surface tension
Surface tension plays a significant role in the multi-phase flow

through porous media. In this series of simulations, the Reynolds
number is fixed to Re = 0.26, the viscosity ratio g is equal to 1.0
and we change the value of the surface tension that results in a
change of the Weber number (Cases 1–4). As shown in Fig. 12,
the mesh with D = 32 lu has reached mesh independence because
the results have good agreement with D = 48 lu. The drop diameter
is D = 32 lu. The shapes of the drops at different time instances are
shown in Fig. 12 for four cases. The time was non-dimensionalized

as t
� ¼ t=

ffiffiffiffiffiffiffiffiffi
D=g

p
.

An equilibrated drop is injected at t
�
= 0 into the steady-state

flow of continuous liquid. In the case with We = 0.03 (highest sur-
u plane (b) velocity field at the inlet (z = 270 lu plane).

g lc r Drop breakup

1.00 1/3 0.01 no
1.00 1/3 0.005 yes
1.00 1/3 0.0025 yes
1.00 1/3 0.001 yes
1.00 1/6 0.005 no
1.00 1/30 0.005 no
0.10 1/3 0.005 yes
0.01 1/3 0.005 yes



Fig. 12. Effect of Weber number on drop deformation and breakup. The process of drop motion through a pore with at Re = 0.29 and (a) We = 0.03 in the x = 20 lu plane (b)
We = 0.05, (c) We = 0.10 and (c) We = 0.25 in the x = 20 lu and y = 60 lu plane.
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face tension) the drop does not break (Fig. 12 (a)). When the sur-
face tension is decreased (We = 0.05), the drop breaks producing
two satellites (Fig. 12 (b)). The higher velocity values of the contin-
uous phase at the centerline in the y = 60 plane (pore throat) com-
11
pared to the channel flow create a dent in the trailing end of the

drop at t
�
= 8.75 (see Fig. 12 (b)). The trailing end of the drop forms

two long threads at t
�
= 11.50. Then a neck forms. The neck thins



Fig. 13. The process of a drop motion through a pore at We = 0.05 and (a) Re = 0.52 (b) Re = 2.61 in the x = 20 lu and y = 60 lu plane.

Fig. 14. The deformation parameters of the drops through a pore at We = 0.05 and Re = 0.26, 0.52 and 2.61.
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gradually, and the drop breaks at t
�

= 13.00 because of end
pinching.

With the decrease of the surface tension (an increase of the
Weber number), the threads formed behind the trailing end of
the drop split into more satellite and sub-satellite fragments. In
Case 3 (see Fig. 12 (c)), the two sub-satellite coalesce with two

satellite drops at t
�
= 15.50. The satellite drops decelerate due to

the expansion of the flow so that the subsatellites can catch up
and coalesce. Finally, the drops generate four satellites when it
passes through the cylinder pore space, as shown in Fig. 12 (c).

In summary, higher surface tension (lower Weber number) pre-
vents drop breakup. For the fixed Re = 0.26, there is no breakup at
We = 0.03, and the drops break up into 3, 5, 5 fragments when they
leave the pore space with higher Weber number. We conclude that
drops with lower values of surface tension (high We) break more
easily producing multiple fragments. The coalescence of fragments
is also observed during this process due to the special structure of
the (flow through the) cylinder pore.
12
4.2.2. The effect of Re
In this set of simulations, the Weber number is fixed to

We = 0.05 and the Reynolds number is varied by changing the vis-
cosity of the continuous liquid (Cases 2, 5, and 6 representing
Re = 0.26, 0.52 and 2.61, respectively). The viscosity ratio is set to
unity. The drop shape at different time instances for Cases 5 and
6 are shown in Fig. 13 (Case 2 is presented in Fig. 12 (b)). The drop
does not break in any of the considered cases.

To quantify the deformation of the drops as they move through
the pore in these three cases, two deformation parameters D* and
L* following the work by Olgac et al. (2006) are introduced. D* is
defined as the ratio of the perimeter of the deformed drop profile
to that of the equivalent spherical drop in the x = 20 plane, and
L* as the axial length of drop profile scaled by the height of the pore
(see D1 in Fig. 4(b)). The deformation of the drops in these three
cases represented by D* and L* are shown in Fig. 14 where z* is
the nondimensional position of the drop center scaled by the
height of the pore D1 calculated by z*= (z-85)/D1, that is z*=0 for
the drop at the bottom of the pore and z*=1 for the drop at the



Fig. 15. (a) The process of a drop through a pore in the x = 20 lu and y = 60 lu plane at Re = 0.26 and We = 0.050 with (a) g = 0.1 and (b) g = 0.01.

Table 2
All other cases for the summary section.

Case Re We Ca Oh g lc r Drop breakup

9 0.26 0.046 0.18 0.82 1.00 1/3 0.0055 yes
10 0.26 0.042 0.16 0.79 1.00 1/3 0.006 no
11 0.26 0.034 0.13 0.70 1.00 1/3 0.0075 no
12 0.52 0.101 0.19 0.61 1.00 1/6 0.0025 yes
13 0.52 0.090 0.17 0.58 1.00 1/6 0.0028 yes
14 0.52 0.084 0.16 0.56 1.00 1/6 0.003 no
15 2.61 0.505 0.19 0.27 1.00 1/30 0.0005 no
16 2.61 0.561 0.21 0.29 1.00 1/30 0.00045 yes
17 2.61 0.025 0.01 0.06 1.00 1/30 0.01 no
18 2.61 0.034 0.01 0.07 1.00 1/30 0.0075 no
19 2.61 0.101 0.04 0.12 1.00 1/30 0.0025 no
20 2.61 0.252 0.10 0.19 1.00 1/30 0.001 no
21 0.26 0.025 0.10 0.61 0.01 1/3 0.01 no
22 0.26 0.034 0.13 0.70 0.01 1/3 0.0075 no
23 0.26 0.046 0.18 0.82 0.01 1/3 0.0055 no
24 0.26 0.101 0.39 1.22 0.01 1/3 0.0025 yes
25 0.26 0.252 0.97 1.92 0.01 1/3 0.001 yes
26 0.52 0.101 0.19 0.61 0.01 1/6 0.0025 yes
27 0.52 0.084 0.16 0.56 0.01 1/6 0.0027 no
28 0.52 0.093 0.18 0.59 0.01 1/6 0.0030 no
29 2.61 0.025 0.01 0.06 0.01 1/30 0.01 no
30 2.61 0.034 0.01 0.07 0.01 1/30 0.0075 no
31 2.61 0.050 0.02 0.09 0.01 1/30 0.005 no
32 2.61 0.101 0.04 0.12 0.01 1/30 0.0025 no
33 2.61 0.252 0.10 0.19 0.01 1/30 0.001 no
34 2.61 0.505 0.19 0.27 0.01 1/30 0.0005 no
35 2.61 0.561 0.21 0.29 0.01 1/30 0.00045 no
36 2.61 0.631 0.24 0.29 0.01 1/30 0.0004 yes
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Fig. 16. (a) Phase chart at a viscosity ratio of 1.00 (b) The drop breakup conditions at a viscosity ratio of 1.00. ‘Yes’ indicates drop breakup. ‘No’ means drop did not break.
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top of the pore. The D* and L* have the maximum value when the
drop is at the pore center (z*=0.5). The deformation is very small
for case 6 (Re = 2.61), and the largest deformation occurs in Case
2 at Re = 0.26. The deformation decreases as the Reynolds number
increases indicating that drop breakup probability decreases with
the increase of the Re at fixed Weber number.

4.2.3. The effect of viscosity ratio
The viscosity ratio g is an important parameter to determine the

drop breakup conditions (Zhao, 2007; Komrakova et al., 2014).
Three viscosity ratios (g = 1, 0.1, and 0.01) were chosen to study
the effects on the breakup conditions (Cases 2, 7, and 8). Other
parameters are kept the same in these three cases (Re = 0.29,
We = 0.05). The process of a drop motion through a pore with vis-
cosity ratios equal to 0.1 and 0.01 is shown in Fig. 15. The case with
g = 1 (Case 2) has been discussed in Fig. 12(b).

The process of the drop through the pore with g = 0.1 is shown
in Fig. 15(a). A neck deforms and thins gradually, and then the drop

breaks att
�
= 11.00. There is a formation of two small satellite drops

above the main body when the drop leaves the cylinder pore space

att
�

= 13.75. The breakup of the case with g = 0.01 occurs

att
�
= 10.75 and the two generated satellite drops are the smallest

when compared to those generated by g = 1 and 0.1.
To summarize, the higher values of drop viscosity promote drop

breakup in the pore space. This observation is at odds with the
research studies concerning drop deformation and breakup in a
simple shear flow where viscous drops are more difficult to break
Fig. 17. (a) Phase chart at a viscosity ratio of 0.01 (b) The drop breakup conditions at a
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(Zhao, 2007; Komrakova et al., 2014). We observe that drop break-
age occurs at the two long threads, which are eroded and shaped
by the high velocity of the continuous phase. Higher viscosity
drops have a lower relative velocity with the continuous phase
and long residence time when they go through the middle part
of the pore. Long residence time give enough time to the continu-
ous phase to erode the long threads. That is the reason why viscous
drops can be broken more easily.

4.2.4. Summary
In previous sections, the influence of governing dimensionless

numbers (the Weber number, the Reynolds number, and the vis-
cosity ratio) on drop deformation and breakup were discussed.
An additional 28 simulation cases were conducted to acquire more
information to outline the drop breakup conditions. The definition
of these cases is shown in Table 2.

Fig. 16(a) shows the series of simulation results for g = 1, along
with the locations of these simulated results on a Ca versus We
phase chart. The green constant Re lines show that inertial forces
dominate viscous forces in the bottom right corner of the chart
while the viscous forces dominate inertial forces in the top left cor-
ner of the phase chart. From the phase chart, we can see that flow
conditions from the bottom left (strong surface tensions) and bot-
tom right (inertial forces dominate viscous forces) prevent drop
breakup. In this force balance system, the lower surface tension
and larger viscous forces that dominate inertial forces, are the
key factors for the breakup. To find the critical breakup conditions,
a We versus Re map for g = 1 is shown in Fig. 16(b). There is a clear
viscosity ratio of 0.01. ‘Yes’ indicates drop breakup. ‘No’ means drop did not break.
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dividing line between the breakup and no-breakup conditions, and
the values of We on this line increase with Re. We use the breakup
cases near the critical conditions to fit a dividing line in the dual-
logarithm map. The relationship between Re and We on this line
is We = 0.193Re1.096. As shown in Fig. 17, the Ca versus We phase
chart and We versus Re map for g = 0.01 almost have the same
trend as for g = 1. However, a lower surface tension is necessary
to break the drop at g = 0.01, the value of Weber number on the
dividing line is We = 0.216Re1.104 in Fig. 17(b). Although these
two dividing lines are very close, criticalWe is smaller for more vis-
cous droplet (g = 1) to break up at constant Re.
375
5. Conclusions

In this paper, numerical simulations of the motion of Newto-
nian liquid drops flowing through a single pore in a microchannel
as a result of the continuous flow of another immiscible liquid have
been presented. We used the conservative phase-field lattice Boltz-
mann method to perform transient three-dimensional simulations.

The numerical code is verified and validated by a series of
benchmark cases. The recovery of Laplace pressure is tested, and
the deviation between numerical and theoretical predictions is
within 3%. Four cases of the layered flow of two immiscible liquids
are performed to confirm our method can simulate the flow with
viscosity ratio up to 1000. Cases of recovery of the contact angle
at the curved surface are conducted and obtained consistent
results. The effect of the mesh resolution is investigated using
the gravity-driven motion of a drop in ambient liquid in a channel,
and it indicates that under the present circumstances 32 lu is
enough for the drop diameters.

Numerical simulation of a drop falling through a pore due to
gravity in an ambient continuous liquid phase is conducted and
the results are in qualitatively good agreement compared to the
experimental data of Ansari et al. (2018, 2019). In addition, quan-
titative verifications confirmed that the pressure distribution
inside the deforming drop is consistent with the drop shape as it
passes through the pore.

The influence of the surface tension, the average velocity of the
continuous flow, and the viscosity ratio on the drop breakup were
discussed in this paper. Smaller surface tension (high Weber num-
ber) promotes drop breakup when it passes through the pore
throat. Lower Reynold number increases the probability of drop
breakup. Drops of higher viscosity than the continuous phase break
easier because of lower relative velocity in conjunction with inter-
action with the solid pore walls. Also, the coalescence of satellite
drops is observed during this process. Finally, we show a Ca versus
We phase chart to discuss the relative importance of the forces in
this system leading to drop deformation and possibly breakup.
We find that the lower surface tensions and larger viscous forces
that dominate inertial forces are the key factors for the breakup.
At the same time, a clear virtual dividing line is found in the We
versus Re map that distinguishes breakup from non-breakup. At
constant Re, the critical We is smaller for the more viscous drop
to break.

In the future work, we will focus on the drop breakup and coa-
lescence in realistic porous media. We will also conduct experi-
15
ments in porous media to visualize the multiphase flow to
validate simulations quantitatively.
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Appendix A

The discrete velocity set for D3Q27 used for f population is
defined as follows:
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And the corresponding weights are:

xa ¼ 1
216

64;a ¼ 0;
16;a ¼ 1� 6;
1;a ¼ 7� 14;
4;a ¼ 15� 26:
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The discrete velocity set for D3Q15 used for g population is

defined as follows:

ex
ey
ez

0B@
1CA ¼

0
0
0

1
0
0

�1
0
0

0
1
0

0
�1
0

0
0
1

0
0
�1

1
1
1

�1
1
1

1
�1
1

�1
�1
1

1
1
�1

�1
1
�1

1
�1
�1

�1
�1
�1

264
375

And the corresponding weights are:

xa ¼ 1
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16;a ¼ 0;
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Appendix B

The WMRT transformation matrix for D3Q27 is given as:



1 1 1 1 1 1 1 1 1 1 1 1
� 1 �1 1 �1 1 �1 1 �1 0 0 0 0

1 � 1 1 �1 �1 0 0 0 0 1 �1 1 �1
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0 0 0 0 0 0 0 0 1 �1 �1 1
1 0 0 0 0 1 �1 �1 1 0 0 0 0
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Fig. 18. L2 Error vs Mesh size at g = 100.

Fig. 19. The velocity profiles along the line y = Y/2 in the x = X/2 plane obtained on
different mesh.
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Appendix C

The L2 convergence analysis of the layered flow of two immis-
cible liquids at g = 100 is shown in Fig. 18. For the four cases, the
channel heights were equal to 20, 30, 40 and 80 lu, respectively.
The L2 error as a function of the mesh size is shown at a log–log
plot in Fig. 18. Second-order convergence is observed
Appendix D

Mesh sensitivity analysis concerning flow resolution was per-

formed for Case 1. The velocity profiles att
�
= 9.33 along the line

y = Y/2 in the x = X/2 plane obtained using different mesh are
shown in Fig. 19. The gravitational acceleration is set to �3.38 � 1
0-5, �1.0 � 10-5, and �2.96 � 10-6 lu to achieve the same Reynold
number for droplet diameters D = 21, 32, and 48 lu, respectively
(the dimensions of the domain are
27 � 81 � 180,40 � 120 � 270 and 60 � 180 � 405 lu). Velocity

is non-dimensionalized as u
� ¼ u=

ffiffiffiffiffiffi
gD

p
. The mesh with D = 32 lu

has reached mesh independence because the results have good
agreement with D = 48 lu.
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