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a b s t r a c t 

We study dense solid-liquid suspensions through numerical simulations. The liquid flow is solved by the 

lattice-Boltzmann method on a fixed (Eulerian), cubic, uniform grid. Spherical solid particles are tracked 

through that grid. Our main interest is in cases where the grid spacing and the particle diameter have 

the same order of magnitude ( d/ � = O (1) ). Critical issues then are the mapping operations that relate 

properties on the grid and properties of the particles, e.g. the local solids volume fraction seen by a par- 

ticle, or the distribution of solid-to-liquid hydrodynamic forces over grid points adjacent to a particle. 

For assessing the mapping operations we compare results for particles settling under gravity in fully pe- 

riodic, three-dimensional domains of simulations with d/ � = O (1) to much higher resolved simulations 

( d/ � = O ( 10 ) ) that do not require mapping. Comparisons are made in terms of average slip velocities as 

well as in terms of liquid and fluid velocity fluctuation levels. Solids volume fractions are in the range 

0.3 to 0.5, Reynolds numbers are of order 0.1 to 10. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Engineering applications where solid particles are suspended

in a liquid phase are abundant. An important class of applications

– and the motivation for the research presented in this article –

relates to industrial and pharmaceutical crystallization [1] . Other

applications are sediment transport (e.g. in environmental flows

[2] ), catalytic slurry reactors [3] , and hydrotransport in the mining

industries [4] . Crystallization processes are often carried out in ag-

itated tanks operated under turbulent conditions with high solids

loading (20% solids by overall volume is not exceptional). The

distribution of solids in the tank and therefore the hydrodynamic

conditions individual crystals get exposed to are thought to be

of influence on product quality: crystal size distribution, crystal

shape (think of particle attrition due to frequent collisions), and

crystal purity. 

Computational methods are one way of enhancing our under-

standing of solids suspension processes in mixing tanks. Advances

in numerical methodologies and – first and foremost – wide avail-

ability of high-performance computational resources make that

more and more details and complexity can be accounted for in

simulations. Specifically in the field of crystallization there are

good reasons to invest computational effort in resolving the be-

havior of individual particles because the particles are the actual
E-mail address: jderksen@abdn.ac.uk 
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roduct and knowing their history in the course of their formation

rocess (and the extent to which this history varies from crystal

o crystal) is relevant. Among more, this notion has motivated re-

earch on Eulerian–Lagrangian descriptions of solid-liquid suspen-

ions: Fluid flow is resolved in an Eulerian manner (i.e. on a fixed

omputational grid) and through this Eulerian flow field solid par-

icles are tracked [5] . The specific situations we are interested in

ave particle sizes ( d ) that are of the same order of magnitude as

he Eulerian grid spacing �, i.e. d = O (�) . This is somewhere in

etween particle-resolved simulations ( d � �) [6] , and the cases

ore common in Eulerian–Lagrangian simulations that have d � �

7] . 

The situation we have in mind is that of a lab scale (order

ne liter) tank containing liquid and 300 μm size solid particles.

f the solids volume fraction is some 10 to 20%, the tank contains

f the order of 10 7 particles. Dealing with such numbers of parti-

les in a simulation is very well feasible [8] , resolving the liquid

ow around each individual particle is, however, not that feasible.

y not resolving the flow around each particle we do not want to

se a simulation method that requires d � �. This would make

he Eulerian grid too coarse to e.g. perform a well-resolved large-

ddy simulation of the liquid flow. 

The aim of this paper is to describe and calibrate a numerical

rocedure for Eulerian–Lagrangian simulations of solid-liquid sus-

ensions with particles and grid spacing having comparable size:

 = O (�) . As will become clear, the operation of exchanging infor-

ation between particles (Lagrangian information) and the liquid

http://dx.doi.org/10.1016/j.compfluid.2016.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.12.017&domain=pdf
mailto:jderksen@abdn.ac.uk
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ow on the grid (Eulerian information), this operation is usually

eferred to as mapping , requires numerical settings for which no

losed theory is available. At the same time, these settings have

 pronounced impact on the outcome of a simulation. In order

o make objective choices for the numerical settings, simulations

f sedimenting particles in fully periodic domains have been per-

ormed with the here proposed, unresolved particles procedure.

he results are compared to results of particle-resolved simula-

ions (already published, see [9] ) of the same, fully periodic sys-

ems. Next to average relative velocities of particles with respect

o liquid (i.e. superficial slip velocities), an important demand of

he particle-unresolved simulations is that they are able to repro-

uce the velocity fluctuation levels (of particles and liquid) as ob-

erved in the benchmark particle-resolved simulations. This is not

nly important from a fundamental point of view, it also is from

 (industrial crystallization) practical point of view: Fluctuations

etermine collisions between particles, and are highly influential

o mass transfer between liquid and solid as e.g. occurs in reac-

ive crystallization, or when crystals grow or dissolve in the liquid

hase. 

This paper is organized in the following order: First the fully

eriodic sedimentation configuration is discussed. We then give a

rief account of the fully resolved simulation method that provides

he benchmark results for assessing the much less ( d = O (�) )

esolved (“particle-unresolved”) simulations. The methodology for

article-unresolved simulations is discussed and subsequently as-

essed in detail. Before summarizing the results in the Conclusions

ection, we give an outlook on applying our particle-unresolved

umerical approach to agitation of a dense solid liquid suspension

n a mixing tank. 

. Flow system and simulation method 

.1. Flow system 

The system is a three-dimensional periodic domain of size nx ×
y × nz with nx = 2 ny = 2 nz. It contains a Newtonian liquid with

ensity ρ and kinematic viscosity ν , and solid particles. The solid

articles are monosized spheres with diameter d and density ρs 

arger than ρ . If there are N spheres, the solids volume fraction is

= N 

πd 3 

6 nx ·ny ·nz . This allows for the definition of the mixture den-

ity ρm 

≡ φρs + ( 1 − φ) ρ . A gravitational acceleration g acts in the

egative x -direction: g = −g e x . The net gravity force (gravity mi-

us buoyancy) on each sphere has a magnitude g( ρs − ρm 

) πd 3 / 6 =
(1 − φ)( ρs − ρ) πd 3 / 6 and acts in negative x -direction. To have a

ero overall force on the periodic domain – and thus prevent the

omain as a whole from accelerating – a body force (force per unit

olume) in positive x -direction of f = g( ρm 

− ρ) e x is applied to the

iquid [10] . 

One way to characterize the system above is through the fol-

owing set of dimensionless numbers: solids volume fraction φ,

ensity ratio ρs /ρ , aspect ratio d/nx , and the single-particle set-

ling Reynolds number Re ∞ 

≡ u ∞ 

d/ν with u ∞ 

the settling veloc-

ty that we determine from a force balance over a single par-

icle in an infinite domain g( ρs − ρ) πd 3 / 6 = 

1 
2 C D ρu 2 ∞ 

πd 2 / 4 . For

he drag coefficient C D the Schiller-Naumann correlation [11] C D =
4(1 + 0 . 15 Re 0 . 687 ) / Re is applied. 

.2. Resolved simulations 

In previous papers [9,10,12] we have studied systems like this

y means of particle-resolved simulations. In such simulations the

rid on which the liquid flow is solved is much finer than the size

f the particles (typically the diameter d spans 12 to 24 lattice

pacings). This allows to explicitly impose the no-slip boundary

ondition on each spherical solid-liquid interface. The forces and
orques on each particle that result from this procedure are used

o update particle locations and velocities (translational as well as

otational). These moving no-slip conditions for the liquid provide

n intimate coupling between liquid and solids dynamics. Details

f the particle-resolved simulations, their methodology and perfor-

ance, can be found in the papers referred to above. 

.3. Unresolved simulations 

The results of particle-resolved simulations will be confronted

ith those of particle-unresolved simulations. Such unresolved

imulations are the focus of this paper. As explained in the intro-

uction, we will be dealing with dense suspensions ( φ > 0 . 2 ) in an

ulerian–Lagrangian manner. The Eulerian grid is uniform and cu-

ic with grid spacing �. The spherical particles that move through

his grid have a diameter comparable to �; the range of diameters

nvestigated is 0 . 75 ≤ d/ � ≤ 2 . 

On the Eulerian grid the continuity equation and momentum

alance for the liquid phase [10] are solved: 

∂ 

∂t 
( ρφc ) + ∇ · ( ρφc u ) = 0 (1) 

∂ 

∂t 
( ρφc u ) + ∇ · ( ρφc uu ) = φc ∇ · π + f + f s (2)

ith φc ≡ 1 − φ the continuous phase (liquid) volume fraction, u

he interstitial liquid velocity, π the liquid’s stress tensor, and f s 
he force per unit volume the solid particles exert on the liquid.

qs. (1) and (2) are rewritten in the following form 

∂ρ

∂t 
+ ∇ · ( ρu ) = − ρ

φc 

[
∂ φc 

∂t 
+ u · ∇ φc 

]
(3) 

∂ 

∂t 
( ρu ) + ∇ · ( ρuu ) −∇ · π− f + f s 

φc 
= − ρ

φc 

[
u 

∂ φc 

∂t 
+ uu · ∇ φc 

]

(4) 

Our standard, single-phase lattice-Boltzmann procedure 

13,14] is capable of solving Eq. (3) and (4) if φc = 1 every-

here which implies that the right-hand sides of Eqs. (3) and

4) are equal to zero (and also f s = 0 in Eq. (4) ). For solving

ultiphase flow problems, the single-phase procedure has been

xtended with source terms: A mass source term equal to the

ight-hand side of Eq. (3) , and a momentum source term equal

o the right-hand side of Eq. (4) [15] . Evaluation of these source

erms requires knowledge of the continuous phase volume fraction

eld φc , its gradient ∇ φc , and its time derivative ∂ φc / ∂t . 

The dynamics of the spherical solid particles is governed by

ewton’s equations of motion 

s 
π

6 

d 3 
d u p 

dt 
= F h + F c − π

6 

d 3 ( ρs − ρm 

) g e x (5) 

s 
π

60 

d 5 
d ω p 

dt 
= T h + T c (6) 

d x p 

dt 
= u p (7) 

ith u p , ω p , x p the linear velocity, angular velocity, and centre lo-

ation of a spherical particle respectively (note that – because we

re dealing with spheres – there is no need to track the angular

location” of the particles); F h and T h the hydrodynamic force and 

orque on a particle, and F c and T c the contact force and torque

ue to particle-particle collisions and lubrication effects. 
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Fig. 1. Base-case. Instantaneous cross sections through the simulation domain. 

Liquid velocity vectors, particle locations, and particle speeds. Gravity points to 

the left. The average liquid velocity is zero. Top panel: resolved simulation with 

d = 12� showing the full resolution of the liquid flow; middle panel: the same 

realization with now the liquid flow filtered to the same resolution as the bottom 

panel; bottom panel: unresolved simulation with d = 2�, and λ = 1 . 5 d. The 

reference vector (see bottom, left) applies to all three panels. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
2.4. Modelling assumptions and procedures 

Implementation of Eqs (3)–(7) in a numerical framework re-

quires a great many assumptions and modelling steps, the sensi-

tivity of which generally needs to be investigated. The focus of the

current research is on the following three aspects: (1) Determi-

nation of the volume fractions φ and φc and their temporal and

spatial derivatives on the Eulerian grid based on the size and lo-

cations x p of individual particles; (2) relating the (Lagrangian) hy-

drodynamic forces F h Eq. (5) acting on a particle to the (Eulerian)

body force f s Eq. (4) ; (3) the size of the particles relative to the

grid, i.e. the ratio d/ �. The first two aspects require choices for

the way in which particle properties are distributed over the Eule-

rian grid, specifically the spatial extent of such a distribution. It is

anticipated that this extent is decisive for the level of velocity fluc-

tuations (of liquid and solids) in the sedimenting suspension. This

can be appreciated given that in the hypothetical case of hydrody-

namic forces being distributed uniformly over the entire periodic

domain, and the solids volume fraction being considered uniform

over the entire domain, the velocity fluctuation levels of liquid and

solid would become zero. The more focused (i.e. the narrower) one

distributes Lagrangian properties over the Eulerian grid (and vice

versa), the more local flow structures appear and the higher fluc-

tuation levels one expects. The width of the distribution process

is controlled by mapping functions [16,17] which are discussed in

more detail below. 

A major simplification in this work is that the only hydrody-

namic force we will be considering is the drag force ( F h = F D ). For

gas-solid systems it is well established that drag is the dominating

hydrodynamic force; for liquid-solid systems – with density ratios

of order one – this does not necessarily need to be the case. An

additional simplification is that drag is assumed to only depend on

the solids volume fraction, and on the Reynolds number based on

the slip velocity Re = ( 1 − φ) | u − u p | d /ν . We thus do not include

terms in the drag expression that depend on the granular temper-

ature (as e.g. in [18] ). 

In the literature there is extensive activity and debate about the

manner in which the drag force depends on φ and Re. Much of the

recent work is motivated by applications of gas-solid flow (e.g. gas-

fluidization, pneumatic conveying) where Stokes numbers are high

due to the high solid over fluid density ratios. In such cases, the

fluid flow time scales are much shorter than the time scales over

which particle configurations change so that one can view drag as

the result of the gas flowing through static (and random) assem-

blies of particles. Nowadays fully resolved simulations of fluid flow

through assemblies of static particles are standard routine [19–

22] and a great many correlations have been proposed based on

such simulations. As shown by [23] , the situation for liquid-solid

systems that have low to intermediate Stokes numbers is very dif-

ferent. For liquid-solid systems the prevailing approach is the one

based on the seminal experiments of solid particles settling in liq-

uids by Richardson and Zaki [24] . Refinements and amendments

are e.g. due to [25,26] . In this school of thought, hindered set-

tling is described as ( 1 − φ) | u − u p | / u ∞ 

= ( 1 − φ) N with a well-

established value for the exponent N at low Reynolds numbers:

N = 4 . 65 [26] , and relatively weak dependencies of N on Re [26] or

Re ∞ 

[9] for moderate Reynolds numbers. The fully resolved bench-

mark simulations [9] , that we will be comparing our unresolved

simulations with, largely confirm the validity of an exponential

hindered settling scaling. 

The drag force relation that is the consequence of a Richardson-

Zaki type approach can be written as 

F D = 3 πρνd ( u − u p ) 
(
1 + 0 . 15 Re 0 . 687 

)
( 1 − φ) 

−β
(8)

with β = N − 2 and a Schiller-Naumann type [11] account for finite

Reynolds number drag. For (again) simplicity, and since this paper
s focusing on the consequences of modelling choices on velocity

uctuations, less on average velocities, the value of the exponent

as been set to the fixed value of β = 2 . 65 , i.e. independent of Re.

Mapping – as alluded to above – enters Eq. (8) via determina-

ion of u (which is a measure for the liquid velocity around the

article location) and φ (which is a measure for the solids vol-

me fraction in the vicinity of the particle). The velocity u enters

q. (8) directly and also via Re. Starting point for our mapping pro-

ess is a “clipped fourth-order polynomial” [17] μ(ξ ) which shows

ome resemblance to a Gaussian distribution but is computation-

lly more efficient than a Gaussian. In one dimension: 

( ξ ) = 

15 

16 

[
ξ 4 

λ5 
− 2 

ξ 2 

λ3 
+ 

1 

λ

]
for − λ ≤ ξ ≤ λ

( ξ ) = 0 for | ξ | > λ (9)

The local average at location κ over an averaging length scale

 λ of a one-dimensional function α(ξ ) is then determined as
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Fig. 2. Base-case. Instantaneous cross sections through the simulation domain. Liq- 

uid velocity vectors, particle locations, and particle speeds. Gravity points to the 

left. Unresolved simulations. Top: d = 2� (same figure as Fig. 1 , bottom); middle 

d = �; bottom: d = 0 . 75�. All three cases have λ = 1 . 5 d. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 3. Base-case; particle-resolved simulations. Time series of the volume-averaged veloc

(For interpretation of the references to colour in this figure legend, the reader is referred 
 α(κ) 〉 λ = 

∫ λ
−λ μ( ξ − κ) α(ξ ) dξ . In our simulations, α(ξ ) is de-

ned on an equidistant grid ξi with spacing � by values αi , and

e approximate α(ξ ) in the integrant as a stair step function, i.e.

(ξ ) = αi for ξi − 1 
2 � ≤ ξ < ξi + 

1 
2 �. 

Such mappings can be readily extended to three dimensions: 

 

α( κ) 〉 λ = 

∫ λ

−λ

∫ λ

−λ

∫ λ

−λ
μ( ξ1 − κ1 ) μ( ξ2 − κ2 ) μ( ξ3 − κ3 ) α( ξ ) 

× d ξ1 d ξ2 d ξ3 (10) 

Eq. (10) is used to determine the liquid velocity u and solids

olume fraction φ from grid values in the expression for the drag

orce Eq. (8) . We will check the impact filter length λ has on the

imulation results. 

An inverse mapping operation is required to couple back the

ydrodynamic force −F D to the liquid. This involves a distribution

f the force over grid points surrounding a particle. A similar op-

ration applies for determining the solids volume fraction on the

rid: the volume of each particle will be distributed over surround-

ng grid cells. 

Given the discrete nature of α(ξ) , Eq. (10) can be written as

 α(κ) 〉 λ = 

∑ 

i 

∑ 

j 

∑ 

k ηi jk αi jk with i, j, k discrete coordinates in x , y ,

nd z -direction respectively, and ηi jk coefficients following from

ntegrating the mapping function. The coefficients ηi jk are only

on-zero on grid points within a volume of ( 2 λ) 3 around κ, and
 

i 

∑ 

j 

∑ 

k ηi jk = 1 since for α uniform 〈 α〉 λ = α. 

The same coefficients ηi jk are used to distribute particle prop-

rties to the grid. The drag force on one of the particles ( F D ) con-

ributes to the body force on the fluid f s (see Eq. (4) ) in grid cell

, j, k by an amount − 1 
�3 F D ηi jk ; that same particle contributes to

he solids volume fraction in cell i, j, k by an amount πd 3 

6 �3 ηi jk . For

he total interaction force and the total solids volume fraction in

ach grid cell ( i, j, k ) contributions from all particles need to be

dded up. 

Applying the lattice-Boltzmann method for incompressible flow

equires that liquid velocities should stay well below the speed of

ound [27] . This implies that – measured in lattice units (lattice

istance per time step; �/ �t ) – liquid speeds need to be lim-

ted to order 0.1 (liquid travels typically less than 0 . 1� per �t).

s a result, particle speeds are limited to order 0.1 as well. To-

ether with the distribution through mapping functions of solids

olume over clusters of lattice cells around particles this leads to a

moothly varying (in three-dimensional space and time) solids vol-

me fraction field φ( x, y, z; t ) and thus liquid volume fraction field
c ( x, y, z; t ) which are amenable to numerical differentiation to
ity fluctuation levels as well as of the slip velocity u s . Left: particles; right: liquid. 

to the web version of this article.) 



270 J.J. Derksen / Computers and Fluids 176 (2018) 266–275 

Fig. 4. Base-case; unresolved simulations. Time series of the volume-averaged velocity fluctuation levels as well as of the slip velocity u s . Left: particles; right: liquid. All 

results obtained for λ = 1 . 5 d. Decreasing resolution from top to bottom: d = 2�, �, 0 . 75� respectively. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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determine ∇ φc , and ∂ φc / ∂t , as encountered in Eqs. (3) and (4) . We

use central differences for ∇ φc , and an Euler backward method for

∂ φc / ∂t . 

2.5. Particle dynamics modelling 

Now we turn to particle dynamics, i.e. the way Eqs. (5) –(7) are

dealt with. In Section 2.3 it was already explained how F h (equal

to F D ) was determined. The contact force F c consists of two parts:

soft-sphere collision forces F ssc and lubrication forces F lub . Both

forces are assumed to be radial forces, meaning that they act on
he line connecting the two sphere centres involved in the contact.

e will not be considering tangential contact forces and contact

orques, meaning that T c = 0 in Eq. (6) . 

For determining F ssc , overlap distances δ of spheres are de-

ected. Once two spheres overlap, they are given a (equal and op-

osite) linear, elastic repulsive force with magnitude | F ssc | = kδ.

he spring constant k = π2 m / t 2 c ( m = πρs d 
3 / 6 is the mass of a

article) is largely a numerical parameter and is chosen such that

 typical collision time is 10 time steps t c = 10�t [23] . In a typi-

al simulation this results in maximum overlapping distance of not

ore than 10 −2 d. This approach leads to elastic (restitution coeffi-

ient e = 1), smooth (i.e. frictionless) collisions between particles. 
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Fig. 5. Base-case; unresolved simulations. Time-averaged values for (from left to right) slip velocity, liquid velocity fluctuations, and particle velocity fluctuations as a function 

of mapping function width λ. The different symbols signify particle size relative to grid spacing (as indicated). Black symbols relate to x -components, red and blue in the 

center panel to y and z respectively, red in the right panel to y and z averaged. The horizontal lines are resolved base-case results. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Lubrication forces are the result of relative velocity between

losely spaced particles. When two particles approach, a liq-

id film between them needs to be squeezed out which brings

bout a repulsive force between the particles, for similar rea-

ons, an attractive force arises when two particles separate. Ra-

ial lubrication forces are included in the simulations. The low-

eynolds number, analytical expression for the magnitude of the

adial lubrication force between two equally sized spheres is

 lub = − 3 
8 πνρd 2 �u p , r /s with s the distance between the two par-

icle surfaces, and �u p , r the relative velocity of the two parti-

les in radial direction [28] . In the simulations we have limited

he distance over which the lubrication force acts to s < d/ 10 and

hanged the expression to F lub = − 3 
8 πνρd 2 �u p , r ( 

1 
s − 10 

d 
) [10] . To

void divergence when particle touch ( s = 0) the lubrication is sat-

rated, i.e. does not increase anymore upon approach, if s < 0 . 01 d

10] . 

The hydrodynamic torque ( T h in Eq. (6) ) on a particle is de-

ermined from the vorticity of the liquid in direct vicinity of

he particle ( ω) and the rotation rate of the particle ( ω p ): T h =
ρνd 3 ( 1 2 ω − ω p ) . This is a creeping flow approximation. The rota-

ion of the particle is not coupled back to the liquid. Since the rota-

ion does also not play a role in particle-particle collisions ( T c = 0 ),

article rotation has no effect on the overall dynamics of the sus-

ension. We do solve Eq. (6) as a matter of completeness. 

The equations of motion Eq. (5) - (7) are solved by means of a

plit derivative time integration which has been discussed in detail

n [29] . 

. Results 

.1. Base-case 

First a base-case will be introduced. This allows us to explain

ow the simulations results were analysed and will give us the

pportunity to give visual impressions of the flow system. The di-

ensionless parameters of the base case are φ = 0 . 350 , ρs /ρ = 4 . 0 ,

e ∞ 

= 1 . 85 , and d/ nx = 1 / 24 . 

The particle-resolved simulation of this case had a spatial reso-

ution such that d = 12�. Results of this case, that also have been

resented elsewhere [9] , are compared to unresolved simulations

ith particle diameters of d = 2�, �, and 0 . 75� respectively. In

he unresolved simulations the width of the mapping function has

initially – been fixed to λ = 1 . 5 d as e.g. suggested by [17] . In

igs. 1 and 2 we show cross sections through the flow system. To
acilitate comparison, the velocities have been shifted so that all

ases shown in Figs. 1 and 2 have volume-averaged liquid velocity

n the x -direction equal to zero. 

In Fig. 1 , resolved and unresolved simulations are compared. In

he resolved simulation shown in full resolution (top panel), the

nteraction between liquid and solid is clearly visible. One observes

iquid squeezing through the open space between the particles,

nd the liquid flow being deflected by the particles. Each vector

e show in the middle panel of Fig. 1 is the average of a cluster

f 6 × 6 × 6 vectors of the fully resolved flow, i.e. we have spatially

ltered the fully resolved flow to a resolution that is the same as

hat of an unresolved simulation with d = 2�. Results of the lat-

er are shown in the lower panel of Fig. 1 . The clear interaction

etween liquid and solid, still visible in the filtered resolved field,

s to a large extent lost in the unresolved field. This is not a sur-

rise given the schematizations in the unresolved simulations as

iscussed above. Comparing middle and lower panel more gobally,

ne sees similar levels of variation of liquid velocities and some-

hat higher absolute particle velocities (more red particles) in the

ower panel. Fig. 2 shows comparisons among unresolved simula-

ions, with the particle size over grid size decreasing from top to

ottom. 

It is clear that much of the flow physics captured in the

article-resolved simulations is lost in the particle-unresolved sim-

lations. In resolved simulations, hydrodynamic interactions be-

ween particles are largely captured (only for particles that are

ery close, lubrication modelling enters). In unresolved simula-

ions, these interactions are parameterized in a drag force correla-

ions that involves φ Eq. (8) and also the interactions enter through
c = 1 − φ that is contained in the liquid mass and momentum

alances Eqs. (3) and (4) . Note that in the current approach only

he drag force is included, other type forces will certainly con-

ribute further to interactions. Also note that as a result of map-

ing, φ is a spatial average over a length scale 2 λ which usually

quals a few particle diameters. 

The pragmatic approach we will be following is to try and

stablish how sensitive the outcomes of unresolved simulations

f settling particles are with respect to the two main numerical

arameters we have: d/ � and λ/d . With regards to the outcomes,

e will focus on the superficial slip velocity ( 1 − φ) | u − u p | and

n the velocity fluctuations in the x (direction of gravity) and y

nd z directions of particles as well as liquid. For the base-case

e first establish these quantities for the particle-resolved

imulation. Fig. 3 shows quasi-steady time series of the
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Fig. 6. Particle-resolved versus particle-unresolved simulations. From left to right: u s , u ′ px , and u ′ pyz = 

1 
2 
( u ′ py + u ′ pz ) respectively. Increasing Re ∞ from top to bottom as 

indicated. The squares indicate resolved simulations; triangles is unresolved. In all simulations d = � and λ = 1 . 5 d. 
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Fig. 7. Initial situation for solid suspension simulation. Spherical particles (all with 

diameter d ) fill up the lower portion of a square tank with side length W and height 

H = 0.83 W . The impeller has a diameter D = 0 . 4 W = 43 . 6 d. The number of particles 

is such that the overall, tank-averaged solids volume fraction is φ = 0 . 138 . 
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olume-averaged quantities u s = 〈 ( 1 − φ) | u − u p | 〉 , u ′ x =
 

〈 u 2 x 〉 − 〈 u x 〉 2 , u ′ y = 

√ 〈 u 2 y 〉 , u ′ z = 

√ 〈 u 2 z 〉 , u ′ px = 

√ 

〈 u 2 px 〉 − 〈 u px 〉 2 ,
 

′ 
py = 

√ 〈 u 2 py 〉 , u ′ pz = 

√ 〈 u 2 pz 〉 with the brackets 〈〉 indicating volume

veraging. There is a clear anisotropy in the velocity fluctuations,

ith the x -velocities fluctuating stronger by a factor of approx-

mately two (for liquid as well as for particles). The particles

uctuations being somewhat weaker than the liquid fluctuations

s due to density of the particles being four times higher than the

iquid density. The slip velocity is at a level of u s ≈ 0 . 135 u ∞ 

which

emonstrates the hindered settling effect [24] . 

Time series of unresolved particle simulation – counterparts of

he particle-resolved time series in Fig. 3 – for a mapping function

idth λ = 1 . 5 d are given in Fig. 4 . The general observations are

imilar as for the resolved simulations: x -fluctuations stronger than

 and z fluctuations; liquid velocity fluctuations stronger than par-

icle velocity fluctuations. Spatial resolution, as expressed by the

atio d/ � has significant impact on the results. Fluctuation levels

ecrease with decreasing resolution. Also the difference between

iquid and solids fluctuations reduces with decreasing resolution. 

The slip velocity is remarkably stable in all simulations shown

n Fig. 4 . It is consistently (some 10%) higher than in the resolved

imulation: u s ≈ 0 . 15 u ∞ 

, almost independent of the spatial reso-

ution. As we will see shortly, the u s ≈ 0 . 15 u ∞ 

also is hardly de-

endent on the width λ of the mapping function (if λ > d). In the

xtreme case of uniform mapping ( λ → ∞ ) we find from the sim-

lations u s = 0 . 153 u ∞ 

. The latter value is consistent with the use

f Eq. 8 as the expression for the drag force. This consistency has

een detailed in Appendix A . 

The simulation data have been further reduced to time aver-

ges taken over quasi-steady portions of the simulations. Still for

he base-case, these data are presented in Fig. 5 . The slip veloc-

ty shows only a weak dependence on the numerical parameters

/ � and λ/d if λ/d > 1 . The reduction of slip velocity at λ/d = 1

t the lower resolutions is the result of the now very focused re-

ction force acting from particles to liquid which locally strongly

rags down the liquid. 

Qualitatively, the general observations of velocity fluctuations

n the resolved simulations are recovered by the unresolved sim-

lations: Fluctuations in gravity direction are a factor of approxi-

ately two larger than in the lateral directions, and liquid fluctua-

ions are stronger compared to particle fluctuations. Also the order

f magnitude of the fluctuations in the unresolved simulations cor-

esponds to those in the resolved simulations. 

There is a clear trend with the numerical parameters though.

he strongest is the one with λ/d . Fluctuations decrease with in-

reasing λ/d . This is to be expected, the wider the influence of one

article is felt, the more it will behave in coherence with its neigh-

ouring particles (and – as we argued above – if λ/d goes to in-

nity the fluctuations will disappear). According to Fig. 5 , the best

greement between fluctuations in unresolved and resolved simu-

ations is reached for λ/d in the range 1.0 to 1.5. It is interesting to

ote that Capecelatro and Desjardins [30] recommend a resolution

t the level of λ/d = 3 . 

Given the sensitivity of the slip velocity at λ/d = 1for the res-

lution ( d/ �), it was decided to continue working with λ/d = 1.5

nd to study the performance of unresolved simulations with this

etting for a range of solids volume fractions and Re ∞ 

values. 

.2. Slip velocity and particle fluctuation levels 

In Fig. 6 the results of the parameter study have been sum-

arized. Since the trends in particle and liquid velocity fluc-

uations was the same, only particle fluctuations levels are re-

orted. The downward trend of all variables on display with an

ncreasing solids volume fraction is no surprise and can be sum-
arized as more hindrance between particles for denser suspen-

ions. The agreement between resolved and unresolved simulations

e consider fair for the lower part of the Reynolds number range

tudied. For Re ∞ 

≥ 10 , however, we see that the unresolved simu-

ations strongly deviate from the resolved ones. Specifically at low

the fluctuations come out too high in the unresolved simula-

ions. 

.3. A sample mixing tank result 

In order to give a sense of the potential of the above described

umerical approach to agitated solid-liquid systems, we here give

 brief account of simulations of a particle suspension process in a

ixing tank. The tank, as displayed in Fig. 7 , has the same geome-

ry as the one we previously used for particle-resolved simulations

31] . The “pitched-blade” impeller rotates such that it pumps liq-

id in the downward direction. The liquid flow in the tank is char-

cterized by a Reynolds number that is defined as Re mx ≡ n D 

2 /ν
with D the impeller diameter, and n its angular velocity in rev-

lutions per unit time) and has a value of 1440. Without solid

articles present this would be a mildly turbulent flow. In this

ank we place N = 290,0 0 0 solid, spherical particle with a diam-

ter d = 0 . 0229 D . The overall solids volume fraction of this system

s φ = Nπd 3 / ( 6 W 

2 H ) = 0 . 138 . The density ratio is ρs /ρ = 2 . 5 . A

seful dimensionless parameter that to a significant extent char-

cterizes the suspensions process is a modified Shields number

30] θ = ρn 2 D 

2 / [ gd( ρs − ρ) ] . It is the ratio of inertial stress (that

cales with ρn 2 D 

2 and is the mechanism responsible for suspend-

ng the particles) and net gravity. In the simulation presented here

= 48 . 

The sequence of instantaneous realizations in Fig. 8 reveals

ome interesting features of this solid-liquid flow. In the first place

t shows – in the initial stages – the way the stream of liquid

oming off the impeller in the downward direction is eroding the

ed of particles. In the later stages a cone of particles forms un-

er the impeller. This cone is the result of the particles influencing

he overall circulation structure in the tank (a solid-to-liquid cou-

led phenomenon): the liquid stream generated by the impeller is

eflected in outward radial direction by the presence of a dense



274 J.J. Derksen / Computers and Fluids 176 (2018) 266–275 

Fig. 8. Start of the solids suspension process in the mixing tank. Only the particles with their center in a vertical slice with thickness 10 d are displayed. The colours in the 

plane perpendicular to the slice indicate liquid speed relative to the impeller tip speed v tip . The snapshots are 1, 4, 16 and 40 impeller revolutions after starting the impeller 

(from panel (a) to (d) respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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packing of particles under the impeller. This stream is therefore

not able to truly mobilize and suspend the particles in the cone.

The stream does continuously erode the surface of the cone. 

Experiments are very much needed to assess the level of re-

alism of these types of simulations. Matching the refractive index

of liquid and (glass) particles would allow for performing experi-

ments that look through the suspension with optical methods. 

5. Conclusions 

In this paper we have described and subsequently assessed

an Eulerian–Lagrangian simulation method for solid-liquid suspen-

sions. A typical feature is that the method allows for the parti-

cle size to be of the same order of magnitude as the Eulerian grid

spacing. Additionally, the assessment was focused on the – from a

practical point of view – very relevant range of high solids volume

fractions ( φ > 0 . 30 ) and on velocity fluctuations. 
By comparing with fully resolved simulations, it was concluded

hat a reasonable choice for the width of the mapping function

hat facilitates two-way communication between the particles and

he grid is one and a half particle diameter ( λ/d = 1.5). 

Results between resolved and unresolved simulations show fair

greement in terms of superficial slip velocity between solid and

iquid and in terms of particle velocity fluctuation levels except for

e ∞ 

≥ 10 . At that stage, the unresolved simulations tend to over-

redict slip velocities as well as velocity fluctuations. One route to

nvestigate this further is by considering more sophisticated drag

elations that e.g. include a Reynolds number based on granular

emperature [18] or the Stokes number [23] . If this would improve

lip velocity predictions, it might at the same time improve fluctu-

tion levels. The reason for this is that the over-prediction of fluc-

uations and slip velocity happen in the same part of the ( φ, Re ∞ 

)

arameter space. Particles moving with less slip through the liquid

ill reduce local forces on the liquid and thereby might reduce liq-

id and particle fluctuations. 
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ppendix A 

Here we discuss hindered settling velocity ratios in case map-

ing is uniform, i.e. λ → ∞ . The force balance over a single particle

n the x -direction is 

 ( ρs − ρ) 
π

6 

d 3 = 3 πρνd u ∞ 

(
1 + 0 . 15 Re 0 . 687 

∞ 

)
(A.1) 

The force balance over one particle in a swarm of particles in

 -direction is 

 ( ρs − ρm 

) 
π

6 

d 3 = 3 πρνd | u − u p | 
(
1 + 0 . 15 Re 0 . 687 

)
( 1 − φ) 

−β

(A.2) 

With ρs − ρm 

= ( 1 − φ)( ρs − ρ) and u s = ( 1 − φ) | u − u p |
q. A.2 can be written as g( ρs − ρ) π6 d 

3 = 3 πρνd u s (1 +
 . 15 Re 0 . 687 ) ( 1 − φ) −β−2 . Dividing this by Eq. A.1 leads to 

u s 

u ∞ 

= 

Re 

Re ∞ 

= ( 1 − φ) 
β+2 

(
1 + 0 . 15 Re 0 . 687 

∞ 
)

(
1 + 0 . 15 Re 0 . 687 

) (A.3) 

In the base case φ = 0 . 35 and Re ∞ 

= 1 . 85 . Solving this non-

inear equation in Re (with β= 2.65) gives u s 
u ∞ 

= 

Re 
Re ∞ 

= 0 . 153 which

lso was the result of a (unresolved) simulation with λ → ∞ . 
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