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Abstract

We numerically study how rigid solid cylinders with a length over diameter aspect

ratio of 10 settle through suspensions consisting of uniformly sized solid spheres and

Newtonian liquid. We identify regimes with preference for horizontal settling and

vertical settling of the cylinders dependent on the overall solids volume fraction

(in the range of 0–0.58) and the Archimedes number of the cylinders. These insights

we use to interpret the behavior of fluidized suspensions consisting of mixtures of

spheres and cylinders with an emphasis on cylinder orientation distributions and slip

velocities between solids and liquid phase. The three-dimensional and time-

dependent simulations explicitly resolve the solid-liquid interfaces by applying an

immersed boundary method contained in a lattice-Boltzmann flow solver.
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1 | INTRODUCTION

Sedimentation and solid-liquid fluidization are widely studied topics

given their relevance in natural and engineered processes. Settling and

fluidization velocities and their relation to particle and fluid properties

and solids loading impact process time and process performance. Rela-

tive velocity (slip) between liquid and solids determine heat and mass

transfer over (solid-liquid) interfaces. Not only average velocities but

also velocity fluctuations are important in this respect, with the fluctua-

tions induced by the randomness of particle assemblies and possibly

turbulence. Numerical simulations of flow phenomena at length scales

comparable to particle size are a way to probe how the microstructure

of suspensions and associated momentum and mass transfer mecha-

nisms depend on process conditions and (solid and liquid) material prop-

erties. Such computational activities applied to suspensions containing

spherical particles have led to important insights on drag forces and

particle-related (collisional and streaming) stress.1–4 Given various types

of applications, but also given the additional (orientational) degrees of

freedom that give rise to interesting flow phenomena, investigating

non-spherical and non-uniform collections of particles is relevant.

When it comes to applications, one process we have in mind is

biomass conversion. Conversion of biomass (gasification, pyrolysis)

frequently uses fluidized bed reactors to achieve homogeneous

conditions for high levels of heat transfer and intensive mixing.5

Fluidizability of biomass, which in general is a heterogeneous,

fibrous material, is enhanced by mixing with sand.6,7 Another

application that has our interest is processing of materials for

lithium-ion battery electrodes8,9 that involves dispersing (among

more) cylinder-shaped particles at very high volume fractions in a

continuous carrier liquid. From the perspective of such applica-

tions it is worthwhile to study the interactions between fibers,

spherical particles, and the continuous phase fluid they are
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immersed in under fluidized conditions. In this article, we do this

by means of numerical simulations.

The aim is to achieve insight in the behavior of the cylinders, their

orientation relative to the direction of gravity, and their relative veloc-

ity with respect to the spheres and the fluid. In our previous article on

the topic of co-fluidization of cylinders and spheres,10 the focus was

on the effect of the length over diameter aspect ratio of the cylinders

(varied between 4 and 10) and the relative amount of cylinder volume

at a fixed overall solids volume fraction of 0.4. It was shown that the

cylinders “stir” the system; the more cylinders, the stronger the veloc-

ity fluctuations. In the present article, we study the effect of solids

volume fraction on the orientation of tall (length over diameter ratio

10) cylinders. It shows, quite remarkably, the tendency of individual

cylinders to orient horizontally in lean spheres suspensions (as the cyl-

inders would also do in a single-phase system), and vertically in dense

spheres suspensions with ramifications for co-fluidization of cylinders

and spheres.

First, in this article, we consider a single cylinder in a bed of

spheres and fluid with the cylinder settling through the spheres sus-

pension and study its orientation and settling speed as a function of

the solids volume fraction. Second, we progressively add more cylin-

ders so as to also probe the mutual interaction between cylinders

while being co-fluidized with the spheres.

The three-dimensional and time-dependent simulations explicitly

account for particle shape. We use the lattice-Boltzmann method11 to

solve for the fluid flow on a lattice with a spacing much finer than the

sizes of the particles and couple this to an immersed boundary

method12 to explicitly impose no-slip at the particle surfaces. This

makes the simulations computationally expensive on a per-particle

basis. We thus are only able to consider small-scale, mesoscopic sys-

tems containing of the order of 104 particles and use tri-periodic

boundary conditions to make the systems representative samples

contained in a much larger fluidized bed.

This article has been organized as follows. First the flow condi-

tions are defined in terms of dimensionless numbers. The numerical

procedures section that follows gives an overview of the methodol-

ogy used for the simulations that we have in place, with references to

previous articles that contain the details of the methodology. Then

the physical parameter space that has been covered is described, and

so are the numerical settings such as the resolution of the simulations

in space and time. Section 5 consists of two parts: first the part on a

single cylinder settling through a bed of fluidized spheres, second the

part on co-fluidization of cylinders and spheres. A summary of the

main findings and a research outlook conclude the article.

2 | FLOW SYSTEMS

The flow domains are three-dimensional with periodic boundary con-

ditions in all three coordinate directions. Their size is denoted as nx�
ny�nz in x, y, and z-direction respectively. Gravity acts in the negative

z-direction: g¼�gez with ez the unit vector in z-direction. The domain

contains Newtonian fluid with density ρ and kinematic viscosity ν. It

also contains one or more solid, rigid cylinders with length ℓ, diameter

d, and density ρp , and it contains solid spheres all having the same

diameter d and density ρp. Note that throughout this article the diam-

eter of the spheres is the same as the diameter of the cylinder(s) and

that spheres and cylinders have the same density. The overall solids

volume fraction is denoted as ϕh i, the cylinders volume fraction is

ϕch i, and their ratio ϕch i= ϕh i, which is the volume contained in cylin-

ders over the total solids volume, is an input parameter that has been

varied. The Archimedes number is defined as Ar¼ γ�1ð Þgd3=ν2
with γ¼ ρp=ρ.

With a fully periodic simulation domain we must make sure the

overall system is force-balanced. To do so, and with the particles feel-

ing net gravity in the negative z-direction, we apply a body force on

the fluid in the positive z-direction: f¼ ϕh i γ�1ð Þρgez.4 In fluidization

terms, this body force is the vertical pressure gradient that drives the

fluidization process.

3 | NUMERICAL PROCEDURES

We use a variant of the lattice-Boltzmann (LB) method to solve for

the fluid flow.13,14 The lattice is uniform and cubic with spacing Δ.

The flow solutions evolve in time with a time step Δt. An immersed

boundary method (IBM) has been used to represent the presence of

the solid particles in the fluid.15 In this method, solid particle surfaces

are covered by closely spaced sets of marker points with nearest

neighbor spacing of 0:5Δ to 0:7Δ. At the marker points, no-slip is

imposed by locally applying forces on the fluid such that the fluid

velocity matches the solid surface velocity. The distribution of forces

over the surface of each particle is integrated so as to determine the

total hydrodynamic force and torque on that particle.

In addition to hydrodynamic forces, the particles feel close-range

interaction forces. Identifying contact between non-spherical particles

is more elaborate than for spheres. See, for example, the analytical

approach for contact between cylinders as proposed by Kodam

et al.16 In this article, a numerical approach has been followed where

we identify close proximity of two particles using the same marker

points as the ones of the IBM.17 There are two stages in close-range

interaction. In the first stage, when the spacing between two marker

points on two different particles falls below Δ, a lubrication force is

activated.18 This is because at that stage the lattice cannot resolve

the flow in the narrow space between the two particles anymore. The

lubrication force has a radial and a tangential component, each of

which is proportional to relative velocity between the particles in

radial and tangential direction at the contact location. The radial pro-

portionality constant for the lubrication force has been derived from

the analytical expression for creeping flow between equally sized

spheres with diameter d19 but is also used for sphere-cylinder

(SC) and cylinder-cylinder (CC) contacts given the lack of analytical

expressions or other types of correlations for lubrication at such con-

tacts. A reason for this choice is that the overwhelming majority of

contacts in the simulations is sphere-sphere. Tangential lubrication is

much weaker than radial lubrication19 which is accounted for by
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making their proportionality constant one order of magnitude smaller

than the radial one.17 Further details on contact identification and

modeling are given in Ref. [17].

We have checked sensitivity to lubrication in a single-cylinder

simulation by increasing the proportionality for SC contacts by a fac-

tor of two (we increase because cylinder surfaces are less curved than

sphere surfaces). This change of lubrication parameters has no dis-

cernable effect on the statistics (averages and fluctuation levels) of

cylinder's behavior as quantified by its settling velocity and orienta-

tion angle.

The second stage of close-range interaction kicks in at a closer

proximity of Δ=3. Then a linear radial spring force between the parti-

cles is activated which prevents them from overlapping. Note that we

do not apply a tangential spring force, that is, we do not consider

“dry” friction between the particles. As for the lubrication force,

details, and parameter settings of the spring force are in Ref. [17].

After summing the close-range interaction forces for each parti-

cle, and determining the resulting torques per particle they are

included in their linear and rotational equations of motion respec-

tively. These we solve explicitly with a split-derivative method20 with

a time step equal to the LB time step Δt. For convenience, the rota-

tional (Euler) equations of motion are solved in a reference frame

attached to each particle. This approach requires back-and-forth map-

ping from the inertial xyz coordinate system to the local coordinate

systems of the particles. For this, each particle is equipped with a qua-

ternion that keeps track of its orientation which then facilitates the

mapping operations.21

4 | SET-UP OF SIMULATIONS

Two classes of simulations have been performed. In the first class, a

single cylinder with aspect ratio ℓ=d¼10 and density ratio ρp=ρ¼2:0

settles through a suspension of spheres having a diameter equal to

the cylinder diameter and the same density as the cylinder. For these

simulations the overall solids volume fraction ranges from ϕh i≈0

(actually ϕh i¼0:002 with one cylinder and no spheres) to 0.58. Three

values of the Archimedes number have been investigated:

Ar¼207, 864,and1730, with the middle value the base-case and

most studied one. The Archimedes number was changed by changing

the gravitational acceleration and/or the kinematic viscosity of the

liquid.

The dimensions of the domain are nx�ny�nz¼15d�6d�45d.

As described above, fully periodic boundary conditions apply with

forces explicitly balanced over the entire flow system. We need a tall

domain (i.e., a large domain size in vertical [is z] direction) so as to cor-

rectly capture the wake that—at least for the low solids volume frac-

tion cases—develops behind the cylinder.22 The relatively narrow

dimension in the y-direction, along with the periodic boundary condi-

tions, makes that, if the cylinder changes its orientation, it will prefer-

entially do so by rotating along the y-axis. By comparing simulations

that have ny¼6d with ones that have ny¼12d it was observed that

the y-width of the flow domain hardly had a measurable impact on

the cylinder settling process after a dynamic steady state had been

reached.

Initially spheres are placed randomly in the domain in a

non-overlapping fashion. The cylinder is then placed in the center of

the domain either vertically (along the z-axis) or horizontally (along the

x-axis) and the spheres that would overlap with the cylinder's volume

are removed. The simulation is started from zero solids and liquid

velocity. The spatial resolution of the simulations is such that d¼16Δ.

Temporal resolution changes with the Archimedes number. For the

base-case, that has Ar = 864, one viscous time scale d2=ν¼6400Δt.

The simulations in this class will be referred to as single-cylinder

settling simulations.

In the second class of simulations (referred to as co-fluidization sim-

ulations), multiple cylinders are co-fluidized with spheres. In terms of the

setup of the simulations (including numerical settings), the only differ-

ences with the first class are the number of cylinders, which now is larger

than one, and the domain size. The main aim of these simulations is to

investigate to what extent the cylinders interact with one another as a

function of the amount of cylinder volume relative to the total solids vol-

ume. The domain size has been fixed to nx�ny�nz¼15d�15d�30d.

Overall solids volume fractions are in the range ϕh i¼0:30 � 0:48,

and all simulations in this class have Ar¼864.

As compared with the single-cylinder settling simulations we do

not need such tall domains since no lengthy wakes are able to develop

behind the cylinders given the ϕh i levels considered. In a previous

study,10 domain size effects have been assessed at comparable ϕh i
and Ar values. Domains of 15d�15d�30d and 12d�12d�24d

showed almost identical average and fluctuating velocities of

co-fluidized cylinders with ℓ=d¼10. Next to the overall solids volume

fraction, the amount of solid volume contained in the cylinders rela-

tive to the total solids volume has been varied in the

range ϕch i= ϕh i¼0:05to0:50.

5 | RESULTS

5.1 | Single-cylinder settling simulations

Impressions of a single cylinder settling through a fluidized suspension

of monodisperse spheres are given in Figure 1. The panels are instan-

taneous realizations displaying all particles (spheres and cylinder) tak-

ing part in the simulation. We show examples of the two ends of the

spectrum in terms of overall solids volume fraction ϕh i: 5% solids and

54% solids. In the lean suspension also impressions of the velocity

field are given in the form of velocity magnitude contours. At

ϕh i¼0:05, the cylinder has been released vertically. A cylinder verti-

cally released in a single phase (liquid only) system at the given Archi-

medes number of �900 quickly flips to a horizontal orientation.22

This also happens in the ϕh i¼0:05 suspension as can be seen in the

second panel from the left in Figure 1. Different from the single-phase

case, the wake behind the cylinder extends over much shorter dis-

tance in the 5% suspension with the particles apparently hindering

the formation of a long wake, even at this low solids volume fraction.

3 of 10 DERKSEN
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An opposite orientation change of the cylinder occurs in the

dense suspension, see Figure 1 (the right two panels). After releasing

the cylinder horizontally in the ϕh i¼0:54 suspension it rotates to a

more or less stable vertical orientation. The same cylinder released

vertically in the same suspension stays close to its original orientation

while settling, as shown in Figure 2 (most right panel). Figure 2 shows

time series of the angle ψ between the center line of the cylinder and

the vertical direction. In addition to the observations described above

related to Figure 1, it shows a strongly fluctuating orientation angle ψ

for ϕh i¼0:35, and the flipping from vertical to horizontal in a

no-spheres case and in a ϕh i¼0:05 case. Without spheres, the cylin-

der wobbles periodically; adding 5% spheres clearly disturbs this wob-

bling periodicity. We thus observe—at a fixed value of Ar = 864—that

at low ϕh i the stable orientation for settling is horizontal and at high

ϕh i it is vertical. At an intermediate value of ϕh i¼0:35 the cylinder's

orientation strongly fluctuates.

The transition from horizontal settling for lean (low ϕh i) suspen-
sions to vertical settling in dense suspensions has been investigated

further by a range of simulations with cylinders released vertically and

horizontally in suspensions with varying solids volume fraction. Most

of these simulations are at Ar¼864; however, also Ar¼207 and

1730 have been considered. The results are in Figure 3. It shows the

time-average orientation angle ψ and its root-mean-square value ψ 0

F IGURE 1 A single cylinder (green)
settling through liquid with spherical
particles (red). Two left panels: ϕh i¼0:05;
two right panels ϕh i¼0:54. Time after
startup as indicated per panel. The left
panels show contours of liquid velocity
magnitude in the xz-plane that goes
through the center of the cylinder. In the
right panels the spheres are transparent

so as to be able to see the cylinder. For
ϕh i¼0:05 the cylinder was released
vertically; for ϕh i¼0:54 horizontally.
Ar¼864. The Cartesian coordinate
system is defined in the left panel.

F IGURE 2 Sample time series of the orientation angle ψof a single cylinder settling through liquid with spherical particles at Ar¼864. From

left to right: 1st: comparison between a cylinder settling through clear liquid and through a suspension with ϕh i¼0:05; 2nd: ϕh i¼0:35 with the
cylinder either released vertically or horizontally (as indicated); 3rd: ϕh i¼0:48 with the cylinder either released vertically or horizontally; 4th:
ϕh i¼0:54 with the cylinder either released vertically or horizontally.

F IGURE 3 Time-averaged orientation angle ψ and the root-mean
square value of the fluctuations of the angle ψ 0 as a function of overall
solids volume fraction ϕh i for three values of Ar as indicated.
Cylinders were released vertically except for the cases having a filled
blue square that have horizontal release.
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with averages taken over a dynamically steady portion of the orienta-

tion time series between t1 and t2 > t1 such that t2� t1ð Þν=d2 ≥20. If
we first focus on the results for Ar¼864 (the blue symbols) one sees

preferential horizontal settling if ϕh i≤0:25; mostly vertical settling if

ϕh i>0:40 and a transition range in between these two values. The

transition range is associated with high levels of ψ 0, that is, in the tran-

sition range the orientation angle of the cylinder fluctuates strongly

while it moves through the suspension of spheres. This was already

noted in the time series of Figure 2—the panel with ϕh i¼0:35. The

results for vertically and horizontally released cylinders (open and

closed blue symbols respectively in Figure 3) agree fairly well in terms

of ψ as well as ψ 0 with the largest differences in the transition zone

likely being the result of statistical uncertainty. As expected, the initial

orientation has no influence on the long-time orientational behavior

of the cylinder. At the high end of ϕh i, angle fluctuations approach

zero. The cylinder moves vertically with only weak excursions from its

orientation. At low ϕh i the fluctuations are mostly due to wobbling

(see Figure 2, left panel) with only a slight increase in ψ 0 as ϕh i goes
from ≈0 (no spheres) to 0.05. Only when we enter the transition

(at ϕh i≈0:30), ψ 0 increases significantly.

Similar observations apply to Ar¼207 (red symbols in Figure 3)

and Ar¼1730 (green symbols) with, however, a shift over the x-axis

as compared with Ar¼864. For Ar¼207 the horizontal-to-vertical

transition zone shifts to lower values of ϕh i which means that it is

more likely for the cylinder to settle vertically if the Archimedes num-

ber decreases. An increase in Ar is mostly felt at the high end of ϕh i.
At Ar¼1730 and ϕh i¼0:44 we are clearly in the transition range

where this was not so for Ar¼864. At the lower ϕh i end, the Ar¼
1730 results closely follow those with Ar¼864.

In Figure 4 it is shown how the Reynolds number associated with

the cylinder depends on the solids volume fraction ϕh i and on Ar. This

Reynolds number is defined as Re c ¼ uslip,vcde=ν with uslip,vc �

F IGURE 4 Cylinder Reynolds number Re c as a function of overall
solids volume fraction ϕh i for three values of Ar as indicated. Cylinders
were released vertically except for the cases having a filled blue square.
Left and right are two representations of the same data. Left ϕh i versus
Re c on linear scales; right 1� ϕh i versus Re c on logarithmic scales.

F IGURE 5 Time-averaged orientation angle ψ as a function of the
modified Archimedes number Ar� (defined in the text). Same data and
same legend as in the top panel of Figure 3.

F IGURE 6 Evolution of co-fluidized
systems with ϕh i¼0:48, ϕch i= ϕh i¼0:05,
and Ar¼864; starting with vertical
cylinders (top) and horizontal cylinders
(bottom). From left to right instantaneous
realizations at moments
tν=d2 ¼0,6:25,12:5,and25, respectively.
The spheres have been made semi-
transparent for better visibility of the
cylinders.
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j uzh i�uczj the average vertical slip velocity of the cylinder, uzh i the

volume and time-averaged vertical superficial velocity, ucz the time-

averaged vertical cylinder velocity, and de ¼ d
ffiffiffiffiffiffiffiffiffiffiffi

3
2ℓ=d

3

q

the cylinder's

equivalent diameter. The velocity uslip,vc in this Reynolds definition is

the average vertical velocity of the cylinder one would observe in an

experiment while it settles through a fluidized spheres suspension.

The two panels in Figure 4 represent the same data in two different

ways. In the left panel we see—as expected—a decrease of Re c with

increasing ϕh i (hindered settling23), and an increase with Ar. There is

some evidence of the transition between vertical and horizontal set-

tling. In the interval 0:35≤ ϕh i≤0:40 there is a hiccup—for Ar = 864—

in the decrease of Re c with increasing ϕh i which likely is the result of

the settling orientation transition from horizontal to vertical. In the

right panel of Figure 4 this transition can be witnessed more clearly.

Here the data are presented in a “Richardson-Zaki” way.23 Given that,

according to Richardson and Zaki, hindered settling speed is propor-

tional to 1� ϕh ið ÞN we plot Re c versus 1� ϕh ið Þ in a double logarith-

mic way. We see that the orientation transition is correlated to a

slight but significant change of slope, the latter representing the expo-

nent N.

The effect of the Archimedes number on the orientation of a set-

tling slender cylinder through a single phase Newtonian and non-

Newtonian fluids has been studied extensively by experimental as

well as computational means.22,24 When the cylinder is released verti-

cally in a Newtonian fluid it has been demonstrated that it will eventu-

ally turn horizontally24 where the time this takes depends on the

Archimedes number; the higher Ar, the shorter this time. Above we

have observed fundamentally different behavior for a cylinder settling

through a suspension of spheres with—for high solids volume

fractions—a stable vertical orientation.

As a way to further interpret the behavior of the cylinder—

specifically its orientation—as it settles through the spheres suspen-

sion we view the spheres suspension as a continuum fluid with an

effective viscosity and density. This is a somewhat crude approach

given that the diameter of the cylinder is the same as the diameter

of the spheres so that the cylinder does not really experience the

spheres suspension as a continuum but rather encounters the

spheres as individual particles. For the effective density of the sus-

pension we take the mixture density ρm ¼ ϕh iρpþ 1� ϕh ið Þρ; for the
effective viscosity the Krieger-Dougherty25 expression νeffρm ¼
νρ 1� ϕh i=ϕmxð Þ�2:5ϕmx where we have set the random-close-packing

solids volume fraction to ϕmx ¼0:64. This then enables the definition

of a modified Archimedes number Ar� ¼ γeff�1ð Þgd3=ν2eff
with γeff ¼ ρp=ρm.

In Figure 5 the data for the average angle ψ as plotted in Figure 3

(top panel) have been replotted as ψ as a function of Ar�. To capture

the wide range of Ar� it is plotted on a logarithmic scale. Despite the

significant scatter in Figure 5, the overall trend is clear: a transition

from vertical settling at low Ar� to horizontal settling at high Ar�

where the solids volume effect as observed in Figure 3 has now been

captured through the way effective viscosity and density depend on

ϕh i. Note that an increase of ϕh i makes Ar� smaller for two reasons:

its effect on the density ratio and on the effective viscosity.

On a more tentative level, the concept of the spheres suspension

as a continuum through which the cylinder settles might provide hints

for the understanding of vertical settling under dense conditions in

terms of viscoelastic effects. It has been argued that if only viscous

and inertial forces are at play, a cylinder eventually turns horizontal

when settling.24 Experiments show that in liquids exhibiting elasticity,

under certain conditions (mostly related to visco-elastic time scales) a

vertical orientation of the cylinder is the stable one.24 Given that

dense, non-Brownian hard-sphere suspensions exhibit viscoelastic

behavior26,27 this might be relevant for our observations of vertical

settling under certain circumstances. It would require further study to

(quantitatively) substantiate this.

5.2 | Co-fluidization of cylinders and spheres

In this section on co-fluidization of multiple cylinders and spheres,

only the base-case Archimedes number, Ar = 864, has been consid-

ered. Figure 6 shows impressions of how simulations are started and

how they evolve with an emphasis on the cylinders, their position and

orientation. In a random spheres-only assembly, space for the cylin-

ders is created by removing spheres that overlap with the cylinders.

Once the cylinders are placed the simulation is started from rest. Our

main interest is in the statistical properties of cylinder and sphere

motion after a dynamic steady state has been reached. To assess

when this is, we keep track of the volume-average orientation angle

ψh i as a function of time. By comparing vertically and horizontally

released cylinders (see Figures 7 and 8) it becomes clear that after

F IGURE 7 Time series of the volume-average cylinder orientation
angle ψh i in co-fluidization simulations. Comparison between
vertically and horizontally released cylinders. Ar = 864.

F IGURE 8 Time series of the average cylinder orientation angle

ψh i in co-fluidization simulations. From left to right:
ϕh i¼0:30,0:40,and0:48, respectively. Relative solids volume of
cylinders ϕch i= ϕh i as indicated. In all cases Ar = 864.
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some time—approximately 15 viscous time scales (corresponding to a

convective time of uslip,vct=d≈75)—the system has forgotten its initial

condition and has entered a dynamic steady state.

We expect to observe similar preferential cylinder orientations in

fluidization with a relatively small number of cylinders as we saw when

a single cylinder settles through a suspension of spheres as discussed

previously. This is confirmed in Figure 8 that shows time series of ψh i
for ϕh i¼0:30,0:40,and0:48. For the lowest relative amount of

cylinder volume considered in this study— ϕch i= ϕh i¼0:05—the time-

averaged orientation angle in steady state ( ψh i, the volume and time-

averaged orientation angle) decreases with increasing ϕh i :
ψh i≈0:35π,0:20π,and0:13π for ϕh i¼0:30,0:40,and0:48, respec-

tively. These angles are similar to or slightly higher than single-cylinder

angles at the corresponding solids volume fractions, see Figure 3 (top

panel, data for Ar = 864). Adding more cylinder volume (and taking

out the same amount of sphere volume), that is, increasing ϕch i= ϕh i,
makes ψh i smaller for ϕh i¼0:30 and larger for ϕh i¼0:48; for ϕh i¼
0:40 there is no clearly discernable trend with ϕch i= ϕh i (see Figure 8).

More detailed information on how the cylinders orient under a

range of conditions is in Figures 9 and 10 that show ψ distributions.

As a reference, each panel of these figures includes sinψ which is the

way ψ would be distributed for an isotropically oriented random

assembly of cylinders. Figure 9 focuses on ϕch i= ϕh i¼0:05, while

Figure 10 investigates trends with increasing ϕch i= ϕh i. Some data in

Figure 9 have been duplicated in Figure 10.

It is remarkable to see in Figure 9 that for ϕh i≤0:37 the cylinders

completely avoid going vertical, while for ϕh i¼0:48 virtually no hori-

zontally oriented cylinder is encountered. For ϕh i≥0:40 the angle dis-

tribution peaks at ψ ≈0:1π.

Increasing ϕch i= ϕh i from 0.05 to higher values makes the angle

distributions generally less extreme. This is shown in Figure 10. At

ϕh i¼0:30 the zero plateau of the pdf near ψ ¼0 has vanished when

ϕch i= ϕh i≥0:15 and the angle distribution gets closer to an isotropic

distribution with, however, a consistent underrepresentation of hori-

zontal cylinders. For ϕh i¼0:48 the zero plateau near horizontal orien-

tation (ψ ¼ π=2) only shows for ϕch i= ϕh i¼0:05 and has disappeared

when ϕch i= ϕh i¼0:15. All angle distributions for ϕh i¼0:48and0:44

show a pronounced preference for near-vertical cylinder orientation.

From experiments, this is a phenomenon known to also occur in dense

cylinder-only settling through liquid or in fluidization by liquid.28,29

From Figure 10 it is clear that the relative amount of cylinder vol-

ume impacts the co-fluidization behavior of the system at large and

the behavior of the cylinders in particular. To investigate to what

extent this is the result of enhanced direct cylinder-cylinder interac-

tion upon an increase of ϕch i= ϕh i, the average coordination number

F IGURE 9 Probability density functions (pdf's) of the orientation
angle ψ in co-fluidization simulations over a range of overall solids
volume fractions. All cases have ϕch i= ϕh i¼0:05 and Ar = 864. The
red curve is sinψ which is what an isotropic orientation distribution
would look like.

F IGURE 10 Probability density
functions (pdf's) of the orientation angle ψ

in co-fluidization simulations. From left to
right the relative amount of cylinder
volume ϕch i= ϕh i increases. From top to
bottom ϕh i increases. Ar = 864. The red
curve is sinψ .
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of cylinder-cylinder contact was determined. For a large number of

realizations of each simulation the number of contacts between cylin-

ders was counted. The average coordination number cc then is the

average number of cylinders a cylinder is in contact with at any

moment in time. Obviously, cc increases if the cylinder volume frac-

tion ϕch i increases, see Figure 11. It does so, however, in an approxi-

mately linear manner and largely independent of the overall solids

volume fraction ϕh i, that is, independent of the number of spheres

present. The coordination number cc almost uniquely depends on

ϕch i; most data points in the figure follow the same trend line, only

the ϕh i¼0:48 data tend to slightly higher cc values. We interpret this

as evidence that the cylinders are distributed over the flow volume in

a way that is independent of ϕh i. In other words, the cylinders show

no tendency to cluster or preferentially concentrate. This then indi-

cates that the different ways in which the orientation angle distribu-

tions change with increasing ϕch i= ϕh i for different ϕh i—as shown in

Figure 10—are not the result of cylinders clustering.

We note that the ψ distributions are getting less extreme upon

increasing ϕch i= ϕh i. This could mean that the increased number of cyl-

inders stir the fluidized system more vigorously (as also observed in

Ref. [10]) thus deviating the cylinders more from their inherent

preferential orientations (horizontal for lower ϕh i, vertical for higher
ϕh i). To test this hypothesis, we have determined spheres and cylin-

ders velocity fluctuation levels; see Figure 12 that shows root-mean-

square (rms) velocity values. It distinguishes between spheres and cyl-

inders and horizontal and vertical velocity components. As has been

observed previously in liquid fluidization/sedimentation, the vertical

fluctuation levels are approximately larger by a factor of 2 than the

ones in horizontal direction.29 An increasing trend with ϕch i= ϕh i is

observed for the horizontal and vertical sphere rms values as well as

for the vertical cylinder velocity fluctuations. The horizontal compo-

nent of the cylinder velocity fluctuations is not sensitive to ϕch i= ϕh i.
We conclude that the fluidized system gets more agitated when the

amount of cylinder volume is increased. This then contributes to a

widening of the orientation angle distribution upon increasing the rel-

ative number of cylinders. However, also the increased direct contact

between cylinders (see Figure 11) will have its influence on the angle

distribution.

It is not obvious how to distinguish between cause and effect

when it comes to relating cylinder orientation angle distributions and

cylinder velocity fluctuations. For the cylinders, a wider angle distribu-

tion contributes to more vertical velocity fluctuations since orienta-

tion angle and vertical velocity are related. A horizontal cylinder will

experience more drag than a vertical one and will move slower

through the spheres suspension. Figure 13 shows this effect in terms

of average vertical cylinder slip velocities. With increasing ϕch i= ϕh i at
ϕh i¼0:30and0:35, cylinders get less horizontal (see Figure 10 for

ϕh i¼0:30) and—as a result—increase their slip velocity. The opposite

happens for ϕh i¼0:48and0:44 where slip velocities get smaller

because cylinders get less vertical with larger ϕch i= ϕh i.

6 | CONCLUSIONS

This article reports on particle-resolved simulations of the behavior of

tall rigid cylinders in a suspension of spherical particles in a Newtonian

liquid over a range of conditions. The main dependencies investigated

are those with the overall solids volume fraction as well as those with

the relative amount of solids volume of the cylinders. We have

restricted the simulations to a single cylinder aspect ratio (ℓ=d¼10)

and a single solid over fluid density ratio (ρp=ρ¼2:0). The Archimedes

numbers are such that overall we have been dealing with laminar flow

F IGURE 11 Average coordination number of cylinder-cylinder
contacts cc as a function of the cylinder volume fraction ϕch i for a
range of overall solids volume fractions ϕh i as indicated.

F IGURE 12 Root-mean-square values of fluctuating particle
velocities (non-dimensionalized with ν=d) as a function of the relative
amount of cylinder volume ϕch i= ϕh i for a range of overall solids
volume fractions ϕh i. Left panels: cylinder velocities in vertical and
horizontal direction (u0vc and u0hc, respectively). Right panels: sphere
velocities in vertical and horizontal direction (u0vs and u0hs, respectively).

F IGURE 13 Average vertical cylinder slip velocity uslip,vc as a
function of the relative amount of cylinder volume ϕch i= ϕh i for a
range of overall solids volume fractions ϕh i.
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with Reynolds numbers associated to particle slip velocities and veloc-

ity fluctuation levels of order 10.

The eventual orientation of a single cylinder settling through a

spheres suspension depends strongly on the solids volume fraction of

the latter. At low solids volume fraction the cylinder eventually

assumes—on average—a horizontal orientation. At high solids volume

fraction ϕh i it eventually settles vertically. The transition range

depends on the Archimedes number. For the mostly investigated

value of Ar = 864, the transition range roughly is 0:3≤ ϕh i≤0:4. In
this range, the angle between the cylinder's centerline and the vertical

fluctuates strongly. The change in average orientation with ϕh i was

noticeable in the average slip velocity of the cylinder as a change in

slope in the logarithmic hindered settling plot displaying 1� ϕh i versus
the Reynolds number based on the cylinder slip velocity.

The trend of preferential orientation persists when more cylinders

are added to the system. With a relative amount of cylinder volume of

ϕch i= ϕh i¼0:05, co-fluidized cylinders in dense systems almost

completely avoid getting horizontal. Conversely, no vertical cylinders

are encountered for the relatively low solids volume fraction of

ϕh i¼0:30. Increasing the relative amount of cylinder volume makes

the orientation angle distributions less extreme. At the same time it

was noted that velocity fluctuation levels of the spheres increase with

more cylinders in the system; more cylinders stir the fluid bed more

vigorously. The cylinders' fluctuating velocity levels in vertical direc-

tion are also increasing with ϕch i= ϕh i while the horizontal velocity

fluctuations are insensitive to ϕch i= ϕh i. Finally, as for the single cylin-

ders, the average vertical cylinder slip velocities to some extent reflect

the changes in average orientation of the cylinders, that is, a change

to more vertical orientation increases slip velocity and vice versa.

It is important to realize that the work described in this article is

purely computational and is in need of experimental validation. There

are ample avenues for interesting experimental work. If it would be

possible to create refractive index matched liquid-spheres systems30

one could visualize the cylinder behavior quantitatively and test

hypotheses with regards to orientation angle (distributions) of single

and multiple cylinders as a function of the parameters that were var-

ied in this article. Given the modest Reynolds numbers, these could be

relatively small-scale (order 0.1 m) experimental systems with order

mm diameter particles. From a computational perspective there is

room for enhancing the spatial resolution of the simulations to try and

further verify the results. Future work will involve the effect of cylin-

der flexibility31 on the way they orient and organize themselves when

co-fluidized with spheres.

Another—more theoretical—avenue for future research is aimed

at obtaining a better understanding of preferential vertical orientation

of single cylinders moving through dense spheres suspensions and

exploring the potential role of elastic properties of the suspension in

this respect.
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