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Abstract

A methodology for particle-resolved simulation of dense suspensions of flexible cylin-

drical particles in Newtonian liquid flow is described. It is based on the Lattice–

Boltzmann method for solving the liquid flow and an immersed boundary method for

imposing no-slip at the particle surfaces and providing the distribution of liquid–solid

interaction forces over the particle surfaces. These forces—along with contact forces—

translate, rotate as well as bend the cylindrical particles. Verification tests have been

performed for a single cylinder settling and deforming under gravity at a low Reynolds

number. The method has been applied to a clamped flexible cylinder in microchannel

flow for which experimental data are available. It then is used to investigate the behav-

ior of hundreds of flexible cylinders with length over diameter aspect ratios of 4 and

6 in a container agitated by an impeller at a Reynolds number of 87 which implies lami-

nar flow. The overall solids volume fraction is 15%. We study the effect of the bending

stiffness of the particles on the solids suspension process, on the extent of particle

deformation as well as on the torque required to spin the impeller.
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1 | INTRODUCTION

Fibrous materials are commonplace in a myriad of applications. In the

very common form of paper, but also—for example—as reinforced

composite materials1 and for energy storage as “fiber super-

capacitors.”2 Producing such materials often involves stages where

solids—in the form of fibers—are suspended in liquid and are trans-

ported as a dense two-phase flow. Flow of dense fiber suspensions is

also encountered in biomass conversion where materials of a fibrous

nature (e.g., wood, waste from food crops) are processed for energy

and materials production.3,4 Therefore, predicting the flow dynamics

of fiber suspensions, specifically in complex configurations as often

seen in process equipment, has practical relevance. The approach to

fiber suspension flow we have taken in recent publications5,6 is based

on particle-resolved simulation. Particles of cylindrical shape are

placed in a domain containing a Newtonian liquid. The flow of liquid is

simulated with a resolution much finer than the size of the cylinders

so that the no-slip condition can be explicitly imposed at their surface

and the hydrodynamic forces and torques on the cylinders directly

calculated. These then induce translation and rotation of the cylinders

and this motion is fed back to the liquid as—updated—no-slip condi-

tions. This way an intimate dynamic coupling between liquid flow and

particle motion is established that directly takes into account the

(cylindrical) shape of the particles as well as the microstructure they

are organized in.

The previous simulations assumed the cylinders to be rigid.5,6 In

the present article, an approach is outlined to include deformation of

the cylindrical particles in the numerical procedure. The reason for

doing this is driven by applications—in many cases fibers in materials

processing are flexible—as well as by curiosity. Regarding the latter,

we want to explore under what circumstances flexibility of particles

has an impact on the overall flow behavior, for instance in terms of

directly measurable, macroscopic flow quantities.

As we will see, our existing computational framework for particle-

resolved simulations of dense suspensions involving nonspherical rigid

particles,5,6 is well suited for an extension toward particle
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deformation. Given that in our methodology no-slip conditions at par-

ticle surfaces are imposed through a forcing variant of the immersed

boundary method (IBM),7 the distribution of forces over the solid sur-

faces is directly available in the simulation. These forces, along with

forces arising from contact between particles and between particles

and internals in the flow domain (baffles, impellers), are not only

responsible for particle motion (translation and rotation) but also for

particle deformation. This article only considers a bending deforma-

tion. This is for simplicity, but also since bending is the most signifi-

cant deformation of slender cylindrical particles.

When it comes to direct simulations of solid–fluid flow with rigid

particles of nonspherical shape, recent work has made major strides in

the accurate representation of the way particles dynamically interact

with fluid.8,9 There is limited literature on the subject of dense sus-

pensions of deformable, nonspherical particles in fluid flow, the

exception being detailed simulations of blood flow: Direct simulations

of red blood cells (RBCs) suspended in plasma that include the

deformability of its membranes have—for instance—been reported by

Wu and Aidun.10 There, deformation of the RBC membrane is dealt

with through finite element analysis, while fluid flow is solved by the

Lattice–Boltzmann (LB) method.

Experimental and computational progress on flexible fibers in

fluid flow has recently been reviewed by du Roure et al.11 with an

emphasis on microscopic systems. In one type of simulation approach

fibers are represented by chains of connected spheres.12-14 This

allows for very strong deformations of the fibers. It does, at the same

time, not very accurately represent the actual shape of the fibers

and—therefore—the way it interacts with the fluid. The IBM—as also

used in this article—has been effectively implemented in parallel com-

puter code by Wiens and Stockie15 and applied to flow systems

involving single and multiple slender flexible fibers.

The aim of this article is to introduce and explain in detail an

extension of previous work on particle-resolved simulations of cylin-

der suspensions5,6 toward particles with finite bending stiffness with

the deformed particle shape fully accounted for by the IBM. We also

aim for demonstrating the potential of the method for applications

with complex flow conditions by showing results for dense suspen-

sion of hundreds of flexible cylinders in a nontrivial—albeit laminar—

liquid flow generated by a revolving impeller. It has been investigated

how bending stiffness impacts the overall flow behavior of this

system.

It is important to experimentally validate the proposed numerical

procedure, preferably at the level of individual particles and the way

they deform under well-defined flow conditions. Such detailed experi-

mental work is relatively scarce.11 In the current article, experimental

work by Wexler et al.16 on a single fiber bending in a micro channel

flow has been used for this purpose. We also have performed a num-

ber of verifications—including checking grid effects as well as

assessing what resolution is required for the deformation

calculations—for a single settling cylinder at low Reynolds number.

Given the need for detailed validation, a secondary aim of this article

is to engage experimentalists to work on highly resolved visualizations

of flexible fibers in fluid flow.

2 | FLOW SYSTEMS

We perform simulations in three-dimensional rectangular flow

domains. They are bounded by solid, no-slip walls all around, except

for one system that consists of a micro channel (Hele-Shaw cell) that

has been simulated with periodic boundaries in the streamwise direc-

tion. The domains are filled with a Newtonian liquid with density ρ

and kinematic viscosity ν. In addition, the domains contain one or

more solid cylindrical particles with diameter d, length ℓ, and density

ρp > ρ (particle volume is denoted as Vp = 1
4πd

2ℓ and mass as m = ρpVp).

The cylinders are bendable, that is, they have a bending stiffness EIcs

with E Young's modulus and Ics the moment of inertia of the cross sec-

tional area of the cylinder (Ics = πd4/64). Bending is the only allowed

deformation; the cylinders cannot be stretched, compressed or

twisted.

Three flow configurations have been considered in this article:

(1) Single horizontally oriented flexible cylinders settling in a tall

closed box have been studied for the purpose of verifying the simula-

tion procedure. (2) A Hele-Shaw cell with one cylinder with one of its

ends attached to a side wall—a similar system has been considered in

experiments16 —that we use for validation. (3) Multiple flexible cylin-

ders immersed in the liquid flow generated by a revolving impeller

have been studied as an example of a many-particle system in com-

plex flow. The configurations—including nomenclature of dimensions

and coordinate systems—are defined in Figure 1. In Systems (1) and

(3) the effect of gravity is important; there gravity acts in the negative

z-direction: g = − gez. The mixing tank is agitated by a pitched-blade

turbine (PBT) that pumps in the downward (negative z) direction. The

impeller has a diameter D and makes N revolutions per unit time.

All three systems are being characterized in dimensionless terms.

Where gravity is important, the particles-fluid combination is charac-

terized by the Archimedes number Ar = (γ − 1)gd3/ν2 with γ = ρp/ρ the

density ratio. The bending stiffness has been nondimensionalized as

σ = EIcs
ρ γ−1ð Þgd5 . In the Hele-Shaw cell, that is operated at low Reynolds

numbers, viscous drag is combined with bending stiffness in the

dimensionless parameter χ = ρνUℓ2d
EIcs

with U the superficial velocity in

the cell. The Reynolds number associated with the impeller agitating

the liquid is defined as Re = ND2/ν. A Shields number reflects the

competition between agitation and net gravity acting on the particles:

θ = N2D2/(g(γ −1)d). The overall solids volume fraction in the mixing

tank is 〈ϕ〉 = nVp

HT2 , with n the number of particles and HT2 the container

volume (see Figure 1). The system's geometry is characterized by a

number of size ratios; the most notable aspect ratio is ℓ/d, the cylin-

der's length over its diameter.

3 | NUMERICAL METHODS

This article extends the simulations on dense liquid-solids suspensions

with rigid particles of cylindrical shape as discussed in References 5

and 6 toward cylinders with a finite bending stiffness. We begin this

section with a brief overview of the numerical approach (details in

Reference 5) and then zoom in on how bending has been

DERKSEN 2 of 13



implemented as well as discuss the assumptions and limitations of the

implementation.

3.1 | Overview of the simulation procedure

The LB method17,18 has been used as the fluid flow solver. It operates

on a uniform, cubic grid with spacing Δ. The flow variables (fluid

velocity u and pressure p) are derived from discrete velocity distribu-

tion functions that are the primitive variables of the method and are

updated according to the LB equation that involves a collision and a

streaming step.19 The system discretely evolves in time with a time

step Δt. Flow variables are defined in the center of each cubic grid

cell. The specific LB scheme used in this work is due to Eggels and

Somers.20,21

In order to represent solid (that is, no-slip) surfaces inside the flow

domain (particle surfaces as well as the impeller) an IBM has been

developed previously.22 Solid surfaces are defined by collections of

closely spaced off-grid points (nearest neighbor spacing of these

points ≈0.5Δ). At these so-called marker points we determine forces

on the fluid such that the local fluid velocity (linearly interpolated from

the lattice) closely approximates the local surface velocity so as to

achieve no-slip. The IBM thus provides us with the distribution of

fluid–solid interaction forces over the solid surfaces. Integrating the

forces over the surface of each particle gives the total hydrodynamic

force and torque on that particle that—along with other forces such as

gravity and contact forces—are used to integrate the linear and rota-

tional equations of motion of each particle. Now that particles are

deformable, the distribution of forces over the particles will also be

used to determine their bending deformation. This will be explained in

more detail in the next subsection.

In addition to the particles, also the impeller has been represented

through the IBM. The bounding walls of the flow domain are aligned

with the grid. At these walls the halfway bounce-back rule has been

applied to the velocity distribution functions19 in order to achieve

no-slip.

Given our interest in dense suspensions, it is expected that colli-

sions (between particles, between particles and the impeller, and

between particles and the bounding walls) are frequent. In Reference

5, we have detailed our approach for particle-particle collisions. Colli-

sion detection is based on the IBM marker points: two marker points

lying on two different particle surfaces coming within a certain dis-

tance triggers a repulsive elastic (spring) force between the particles

that prevent them from overlapping. In addition, a damping force pro-

portional to the velocity difference of the two marker points gets acti-

vated to mimic lubrication effects between the two closely spaced

solid surfaces. In the context of the discrete element method (DEM)

this approach for collision detection is known as discrete function rep-

resentation.23 As shown in Reference 6, the method as developed for

particle–particle collisions can be straightforwardly extended toward

collisions between a particle and the impeller as well as between a

particle and a bounding wall.

To update the orientation of particles, quaternions have been

used24: each particle is equipped with a unit quaternion q = (q0, q) that

fully defines the way it is oriented in three-dimensional space. After

updating the angular velocity ωp of each particle based on the Euler

equations for the dynamics of particle rotation,25 the quaternions

are updated according to an exact solution26: q k +1ð Þ =

cos 1
2Δt
� �

,ωpsin 1
2Δt
� �� �

∘q kð Þ where the index (k) denotes the time step

number, and the symbol ∘ the quaternion multiplication.24 The same

time step as used in the LB method has been used for the solid parti-

cle updates.

F IGURE 1 Flow configurations.
(a) Top and side view of the single
cylinder (with diameter d and length ℓ)
settling in a fully closed container of
dimensions 8d × 8d × 12d; (b) side and
front view of micro channel with a
cylinder clamped to the bottom; (c) top
and side view of the stirred tank with
down-pumping pitched-blade turbine.

Cartesian coordinate systems as
indicated. Gravity is pointing in the
negative z-direction for the settling
system (a) and mixing tank (c)
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Quaternions enable solving the dynamics of the cylindrical parti-

cles in a reference frame (x1, x2, x3) attached to the particle, see

Figure 2. In this reference frame, the moment of inertia tensor of the

(rigid) particle is constant and diagonal with diagonal components

I11 = 1
8md2 and I22 = I33 =m 1

16d
2 + 1

12ℓ
2

� �
. Transferring information

between the inertial reference frame (x, y, z) and a particle reference

frame is facilitated by the quaternion associated to the particle:

y= �q ∘ 0,xð Þ ∘q with the vector x defined in the inertial frame and y

defined in the particle frame, while �q= q0,−qð Þ.27

3.2 | Cylinders with finite bending stiffness

The simulation procedure as sketched above has been used for sus-

pensions with rigid cylindrical particles.5,6 The IBM as well as the colli-

sion algorithm provide us with the distribution of forces over the

surfaces of the particles at any moment in time. With this information

the deformation of nonrigid particles can be determined. This is

explored in this article for cylindrical particles with a finite bending

stiffness.

In the terminology of structural mechanics,28 the cylinder is a

beam with a bending stiffness EIcs that is deflected by a distributed

load (force per unit length along the beam) a2(x1) and a3(x1) in the two

lateral directions x2 and x3 respectively (see Figure 2), with x1 the

coordinate along the centerline of the beam. The load in the x1 direc-

tion is irrelevant for bending; it would be relevant for stretching or

compression which are, however, deformations not considered in this

study.

The force distribution over the cylinder surface that is the result

of the IBM and the particle contact algorithm has three consequences:

(1) it accelerates the particle (in a linear and angular sense); (2) it

opposes net gravity; (3) it bends the particle. In the x2 and x3 direction

this implies

b2 x1ð Þ= a2 x1ð Þ+ α dup2
dt

+ x1
dωp3

dt
−g2 γ−1ð Þ

� �
ð1Þ

b3 x1ð Þ= a3 x1ð Þ+ α dup3
dt

−x1
dωp2

dt
−g3 γ−1ð Þ

� �
ð2Þ

with b2(x1) and b3(x1) the total force per unit length at axial loca-

tion x1 in the x2 and x3 direction, respectively, α = m/ℓ the mass

per unit length of the cylinder, up2 and up3 components of the lin-

ear velocity of the particle, ωp2 and ωp3 angular velocity compo-

nents, and g2 and g3 gravitational acceleration in the x2 and x3

direction, respectively. Given that the particle acceleration (linear

and angular) is solved separately in the simulation procedure,

Equations (1) and (2) allow—at every moment in time for each

particle—the determination of the load distributions a2 and a3 that

bend the particle.

In a quasistatic approximation, the load distributions relate to

bending moments M2 and M3 according to Reference 28.

a2 =
d2M2

dx21
a3 =

d2M3

dx21
ð3Þ

For freely moving particles both ends of the cylinder are

unconstrained. Then the boundary conditions for these two second-

order ordinary differential equations (ODE's) are that at x1 = − 1
2ℓ

and x1 = 1
2ℓ the bending moments are zero: M2 x1 = � 1

2ℓ
� �

=

M3 x1 = � 1
2ℓ

� �
=0.

The deflections of the beam (w2 and w3) obey
28

M2 = EIcs
d2w2

dx21
M3 = EIcs

d2w3

dx21
ð4Þ

in the limit of small deflections, that is, if |w2| � d and |w3| � d.

Solving for w2 and w3 requires again two boundary conditions each.

Since the overall translation and rotation of the cylinder are updated

by solving the dynamic equations of the cylinder in its entirety, the

deflections are not allowed to add additional overall translation or

rotation. Therefore the average deflection as well as the average

deflection gradient must be zero. For w2:
Ð ℓ=2
−ℓ=2w2dx1 = 0 and

Ð ℓ=2
−ℓ=2

dw2
dx1

dx1 = 0 . The latter implies w2(−ℓ/2) = w2(ℓ/2). The same

boundary conditions apply to w3.

The sets of ODE's (Equations 3 and 4) are solved through finite

differences. The cylinder is divided in ns equally sized segments with

length Δx1 = ℓ/ns. The second derivatives are discretized according to

a central scheme. As an example, for M2 this reads

d2M2

dx21

���
i
= M2,i+1 +M2,i−1−2M2,i

Δx21
+O Δx21

� �
with i = 1…ns and the i-nodes located

in the middle of each segment (see Figure 3a). For each of the ODE's

this leads to a linear system of equations of size ns in the nodal values

of M2, M3, w2, w3 that is solved directly. The bending loads a2 and a3

are determined by first integrating the hydrodynamic and contact

forces over each segment of the cylinder so as to calculate b2 and b3

and then apply Equations (1) and (2).

F IGURE 2 The (x1, x2, x3) coordinate system attached to each
cylinder. The load (force per unit length) distributions responsible for
bending are indicated by a2 and a3
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Once we have calculated the deflections w2 and w3 for a cylinder,

its shape in terms of marker points needs to be adjusted in order to

apply the IBM as well as collision detection and execution at the sur-

faces of the deformed cylinders. The marker points are grouped per

segment (see Figure 3b) and the deflection is dealt with as a transla-

tion and rotation per segment. Figure 3 illustrates how this has been

implemented where—for clarity of illustration—in Figure 3a we only

consider a deflection w2 in the x2 direction.

Numerically solving Equation 4 results in the nodal deflection

values w2, i. These are first translated into edge deflection values w eð Þ
2,i

(defined in Figure 3a) through linear interpolation as well as using the

boundary conditions. Starting from themiddle of the cylinder (at x1 = 0),

the edge locations on the centerline are displaced by w eð Þ
2,i in the x2

direction and the segment centerline is rotated by an angle

asin
w eð Þ

2,i
−w eð Þ

2,i−1

Δx1

� �
. In order to keep the segments on the deformed cen-

terline (the red line pieces in Figure 3a) connected with neighboring

segments, the segments are also shifted in the x1 direction. The same

shift and rotation as applied to the centerline segments is then also

applied to the marker points of each segment (where the rotations

again make use of quaternions). Figure 3c shows an example of how a

deformed cylinder is represented by marker points. Since the IBM as

well as collision handling are using the marker point on the deformed

cylinder, the fluid–solid and solid–solid interactions are directly taking

into account the evolving shape of the cylindrical particles.

There are a number of assumptions and approximations that we

would like to highlight here; most of them have been adopted for sim-

plicity and computational efficiency and therefore there is clearly

room for future refinements of the methodology. (1) Only bending as

a deformation is allowed. (2) Equation (3) is based on a quasistatic

assumption. This implies that we assume that fluctuations with which

the deforming load (a2, a3) changes in time are slower than the eigen-

fluctuations of the flexible beam. The load fluctuations relate to flow

time scales. An order of magnitude estimate of the beam's bending

eigen-frequencies is fbend =
ffiffiffiffiffiffiffi
EIcs
ℓ3m

q
.29 We will be comparing time scales

when discussing the simulation results. (3) Equation (4) is valid for

small deflections (|w2|� d and |w3|� d). As we will see from the simu-

lation results, this condition is challenging for the low end of the range

of the flexibility parameter σ = EIcs
ρ γ−1ð Þgd5 and for the high end of

χ = ρνUℓ2d
EIcs

as investigated in this article. Two additional approximations

originate from the small-deflections assumption: (3a) In updating the

equations of rotational motion of the cylinders, the moment of inertia

tensor of the nondeformed cylinder has been used. (3b) The velocity

directly associated to deflections, that is, the change in deflection per

unit time (dw2/dt and dw3/dt), is not considered when imposing no-

slip by means of the IBM.

4 | SET-UP OF THE SIMULATIONS

Throughout this article the same liquid, cylinder diameter and cylinder

density have been used. Since also gravitational acceleration has not

been varied, the Archimedes number is constant. It has value Ar = 4.15.

The density ratio is γ = 1.25. Most simulations deal with cylinders with

ℓ/d=4, except for one agitated tank simulation that has ℓ/d=6 as well

as the cylinder in the Hele-Shaw cell that has an aspect ratio in line

with the available experimental data. The simulations focus on the

impact the bending stiffness parameters σ and χ have on the behavior

of the solid–liquid flow system. Variation of σ is in the range

0.5 ≤ σ ≤ 50 in the settling simulations, and 5 ≤ σ ≤ 150 in the mixing

tank simulations; furthermore 10−4 < χ < 10−1. The flow of liquid in

the mixing tank is laminar with a fixed value of the impeller-based

Reynolds number: Re = 87. The mixing tank simulations all have a

Shields number θ=9.08. The same flow geometry and conditions have

been applied in a previous article6 that studied rigid cylinders in a

mixing tank. An overview of the dimensionless numbers used in this

article is given in Table 1.

As the default spatial resolution of the simulations, the diameter

of a cylinder spans 12 lattice spacings: d = 12Δ. Grid sensitivity has

been assessed previously5 and also in the settling and Hele-Shaw cell

simulations in the current article. Here by comparing results with the

default resolution to those with d = 16Δ and d = 24Δ.The default

number of segments when solving the bending-related ODE's

(Equations 3 and 4) for ℓ/d = 4 is ns = 20. Also the sensitivity of this

choice has been investigated.

The T × T × H agitated tank has been discretized with

nx × ny × nz cubic cells with nx = ny = 251 and nz = 240. In this

domain, the impeller is represented by a collection of marker points

and associated outward unit normal vectors at its surface. The marker

points revolve around the z-axis such that the impeller makes one rev-

olution in 4,000 time steps (N = 1/(4, 000Δt)).

Collision detection and execution of collisions (particle–particle,

particle–impeller as well as particle–wall) is identical as in Reference

6, including the values of the coefficients used in the elastic force and

F IGURE 3 (a) Undeformed (black) and deformed (red) centerline
of the cylinder with segments and nodes (the dots in the middle of
each segment); (b) marker points on an undeformed cylinder, the
alternating red and blue color indicates the segments; (c) marker
points on a deformed cylinder [Color figure can be viewed at
wileyonlinelibrary.com]

5 of 13 DERKSEN

http://wileyonlinelibrary.com


damping force expressions. For completeness, Table 2 summarizes

the elastic and damping force expressions, the parameters as used in

the expressions and the definition of the relative location of the two

marker points between which the forces get activated. These are

located on two different particles in case of a particle–particle colli-

sion; one of them is on the impeller in case of an impeller–particle

collision.

For initialization of the simulations we first randomly distribute

particles in a nonoverlapping way in the T × T × H flow domain,

without the impeller being present. The number of particles has been

chosen so as to achieve a solids volume fraction of 〈ϕ〉=0.148; if ℓ/

d=4 there are n = 411 particles in the tank, for ℓ/d=6, n = 274. The

particles settle so that they eventually form a granular bed on the bot-

tom. Then the impeller is installed and is set to rotate. In the first

4,000 time steps the impeller speed ramps up linearly, after that it has

its steady value of N = 1/(4, 000Δt).

5 | RESULTS

5.1 | Single cylinder settling - verifications

A single cylinder with ℓ/d = 4 is placed horizontally in a rectangular

box filled with liquid and closed off all around. At time zero—when

cylinder and liquid have zero velocity—gravity is switched on and the

particle settles and while settling bends, see Figure 4 that shows snap-

shots of particle location and shape as well as the liquid velocity mag-

nitude contours in a cross sectional plane. Quickly (within one viscous

time d2/ν) the particle bends to a steady shape. In the middle panel of

Figure 4, the segments constituting the bended cylinder have been

made visible. Upon approaching the bottom the cylinder rectifies itself

while liquid is being squeezed out of the space between bottom and

particle. This evolution is also shown in Figure 5 in terms of time

series of the Reynolds number based on the instantaneous settling

velocity Res = usd/ν and the deflection relative to the cylinder diame-

ter Δw/d with Δw the difference between the deflection at the end

points and in the middle of the cylinder (Δw = w(0) − w(ℓ/2) where it

is reminded that w(−ℓ/2) = w(ℓ/2) is a boundary condition). We

observe a weak coupling between settling speed and deformation: the

TABLE 1 Definitions and settings of dimensionless numbers

Expression
Value or
range Description

Ar = (γ − 1)

gd3/ν2
4.15 Archimedes number

Re = ND2/ν 87 Impeller Reynolds number

Res = usd/ν Dependent

variable

Settling Reynolds number

ReW = UW/ν ≈0.1 Micro channel Reynolds number

γ = ρp/ρ 1.25 Density ratio

θ = N2D2/(g

(γ − 1)d)

9.08 Shields number

σ = EIcs
ρ γ−1ð Þgd5 0.5–50

(settling)

5–150
(mixing)

Gravity-based flexibility number

〈ϕ〉= nVp

HT2 0.15 Overall solids volume fraction in

mixing tank

χ = ρνUℓ2d
EIcs

10−4–10−1 Flow-based flexibility number

TABLE 2 Collisional force equations
and parameter settings6; all parameters in
lattice units: unit of length is the grid
spacing Δ, unit if time is the time step Δt,
unit of mass is the average mass per Δ3

(cubic) lattice cell [Color table can be
viewed at wileyonlinelibrary.com]

Normal elastic force a,d Felij = k δ0−δð Þ δλ−λj j
λ

nj−nið Þ
nj−nij j if δ< δ0 and δλj j< λ;Fel

ij =0otherwise

k=5.0; δ0=0.50; λ=0.50

Normal lubrication force b,d Fnij = k
n 1

δ*
− 1

δd

� �
δλ−λj j
λ Δun if δ* < δd and δλj j< λ; Fn

ij =0otherwise

kn=5.0; δd=1.0; δsat=0.20

Tangential lubrication force c,d Ftij = k
t 1

δ*
− 1

δd

� �
δλ−λj j
λ Δut if δ* < δd and δλj j< λ; Ftij =0otherwise

kt=0.50

aThe force on marker point i with normal ni due to marker point j on a different particle with normal nj at
normal distance δ and tangential distance δλ.
bThe force on point i due to point j on a different particle due to the relative velocity in normal direction

between the two points Δun; δ* = δ if δ > δsat and δ* = δsat if δ ≤ δsat.
cThe force on point i due to point j on a different particle due to the relative velocity in tangential

direction between the two points Δut.
dDefinition of the normal and lateral distances δ and δλ between two adjacent marker points; figure

reprinted from Reference 5.
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most flexible cylinder settles fastest. The change of shape affects the

drag coefficient and therefore the settling velocity. The time it takes

for the particle to deform is shorter than the time for it to reach a

steady velocity. As expected, the deformation strongly depends on

the stiffness of the cylinder. On a more detailed note, it is interesting

to see an inversion of Δw when it gets close to the bottom. This is

due to lubrication forces acting on the cylinder in the positive z-

direction near the middle of the cylinder being larger than at its edges.

It is easier for the liquid to escape the gap between the particle and

the bottom near the edges than near the middle. We note that these

are resolved lubrication forces: The inversion takes place well before

the lubrication model mentioned previously kicks in.

Figure 5 shows that the simulation domain is sufficiently tall so as

to have plateau (steady) values for Res and Δw/d for a significant part

of the trajectory. These plateau values we use for further analysis and

verification purposes. This has been summarized in Figure 6 where

steady state settling Reynolds number and deformation are plotted

against 1/σ. The default spatial resolution (d = 12Δ for the LB method

and ns = 20 for the number of segments along the cylinder) is com-

pared to a finer LB grid and finer and coarser segment divisions.

Steady state deformation is largely inversely proportional to the bend-

ing stiffness of the cylinder which is to be expected for the linear elas-

tic behavior as implied by Equation 4. Deviation from linearity for the

most flexible cylinder (for which 1/σ = 2) is the result of feedback

from the fluid flow: The significant deformation that occurs when

1/σ = 2 impacts the flow pattern around the cylinder which, as a con-

sequence, steers the deformation away from the straight line that sig-

nifies linearity (Figure 6, bottom panel). The same feedback between

deformation and flow results in a slight (note the limited (Res)ss range

of the upper panel of Figure 6) increase of settling speed with

decreasing stiffness.

The numerical resolution has minor impact on the steady-state

deformation and settling speed. A change in ns does—to a very good

approximation—not affect the settling speed (and for that reason

these data have been omitted in the upper panel of Figure 6). It does

affect the deformation in a systematic manner: more segments results

in increased deformation. However, differences between deformation

F IGURE 4 Cylinder with ℓ/d = 4 and σ = 0.5 settling in a closed
box. Three time instants as indicated [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Time series of the Reynolds number of a settling
cylinder (top) and its deflection (bottom) with Δw defined in the text.
Cylinder with ℓ/d = 4 and stiffness parameter σ as indicated [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 The plateau settling Reynolds number (Res)ss and
deflection (Δw)ss as a function of 1/σ. Comparing different resolutions
for the number of segments ns and the number of lattice cells per
diameter d. The dashed line in the lower panel is to indicate the
extent of linearity [Color figure can be viewed at
wileyonlinelibrary.com]
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for ns = 20 and 30 are less than 2%. It should be noted that the simu-

lation method sets some limitation on the number of segments. The

length of each segment ℓ/ns needs to be larger than Δ (by a factor of

2 at least) in order to have an appreciable number of marker points

per segment to have a smooth and representative force distribution

along the length of the cylinder. The LB resolution has some effect on

the settling speed, as also seen in a previous article on hindered set-

tling.6 Differences are, however, minor (less than 3% between

d = 12Δ and d = 16Δ).

5.2 | Hele-Shaw cell—comparison with
experimental data

As already noted in Section 1, experiments under well-defined condi-

tions with a complete set of material properties the results of which

could be used for validation are rare. In this respect, the experimental

part of the work by Wexler et al.16 on a single, clamped fiber

deformed by the low-Reynolds number flow in a microfluidic channel

is very useful. Their experimental results have been presented in the

form of the fiber's tip deflection as a function of the volumetric flow

rate in the channel. One of the foci of the experimental work is the

effect of confinement as a result of which the channel width W (see

Figure 1b) is only slightly larger than the width of the fiber. An impor-

tant detail of the experiment is that the fibers have a rectangular cross

section, where our interest is in fibers with a circular cross section.

For a meaningful comparison between experiment and simulation

we have translated the experimental data in dimensionless terms

where the difference in cross sectional shape between simulation and

experiment requires some caution. We define w as the size of the

fiber's cross section in streamwise direction and s as its size in trans-

verse direction. The fiber's length is (as before) denoted by ℓ. Given

the narrow confinement we give our simulated cylindrical fiber a

diameter d = s and make sure that in the simulations we match the

experimental aspect ratios s/W = 0.85 and ℓ/S= 0.60. The default

length of the channel is L = 2S. In the flow direction we have periodic

boundary conditions. Some cases have been repeated with L = 3S and

no significant differences with the default length were observed. The

experimental bending parameter is defined as χexp =
ρνUℓ2s
EIcs

with U= Q
WS

and Q the volumetric flow rate as specified in the experimental arti-

cle.16 We realize that for the experimental fiber Ics = w3s
12 . The rational

for comparing experimental data with a specific value of χexp with sim-

ulation data having the same value χ is that we expect the hydrody-

namic force to scale with the superficial velocity and the frontal area

which is ℓd for the round fiber and ℓs for the rectangular one so that

the bending moment scales as ℓ2d and ℓ2s, respectively.

Figure 7 shows—in a double logarithmic way as also displayed in

the experimental article16 —the comparison between experiment and

simulation in dimensionless terms (χexp and χ versus the fiber tip

deflection that has been scaled with the length of the fiber: w3/ℓ).

The experimental data points have been obtained from the data set

denoted “w = 22 μm, h = 241 μm” in Figure 3 of Reference 16. For

this data set the aspect ratio of the fiber is s/ℓ = d/ℓ = 4.3. The

uncertainty in the experimental points in Figure 7 is due to the uncer-

tainty in Young's modulus in the experiments that is reported as

E = 63 ± 22 kPa.16 The simulations have been conducted at a fixed

flow rate and therefore fixed channel Reynolds number ReW = UW/

ν ≈ 0.1. The bending parameter χ has been varied by varying EIcs (over

almost three orders of magnitude). As in the experiments, the simula-

tions show a linear and a nonlinear regime with the transition occur-

ring at χ ≈ 10−2. The primary reason for the nonlinear regime is

feedback of the fiber deformation on the fluid flow and thus can—in

principle—be captured by a linear elastic model for fiber bending. We

observe reasonable agreement between simulation results and experi-

mental data with, however, consistently lower deflection in the simu-

lations. In the linear regime the deviations are within the error margin

that is the result of uncertainty in Young's modulus in the experiment.

This is not the case for the nonlinear regime that has larger deforma-

tions. We here likely overstep the limit of small deformations |w3| � d

that is part of the modeling approach. Also, and this is the case over

the entire parameter range, there is the difference in cross sectional

shape of the experimental and computational fiber with consequences

for the hydrodynamic force distribution and therefore deflection. We

do not expect, however, that this is an effect that has consequences

beyond the error margins due to uncertainty in Young's modulus mak-

ing it hard to assess conclusively.

There only are minor differences between simulation results with

d = 16Δ and 24Δ. On one hand, this is not surprising given the rela-

tively simple flow geometry and low value of ReW. On the other hand,

the narrow gap between fiber and channel side walls does require

proper resolution.

In conclusion, this test case of a fiber bending in micro channel

flow has provided some confidence in the simulation approach. How-

ever, experimental validation under more challenging circumstances—

F IGURE 7 Clamped cylinder bending in micro channel flow: tip
deflection versus bending parameter χ (defined in the text).
Comparison between experimental results due Wexler et al16 and
simulations at two resolutions as indicated. The inset is a side view of
the simulation related to the filled symbol with colors representing
velocity magnitude in the mid plane. The uncertainty in the
experimental data—as indicated in one of the symbols—is due to a
30% uncertainty in Young's modulus [Color figure can be viewed at
wileyonlinelibrary.com]
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specifically involving assemblies of many particles—remains very

desirable.

5.3 | Flexible cylinders in agitated flow

The system we are looking into now is far more complicated than the

ones in the previous subsections. It involves many flexible cylinders

agitated by a nontrivial—albeit laminar—flow generated by a revolving

impeller. This system is, however, a logical continuation of the simula-

tions on agitated rigid cylinders discussed in Reference 6 now using

the methodologies for introducing flexibility as described (and to some

level verified and validated) in the previous sections of the current

article. The main independent variable of this set of simulations is the

bending stiffness. The solids volume fraction, Archimedes number,

impeller-based Reynolds number and Shields number have all been

kept constant. Most simulations have cylinders with ℓ/d = 4; one sim-

ulation has ℓ/d = 6. The initial condition is shown in Figure 8: random

multilayers of cylinders on the bottom of the container, slightly

bended under their own weight.

At time zero the impeller is inserted and set to rotate. In Figure 9

the evolution of what follows is monitored in terms of the

average vertical (z) position of the particles, as well as the average

deformation. Differently from the one-cylinder settling and

micro channel cases with deformation in one direction only, here

deformation of particle i Δw(i) is defined as Δw ið Þ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w ið Þ

2 0ð Þ−w ið Þ
2 ℓ=2ð Þ

� �2
+ w ið Þ

3 0ð Þ−w ið Þ
3 ℓ=2ð Þ

� �2
r

and average deforma-

tion implies averaging over all particles. We observe a development

toward a dynamic steady state over a period of at least 100 impeller

revolutions. With respect to the average vertical particle position 〈zp〉

there is no significant difference between the various ℓ/d = 4 cases.

They all evolve toward a steady value of 〈zp〉≈0.36H. The longer

(ℓ/d = 6) particles get suspended slightly faster and—on average—to a

slightly higher vertical level. This trend with aspect ratio was also

observed for rigid cylinders.6 Average deformation initially develops

quickly. Steady state values—obviously—depend on the stiffness

parameter σ.

Impressions of the solids suspension process are given in

Figure 10. The upper row is a time sequence with initially particles

being drawn to the impeller from underneath due to the pressure dis-

tribution induced by the swirling flow with minimum pressure under

the impeller. Particles can be seen to be strongly deformed by the

impeller in Figure 10b. The dynamic steady state is one characterized

by partial suspension (Figure 10c) as anticipated by the Shields num-

ber value of θ=9.0830 and the average vertical particle location being

well below H/2 (see Figure 9). The impressions in the lower row of

panels of Figure 10 clearly illustrate the effect of bending stiffness

and cylinder length on the levels of deformation of the particles.

Partial suspension of particles is also witnessed from the vertical

solids volume fraction profiles in Figure 11. Layering of particles is

observed closely above the bottom. There are no clear, systematic

F IGURE 8 Initial location of cylinders after
having settled. Left: ℓ/d = 4 and σ = 15; right ℓ/
d = 6 and σ = 50 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 9 Time series of the average vertical location of the
centers of the particles (top) and average deformation of the particles
(bottom). Particle stiffness and aspect ratio as indicated. Loss of data
is causing a gap in results for the case ℓ/d = 4 & σ = 150, as well as
the case ℓ/d = 6 & σ = 50 not starting from tN = 0 [Color figure can
be viewed at wileyonlinelibrary.com]
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differences between the profiles except for the second layering peak

above the bottom being much weaker for ℓ/d = 6 which indicate that

these longer particles are suspended better, and the fact that the min-

imum ϕ at the level of the impeller (z ≈ H/2) is less pronounced for

the most flexible particles with ℓ/d = 4 as well as for the particles with

ℓ/d = 6.

In Figure 12, we focus on the way deformation of particles is dis-

tributed. In the top panel as probability distribution functions (pdf's)

which have been collected over the entire tank volume as well as over

a time period of 25 impeller revolutions; in the bottom panel as the

average deformation as a function of vertical position of the particle

centers. From the pdf's it is clear that many particles deform strongly

and have deformations Δw of the order of the particle diameter d.

The fraction of particles deforming strongly increases more than pro-

portionally with decreasing σ, with σ varying by 1–2 orders of magni-

tude the variations in the pdf's exceed 2 orders of magnitude. The

average level of deformation is clearly coupled with local flow condi-

tions: it peaks at the height of the impeller, more precisely directly

above and directly below the impeller. With deformation of the order

of particle diameter d, extending the simulation procedure beyond the

small deformation limit Δw � d is an important next step. The results

in Figure 12 show that—specifically if σ < 50 (ℓ/d = 4)—this condition

is not satisfied.

The two panels of Figure 12 indicate that the deformation levels

of the simulation with ℓ/d = 4 & σ = 5 and the one with ℓ/d = 6 &

σ = 50 are comparable, as also seen in the time series in Figure 9.

Deflection of a linear elastic beam subjected to a certain load is

F IGURE 10 Impressions of particle suspension along with velocity magnitude contours in the mid-plane. The top row shows the evolution of
the system with ℓ/d = 4 and σ = 5.0 from start-up at moments tN = 14.4 (a), 30.0 (b), and 130 (c). Bottom row, snapshots of other systems after
reaching quasisteady state. (d): ℓ/d = 4 and σ = 15.0; (e) ℓ/d = 4 and σ = 50.0; (f) ℓ/d = 6 and σ = 50.0 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 11 Time-averaged solids volume fraction after steady
state has been reached as a function of the vertical location in the
tank. Four cases with ℓ/d = 4, one case with ℓ/d = 6. Stiffness
parameter σ as indicated [Color figure can be viewed at
wileyonlinelibrary.com]
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proportional to ℓ4.28 With (6/4)4 ≈ 5 we thus expect comparable

deformations for the two cases. As we observed in Figure 11, the two

cases showed a slightly higher solids volume fractions at the level of

the impeller hinting that (strong) flexibility has consequences for the

way particles interact with the impeller.

In an overall sense, the interactions between impeller and particles

and between impeller and fluid have been quantified by measuring the

torque exerted on the impeller. In the conventional way of mixing

research,31 torque has been translated into power P first and then into

the dimensionless power number Po: P = 2πNΓ and Po = P/(ρN3D5)

with Γ the torque exerted on the impeller. The torque, and therefore

Po, can be divided in a fluid and a solids contribution. The fluid contri-

bution follows from integrating the fluid-impeller interaction forces

stemming from the IBM over the impeller surface, the solids contribu-

tion from integrating the contact forces between impeller and the parti-

cles. Time series of Po are given in Figure 13 for the case with the most

flexible particles (σ = 5) of aspect ratio ℓ/d = 4 and for a case with the

same aspect ratio but much higher stiffness (σ = 50). The two cases

behave very differently. All four time series in Figure 13 fluctuate which

is due to particle motion, not due to turbulence given the modest

impeller-based Reynolds number. The interaction between solids and

impeller for σ = 5 is very weak which we interpret as the flexibility of

the particles enabling them to largely avoid contact with the impeller.

This is very different for the σ = 50 particles. The torque fluctuations

due to these particles are much higher indicating many more particle-

impeller collisions. These differences in particle behavior of relatively

stiff and flexible particles has profound consequences for the fluid-

related torque which is much higher for the flexible particles.

Time-averaged power number results are shown in Figure 14.

The total power (fluid plus solids power) for ℓ/d = 4 decreases with σ

for σ < 50 and for σ ≥ 50 gets independent of the stiffness parameter.

The single data point for ℓ/d = 6 shows—as also seen in Figure 12—

results comparable to the case with ℓ/d = 4 & σ = 5. The total torque

(or total power) is a measurable quantity. The simulations suggest that

it depends on the flexibility of the particles if they are sufficiently

F IGURE 12 Top: probability distribution function (pdf) of particle
deformation Δw/d for various stiffness coefficients σ. Bottom:
average distribution of particle deformation as a function of the
vertical location. Cylinders with ℓ/d = 4 and one case with ℓ/d = 6,
time-averaging over 25 revolutions after dynamic steady state has
been reached [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Time series—after a dynamic steady state has been
reached—of the torque (translated in a power number Po, see text)
required to revolve the impeller with contributions from fluid and
solids as indicated for simulations with σ = 5 and 50 [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 14 Time-averaged power number Po as a function of σ
for ℓ/d = 4 (open symbols) and ℓ/d = 6 (closed symbols). Total power
is the sum of fluid power and solids power
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flexible. An experiment along those lines would be an interesting test

for the simulations presented in this article.

The time series on power/torque in Figure 13 provide us with

some insight in the time scales of fluctuations induced by the revolv-

ing impeller as well as by particle motion. An order of magnitude esti-

mate of the fluctuation time scale based on what we see in Figure 13

is τflow ≈ 0.1/N which is equivalent to 400 time steps (400Δt). The

time scale of bending dynamics is estimated as τbend = 1=fbend =
ffiffiffiffiffiffiffi
ℓ3m
EI

q
which is—for a mid-range stiffness coefficient of σ = 50—of the

same order of magnitude as the flow time scale, casting into some

doubt the validity of the quasistatic assumption underpinning

Equation (3).

6 | SUMMARY AND CONCLUSIONS

A methodology for highly resolved flow simulations of flexible cylin-

drical particles suspended in liquid has been introduced. It is an exten-

sion of previous work on particle-resolved simulations with rigid

cylinders. Based on the way the hydrodynamic forces and particle

interaction forces are distributed along the length of the cylinders,

bending moments and subsequently deflections have been calculated

based on linear elastic theory and a quasistatic assumption.

For the relatively simple case of a cylinder settling horizontally in

a closed container at low Reynolds number a series of verification

tests have been performed. They show only a weak dependency on

the numerical parameters of the settling speed and the level of bend-

ing of the particle. It is also clear from these simulations that the parti-

cle deformation is fed back to the fluid flow and that the settling

speed increases—albeit modestly—with increasing deformation. We

also have reproduced—with a fair level of agreement—experimental

results on bending of a clamped fiber in micro channel flow,16 includ-

ing the transition from a linear to a nonlinear regime which is the

result of feedback of the fiber shape on the flow in the channel and

drag force on the fiber.

To demonstrate the feasibility of the numerical approach to many

particle systems in complex flow, flexible cylinders were placed in an

agitated tank to an overall solids volume fraction of 0.15. The agita-

tion was such that a laminar flow with an impeller-based Reynolds

number of 87 was generated. We mainly investigated how the system

responds to a change in the bending stiffness of the cylinders. In the

flexibility range considered, the deflection of the ℓ/d = 4 cylinders is

of the order of the diameter d of the cylinders with deflection being

on average strongest near the impeller. The levels of solids suspension

as measured through the time-averaged vertical location of the parti-

cles and the vertical solids volume fraction profile do not depend

strongly on the flexibility of the particles.

The torque required to spin the impeller and the way it is distrib-

uted over a fluid and a solids contribution does depend significantly

on the bending stiffness. The resulting total power number is higher

when the particles are more flexible and then is almost completely

due to the fluid. For more rigid particles a significant portion of the

torque is required for direct particle-impeller interactions.

We have shown that the assumptions of small deformation and

quasistatic deflection are not fully satisfied under many of the condi-

tions investigated in this article. Refining the simulation procedure to

alleviate restrictions on the applicability of the computational method

is left for future work. We do not expect conceptual issues in this

respect. Including dynamics in the bending process to overcome the

quasisteady assumption requires adding time-dependent terms in the

structural equations where accurate time stepping needs careful

attention. Also theory for large deflections—still based on linear elastic

material—is well developed28 and amenable for implementation in

numerical procedures. Inspiration can also be obtained from research

on fluid–structure interaction where solid and fluid mechanics solvers

are coupled to study large deformation of structures under the influ-

ence of fluid flow over a very wide range of Reynolds numbers, from

creeping flow,32 to intermediate33 to high Reynolds numbers.34

In light of this, however, it is (more) important to further work on

experimental validation in order to test the simulation procedure and

see if refinements in the procedure have sizeable effects in the right

direction. It is realized, however, that creating the flow systems exper-

imentally with particle of the very specific properties and dimensions

we have been investigating is not an easy task.

An extension in a different direction is assessment of particle

breakage probabilities.35 Given that we now have a method to deter-

mine the mechanical load on cylindrical particles in complex flow of

dense suspensions, we can assess probability of breakage of cylinders

having a certain strength. The simulations could actually perform the

breakage event and—starting from a certain cylinder length (distribu-

tion)—make predictions of a resulting length distribution as a function

of agitation conditions.
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