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Abstract

Droplet impingement and anisotropic wetting on chemically heterogeneous stripe-

patterned surfaces is simulated by means of many-body dissipative particle dynamics.

The ratio of the stripe width and initial droplet diameter, defined as β, ranges from

0.5 to 1.0 so that the wetting process is in the Beyond–Cassie–Baxter regime and is

highly anisotropic. At zero Weber number (that is, without considering droplet

inertia) and with superhydrophobic stripes, β is the only factor affecting the droplet

perpendicular contact angle and aspect ratio. For inertial droplets, β and the Weber

number are found to have an effect on the eventual droplet morphology on multi-

striped surfaces. These morphologies include elongated shape, split-off, and “butter-

fly” shape. A correlation for critical split-off conditions has been determined. An

energy analysis of droplet impingement shows that the normalized surface energy of

the droplet is independent of the Weber number if the droplet is elongated or

butterfly-shaped.
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1 | INTRODUCTION

Anisotropic wetting of a droplet on grooved surfaces1,2 and chemi-

cally heterogeneous surfaces3-7 is commonly observed in nature3 and

industrial applications, such as ink jet printing,4 microfluidics systems,5

droplet evaporation6 and cell culture.7 Different from wetting on

homogeneous surfaces, the droplet morphology will adapt to the

alternations of wettability on the chemically heterogeneous surface,

and the droplet's final shape strongly depends on the topology of wet-

tability of the surface. Various chemically heterogeneous surfaces

such as stripes,8-10 square,11,12 and triangular patterns13 have been

investigated. Striped surfaces get a lot of attention due to their

relatively easy fabrication. When a droplet deposits on a striped sur-

face slowly, the contact angles of the droplet in the directions perpen-

dicular (θ⊥) and parallel (θ||) to the stripes can be very different, as

shown in Figure 1.

The aspect ratio, W/L as shown in Figure 1, is used to describe

the droplet deformation, where W is the width of the droplet perpen-

dicular to the stripes and L is the length of the droplet parallel to the

stripes. Relative hydrophobicity of the stripes is described as α= Wbic
W lic

,

where Wbic and Wlic are the width of hydrophobic and hydrophilic

stripe, respectively.14 Much research has been done for droplet sizes

much larger than the stripe width so that the droplet covers multiple

stripes simultaneously, typically more than ten.15 Bliznyuk et al14,16
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deposited glycerol droplets of millimeter size on alternating hydro-

philic and hydrophobic stripes to investigate the final shape of the

droplet. Two spreading regimes16 were observed during the droplet

deposition. At the beginning of the deposition, droplet spreading is in

the inertial regime, where the spreading rate of the droplet in both

perpendicular and parallel direction are the same. Subsequently, the

droplet is elongated in the viscous regime, where the droplet spreads

more along the stripe because of the energy barrier in the perpendicu-

lar direction. In addition, they noticed that the contact angles and

aspect ratio of the equilibrium droplet only depend on α if the size of

the droplet is one to two orders of magnitude larger than the width of

the stripes.14 The experiment14 was later compared with the simula-

tions conducted by Jansen et al17 based on a finite element method.

Both the experiments and simulations indicated a more elongated

droplet on the surface with low α. Additionally, θ⊥ is close to the

intrinsic contact angle of the hydrophobic stripes (θbic) for a large α

range, and θ|| can be modeled by the Cassie–Baxter equation14:

θk = arccos
αcos θbicð Þ + cos θlicð Þ

1+ α

h i
,where θlic is the intrinsic contact angle of

the hydrophilic stripes. The equation indicates that the morphology of

a droplet in the Cassie–Baxter regime can be adjusted by modifying

θbic, θlic, and α.

Different from a droplet spanning multiple stripes, when the

stripe width is comparable with the initial droplet radius, the contact

angles of the droplet cannot be predicted by the Cassie–Baxter equa-

tion anymore.18 Wang et al18 suggested 0.1 as the critical value for

the ratio of stripe width to droplet radius that separates the Cassie–

Baxter regime and the Beyond–Cassie–Baxter regime. In the Beyond–

Cassie–Baxter regime, the equilibrium shape of the droplet is related

to the number of wetted stripes and the initial deposition position.

Jansen et al19 defined a scaled radius to describe the relative size of

the droplet and the stripes. They performed lattice-Boltzmann simula-

tions to model droplet wetting on striped surfaces with the scaled

radius ranging from 0.5 to 1.25. Interestingly, θ⊥ and the aspect ratio

of the droplet do not change monotonically as the scaled radius

increases. Instead, they firstly increase until they undergo a sudden

transition where a minimum occurs and then they start a new stage of

increase. If the number of wetted stripes reduces to three, “lozenge”

and “butterfly” shapes are identified when a droplet is deposited on

the middle of a hydrophobic and hydrophilic stripe, respectively.18,20

Lipowsky et al21,22 observed four morphologies on a single hydrophilic

stripe, where a long liquid channel could be obtained by adding more

and more liquid onto a stripe with wettability if θlic < 38�.

When the initial velocity of the droplet is significant, the effects

of its inertia on the impinging and wetting process cannot be ignored.

The impinging dynamics is characterized by the droplet Weber num-

ber (We= ρU2D0
σ ), which is the ratio of inertial force to capillary force.

Here, U is the impinging velocity; ρ, σ and D0 are the density, surface

tension and initial diameter of the spherical droplet, respectively. Song

et al23 found that the droplet could be split off by impinging it on a

slim superhydrophobic stripe coating placed on a hydrophilic surface

if We>20. In the case of multiple stripes, Zhao et al24 conducted a 2D

simulation based on many-body dissipative particle dynamics (MDPD)

to study the droplet impingement on a multi-striped surface, and they

observed “stick–slip” motion of the droplet during the recoiling stage,

which was strongly affected by We and α. Jansen et al8,25 pointed out

that more spherical droplets could be obtained in higher We cases.

With increasing We, there may be some residues or satellite droplet

on hydrophilic stripes. Wang et al26 found that these residues were

distributed in circular regions. Zou et al27 indicated that the number

of satellite droplets increases with increasing droplet impinging veloc-

ity, that is, with increasingWe.

Despite that much work has been performed on the droplet

impingement on stripe pattern surfaces, there is no clear understand-

ing of the droplet spreading and impingement behavior in the

Beyond–Cassie–Baxter regime. In this regime, the droplet can be

deformed, migrate and even be split into two droplets, dependent on

stripes width and wettability. The aim of this work is to investigate

the droplet behavior in the Beyond–Cassie–Baxter regime character-

ized by droplet spreading diameters, contact angles, aspect ratios and

droplet energy budgets. In this work, the relative stripe width, β,

defined by the ratio between the stripe width Ws and initial droplet

diameter D0, ranges from 0.5 to 1.0. The hydrophilic contact angle has

been fixed at 45� and hydrophobic contact angle is variable.

Here we use MDPD to investigate single droplet impingement

and wetting behavior. MDPD is a mesoscopic numerical method that

has been widely employed in multi-fluid systems with free liquid/

vapor or liquid/liquid interfaces, such as capillary flow,28 liquid drop-

lets on surfaces,29-31 and bubble formation.32 All the simulations in

this work are implemented by a modified MDPD code in the open

source molecular dynamics code LAMMPS (Large-scale Atomic/

Molecular Massively Parallel Simulator).33

The remainder of the paper is organized along the following lines:

a brief introduction about the MDPD method and validation tests are

presented in Section 2, and then the results are shown in Section 3.

F IGURE 1 Schematic representation of a
droplet on a chemically stripe-patterned surface:
(a) Top view. (b) Front and side view. W and
L represent the droplet width and length,
respectively. θ⊥ and θ|| represent contact angles
perpendicular and parallel to the direction of the
stripes, respectively. (c) perspective view [Color
figure can be viewed at wileyonlinelibrary.com]
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Firstly, we discuss wetting without taking into account inertial effect.

We analyze the effects of deposition position and the hydrophobic

stripes wettability on the droplet shape. Next, the droplet impinge-

ment behavior including inertial effects is discussed. The effects of

the stripe arrangement, β and We on droplet morphology are investi-

gated. In addition, the time evolution of droplet surface energy and

kinetic energy are introduced to describe the droplet impingement

behavior. A final section summarizes the main conclusions and makes

suggestions for future work.

2 | NUMERICAL METHOD

2.1 | MDPD method

The MDPD method, a mesoscopic numerical method, is derived from

dissipative particle dynamics (DPD).34-36 As is the case for the stan-

dard DPD method, each particle in MDPD represents a cluster of

atoms or molecules and the motion of each particle obeys Newton's

second law, where the total force acting on each particle includes con-

servative force FCij , dissipative force FDij and random force FRij . Different

from standard DPD, an attractive term is introduced in MDPD to sim-

ulate vapor–liquid coexistence. For this reason, the conservative force

(FCij ) in MDPD is defined as:

FCij = AijwC rij
� �

+Bij �ρi + �ρ j

� �
wd rij

� �� �
eij ð1Þ

Here, Aij, usually negative, is the coefficient of the attractive force

between particle i and particle j within a cutoff range rC; Bij, usually

greater than zero, is the density-dependent repulsive force coefficient

within a cutoff range rd. The weight functions are wC(rij) = 1 − rij/rC

and wd(rij) = 1 − rij/rd with rij the distance between particle i and parti-

cle j, and eij is the unit vector from particle j to i. The local density ρ at

the location of particle i can be obtained by �ρi =
P

j6¼iwρ rij
� �

where

wρ rij
� �

= 15
2πr3

d

1− rij
rd

� �2
, according to References 34 and 37.

Apart from the conservative force, the other components in the

total force are the same as those in standard DPD. They can be writ-

ten as:

Fij
D = −γwD rij

� �
eij�vij
� �

eij ð2Þ

FRij = δwR rij
� �

ξijΔt−1=2eij ð3Þ

where γ and δ are the friction coefficient and the noise amplitude,

respectively; wD and wR are weight functions; νij = νi –νj is the relative

velocity between particle i and particle j; ξij is a random Gaussian num-

ber with zero mean and unit variance. To satisfy the fluctuation-

dissipation theorem requires that δ2 = 2γkBT and wD(rij) = [wR(rij)]
2,

where kB is the Boltzmann constant and T is the system temperature.

The weight function for dissipative force and random force are

wR(rij) = 1 − rij/rC, and wD(rij) = (1 − rij/rC)
2, respectively.38

2.2 | Fluid properties and validation

In this section, we test the MDPD method by comparing our simula-

tion results of a droplet spreading on a solid surface with the

corresponding experimental results in Reference 39 Generally, MDPD

operates in reduced units so that kBT = 1.0 and rC = 1.0. A common

choice for the interaction parameters between liquid particles then is

All = −40, Bll = 25 and rd = 0.75.13,28,37

Figure 2a shows the density profile of a spherical droplet with the

density of the droplet ρ = 6.09, which is slightly different from ρ = 6.0

as obtained in Reference 28 with exactly the same set of parameters.

Surface tension is an important interface property in the interaction

between a liquid droplet and a solid surface. Conducting a simulation of

a thin liquid film, the surface tension can be derived by subtracting the

mean tangential stress components (i.e., Pxx and Pyy) from the normal

(i.e., Pzz): σ =
Ð∞
−∞dz Pzz− 1

2 Pxx +Pyyð Þ� �
.
40 The calculated surface tension

is σ = 7.51, which matches the value in Reference 28(σ = 7.51 ±0.04).

The viscosity of the liquid can be assessed separately from ρ and σ

and directly obtained by the periodic Poiseuille flow method.37,41,42 In

this validation, the parameter γ equals 0.005. A computational box

filled with 4,677 particles is divided into two symmetric regions and a

body force along the z direction is applied to each particle located in a

half of the box, while an equal force in the opposite direction is applied

to particles in the other half. This distribution of forces leads to para-

bolic velocity profiles on either side of the box, as seen in Figure 2b.

Fitting the simulated time-averaged velocity in z-direction as a function

of x with a quadratic function—as shown in Figure 2b—then provides

us with an estimate for the kinematic viscosity of υ = 0.40.

The relationship between the MDPD units of length (LMDPD),

mass (MMDPD) and time (TMDPD) can be mapped to specific properties

of real liquids (i.e., density ρ*, surface tension σ* and viscosity υ*)

according to Equation (4).37

MMDPD = L3MDPD
ρ�

ρ

TMDPD = MMDPD
σ

σ�
� �0:5

L2MDPD

TMDPD
=
υ�

υ

ð4Þ

As an example, the ethylene glycol solution as used in Reference

39 (ρ* = 1,056 kg/m3, σ* = 56.5 mN/m and υ* = 3.03 × 10−6 m2/s) can

be matched by ρ = 6.09, σ = 7.51 and υ = 0.4, respectively. So we

determine the scaling coefficients between the physical and MDPD

units as LMDPD = 1.32 × 10−6 m, MMDPD = 4.01 × 10−16 kg, and

TMDPD = 2.31 × 10−7 s by Equation (4).

Droplets with different static contact angle (θc) on the substrate

can be created by altering the solid–liquid interaction parameter Asl.

The relationship between Asl and θc is shown in Figure 2c. The range

of Asl is from −37 to −4 and the range of θc is from 45� to 180�. The

contact angle is determined by fitting a circle to a cross section of the

gas–liquid interface which is defined as the surface that has a density

approximately half of the bulk density of the droplet. The simulated

results in Figure 2c agree well with the values in Reference 43.

YI ET AL. 3 of 13



For further validation, we now consider the case of an impacting

droplet for which experimental data is available (Reference 39). The

time evolution of the impacting droplet with We = 12.1 in terms of its

dimensionless height H* = H/D0 and spreading factor D* = D/D0 with

D0 the initial droplet diameter is shown in Figure 3. The maximum

spreading factor (D*
max) and the spreading time (from the impact to the

maximum spread) are 1.57 and 9.2 μs, corresponding to the value

1.4 ± 0.2 and 9.2 ± 2.2 μs in the reference.39 Finally, the droplet

reaches a stable state and the contact angle reaches 90�. It should be

noted that we consider the surfaces as ideal. The presence of contact

angle hysteresis on real surfaces can lead to a retraction of the droplet

in an experiment.24,44 After the comparison between the simulation

and experimental values, we feel confident to use the MDPD method

to predict droplet spreading on heterogeneous substrates.

2.3 | Problem specifications

The schematic for a droplet deposition on the periodically stripe-

patterned substrate is shown in Figure 4. Here the hydrophobic stripe

width equals to the hydrophilic stripe width, represented by Ws. The

ratio of stripe width Ws over initial droplet diameter D0 is defined as

β. It is in the range 0.5–1.0, so that in this work the droplet is in the

Beyond–Cassie–Baxter regime.18 First we ignore the inertial effect

and study the droplet wetting behavior as the droplet deposits

starting from three different positions (the middle of the hydrophobic

stripe—Case1; the middle of the hydrophilic stripe—Case2; and

exactly the border between two different stripes—Case3), seen as

Figure 4a–c. Then we choose Case 3 as an example to study inertial

droplet impingement and splitting behavior on the single-striped sur-

face and multi-striped surface.

A computational domain of size 160 × 100 × 60 is adopted in the

three-dimensional simulation with periodic boundary condition in the

x and y directions. The x direction is normal to the stripes and

y direction is in the direction of the stripes. The z direction is the

direction normal to the substrate. Each droplet has diameter D0 = 28

and consists of 69,849 MDPD particles (ρ = 6.09, σ = 7.51 and

υ = 0.80 [γ = 1]), and the droplet matches the liquid with

ρ* = 1,056 kg/m3, σ* = 56.5 mN/m, υ* = 6.03 × 10−6 m2/s, and its

diameter equals to 37 μm. The substrate contains between 156,294

and 310,182 frozen MDPD particles. The bounce forward boundary

condition45 is applied to prevent liquid particles from penetrating the

wall. Gravity is neglected. A standard velocity-Verlet algorithm is

applied for the simulations, using the value of 0.5 for the empirical

parameter.11 The time step was set to 0.01 in MDPD units.

3 | RESULTS AND DISCUSSION

3.1 | Droplet wetting behavior without inertia

3.1.1 | The effect of deposition position

It has been reported that the droplet shape in spreading is sensitive to

the deposition position when the droplet radius is of the same order

F IGURE 2 Simulation validation (a) Radial
density profile of the droplet (b) Velocity profile
for periodic Poiseuille flow to calculate viscosity
(c) Relationship between the solid–liquid
interaction parameter Asl and the static contact
angle θc. An error bar represents one standard
deviation [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Simulation validation of time evolution of droplet
dimensionless height H* and dimensionless diameter D* against
experimental data reported in Reference 39 [Color figure can be
viewed at wileyonlinelibrary.com]
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of magnitude as the stripe width.18 Here, we deposit the droplet in

three different positions by placing it close to the surface (within

1.0rC) with zero velocity so that the droplet spreads on the surface

due to the attractive interaction between liquid and solid surface. The

intrinsic contact angle of the hydrophilic stripe θlic and hydrophobic

stripe θbic are 45� and 115�, respectively. The relative hydrophobicity

α is 1 and β is 0.5.

Figure 5 shows the droplet wetting process in terms of time evo-

lutions; snapshots are shown in Figure 6. Dimensionless scales W*

and L* are introduced to describe the droplet morphology, defined as

the width and the length of droplet divided by the droplet initial diam-

eter D0, respectively. At the beginning of the wetting process, until

W* reaches 0.5, the droplet spreads isotropically with the same

spreading rate in Case 1 and Case 2 (Figure 6, t = 10) since the droplet

is spreading on a homogeneous part of the surface. At the moment

when reaching W* = 0.5, the droplet in Case 1 reaches the hydrophilic

part of the surface and spreads faster in the x-direction as compared

to the y-direction. The opposite occurs in Case 2 where the droplet

has a preference to stay on the hydrophilic stripe it was deposited

on. Case 2 also has a recoiling stage with the droplet retracing in the

x-direction after t ≈ 100 so as to reach a larger contact angle θ⊥ nor-

mal to the stripes. Case 3 shows a migration of the droplet towards a

hydrophilic stripe (see Figure 6c) and then evolves in a way similar to

Case 2 (compare Figure 5b,c).

F IGURE 4 Schematic illustration of droplet
deposition on (a) the middle of hydrophobic stripe
(Case 1) (b) the middle of hydrophilic stripe (Case
2) (c) the border between two different stripes
(Case 3). The hydrophobic stripe width equals to
hydrophilic stripe width, represented by Ws [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Evolution of droplet dimensionless
width W* (W* = W/D0) and length L* (L* = L/D0) in
(a) Case 1, (b) Case 2 and (c) Case 3. (d) Evolution
of L* in Case 2 and Case 3 for a longer time. The
inset in (a) shows the outline of “butterfly” shape
as the θbic are 93� (yellow line) and 115� (blue
line), respectively [Color figure can be viewed at
wileyonlinelibrary.com]
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The energy barrier in perpendicular direction to the stripe causes

the droplet spreading along the stripe and a lozenge shape droplet

forms in Cases 2 and 3 (Figure 6b,c, t = 500). Differently, a butterfly-

like droplet with a width equal to 1.5 times its initial diameter forms in

Case 1 (Figure 6a, t = 500), which also has been observed in experi-

ments.18 Interestingly, the droplet length and width are almost

unchanged if the wettability of the hydrophobic stripe changes in

Case 1 (inset in Figure 5a). The length of the neck, however, is sensi-

tive to the wettability of the hydrophobic stripe.

3.1.2 | The effect of the wettability of the
hydrophobic stripes

We now focus on the equilibrium shape of a droplet that is released—

still without inertia—on the border between a hydrophobic and hydro-

philic stripe. As shown in Figure 6 (Case 3), the droplet will migrate to

the hydrophilic stripe. We study the effects of the droplet size relative

to the stripe width (β in the range 1.0–0.5) and the wettability of the

hydrophobic stripes with θbic in the range 93�–180�, while keeping

fixed θlic = 45�. The variation in θbic is achieved by changing Abic.

Results of the simulations have been summarized in terms of the par-

allel and perpendicular contact angles (θ|| and θ⊥, respectively) in

Figure 7, and in terms of the droplet's aspect ratio in Figure 8.

In all cases, the footprint of the droplet extended over the entire

width of the hydrophilic stripe, while not covering the hydrophobic

stripe, see Figure 7b for two typical droplet shapes. The largest

droplets—relative to the stripe width—are the ones with β = 0.5. As

shown in Figure 7a, with increasing hydrophobicity initially their θ⊥

closely follows θbic and then levels off to θ⊥ ≈ 135�. For smaller drop-

lets, the dependency of θ⊥ with Abic is much weaker. If β ≥ 0.7, θ⊥

hardly depends on the hydrophobicity. Given that θ|| is formed on the

hydrophilic stripe, it matches closely with θlic that was set at 45�.

Slight variations in θ|| are due to uncertainties in estimating this angle.

Given the shape of the droplet in the parallel direction we cannot esti-

mate this angle via a circle fit. Therefore, we extract a part of the

boundary points near the surface (up to 0.3 times the initial drop

diameter above the surface) and connect those points with a polyno-

mial curve of fourth order (red curves in Figure 7c). The contact angle

is derived from the slope of the polynomial at the surface.

Figure 8 shows the aspect ratio of equilibrium droplet as a func-

tion of β and θbic. As we saw in Figure 7a, the shape of the droplet—

now in terms of its aspect ratio—only depends on β for sufficiently high

hydrophobicity, that is, for θbic ≥ 155�. It is interesting to note that for

lower θbic the aspect ratio as a function of β goes through a maximum.

3.2 | Droplet impingement behavior considering
inertial effect

3.2.1 | Droplet impingement on single stripe
surface

In this section, we consider the effect of droplet inertia on droplet

morphology. In Song et al's23experiment, a hydrophilic surface coating

with a slim superhydrophobic stripe was found performing well in

splitting droplet if the Weber number (We) of the droplet was suffi-

ciently high, indicating the potential of this chemically striped surface

for splitting droplets in microfluidics applications. Here we investi-

gated the droplet splitting behavior on the hydrophilic surface coated

with a superhydrophobic stripe with various widths. Compared with a

low β in Song et al's experiment23 (β ≈ 0.2), β is larger in this work with

the range of 0.5–1.0. The contact angles of the hydrophilic surface

and the hydrophobic stripe are 45� and 170�, respectively.

F IGURE 6 Evolution of spreading droplet
with zero Weber number in three deposition
position cases [Color figure can be viewed at
wileyonlinelibrary.com]
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Taking the case β = 0.5 as an example, we investigate the effect

of droplet deposition position on the volume fraction (Vf) and

maximum-footprint-area fraction (Af) of split droplets, and the results

are shown in Figure 9. Note that Vf is obtained by the split droplet

volume scaled to the initial droplet volume, and Af is obtained by each

part of maximum-footprint-area scaled to the total footprint-area on

the hydrophilic surface. In Figure 9, we can see that Vf matches Af,

and this characteristic agrees well with that proposed by Song et al.23

It can also be seen in Figure 9 that the difference of volume fraction

between two split droplets increases approximately linearly with L/D0

until the entire droplet ends up on one side of the stripe and no split

has happened.

Taking Case 3 (as defined in Figure 4) as an example, we illustrate

the asymmetric splitting behavior on a single stripe surface with β

equal to 0.5 and 0.9 at We = 22.7 in Figure 10. The droplet exhibits

F IGURE 8 Aspect ratio of the droplet dependence on
hydrophobic stripe wettability Abic (θbic) and β [Color figure can be
viewed at wileyonlinelibrary.com] F IGURE 9 Split volume and maximum footprint area fractions of

the droplet on two sides of a single stripe as the deposition position
varies. L is the distance between droplet deposition point and the
center line of the stripe. Vf,L = VL/V0, Vf,R = VR/V0, Af,L = AL/(AL + AR),
Af,R = AR/(AL + AR), where VL and VR represent the left and right split
droplet volume, AL and AR are the left and right footprint area when
the droplet reaches its maximum spread on hydrophobic stripe [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 (a) θ⊥ and θ|| of the droplet at its equilibrium state dependence on hydrophobic stripe wettability (Abic) and β, that is, the ratio of
the stripe width and initial droplet diameter, when the intrinsic contact angle of hydrophilic stripes (θlic) is fixed as 45�. Pentagons represent the
intrinsic contact angle of hydrophobic stripes (θbic) corresponding to Abic derived from Figure 2c. (b) The channel like (left, β = 0.5, θbic = 170�) and
bulge like (right, β = 0.8, θbic = 170�) shape. (c) θ|| estimate example. The red curves are the polynomial fits. (see the text) [Color figure can be
viewed at wileyonlinelibrary.com]
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two equilibrium states: split off or shift to the hydrophilic area. During

the impingement, the projection of the droplet remains circular as it

radially spreads outwards (for t ≤ 10), indicating that the droplet's

inertia dominates the spreading process during this stage. Subse-

quently, the droplets behave differently due the different values of β.

In the case β = 0.5, the droplet inertia (characterized by the Weber

number) is high enough for the droplet to cross the superhydrophobic

stripe and enter the hydrophilic area right of the stripe (t = 10). After

reaching its maximum spreading on the superhydrophobic stripe

(t = 30), the part of the droplet on the superhydrophobic stripe starts

to get squeezed, and a liquid neck forms. From then on, the droplet

keeps stretching along the direction perpendicular to the stripe. The

liquid neck collapses and the droplet splits into two (at t = 230). In the

case β = 0.9, the edge of the droplet fails to reach the hydrophilic area

at the opposite side of the stripe because its inertia and associated

kinetic energy is insufficient for this. After reaching the maximum

spreading (t = 30), the edge of the droplet on the superhydrophobic

stripe retracts while the liquid on the hydrophilic area still spreads

outwards and the droplet becomes shell-like with a gibbous frontier

on the edge (in the side view when t = 40). Gradually, the part of

the droplet on the superhydrophobic stripe retracts back to the

hydrophilic area and stays in hydrophilic area at its equilibrium

state (t ≥ 230).

The eventual droplet state is co-determined by droplet inertia

and surface properties, which can be characterized by We and β as

well as the contact angles of the hydrophilic surface and the hydro-

phobic stripe. Here we focus on the effects of We and β at fixed

θbic = 170� θlic = 45�. In the Appendix we show the (limited) sensitivity

of these contact angles on the final droplet morphology (Figures 15

and 16) .

The effect of We and β on the droplet equilibrium shape is visual-

ized in Figure 11a, where the red circle represent droplet split off

cases. To find the critical boundary for droplet split-off, we did

additional simulations of droplet impingent on a homogeneous super-

hydrophobic surface over a range of We with a fixed super-

hydrophobic contact angle of 170�. For convenience, we introduce

the maximum spreading radius factor, R*
max , defined as the maximum

value of R* (the ratio between droplet spreading radius and D0). The

history of R* is shown in Figure 11c. We find that initially R* increases

with time and then decreases after reaching the peak. Given that—

mostly—the peak in radius is not very sharp, we take an average over

a few data points around the peak values to determine R*
max as indi-

cated in Figure 11c. The relationship between R*
max and We is plotted

in Figure 11a,b, as black squares.

Coming back to droplet deposition on a single-stripe surface, at a

specific Weber number, the droplet splits if R*
max > β , whereas

F IGURE 10 Evolution of impinging droplet
with Weber number (We) equals 22.7 on single-
stripe-patterned surface [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 11 (a) Determination of droplet split
in a single-stripe system. The hollow circle signed
the cases droplet split off, where R�

max > β under
the same We. The black solid squares represent
R�
max versus We. (b) the logarithmic scale of R�

max

versus We and they are the same as in the
figure(a). (c) Time history of R* [Color figure can
be viewed at wileyonlinelibrary.com]
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otherwise it will shift to the hydrophilic side. It implies that the hydro-

philic surface with a superhydrophobic stripe has the capability to split

the droplet as long as the droplet can get across the stripe at its maxi-

mum spreading.

Therefore, the concept of R*
max can help us to predict the result of

droplet impingement: splitting off or a shift to hydrophilic side. Power

law behavior of R*
max /Weα1 has been proposed based on theoretical

analysis.46 A scaling law of R*
max /We0:5 has been found by a balance

between inertia and surface tension forces when We is large enough

and viscous energy dissipation is neglected.47,48 On the other hand,

Clanet et al49 regarded the maximum droplet shape as a balance

between gravity and surface forces. They determined the droplet

thickness at maximum spread based on capillary length and obtained

R*
max /We0:25 by imposing volume conservation. Recently, Lin et al46

found the above exponents in scaling law also related to the viscosity

of the droplet in their experiments, where α1 can be as high as 0.25

for water, and as low as 0.1 for a 397.8mPa·s viscous liquid. Based on

our simulations, we found R*
max /We0:20, see Figure 11b.

3.2.2 | Droplet impingement on periodically
hydrophilic and hydrophobic stripes

Now, we investigate droplet splitting behavior on a periodic multi-

striped surface. The deposition point and the contact angles are

unchanged. The value of We has been fixed at 22.7, so that the

droplet splits when β ≤ 0.75 on a single-striped surface, as shown in

Figure 11. However, we find the droplet exhibits a “butterfly” shape

on multi-striped surface if β = 0.5 (Figure 12a, t = 675), indicating

the influence of the multi-striped mode on the eventual droplet

state.

Figure 12 shows more details about an impinging droplet on

multi-striped surfaces with various β. Initially (t ≤ 10), the droplet sets

in the spreading stage, where the droplet inertia dominates the evolu-

tion process so that the droplet spreads outwards with the same

speed in all three cases. Subsequently, the droplet behaves differently

for different β. For β = 0.5, the liquid on the superhydrophobic stripes

retracts when t ≥ 30. During this retracting process, the gibbous part

of the droplet on hydrophobic stripes prefers to move directly to the

hydrophilic stripes, while the liquid on the right hydrophilic stripe is

still stretching outwards until it fills up the entire width of the hydro-

philic stripe (Figure 12a, β = 0.5, t = 100). The droplet neck forms dur-

ing droplet recoiling. However, compared to the spreading behavior

on a single-striped surface, more liquid is contained in the droplet

neck on a multi-striped surface. This results in the deceleration of the

neck-shrink, as illustrated in Figure 12a. Finally, the droplet remains

intact after impingement and becomes “butterfly” shape.

For cases with larger β, there is enough space on the right hydro-

philic stripe for liquid to stretch and spread radially, generating the

collapse of the neck and finally droplet split-off (Figure 12b, β = 0.7,

t = 175). In addition, the periodic chemical stripes reshape the split

droplet to an elongated shape. If the stripe is wide enough so as to

hinder the droplet stepping over the superhydrophobic stripe, the

droplet will vibrate on the hydrophilic stripe until it consumes the

remaining energy. Finally, the droplet exhibits an elongated shape

without any splitting, as revealed in Figure 12c.

The aforementioned droplet behavior on a multi-striped surface

can be quantitatively described by analyzing the energy associated to

the droplet. The conversion of energy during the process of droplet

impingement on the substrate can be expressed as

E0k + E
0
s +Asvσsv =Alvσlv +Alsσls + Asv−Alsð Þσsv + Ek + Ev, ð5Þ

where, E0k and E0s denote the droplet initial kinetic energy and surface

energy, respectively. Asv, Alv and Als represent the area of solid-vapor

surface, liquid–vapor surface and liquid–solid surface, and their

F IGURE 12 Temporal of impinging droplet
with We = 22.7 on different β surface. The time is
in MDPD units. MDPD, many-body dissipative
particle dynamics [Color figure can be viewed at
wileyonlinelibrary.com]
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corresponding surface tension are σsv, σlv, and σls. Clearly, the interfa-

cial energy of solid-vapor surface can be removed on the both side of

the equation. Therefore, we have:

E0s + E
0
k = Es + Ek + Ev, ð6Þ

where

Es =Alvσlv +Als σls−σsvð Þ ð7Þ

From the Young's equation we know that σls − σsv = − σlvcosθc.

Hence,

Es =Alvσlv−Als,bicσlvcosθbic−Als,licσlvcosθlic ð8Þ

where Als,bic and Als,lic are the area of liquid–solid surface on the

hydrophobic stripes and hydrophilic stripes, respectively.

Ek can be calculated by

v
!

mean =
1
N

XN

i=1

v
!

i ð9Þ

Ek =
1
2
M v

!
mean

���
���
2
=
1
2
M v2x,mean + v

2
y,mean + v

2
z,mean

� �

where vx, vy, vz are the velocity components of each particle and M is

the droplet mass, that is, the number of liquid particles since each par-

ticle mass equals to 1. The normalized kinetic energy (E�k ) and surface

energy (E�s ) are obtained by Ek=E
0
s and Es=E

0
s , respectively. The viscous

dissipation energy Ev is related to the droplet viscosity and velocity.

Figure 13 shows the time history of the scaled energy E�k and E�s .

At the beginning of deposition (t≤ 10), the spreading droplet has a

nearly spherical cap shape. The loss rate of E�k is more than the loss

rate of E�s . Then the droplet starts spreading asymmetrically, where E�k
still decreases while E�s rises slightly. We note that E�s reaches its local

maximum when E�k reduces to zero (at t = 30), and there E�s (β = 0.9) ≈

E�s (β = 0.7) > E�s (β = 0.5). However, the droplet does not come to a

halt; surface energy starts to convert into kinetic energy. The droplet

now is in an energy fluctuation stage. The fluctuation of E�s and E�k is

gentle for β = 0.5 and more violent for β = 0.9 before the droplet

reaches equilibrium. The fluctuations relate to the morphologic

changes in Figure 12. Finally, the droplet comes to rest when t>500.

In addition, E�s and E�k are stable. We can see that E�s (β = 0.5) > E�s
(β = 0.7) > E�s (β = 0.9) in steady state, indicating that smaller β helps

forming droplets with higher surface energy.

Figure 14a illustrates that We and β affect the eventual droplet

shape simultaneously. Clearly, small We and large β tend to make the

droplet elongated on the stripe. This is because lower kinetic energy

cannot sufficiently help the droplet overcome the energy barrier

formed by the superhydrophobic stripes, which results in the droplet

retracting and spreading along the hydrophilic stripe. The equilibrium

shape of the droplet generally changes from elongated to split as We

increases. The critical boundary, expressed by R*
max in single-striped

cases, is also valid for multi-striped cases. Generally, droplets split if

F IGURE 13 The scaled surface energy and kinetic energy of the
droplet as a function of time for different β surface. We fixed at 22.7,
and the time t1, t2, t3, t4, t5 referred back to Figure 12 [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 14 (a) Droplet morphology as a function of We and β. The dot line represents the relationship of We and R�
max derived from

Figure 11a for single stripe system. (b) the scaled surface energy E�s as a function of We [Color figure can be viewed at wileyonlinelibrary.com]
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R*
max > β . However, the “butterfly” shape occurs if β ≤0.6. In addition,

there is a mixed regime where elongated or split droplets occur ran-

domly. This is when β is near the maximum spreading radius factor

R*
max (dotted line in Figure 14a).

Figure 14b shows E�s as a function of We for two different β

cases. Clearly, the droplet transforms from low surface energy (elon-

gated shape) to high energy (split-off or even “butterfly” shape) as We

increases. The value of E�s remains constant when the droplet is elon-

gated or has a “butterfly” shape. For the “butterfly” shape, there is lit-

tle difference in E�s between the two β cases. For the elongated shape,

however, E�s is much lower in the higher β case, which means more

energy is required to transform the droplet state from elongated to

butterfly for higher β.

The chemically multi-striped surface is found to transform the

droplet into three morphologies when droplet inertia is considered.

The diagram for the droplet morphology may be used in microfluidic

system to control droplet shape or split the droplet. It should be noted

that the droplet morphology only depends on β and not on We if the

droplet is elongated or “butterfly” shaped since the surface energy

stays constant, as shown in Figure 14b. When the droplet is split, one

can get a desired split by adjusting β and We.

As stated above, the results presented in this section are for

θbic = 170�and θlic = 45�. In the Appendix the sensitivity of the contact

angles has been investigated. Additionally, it should be emphasized

that the surfaces in our simulation are smooth since we focus on the

effect of contact angle difference between superhydrophobic and

hydrophilic stripe on droplet morphology. However, experiment is

surface roughness, especially for superhydrophobic surfaces that are

usually decorated by micro−/nanostructures.

4 | CONCLUSIONS

In this work, three-dimensional MDPD simulation was employed to

investigate the droplet impingement and subsequent wetting behavior

on chemically stripe-patterned surfaces with β (which is the ratio of

stripe width over droplet diameter) ranging from 0.5 to 1.0. Two sce-

narios, with and without inertial effects, were explored.

To validate the MDPD method in describing the droplet impinge-

ment behavior on solid surfaces, we firstly matched the physical prop-

erties of a given liquid with the dimensionless MDPD system. Then

comparison between the simulation and experimental results showed

the ability of MDPD in properly simulating droplet impingement

behavior.

Subsequently, we investigated the droplet wetting behavior with-

out inertial effects on striped surfaces. We found that a recoiling

stage was only present when the droplet deposited on the middle of a

hydrophilic stripe or on the border of the stripe. The latter case was

studied more extensively. We found that the parallel contact angle

was constant and was close to the intrinsic contact angle on the

hydrophilic stripes. On the other hand, when the hydrophobic stripes

are superhydrophobic, the perpendicular contact angle and aspect

ratio of the droplet only depend on β.

As for the case with inertial effects, droplet impingement behav-

ior on single-striped surfaces and on multi-striped surfaces were both

F IGURE 15 The relationship between R�
max and We on

homogenous surface with different intrinsic contact angle θbic [Color

figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Droplet morphology on multi-striped surface with (a) θbic = 170� θlic = 45� (b) θbic = 155� θlic = 45� (c) θbic = 170� θlic = 60�. The
dotted lines in these three figures are the same, and its expression is R�

max = 0:41We0:20. The color coding is the same as in Figure 14 [Color figure
can be viewed at wileyonlinelibrary.com]
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investigated, where the contact angle θbic is larger than 150�. For

single-striped surfaces, the droplet splits into two with the distribution

of volume approximately equal to the maximum-footprint-area distri-

bution. The Weber number (We) affects the droplet morphology and

the critical condition for droplet split-off is identified as

R*
max = 0:41We0:20 where the droplet splits when R*

max > β . Different

from impinging on single-striped surfaces, three droplet morphologies,

elongated, split off and “butterfly” shape, were observed on multi-

striped surfaces. Both We and β affect the droplet morphology. A

droplet splits for high We and low β, while “butterfly” droplet occurs if

β is less than or equal to 0.6. The critical condition R*
max = 0:41We0:20

is also valid to predict the droplet morphology on multi-striped sur-

faces with elongated droplets if R*
max < β . It was also shown—see the

Appendix—that this criterion is not sensitive to the specific values of

θbic and θlic.

Finally, through the analysis of the scaled surface energy of the

droplet, we found that β is the only factor affecting the shape of elon-

gated and “butterfly” droplets. Overall, the current study provides the

potential of precise control of droplet morphology in the Beyond–

Cassie–Baxter regime by modifying the parameter β, stripe wettability

and We. It could help support the design of microfluidic devices where

the droplet morphology needs careful control.

Non-Newtonian liquid droplets are widely used in the applica-

tions such as inkjet printing50 and bioprinting.51 Different from New-

tonian fluid, the viscosity of non-Newtonian fluid is strongly

dependent on the applied stress. Considering the special behavior of

non-Newtonian fluid is therefore of practical as well as of academic

interest. We will be working on the spreading of such liquid droplet in

the Beyond–Cassie–Baxter regime in future research.
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