
E D I T O R ’ S C HO I C E : T R AN S PO R T PH ENOMENA AND F L U I D M E CHAN I C S

Liquid fluidization with cylindrical particles: Highly resolved
simulations

Jos J. Derksen

School of Engineering, University of Aberdeen,

Aberdeen, UK

Correspondence

Jos J. Derksen, School of Engineering,

University of Aberdeen, Aberdeen, UK.

Email: jderksen@abdn.ac.uk

Abstract

We perform three-dimensional, time-dependent simulations of dense, fluidized sus-

pensions of solid cylindrical particles in a Newtonian liquid in fully periodic domains.

The resolution of the flow field is an order of magnitude finer than the diameter of

the cylindrical particles. At their surfaces no-slip conditions are applied through an

immersed boundary method (IBM), coupled to the lattice-Boltzmann method that is

used as the fluid flow solver. The marker points of the IBM are also used to detect

and perform collisions between the cylinders. With these particle-resolved simula-

tions, we study the effects of the aspect ratio of the cylinders and the solids volume

fraction on the superficial slip velocity between fluid and solids, on the solids velocity

fluctuations, as well as on the orientation of the cylinders. The aspect ratio (length

over diameter of the cylinders) ranges from 0.5 to 4, the solids volume fraction goes

up to 0.48. Reynolds numbers based on average settling velocity are of the order of

1–10. At constant Archimedes number, we observe only minor sensitivities of the

settling Reynolds number on the aspect ratio.
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1 | INTRODUCTION

Solid particles carried by fluid flow are a ubiquitous phenomenon in

nature as well as in engineering. Practical relevance and a rich spec-

trum of physical phenomena have motivated extensive research in

solid–fluid suspensions. One of the branches of research aims at

predicting suspension dynamics through computer simulations. These

are based on numerically solving mass, momentum, and energy bal-

ances of the fluid phase as well as the dynamical equations of the

solids phase and on coupling the phases in a meaningful manner.

There are—generally speaking—three levels of detail at which sus-

pension simulations can be performed. At the first and most resolved

level, the fluid flow is simulated at a spatial and temporal resolution

that is sufficient to capture the flow around individual particles. The

solid particle surfaces act as moving no-slip conditions for the fluid

flow. The numerical flow solution directly provides the hydrodynamic

forces and torques on the particles that are then used to integrate

their equations of linear and rotational motion. Such particle-resolved

simulations are usually performed on fixed grids that need to be much

finer—by at least one order of magnitude in each coordinate

direction—than the size of the particles. This resolution requirement

limits particle-resolved simulations to relatively small systems with

currently up to order one million particles.1

To accommodate larger-scale systems with many more particles,

one option is to coarsen the grid on which the fluid flow is solved. If in

this process grid spacings become of the order of the particle size or

larger, we enter the realm of discrete element method/computational

fluid dynamics (DEM/CFD) simulations. This is the second level of

detail of suspension simulations. Given that one does not resolve the

flow around individual particles anymore, hydrodynamic forces and tor-

ques on the particles are not directly available from the fluid flow solu-

tion. As a surrogate, empirical correlations are used to estimate the
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forces and torques as a function of local conditions: particle-based

Reynolds numbers, solids volume fractions, and possibly other parame-

ters characterizing the flow and microstructure in the direct vicinity of

a particle.2 Next to hydrodynamic force and torque modeling, the

exchange of information between the Eulerian (fluid flow) and Lagrang-

ian (particle motion) components of the simulation is a topic of active

research.3,4

Eulerian–Eulerian simulations are the third level of detail of sus-

pension simulations. The solids phase is treated as a continuum that

penetrates the fluid phase (and vice versa). Modeling relates—among

much more—to the stresses in the solids phase as well as the forces

involved in the interaction between the phases.5,6

It has no doubt that the shape of the solid particles has impact on

the flow behavior of the solids-liquid mixture: Hydrodynamic forces

and torques depend on particle shape; in collisions, momentum

exchange and how it is distributed over linear and angular compo-

nents depends on shape; the way (dense) suspensions structure and

pack themselves also depends on the shape of the particles. Where

the majority of the works on simulating solid–liquid suspensions—at

all three levels of detail as identified above—assumes the particles to

be of a—more or less—spherical shape, it is thus useful to explore the

role of the shape of the particles on the dynamics of a suspension. In

this paper, we do this by means of particle-resolved simulations with

particles of cylindrical shape. The choice for cylinders has a few rea-

sons. In the first place we have—with applications in biomass conver-

sion in mind—an interest in the flow dynamics of fiber suspensions. In

the second place, there is experimental data available regarding the

behavior of suspensions of cylindrical particles.7–9 Related to this, we

plan on doing experiments ourselves and the availability of accurately

sized cylindrical particles (e.g., to be cut from long rods) makes parti-

cles of such shape very suitable. In the third place, cylinders have only

one aspect ratio (length over diameter) so that one can explore parti-

cle shape effects based on varying a single parameter.

Reports on suspension simulations with nonspherical particles are

becoming commonplace in the literature. They have been applied in

the context of DEM simulations by Mahajan et al.10 where the focus

is on gas fluidization. Particle-resolved simulations through fixed beds

of nonspherical particles11 provide valuable insights into the relation

between the bed's micro structure and its pressure drop. Simulations

resolving the flow around a steady, cylindroid particle have been used

to measure hydrodynamic forces and torques as a function of

Reynolds number and angle-of-attack.12 This data can then be used in

DEM/CFD simulations to capture the dynamic interaction between

solid and fluid.

Our interest is in the collective dynamical behavior of cylinder sus-

pensions and how it depends on key dimensionless parameters:

aspect ratio, solids volume fraction, and particle-based Reynolds num-

ber. For this, dense assemblies of identical cylindrical particles that are

free to move and rotate have been created. The flow systems

are periodic in all three coordinate directions. The suspensions are

brought in a fluidized state by balancing the net gravity force on the

particles by an opposing body force—that can be interpreted as a ver-

tical pressure gradient—on the interstitial fluid. We evolve these

systems to a dynamic steady state and then measure overall charac-

teristics such as fluid–solid slip velocity, the orientation of the fibers

with respect to gravity, and velocity fluctuation levels. These results

can be placed in context by for example, comparing them to results

from the literature13 for spherical particles. The aim of this paper thus

is to characterize the dynamics and structure of dense, homogeneous

suspensions of cylindrical particles in liquid through particle-resolved

numerical simulation.

The paper is organized as follows: in the next section the flow sys-

tems are defined and the main dimensionless numbers characterizing

them introduced. We then discuss the numerical method which is an

extension of a method we introduced in 2012,14 and provide numerical

settings. The subsequent Section 5 begins with qualitative impressions

of the flow systems studied and results of verification tests—primarily

domain size and spatial resolution effects. Then results in terms of aver-

age quantities over the full dimensionless parameter range covered in

this paper are discussed. In the final section, we reiterate the main con-

clusions and provide a perspective on future research.

2 | FLOW SYSTEMS

Solid cylindrical particles with length ℓ, diameter d, and density ρp are

placed in a three-dimensional domain of size nx � ny � nz that contains
a Newtonian liquid with density ρ and kinematic viscosity ν. The den-

sity ratio has been mostly fixed to ρp/ρ = 2.0 with the exception of

one set of simulations where it was varied between 1.25 and 3. With

n identical particles, the overall solids volume fraction is ϕh i= nπℓd2

4V

with V = nx � ny � nz the total volume. The flow domain is periodic in

all three coordinate directions. Gravity acts in the negative z-direction,

g = −gez. The domain is such that nx = ny = nz/2. Periodicity and the

net gravity force on the particles make that it is important to explicitly

force-balance the entire solid–fluid system. The procedure we follow

in this respect is the same as was described in a previous paper on

particle-resolved simulations with spherical particles in fully periodic

domains.13 It is summarized here and—in addition—the consequences

for dealing with nonspherical particles are addressed.

The mixture density is defined as �ρ� ϕh iρp + 1− ϕh ið Þρ. Then the

net gravity force on one particle is Fg = − ρp− �ρ
� �

Vpgez with Vp = π
4ℓd

2

the volume of the particle. If there are n identical particles, the total

downward force is − ρp−�ρ
� �

nVpgez = − 1− ϕh ið Þ ρp−ρ
� �

ϕVgez. This we

compensate by applying a body force (force per unit volume) on the

fluid volume (1 − hϕi)V in positive z-direction: fb = (ρp − ρ)ϕgez.

The equation of linear motion of a particle is written as

Vpρp
d
dt
up =Fh +Fc− ρp−�ρ

� �
Vpgez ð1Þ

with Fh the force the fluid exerts on the particle, and Fc the contact

force due to collisions with other particles and close-range interac-

tions (e.g., lubrication) between particles. The way Fh and Fc are deter-

mined in a simulation is explained in the next section.

The equation of rotational motion of a particle is15
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I
d
dt
ωp +ωp × Iωpð Þ=Th +Tc ð2Þ

with I the moment of inertia tensor, and Th and Tc hydrodynamic and

contact torque, respectively. We will be solving this equation for each

particle in a reference frame attached to the particle. Then the

moment of inertia tensor is diagonal with I11 = 1
8ρpVpd

2 and

I22 = I33 = ρpVp
1
16d

2 + 1
12ℓ

2
� �

where the “1” direction is along the cen-

ter line of the cylinder and the “2” and “3” direction are two orthogo-

nal lateral directions. The kinematics of rotation has been dealt with

through quaternions. This also will be discussed in the next section.

In dimensionless terms, the physical input parameters of the simu-

lation are aspect ratios (ℓ/d and nx/d, nx=nz= ny=nz= 1
2), the density

ratio γ ≡ ρp/ρ, and the Galileo number Ga = gd3/ν2. Galileo number

and density ratio can be combined to form the Archimedes number

Ar = Ga(γ − 1). As an important output parameter we will be consid-

ering the Reynolds number based on the slip velocity between solids

and liquid: Re = uzh i− upzh ij jde
ν where huzi is the volume-averaged superfi-

cial velocity in the z-direction, hupzi the average velocity of the parti-

cles in z-direction, and the overbar indicates averaging over a time

window during which the system is in a dynamically steady state. As

the length scale the equivalent particle diameter de is introduced. It is

the diameter of a sphere that has the same volume as a particle:

de =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ℓd2=2

3

q
. We note that the slip velocity uzh i− upzh i is the velocity

that would be observed in settling experiments such as the ones

reported by Richardson and Zaki16,17 and therefore will also be

referred to as (average) settling velocity in this paper.

3 | NUMERICAL PROCEDURES

The simulation procedure consists of (1) a lattice-Boltzmann

(LB) solver for the fluid flow; (2) an immersed boundary method to

impose no-slip at the particle surfaces; (3) a collision algorithm that

detects (near-) contact between particles and determines contact

forces and torques (Fc and Tc in Equations (1) and (2) respectively);

(4) an ODE solver that updates particle linear and angular velocities

and particle center locations; (5) a quaternion-based procedure for

keeping track of particle orientations. For items (1), (2), and (4), the

methods are very much the same as the ones used to generate the

results in Reference 13 for liquid-fluidized spherical particles. Item

(3) (collisions) is different: a hard-spheres, event-driven approach in

Reference 13 is replaced by a soft-collisions approach in the current

paper. There was no need for item (5) in Reference 13 since for

spheres there is no need for keeping track of orientation.

The LB scheme we used is due to Somers and Eggels.18,19 It uses a

uniform, cubic lattice with spacing Δ and takes time steps Δt. It has

been supplemented with an immersed boundary method to impose

velocities at off-lattice locations through interpolation and

forcing.20–22 The cylindrical surfaces are represented by closely spa-

ced marker points (nearest neighbor distance ≈ 0.5Δ). At these points,

the fluid is forced to match the solid surface velocity (that can be

calculated from the linear and angular velocity of the cylinder) so that

no-slip is achieved. By integrating the forces required to impose no-

slip over the surface of each particle, the total force and torque each

particle exerts on the fluid can be calculated; these we give symbols

Fib and Tib, respectively. This force and torque are exerted on the fluid

external to the particle, as well as on the fluid internal to the particle.

The latter contributions (Fint and Tint) can be estimated by assuming

that the internal fluid moves as a solid body with the particle.23,24 The

hydrodynamic force and torque (Fh and Thin Equations (1) and (2)) on

each particle become Fh = −(Fib − Fint) and Th = −(Tib − Tint),

respectively. The dynamical equations for particle linear and angular

velocity then can be written as

Vp ρp−ρ
� � d

dt
up = −Fib + Fc− ρp−ρ

� �
Vpgez ð3Þ

I− Iintð Þ d
dt
ωp +ωp × I− Iintð Þωpð Þ= −Tib +Tc ð4Þ

In Equation (4), Iint is the moment of inertia of the internal fluid.

For modest to low density ratios the coefficients in front of the d/dt

terms of Equations (3) and (4) can get small. This then leads to severe

time step limitations if an Euler forward method would be applied to

integrate the equations numerically. For this reason, a split-derivative

time-stepping procedure14,21 has been used for updating Equa-

tions (3) and (4). This allows a time step that is the same as the time

step of the LB scheme. The term Vp ρp−ρ
� �

d
dtup =Vpρp 1− 1

γ

� �
d
dtup in

Equation (3) has been discretized as Vpρp
u k +1ð Þ
p −u kð Þ

p

Δt − 1
γ
u kð Þ
p −u k−1ð Þ

p

Δt

� �
with

(k) denoting the time level. This then leads to the following update

rule for linear velocity

u k +1ð Þ
p = 1+

1
γ

	 

u kð Þ
p −

1
γ
u k−1ð Þ
p −

ΔtF kð Þ
ib

Vpρp
+
ΔtF kð Þ

c

Vpρp
−Δt 1−

1
γ

	 

gez ð5Þ

Once linear velocity is updated, we displace the center location of

each particle through an Euler explicit step: Δxp = upΔt.

Rotational motion of each particle is solved in a reference frame

attached to the particle so that the moment of inertia tensor is diagonal

and constant. An approach analogous to that of linear motion has been

followed for numerically integrating rotational motion (Equation 4):

ω k +1ð Þ
p = 1+

1
γ

	 

ω kð Þ

p −
1
γ
ω k−1ð Þ

p −ΔtI−1T kð Þ
ib +ΔtI−1T kð Þ

c

−Δt 1−
1
γ

	 

I−1 ω kð Þ

p × Iω kð Þ
p

� �h i ð6Þ

Keeping track of the orientation of the particles makes use of qua-

ternions.24,25 Each particle's orientation is characterized with a unit

quaternion q = (q0, q) with q0 a scalar value and q a three-dimensional

vector (q1, q2, q3) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 + q

2
1 + q

2
2 + q

2
3

q
=1. An exact solution for the
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evolution of a quaternion rotating with an angular velocity ωp over a

time interval Δt starting from q(k) at time level (k) is available26:

q k +1ð Þ = q kð Þ∘ cos
1
2
Δt

	 

,ωp sin

1
2
Δt

	 
	 

ð7Þ

with the symbol ∘ denoting a quaternion multiplication. We use Equa-

tion (7) for updating the quaternion of each particle from one time

step to the next.

Quaternions effectively facilitate transferring information

between the (x1, x2, x3) coordinate system attached to a cylinder and

the inertial (x, y, z) system. The rotation of a vector x in the (x1, x2, x3)

system to a vector y in the (x, y, z) can be expressed as

y= Sx ð8Þ

with24

S=

1−2 q22 + q
2
3

� �
2 q1q2−q0q3ð Þ 2 q1q3 + q0q2ð Þ

2 q2q1 + q0q3ð Þ 1−2 q21 + q
2
3

� �
2 q2q3−q0q1ð Þ

2 q3q1−q0q2ð Þ 2 q3q2 + q0q1ð Þ 1−2 q21 + q
2
2

� �

2
64

3
75 ð9Þ

The coordinates of the marker points for the IBM are stored for

one reference cylinder in the (x1, x2, x3) coordinate system. Equation (8)

is used for each cylinder at each time step to transfer its marker points

to the (x, y, z) system to apply the IBM. One result of the IBM is the tor-

que Tib associated to each particle in the (x, y, z) system. Since we solve

the equation of rotational motion (Equation 4) in the (x1, x2, x3) system,

Tib needs to be rotated to the latter system. This requires the inverse

of S which is its transpose: S−1 = ST. As is described below, the matrix

S also is beneficial when performing collisions between particles.

We are dealing with dense suspensions and expect collisions

between particles to be frequent. The marker points for executing the

IBM are used to detect close proximity between particle surfaces.

Below a certain threshold, this proximity then locally activates a repul-

sive force that performs the collision. Consider two marker points “1”

and “2” that belong to two different particles (Particle A and Particle

B), see Figure 1. Each marker point is accompanied by a unit vector

that is normal to the particle's surface, pointing outward. The contact

force contribution on Particle A due to the proximity of points 1 and

2 is determined as

F12 = k δ0−δð Þ δλ−λj j
λ

n2−n1ð Þ
n2−n1j j if δ< δ0 and δλj j< λ; F12 = 0otherwise

ð10Þ

where we have three model parameters: a spring constant k, a thresh-

old normal distance δ0, and a lateral threshold distance λ. The total

contact force on Particle A is the sum of all contact forces of all parti-

cles surrounding Particle A. For calculating the contribution of F12 to

the contact torque on Particle A, we assume F12 to act at Point 1.

It should be noted that the contact force at Point 1 due to Point

2 acts in the direction (n2 − n1), not in the direction n1 normal to the

surface of Particle A. In this way, the force at Point 2 due to Point 1 is in

exactly the opposite direction and of the same magnitude: F21 = −F12.

In DEM simulations, it is usual practice to include damping in the

collision process, thereby mimicking a restitution coefficient smaller

than one and mitigating instabilities. In particle-resolved simulations,

damping is—at least partly—taken care of by resolving the fluid flow in

between particle surfaces. When the space between particle surfaces

gets smaller than one lattice-spacing, however, the flow there is not

sufficiently resolved. For simulations involving resolved spherical par-

ticles it is then common practice to add radial lubrication forces based

on low-Reynolds analytical expressions27 to the forces acting on the

particles.13,28 Sometimes also tangential lubrication forces as well as

torques are included.29 In this paper, the role of lubrication/damping

forces has been explored by explicitly including forces that are pro-

portional to the velocity difference between marker points in close

proximity. Suppose the two marker points in Figure 1 have velocity u1

and u2 due to the translational and rotational motion of particle A and

B, respectively. Their relative velocity is decomposed in the velocity

along the average unit normal Δun = n2−n1ð Þ� u2−u1ð Þ n2 −n1ð Þ
n2 −n1j j2 and the

velocity perpendicular to the average unit normal Δut = (u2 − u1) −

Δun. The normal and tangential damping force are written as

Fn
12 = k

n 1

δ*
−
1
δd

	 

δλ−λj j
λ

Δun if δ* < δd and δλj j< λ; Fn12 =0otherwise

ð11Þ

Ft
12 = k

t 1

δ*
−
1
δd

	 

δλ−λj j
λ

Δut if δ* < δd and δλj j< λ; Ft12 =0otherwise

ð12Þ

with

δ* = δ if δ> δsat and δ* = δsat if δ≤ δsat ð13Þ

Here, we—again—introduce a number of parameters. The pre-

factors kn and kt determine the strength of the damping interactions;

F IGURE 1 Collision detection between particles A and B that
have marker points 1 and 2 and associated outward normals on their
surface. An algorithm keeps track of the proximity of marker points
on different particles and determines—below a certain threshold—
their normal and tangential spacing (δ and δλ respectively) along with
the relative velocity of the marker points, this determines the
contribution of the contact force on A and B as a result of the
proximity of 1 and 2 (Equations 10, 11, and 12)
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δd is the distance along the average normal of two marker points

below which the damping force becomes active; δsat is the distance

below which the damping force saturates. The 1
δ*
− 1

δd

� �
dependence is

borrowed from expressions for the radial lubrication force between

spherical particles in particle-resolved simulations.29 The parameter δd

then depends on the spacing of the grid on which the fluid flow is

solved. If the distance between particle surfaces is larger than δd, the

flow between the surfaces is considered resolved and no additional

lubrication force is required; if the distance becomes smaller than δd,

the lubrication force is switched on. In this paper, we set δd = Δ.

Given that the lubrication force diverges for δ ! 0 it has been satu-

rated below a certain threshold distance (δsat).
13 In a numerical sense

we want to avoid large damping forces, in a physical sense saturation

occurs as a result of surface roughness.

For spherical particles, tangential lubrication follows a lnδ rather

than a 1/δ relationship. Here, for simplicity, tangential lubrication and

normal lubrication are given similar expressions. By setting kt = 0.1kn,

it is ensured that tangential lubrication is weaker by an order of mag-

nitude than normal lubrication, something we observed in simulations

with spherical particles.13 The parameter kn is treated as an ad hoc

parameter. It will require future refinements as it—in principle—

depends on the fluid viscosity as well on the shape (local curvature) of

the solid surfaces in close proximity. Specific values for the model

parameters are given and motivated in the next section.

4 | SET-UP OF SIMULATIONS

Particles are placed in a nonoverlapping manner in the nx � ny � nz
fully periodic flow domain. Initially fluid and particles are at rest. At

time zero, gravity and the body force on the liquid fb become active

and we let the system develop to a dynamically steady state. This pro-

cess we monitor by keeping track of Re = uzh i− upzh ij jde
ν as a function of

time. After reaching dynamically steady state, the simulations are con-

tinued to collect data for determining statistical flow quantities. The

length of this averaging time window is of the order of 10d2/ν. All

average flow quantities reported were based on data collected in

steady-state time windows.

As for the choice of numerical parameters, the most important one is

the spatial resolution of a simulation. Since we use uniform cubic lattices

it can be expressed as the number of lattice distances Δ spanning the

diameter d of a cylinder. The default resolution is d = 16Δ and resolution

effects have been studied by also simulating systems with d = 12Δ and

d = 24Δ. The default domain size is nx � ny � nz = 9d � 9d � 18d.
We want the collisions as much as possible to happen when cylinder

surfaces actually touch, that is, not before surfaces touch and not when

cylinder volumes overlap. In the former scenario, the particles are behav-

ing as slightly larger, in the latter as slightly smaller than they actually are

which has consequences for the effective solids volume fraction and thus

potentially for slip velocities. Previous work14 shows that if the spring

constant k≈0:2ρpVp upj j2=δ20 (Equation 10), surfaces approximately

touch at the moment their relative velocity is reverted in a collision.

The simulations are designed such that particle speeds |up| are of the

order 10−2 in lattice units. We chose the interaction distance (see

Equation 10) δ0 = 0.02d. This then sets k to a value of the order of 5.

The lubrication coefficient kn is estimated in analogy with spherical

particles of diameter d. For such systems the prefactor in Equation (11)

would read kn = 3πρνd2/8; this expression we apply for cylindrical par-

ticles having diameter d. As mentioned above, kt = 0.1kn and δd = Δ.

Finally, the lubrication saturation distance has been set to δsat = 0.1Δ.

5 | RESULTS

5.1 | Effects of numerical settings and domain size

First it will be established to what extent numerical settings impact

the behavior of the two-phase flow systems being investigated. To

accommodate fine meshes, spatial resolution effects were tested in

relatively small domains with size nx � ny � nz = 6d � 6d � 12d
(i.e., smaller than the default size by a factor 2/3 in each coordinate

direction). In Figure 2, results for two particle types (ℓ/d = 1 and ℓ/

F IGURE 2 Effect of spatial resolution. Top: average slip-velocity
Reynolds number Re as a function of spatial resolution in terms of
d/Δ. Bottom: Reynolds numbers associated to the fluctuating velocity
Rerms of the particles in vertical (z) and horizontal (xy) direction. Two
types of cylinders (ℓ = d and ℓ = 2d) and three kinematic viscosities ν
(in lattice units) as indicated. System size nx/d = 6.0; Ga = 864;
overall solids volume fraction hϕi = 0.29; density ratio γ = 2.0

DERKSEN 5 of 11



d = 2), achieved on three grids (with particle diameter over grid spac-

ing d/Δ = 12, 16, and 24) are compared in terms of the Reynolds

number based on the average slip velocity Re, as well as in terms of

the Reynolds number based on the particles' fluctuating velocities

Rerms,α = de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upα− upαh ið Þ2

q
=ν, with α a coordinate direction (z is verti-

cal, xy is horizontal). In addition to spatial resolution effects, also the

impact of the kinematic viscosity of the liquid (in lattice units) has

been assessed. LB simulations of suspensions of spherical particles

using the immersed boundary method showed—at fixed Reynolds

numbers—some effect of viscosity on the drag force.22 All results in

Figure 2 are for the same Galileo number of Ga = 864; at given diam-

eter and viscosity, gravitational acceleration was adapted to achieve

this value.

Viscosity effects are most pronounced for the lower resolution of

d/Δ = 12 and reduce quickly on finer grids. For a viscosity ν = 0.02

(in lattice units) the resulting Reynolds numbers depend strongest on

the resolution, for instance showing an increase of 7% in the slip-

velocity Reynolds number of ℓ/d = 2 cylinders when refining from

d/Δ = 12 to 24. The higher viscosities have much weaker dependen-

cies on resolution. Slip velocity Reynolds number variations are within

2%. Based on these observations and considering computational fea-

sibility, the results presented in the remainder of this paper are with a

resolution of d/Δ = 16 and kinematic viscosities of ν = 0.04 or 0.06.

By applying fully periodic boundary conditions, we attempt to rep-

resent an unconfined flow and so mimic what is happening in a fluid-

ized system away from walls or other obstructions. In principle,

particles and fluid interact with themselves over the periodic bound-

aries so that we need sufficiently large domains for representative

simulations. In Figures 3 (qualitative) and 4 (quantitative), we compare

results obtained with different domain sizes. From Figure 4, we con-

clude that Reynolds numbers based on the average slip velocity

(Re) are quite insensitive for the system size. In the range nx/

d = 6 − 12 differences are less than 3% with slightly increasing slip

velocities for larger domains; the strongest sensitivity is for the largest

(ℓ/d = 4) cylinders.

The Reynolds numbers associated with the fluctuating particle

velocities clearly depend on domain size. Where for the smallest cylin-

ders considered (ℓ/d = 1) we might see convergence when extending

the domain from nx/d = 9 to 12, this is not the case for the longer

cylinders where differences of up to 15% are observed.

For reasons of computational affordability, this paper will mainly

present results obtained in domains with nx/d = 9 for which average

slip velocities have largely converged, and fluctuating velocities—

F IGURE 3 Instantaneous
realizations for ℓ = 2d, Ga = 864,
hϕi = 0.29, ν = 0.04 (lattice units),
and d/Δ=16. From left to right the
system size is such that nx/d = 6,
9, 12 respectively. The fourth
(far right) panel is the same
realization as the third panel but
now with the particles in front of
the fluid velocity contour plane
made invisible

F IGURE 4 System size effects. Top: average slip-velocity
Reynolds number Re as a function of system size nx/d. Bottom:
Reynolds numbers associated to the fluctuating velocity Rerms of the
particles in vertical (z) and horizontal (xy) direction. Three types of
cylinders (ℓ = d, ℓ = 2d, ℓ = 4d) as indicated. Ga = 864, hϕi = 0.29,
d/Δ = 16, ν = 0.04 (lattice units)
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admittedly—have not. Impressions of simulations in such domains are

given in Figure 5 for the four cylinder aspect ratios. In the cases

shown in the figure, and also in other cases, the distribution of parti-

cles is more or less homogeneous over the domain volume. We have

not observed the voidage wave instabilities that have been reported—

experimentally as well as computationally—in liquid fluidized beds

with uniformly sized spherical particles.13,29

5.2 | Average flow quantities at constant Ga

A series of simulations have been conducted to study hindered set-

tling as a function of solids volume fraction and cylinder aspect ratio

at a constant Galileo number of Ga = 864. In experimental terms, this

means that we fluidize cylinders of the same diameter d with different

lengths and in different quantities made of the same solid material in

the same liquid feeling the same gravitational acceleration. Under the

earth's gravity and with d = 1 mm cylinders, Ga = 864 would be

achieved in a liquid with kinematic viscosity of ν ≈ 3.4 � 10−6 m2/s.

The density ratio was γ = 2.0.

Results for average settling velocities are presented in Figure 6 in

a double-logarithmic form that anticipates a Richardson and Zaki

relation16,30 to describe hindered settling: Re = Re∞(1 − hϕi)N. As can
be seen, this relation represents the results well and allows—through

least-squares fitting—for determination of the parameters Re∞ and N.

Clearly Re∞ increases with increasing ℓ/d, simply because the parti-

cles get larger. There also is a consistent trend of N with ℓ/d with

N reducing from 4.34 to 3.32 if ℓ/d increases from 0.5 to 4.0.

It is hypothesized that the variation in the exponent N with ℓ/d as

observed in Figure 6 is related to the way the particles orient themselves

and/or the levels with which their velocities fluctuate. We first note,

however, that for spherical particles it was already asserted by Richard-

son and Zaki16 that the exponent N depends on the Reynolds number:

N=4:45Re −0:1
∞ for 1 < Re∞ <500 ð14Þ

Substituting values of Re∞ as derived from the fits in Figure 6 in Equa-

tion (14) results in lower values for N than the ones we obtain for the

cylinders (in Figure 6). The extent to which N varies with Re∞

according to Equation (14), however, is of a comparable level as the

variations in N found in Figure 6.

The distributions of the angles φ of the cylinders' center lines with

the vertical are given in Figure 7 for all the simulations represented in

Figure 6. For a randomly oriented collection of cylinders, the end

points of cylinders would be uniformly distributed over a sphere with

radius ℓ/2 so that φ is distributed according to sinφ (0 ≤ φ ≤ π/2);

φ = 0 is vertical orientation; φ = π/2 horizontal. The cylinders with ℓ/

d = 1 closely follow this sinφ behavior for all solids volume fractions.

Only for the highest (hϕi = 0.48) there is a slight preference for hori-

zontal orientations. Particles with ℓ/d = 0.5 are disks. Beyond a cer-

tain Reynolds number (Re ≈ 7), single disks tend to orient themselves

with their center line vertically.31 This then explains the angle distribu-

tion for hϕi = 0.10 that is skewed toward low values of φ. It has Re ≈

8.7, as well as sufficient space between the particles to orient them-

selves as single disks would. Increasing hϕi reduces the Reynolds

number as well as the maneuvering space for the particles which leads

to a gradual increase in preference for larger angles.

“Long” cylinders (ℓ/d = 4) orient mostly vertically, at least if hϕi >
0.10. This also is qualitatively visible in Figure 5 (right panel). For set-

tling cylinders with higher aspect ratios (ℓ/d ≥ 5) this has been

observed experimentally as well.7 The cylinders with ℓ/d = 2 go

through an interesting transition with increasing hϕi: from a prefer-

ence for horizontal center lines at low hϕi, to more vertical at high

F IGURE 5 Impressions of
systems with Ga = 864,
hϕi = 0.29, nx/d = 9, d/Δ = 16, ν
= 0.04 (lattice units) and (from left
to right) ℓ/d = 0.5, 1, 2, 4

F IGURE 6 Hindered settling. Slip velocity Reynolds number as a
function of 1 − hϕi for various ℓ/d as indicated. The straight lines are
least squares fits according to Re = Re∞(1 − hϕi)N. Ga = 864, nx/d =
9, d/Δ = 16, ν = 0.04 (lattice units)
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hϕi; it is the opposite of the transition the ℓ/d = 0.5 particles go

through.

So far, average velocity has been discussed. Particle velocities

fluctuate as a result of the random nature of the suspension with—for

individual particles—a constantly changing hydrodynamic environ-

ment. Particle fluctuations and their scaling with solids volume frac-

tion and Reynolds number are subject of fundamental research32 and

are practically relevant for transport processes in multiphase systems

as they relate to mixing and dispersion in the solids as well as in the

liquid phase.33 In fluidized systems, particle velocity fluctuations are

anisotropic with vertical fluctuations stronger by approximately a fac-

tor of 2 compared to horizontal fluctuations.34

Figure 8 shows particle velocity distribution functions confirming

the anisotropy in our suspensions: wider distributions for z-velocities

compared to xy-velocities. We also see that the width of the distribu-

tions very strongly depends on the solids volume fraction: the strong

hindrance in dense suspensions limits particle velocity fluctuation

levels.

It is usual practice7 to normalize particle velocity fluctuation root-

mean-square values by the average settling velocity. The way these

F IGURE 7 Distributions of the angles φ between cylinder
centerlines and the vertical for all 20 cases represented in Figure 6 on
hindered settling. The drawn black curve in each panel is sinϕ which is
representative for a random orientation distribution

F IGURE 8 Particle velocity distribution functions. Top: ℓ/d=2;
bottom: ℓ/d=4. The left panels show a comparison between
horizontal (xy) and vertical (z) velocities at hϕi=0.29. The right panels
show a comparison between vertical particle velocity distributions for
various hϕi

F IGURE 9 Particle velocity fluctuation levels u0pα =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upα− upαh ið Þ2

q

normalized by the average settling velocity ustl = uzh i− upzh ij j as a
function of solids volume fraction for all cases considered in Figure 6
(on hindered settling). Red symbols indicate vertical (z) velocity
fluctuations, black symbols horizontal (xy) fluctuations
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relative velocity fluctuations depend on solids volume fraction and

cylinder aspect ratio is shown in Figure 9. Vertical as well as horizontal

component go through a maximum at hϕi ≈ 0.3, irrespective of ℓ/d.

Similar profiles have been reported experimentally as well as compu-

tationally for spherical particles at low34 as well as intermediate33

Reynolds numbers. In addition, a clear trend with respect to ℓ/d can

be observed: the lower aspect ratios have higher relative velocity fluc-

tuation levels.

5.3 | Average flow quantities at constant Galileo
number based on equivalent diameter

We thus observe significant differences in the behavior and structure

of the suspension with aspect ratio ℓ/d and overall solids volume frac-

tion hϕi. Since the Reynolds numbers changed as ℓ/d changed, it is

worthwhile to clarify to what extent the differences observed can be

ascribed to ℓ/d and/or to Re.

Aspect ratio and Reynolds number can be decoupled by scaling

the flow systems differently. So far we kept Ga = gd3/ν2 constant,

motivated by considerations for experimental validation (comparing

cylinders with the same diameter but different lengths). If instead, we

keep Gae = gd
3
e=ν

2 constant, we are comparing cylinders of different

length having the same volume, that will show—at the same

hϕi—comparable average settling speeds and thus Reynolds numbers.

We have set Gae = 1.5 � 864 = 1296 and performed a series of simu-

lations varying ℓ/d and hϕi in the same range as in the previous sec-

tion, keeping the density ratio constant at γ = 2. In these simulations,

Gae has been kept constant by appropriately setting g. For the chosen

value of Gae = 1296, the systems with ℓ/d = 1 in this section are the

same as the ones with Ga = 864 in the previous section.

The hindered settling behavior is shown in Figure 10. It is remark-

able to see that now the results for the different cylinder aspect ratios

almost collapse, that is, the settling velocity Reynolds number primar-

ily depends on the solids volume fraction, and hardly on ℓ/d. For fur-

ther interpretation, the data are also plotted on a linear Reynolds

number scale in Figure 10, leading to the same conclusion. The “uni-

versal” Richardson and Zaki exponent is to a good approximation the

F IGURE 10 Hindered settling. Slip velocity Reynolds number as a
function of 1 − hϕi for various ℓ/d as indicated. Different from
Figure 6, now all simulations have the same Galilei number based on
the equivalent diameter: Gae = 1,296. Top and bottom panel have the
same data on a logarithmic and linear Re scale, respectively. nx/d = 9,
d/Δ = 16, ν = 0.04 (lattice units) for hϕi ≤ 0.40 and ν = 0.06
for hϕi > 0.40

F IGURE 11 Distributions of the angles φ between cylinder
centerlines and the vertical for all 20 cases represented in Figure 10
on hindered settling that all have Gae=1,296. The drawn black curve
in each panel is sinϕ which is representative for a random orientation
distribution
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one that was found for ℓ/d = 1 in Figure 6: N ≈ 3.9. Qualitatively, the

orientation angle distributions remain unaltered as compared to the

set obtained for Ga = 864 (Figure 7), see Figure 11 (where we omitted

the ℓ/d = 1 distributions as they are the same as in Figure 7). The

most striking difference between the angle distributions in Figure 11

and in Figure 7 is the more pronounced vertical alignment of the

cylinders with ℓ/d = 4 at the higher solids volume fractions in

Figure 7, that is, the alignment slightly reduces when the Reynolds

number gets smaller.

Relative particle velocity fluctuation levels are shown in Figure 12.

The overall trend is the same as for the previous set of simulations:

highest levels at hϕi ≈ 0.3 and vertical velocity fluctuations approxi-

mately a factor of two larger than horizontal velocity fluctuations.

Closer comparison between Figure 9 (Ga = 864) and Figure 12 (Gae =

1296) shows a weaker sensitivity of relative fluctuation levels with

respect to ℓ/d. Where in Figure 9 the clear trend is a decrease of fluctu-

ation levels with increasing ℓ/d, this is much less so in Figure 12,

although also there the ℓ = 4d particles have the weakest fluctuations.

In a final set of simulations, we consider the role of the Archime-

des number (based on the equivalent diameter de): Are = γ−1ð Þgd3e=
ν2 = γ−1ð ÞGae. Above, Gae = 1296 and γ = 2 were constant so that

Are is constant. We now keep Areconstant at Are = 1296 and vary the

density ratio in such a way that the net weight of a single particle

(proportional to γ−1ð Þgd3e ) is the same for all aspect ratios; Gae is thus

not constant anymore. The results of this set of simulations are com-

pared to the ones with Gae = 1296 in Table 1 in terms of average set-

tling velocity Reynolds number and relative particle velocity

fluctuation levels. There is a close agreement between the two sets of

simulations from which we conclude that—under the conditions

investigated—the density ratio has limited significance for these aver-

age flow properties.

6 | CONCLUSIONS

This paper reports on particle-resolved simulations of dense suspen-

sions of cylindrical solid particles in Newtonian liquid. Fully periodic,

three-dimensional domains were used to study fluidization/hindered

settling of cylinders that varied in length-over-diameter aspect ratio

from 0.5 to 4. We demonstrated that it was feasible to choose the

simulation parameters such that grid-independent results for average

and fluctuating velocities could be obtained. Fluctuating velocity

levels increased with the size of the periodic computational domains

to an extent that was different for different aspect ratios. Therefore,

results for these quantities are likely underestimated in the current

study. Average velocities were to a good approximation independent

of domain size.

We observed significant differences in the way the particles are

oriented relative to the vertical (gravity) direction. The orientations of

cylinders with aspect ratio 1 are randomly oriented, almost

irrespective of the solids volume fraction. The longer cylinders—

specifically those with aspect ratio 4—orient themselves preferentially

vertically. For the other aspect ratios a significant dependency on the

solids volume fraction of the distributions of orientation angles is

observed.

It is striking to see that the hindered settling behavior, that is, the

way the Reynolds number based on average settling velocity and

equivalent diameters depends on the solids volume fraction, is almost

independent of the aspect ratio of the cylinders if the Archimedes

F IGURE 12 Particle velocity fluctuation levels

u0pα =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upα− upαh ið Þ2

q
normalized by the average settling velocity

ustl = uzh i− upzh ij j as a function of solids volume fraction for all cases

considered in Figure 10 with Gae=1,296. Red symbols indicate vertical
(z) velocity fluctuations, black symbols horizontal (xy) fluctuations

TABLE 1 Comparison of slip velocity Reynolds number (Re) and

relative particle velocity fluctuation levels at Are = γ−1ð Þgd3e=ν2 = 1296
between simulations with (the default) density ratio 2.0 (blue font)
and a density ratio such that the net gravity force on a single cylinder
is the same irrespective of ℓ/d (red font)

Are ℓ/d hϕi ρp/ρ Re u0pxy= upzh i u0pz= upzh i
1,296 0.5 0.20 2.0 9.36 0.376 0.612

3.0 9.33 0.368 0.583

0.29 2.0 5.76 0.429 0.696

3.0 5.76 0.422 0.670

0.40 2.0 2.86 0.448 0.664

3.0 2.86 0.458 0.678

2.0 0.20 2.0 9.32 0.334 0.555

1.5 9.24 0.333 0.539

0.29 2.0 5.78 0.334 0.651

1.5 5.74 0.364 0.622

0.40 2.0 2.88 0.399 0.622

1.5 2.89 0.405 0.612

4.0 0.20 2.0 8.59 0.294 0.568

1.25 8.53 0.294 0.543

0.29 2.0 5.32 0.308 0.596

1.25 5.41 0.325 0.634

0.40 2.0 2.78 0.300 0.586

1.25 2.88 0.310 "0.663
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number based on the equivalent diameter is kept constant. This

despite the fact that the orientation of the cylinders does depend on

aspect ratio. As for spherical particles, the Richardson and Zaki expo-

nent (N) depends on the Reynolds number.

There is a clear need for experimental validation of the results

presented here. Experiments are—among more—needed to provide

guidance for establishing parameters related to short-range interac-

tions that in this paper have been treated in an ad hoc manner with-

out much regard for the details of lubrication flow in the narrow

(in the simulations unresolved) space between particles. By per-

forming sensitivity analyses and comparing results with detailed

(refractive index matched) quantitative flow visualizations, the impor-

tance of modeling short range interaction can be assessed and model-

ing can be improved.

The computational demands of the simulations presented here are

still fairly modest. All results presented are based on sequential simu-

lations, requiring of the order of 3 Gbyte of memory and running

5–10 days for equilibration and collection of data for statistical analy-

sis. Parallelization of the computer code for simulating larger domains

with more particles is an important step to take in future work.
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