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Abstract 

Regression equations have many useful roles in neuropsychological assessment.  This 

paper is based on the premise that there is a large reservoir of published data that 

could be used to build regression equations; these equations could then be employed 

to test a wide variety of hypotheses concerning the functioning of individual cases.  

This resource is currently underused because (a) not all neuropsychologists are aware 

that equations can be built using only basic summary data for a sample, and (b) the 

computations involved are tedious and prone to error.  To overcome these barriers we 

set out the steps required to build regression equations from sample summary 

statistics and the further steps required to compute the associated statistics for 

drawing inferences concerning an individual case.  We also develop, describe and 

make available computer programs that implement the methods.  Although caveats 

attach to the use of the methods, these need to balanced against pragmatic 

considerations and against the alternative of either entirely ignoring a pertinent 

dataset or using it informally to provide a clinical “guesstimate”. 
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INTRODUCTION 

Regression equations serve a number of useful functions in the neuropsychological 

assessment of individuals (Chelune, 2003; Crawford, 2004; Crawford & Howell, 

1998; Strauss, Sherman, & Spreen, 2006; Temkin, Heaton, Grant, & Dikmen, 1999).  

For example, they are widely used to estimate premorbid levels of ability in clinical 

populations using psychological tests that are relatively resistant to neurological or 

psychiatric dysfunction (Crawford, 2004; Franzen, Burgess, & Smith-Seemiller, 1997; 

O'Carroll, 1995).  

 Another common application of regression is in the assessment of change in 

neuropsychological functioning in the individual case.  Here a regression equation can 

be built (usually using healthy participants) to predict a patient’s level of performance 

on a cognitive ability measure at retest from their score at initial testing.  An obtained 

retest score that is markedly lower than the predicted score suggests cognitive 

deterioration (Crawford, 2004; Heaton & Marcotte, 2000; Sherman et al., 2003; 

Temkin et al., 1999). 

Clinical samples can also profitably be used to build regression equations for 

predicting retest scores.  For example, Chelune, Naugle, Lüders, Sedlak, and Awad 

(1993) built an equation to predict memory scores at retest from baseline scores in a 

sample of temporal lobe epilepsy cases who had not undergone any surgical 

intervention in the intervening period.  The equation was then used to assess the 

effects of surgery on memory functioning in further individual patients. 

Regardless of whether the equation was built from a healthy or clinical 

sample, this approach simultaneously factors in the strength of correlation between 

scores at test and retest (the higher the correlation the smaller the expected 

discrepancies), the effects of practice (typically scores will be higher on retest) and 
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regression to the mean (extreme scores on initial testing will, on average, be less 

extreme at retest).   

 Yet another common role of regression equations is as an alternative to the use 

of conventional normative data (Heaton & Marcotte, 2000).  For example, if (as is 

commonly the case) performance on a neuropsychological test is affected by age, then 

age can be incorporated into a regression equation to obtain an individual’s predicted 

score on the test.  This provides what Zachary and Gorsuch (1985) have termed 

“continuous norms” and can be contrasted with the discrete norms formed by creating 

arbitrary age bands.  With the latter approach, the apparent relative standing of an 

individual can change dramatically as they move from one age band to another. 

It can be seen from the foregoing that regression equations perform many 

useful roles in the neuropsychological assessment of individuals.  However, we 

suggest that the potential of regression equations is far from being fully realized.  

There is a large reservoir of published data that could be used to build regression 

equations; these equations could then be employed to test a wide variety of 

hypotheses concerning the neuropsychological functioning of individual cases. 

For example, there are literally hundreds of published studies that have 

examined performance at test and retest on a wide variety of commonly used 

neuropsychological tests.  Many of these studies have been tabulated by McCaffrey, 

Duff and Westervelt (2000) and are classified by the test involved (e.g., verbal 

fluency, Wisconsin Card Sorting Test, and so forth), the type of sample (e.g. healthy 

elderly, TBI sample etc), the retest interval, and whether any intervention was applied 

in the intervening period. 

Provided that studies such as those described above record the means and 

standard deviations for the sample’s scores at test and retest, and the correlation 
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between these sets of scores, a regression equation can be built to predict retest scores 

from initial scores (these basic summary statistics are commonly reported).  The 

equation built using the summary statistics can then be used with an individual to 

examine the discrepancy between the predicted score and the actual score obtained at 

retest.  The statistics required to draw inferences concerning this discrepancy can also 

be calculated from summary data alone; the only information required beyond that 

already noted is the size of the sample (essentially it can be assumed that this will 

always be available).   

The remainder of this paper has two principal aims.  The first is to (a) set out 

the calculations required to build regression equations from summary data and (b) set 

out the further calculations required when applying these equations to draw inferences 

concerning an individual case.  The second aim is to describe and make available 

computer programs that implements all the methods described. 

Statistically minded neuropsychologists will be aware that regression 

equations can be built using summary data alone and that the associated statistics 

required to apply such equations to an individual case can also be obtained without 

the sample raw data.  However, on the basis of discussions at conferences, workshops 

and elsewhere, it is clear that many neuropsychologists are unaware, or only vaguely 

aware, that such a possibility exists. 

Moreover, those neuropsychologists who know that summary statistics are 

sufficient also know that, if the optimal statistical methods are to be employed, the 

calculations involved are time-consuming, tedious, and prone to error.  Therefore 

there is the temptation to either (a) not use regression equations in situations in which 

it would be helpful, or (b) use computationally simple methods that only approximate 

the results that would be obtained from the optimal methods.  Alternatively, if the 
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optimal methods are used, there is the danger that clerical errors will unknowingly be 

made when carrying out the computations.  The provision of a computer program that 

implements the optimal methods deals with all of these problems. 

 

Building a regression equation from summary data 

A regression equation with one predictor variable (i.e., a bivariate regression 

equation) takes the following form 

 Ŷ Xα β= + , (1) 

where Ŷ  is the predicted score on the criterion variable, α  is the intercept (the value 

of Y when X takes the value of zero), β  is the slope of the regression line, and X is 

the score on the predictor variable.  Let a and b denote the estimates of α and β  that 

the complete sample data would give.  Then the equation for calculating the slope b 

using summary data from a sample is 

 Y
xy

X

sb r
s

= , (2) 

where rxy is the correlation between the predictor and criterion variables and sX and sY 

are the standard deviations of these variables.  The equation for the intercept (a) is  

 a Y bX= − , (3) 

where Y  is the mean score on the criterion or dependent variable and X  is the mean 

score on the predictor or independent variable. 

Having set out the steps to obtain a regression equation from summary data we 

now turn to the calculations required to draw inferences concerning the discrepancies 

between an individual’s obtained score and the score predicted by such an equation.  

The first step is to calculate the standard error of estimate ( Y Xs ⋅ ).  The standard error 

of estimate is a measure of the variability of observations about the regression line in 
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the sample used to build the equation.  The formula for the standard error of estimate 

when there is only a single predictor variable is  

 ( )2 11 ,
2Y X Y XY

Ns s r
N⋅
−

= −
−

 (4) 

where N  is the size of the sample used to build the equation and all other terms have 

been defined previously.  Again it can be seen that this statistic can be calculated 

when only summary data are available. 

Having obtained Y Xs ⋅ , the next step is to calculate the standard error of a 

predicted score for a new case (denoted as sN+1) (Crawford & Howell, 1998; Howell, 

2002).  When there is only one predictor variable the required formula is  

 
( )

( )

2
0

+1 2

11 ,
1N Y X

X

X X
s s

N s N⋅

−
= + +

−
 (5) 

where 0X is the individual’s score on the predictor, and the remaining terms have 

been defined previously.  Note that, once again, all the necessary quantities are 

available from summary statistics. 

The standard error of a predicted score for a new case (that is, a case not in the 

sample used to build the equation) captures the uncertainty associated with estimating 

a population slope from a sample.  It can be seen that the sN+1 will increase in 

magnitude the further the patient’s score on the predictor variable (X) is from the 

mean; this is also a consequence of the uncertainty in estimating the slope.  Any error 

in estimating β  will exert a more marked effect on extreme values of X; to visualize 

this effect imagine rotating the regression line around the mean of X (Crawford & 

Howell, 1998). 

Next, consider 



Use of Regression Equations 8

 0

1

ˆ
,

N

Y Y
s +

−  (6) 

where 0Y  is the individuals obtained score and Ŷ is the individual’s predicted score, to 

yield a standardized discrepancy between the obtained and predicted score.  Under the 

null hypothesis, that the discrepancy is an observation from the population sampled to 

build the equation, this quantity has a t-distribution on 2 dfN −  (Crawford & 

Garthwaite, 2006a).  Thus, for a specified level of alpha (e.g., 0.05), one can test 

whether there is a statistically significant difference between the predicted score and 

the obtained score, using either a one or two-tailed test1.   

Opinions differ on the use of one- versus two-tailed tests in 

neuropsychological assessment.  Our view is that one-tailed tests are acceptable and 

appropriate if the neuropsychologist wishes to test a directional hypothesis, 

particularly when a discrepancy in the opposite direction would not be the result of a 

clinical condition.  When working with individual cases, power to reject the null 

hypothesis (in this context to reject the hypothesis that the patient’s discrepancy is an 

observation from discrepancies in the reference population) is often low (Crawford & 

Garthwaite, 2006b): use of a one-tailed test provides higher power than a two-tailed 

test.  However, the logic of a one-tailed test is such that the direction of a difference 

must be specified a priori and, if a difference is in an unexpected or counterintuitive 

direction, then it must be ignored.  As such unexpected findings may be clinically 

informative, some neuropsychologists may prefer to keep their options open and use 

two-tailed tests.  The programs that accompany this paper (see later) provide both one 

and two-tailed values and thereby allowing clinicians to choose which values to 

                                                           
1 Note that, as pointed out by a reviewer, this test can be construed in terms of the studentized deleted 
residual which is equivalent to asking whether, if that individual had been included in the original 
sample, would a separate dummy code parameter for the individual be necessary.  
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attend to based on their general preferences or the specific problem in hand. 

Note that there is a potential “third way” with respect to this issue.  Many of 

us are used to thinking in terms of making a dichotomous decision between a one or 

two-tailed test.  However, an alternative approach is to use what has been termed a 

split-tailed test (Harris, 1994).  The rationale underlying the split-tailed test is that, 

having selected a Type I error rate (i.e. alpha) we regard as acceptable (5% by 

convention) we need not “spend” it by allocating it equally to both tails or solely to 

one tail.  Rather, we can choose to allocate a greater proportion of it to the tail 

corresponding to our directional hypothesis whilst still leaving a proportion to cover 

the opposite tail.  For example, we may decide to allocate 80% to the former tail and 

20% to the latter.  The loss of power for such a split-tailed test is only a little lower 

than a one-tailed test (a p value less than 0.04 rather than less than 0.05 is required to 

be considered significant) but, unlike the latter test, the researcher or clinician need 

not ignore a large difference in the direction opposite to that expected, provided it is 

significant beyond the 0.01 level. 

To our knowledge, split-tailed tests have not previously been used or 

advocated for inferences concerning individual cases but they may be worthy of 

consideration.  In practice they are easily applied, that is, the user need simply attend 

to the one-tailed p value from the test.  That is, if the difference is in the predicted 

direction and the one-tailed p is < 0.04 then the difference is considered to be 

statistically significant at p < .05; if the difference is in the direction opposite to that 

predicted and the one-tailed p is < 0.01 then the difference would also be considered 

statistically significant at p < .05.  Just as is the case with use of a one-tailed test, it 

must be stressed that the user should take a principled approach to such testing – the 

proportion of alpha allocated to each tail should be decided before the data are 
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observed and thereafter should be regarded as fixed.  

Significance tests have a role to play in neuropsychological assessment of the 

individual: when a discrepancy achieves statistical significance the neuropsychologist 

can be confident that is unlikely to be a chance finding (in other words it is unlikely 

that the observed discrepancy stems from random variation in an individual or error in 

estimating the population regression equation from sample data).  However, it should 

be borne in mind that significance levels (whether they be one-, two-, or split-tailed) 

are largely arbitrary conventions; the conclusion drawn when a patient’s discrepancy 

is just above the significance level threshold should be similar to the conclusion when 

it is just below that threshold.  Thus we suggest that the neuropsychologist should be 

primarily concerned with the more general issue of the degree of abnormality of the 

patient’s discrepancy. 

Fortunately, an estimate of the abnormality of the discrepancy is an inherent 

feature of the proposed method: the p value used to test significance is also a point 

estimate of the proportion of the population with the same value on the predictor 

variable (i.e., X) as the patient that would obtain a discrepancy more extreme than that 

observed for the patient (Crawford & Garthwaite, 2006a).  As noted, the population 

referred to here is that sampled to build the regression equation; i.e., if the equation 

was built using healthy adults then the population is the healthy adult population.  

Alternatively if, for example, the equation was built in a sample of patients who had 

suffered a severe traumatic brain injury (TBI) six months earlier, then the population 

is all patients with a severe TBI six months post injury. 

In Crawford and Garthwaite (2006a) the fact that the p value from the 

significance test also equals the estimated proportion of the population exhibiting a 

more extreme discrepancy than the case was stated without proof.  In the present 
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paper we provide a short formal proof in Appendix 1.  It is more convenient (and 

more in line with convention) to multiply the p value referred to above by 100 so that 

we have a point estimate of the percentage (rather than proportion) of the population 

exhibiting a larger discrepancy.  This latter index of abnormality is used in the 

examples that follow and in the outputs from the computer programs that accompany 

this paper. 

The above quantity is a point estimate of the abnormality of the discrepancy 

between an individual’s obtained and predicted score.  Recently, Crawford and 

Garthwaite (2006a), building on earlier statistical results from Crawford and 

Garthwaite (2002), have provided a method of obtaining an interval estimate for this 

quantity.  That is, the method provides 95% confidence limits on the percentage of the 

population that would obtain a more extreme discrepancy than that observed for the 

individual. 

The provision of these confidence limits is in keeping with the contemporary 

emphasis in psychological assessment and statistics on the utility of confidence limits 

(APA, 2001; Wilkinson & APA Task Force on Statistical Inference, 1999).  

Confidence limits serve the useful general purpose of reminding the user that there is 

always uncertainty attached to an individual’s results (i.e., they counter any tendency 

to reify the observed scores) but they also serve the specific purpose of quantifying 

this uncertainty (Crawford & Garthwaite, 2002).  The calculations involved in 

obtaining these limits involve non-central t-distributions and are complex but the 

important point for present purposes is that they can be calculated without requiring 

the sample’s raw data. 

Confidence limits on the abnormality of an individual’s discrepancy are 

implemented in the computer program that accompanies this paper and an example of 
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their use is provided in a later section.  For full details of the derivation and 

evaluation of these limits, and of the calculations required to obtain them, see 

Crawford and Garthwaite (2006a). 

 

Recovering a correlation from summary data when it is not reported 

In the foregoing section it was assumed that the summary data for a sample 

included the correlation between the predictor and criterion variables.  It might be 

thought that, if the correlation is not reported then all is lost, i.e., the regression 

equation cannot be built.  However, it is possible to recover this correlation if the 

study has reported the results of a paired samples t-test to compare mean scores on the 

two variables.  For example, in a test-retest study, even if the correlation between test 

and retest was not reported, it will often be the case that a t-test was conducted to test 

whether there had been a significant decline or improvement over the intervening 

period.  In this situation the correlation can be recovered using simple algebra. 

The formula for a paired-samples t-test is  

 
2 2 2X Y X Y XY

X Yt
s s s s r

N

−
=

+ −
, (7) 

where all terms have previously been defined.  Rearranging this formula to solve for 

XYr gives 

 

2
2 2

2

X Y

XY
X Y

X Ys s N
tr

s s

⎛ ⎞−
+ − ⎜ ⎟

⎝ ⎠=  (8) 

and the correlation can then be used to obtain the regression equation and its 

associated statistics as set out in the previous section.  Note that this formula should 

not be confused with formulae used to convert a t value to a point biserial correlation; 
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the latter provide an index of effect size and represent the correlation between 

occasion (before versus after) or group membership (e.g., control versus clinical) and 

test scores). 

The principal computer program that accompanies this paper (regbuild.exe) 

builds the regression equation directly from the correlation coefficient.  However, a 

companion program (regbuild_t.exe) is available to build the regression equation from 

a t-value.   

If a study has used an ANOVA rather than a t-test to compare the two means, 

it is still possible to build an equation either by hand or by using this latter program.  

F = t2, so all that need be done is to take the square root of F and enter it into formula 

(8) in place of t.   

 

The precision of regression equations and their associated statistics when computed 

from summary data 

As noted, the main purpose of this paper is to set out a procedure for building 

and using regression equations when only basic summary statistics are available for a 

suitable sample.  This raises the question of whether rounding errors contained in 

these summary statistics pose a threat to the validity of the results obtained.  The main 

threat to precision comes from calculating the slope of the regression line from the 

reported correlation coefficient for the sample (note however that the correlation also 

features in the formula for Y Xs ⋅  and hence also influences sN+1).  This is because the 

correlation is intrinsically more influential in the calculations but also because the 

other statistics required (i.e., means and standard deviations) are normally reported 

with three or more significant digits. 

In contrast, the correlation coefficient is normally reported with only two 
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significant digits, i.e., .72.  Thus, because of rounding error, the actual sample 

correlation coefficient in this example could be as low as 0.715 and would have its 

upper limit at .725.  Supposing, for convenience, that the standard deviations of X and 

Y were both 1 (so that the slope is identical to the correlation coefficient) then the 

slope calculated from the sample raw data could be as low as .715 or as high as .725 

rather than 0.72.  

At the margins this rounding error may make a difference to the results 

obtained for an individual.  If there were grounds for concern then, given that the 

range of error introduced by rounding is known, the calculations could be repeated 

substituting the upper and lower limits on the value of the correlation coefficient.  The 

results could then be compared with those obtained originally to examine whether 

they make a difference to the substantive conclusions. 

Admittedly this is not a particularly appealing prospect were the calculations 

to be done by hand or calculator but, using the computer program developed to 

accompany this paper, it would take seconds to run this check (i.e., by substituting the 

upper or lower limit on the correlation attributable to rounding error for the 

correlation as reported in the relevant data field).  Before leaving this topic, it should 

be borne in mind that errors arising from a lack of precision are not limited to 

equations built from summary data.  Such errors can also arise when using published 

regression equations if the slope and standard error of estimate etc are reported with a 

limited number of significant digits. 

 

Computer programs implementing these methods 

 A computer program for PCs is available that implements the methods covered 

in the present paper.  The program (regbuild.exe) prompts the user for the sample 
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means and standard deviations of the predictor and criterion variables, the correlation 

between these variables, and the N for the sample.   

The output consists of the regression equation, i.e., the slope (b) and intercept 

(a); and the standard error of estimate.  These outputs are followed by the results 

obtained from analyzing the individual case’s data.  These consist of: the individual’s 

predicted score; the standardized discrepancy between the predicted and obtained 

scores; the results of the significance test (one and two-tailed probabilities are 

provided); the point estimate of the percentage of the population that would obtain a 

larger discrepancy; and (by default) the 95% confidence limits on this percentage 

(alternatively, a one-sided upper or lower 95% limit can be requested).  The results 

can be viewed on screen, printed, or saved to a file.  There is also the option of 

entering user notes (e.g., to keep a record of the source of the summary data or further 

details of the sample or individual case); these are reproduced in the output from the 

program. 

For convenience, the summary statistics for the sample used to build the 

equation are saved to a file and reloaded when the program is re-run.  Therefore, 

when the program is used with a subsequent individual, the required data for the new 

case can be entered, and results obtained, in a few seconds.  The program has the 

option of clearing the sample data to allow the user to build a new equation if 

required.  As noted previously, a further program, regbuild_t.exe, is designed for use 

when a study fails to report the correlation between predictor and criterion variable 

but does report a t value obtained from performing a paired samples t-test to compare 

the means of the two variables.  The functionality, analysis and output from this 

program are identical to regbuild.exe except that it also reports the estimated 

correlation between the predictor and criterion variables obtained using formula (8).  
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Compiled version of these programs can be downloaded (as a zip file) from the online 

supplemental page that accompanies this paper or from the following website address: 

http://www.abdn.ac.uk/~psy086/dept/regbuild.htm.  

 

Examples of the use of the methods and accompanying programs 

In this section we illustrate some ways in which the methods and 

accompanying computer programs can harness summary data from published studies 

in order to assist the neuropsychologist draw inferences concerning the cognitive 

status of individual patients.  Suppose that a neuropsychologist has seen a 65 year old 

patient with suspected early Alzheimer’s disease and has administered a semantic 

(category) fluency test at the initial assessment and again after five months; further 

suppose that an initial letter fluency test (e.g., FAS) was also administered at the first 

assessment.  The patient’s score on the semantic fluency test at initial testing was 21 

and the score at retest was 11; the patient’s FAS score at initial testing was 25. 

Table 1 sets out details of four hypothetical studies: for each study it lists the 

summary data required to build regression equations and to calculate the associated 

statistics for drawing inferences concerning an individual case.  The resultant 

regression equations and their associated statistics, calculated using either the 

formulas presented in the text or using the accompanying computer programs, are also 

presented in Table 1 (for clarity a blank row separates these statistics from the 

preceding statistics required for their computation).  Although the accompanying 

computer programs are designed to be intuitive, the provision of the summary data in 

Table 1 and the worked examples below allows users to run these examples 

themselves.  This will help users become familiar with the mechanics of the process 

prior to using the methods with other data. 
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Study 1 was a study conducted on a sample of healthy participants (age range 

50 to 80) on the effects of ageing on neuropsychological test performance; in the 

course of this study the correlation between age and performance on the semantic 

fluency test (-0.58) was reported.  It can be seen that age exerts a substantial effect on 

performance on the semantic fluency task. 

Study 2 was also a study of cognitive ageing in healthy elderly participants 

and included among its results the correlation between the semantic fluency test and 

the FAS test.  Study 3 was a longitudinal (test-retest) study of neuropsychological 

tests including the semantic fluency test, again the sample consisted of healthy elderly 

participants.  Finally, Study 4 was another longitudinal study that included the 

semantic fluency test but was concerned with cognitive change in a sample of patients 

with early Alzheimer’s disease.   

Suppose, as is the case for many neuropsychological instruments, that the 

normative data for the elderly on the semantic fluency test are modest.  These 

conventional normative data could be supplemented by using the data from Study 1 to 

build an equation for prediction of individuals’ semantic fluency scores from their 

age.  If the predicted score is substantially higher than the patient’s obtained score this 

suggests impaired performance.  This is an example of the use of regression to 

provide continuous norms (Zachary & Gorsuch, 1985) as referred to in the 

Introduction.   

Entering the summary statistics for the sample in Study 1 (i.e., the means and 

SDs for age and semantic fluency together with the correlation between these 

variables) into equations (2) and (3) the slope (b) and intercept (a) of the regression 

equation are calculated as –0.909 and 99.31.  Thus based on the patient’s age, his 

predicted semantic fluency score is 40.21.  Using equations (4) and (5), the standard 
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error of estimate for this equation ( Y Xs ⋅ ) is 10.787 and the standard error for an 

additional individual (sN+1) is 10.821.  The difference between these two quantities is 

modest in this example because the patient’s value on the predictor variable (i.e., their 

age) is not extreme relative to the sample mean and also because the sample used to 

build the equation is large; it will be appreciated that this will not always be so. 

The raw discrepancy between the patient’s obtained semantic fluency score of 

21 and predicted score of 40.21 is –19.21.  Dividing this discrepancy by sN+1 (i.e., 

applying formula 6) yields a standardized difference of –1.775.  Under the null 

hypothesis this standardized difference is distributed as t on 2 158 df N − = (in this 

case the null hypothesis is that the individual’s discrepancy is an observation from the 

population of discrepancies found in the healthy elderly).  Evaluating this t-value 

reveals that the patient’s obtained score is significantly below the score predicted 

from her/his baseline score (p = 0.0389, one-tailed). 

The point estimate of the abnormality of this discrepancy (i.e., the percentage 

of the population that would be expected to exhibit a discrepancy larger than that 

observed) is thus 3.89%.  The accompanying 95% confidence interval on the 

percentage of the population that would exhibit a larger discrepancy than the patient 

ranges from 2.12% to 6.32%.  Thus, in summary:  There is a large and statistically 

significant discrepancy between the patient’s predicted and obtained scores.  This size 

of discrepancy is estimated to be unusual in the healthy elderly population and is 

consistent with impaired performance on the semantic fluency task.  

Moving on to Study 2: In neuropsychological assessment much emphasis is 

placed on the use of intra-individual comparison standards when attempting to detect 

acquired impairments (Crawford, 2004; Lezak, Howieson, Loring, Hannay, & 

Fischer, 2004).  Comparison of semantic and initial letter fluency performance 
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provides a good example of such an approach as (a) scores vary widely as a function 

of an individuals’ premorbid verbal ability and thus there are limits to the usefulness 

of normative comparison standards (Crawford, Moore, & Cameron, 1992), and (b) the 

two tasks are highly correlated in the general adult population (Henry & Crawford, 

2004).  Thus, if an individual exhibits a large discrepancy between these two tasks, 

this suggests an acquired impairment on the more poorly performed task. 

In this specific example there is an additional consideration: there is much 

evidence that semantic fluency performance is more severely disrupted by 

Alzheimer’s disease (AD) than is initial letter fluency.  For example, a random effects 

meta-analysis of a large number of studies of semantic and initial letter fluency in AD 

versus healthy controls revealed very large effects for semantic fluency coupled with 

more modest effects on initial letter fluency (Henry, Crawford, & Phillips, 2004).  

That is, the semantic fluency deficits qualified as differential deficits relative to initial 

letter fluency.  On the basis of such evidence a discrepancy in favor of initial letter 

fluency over semantic fluency would be consistent with an Alzheimer’s process. 

One means of examining whether this pattern is observed in the individual 

case is to use a healthy sample to build an equation to predict semantic fluency from 

initial letter fluency and to compare the individual’s predicted and obtained scores.  

The regression equation and associated statistics built with the hypothetical data from 

Study 2 are presented in Table 1.  Using this equation, the patient’s predicted 

semantic fluency score is 35.23 (based on his initial letter fluency score of 25) 

compared to his obtained score of 21.  Dividing the raw discrepancy between the 

obtained score and predicted score (-14.23) by sN+1 yields a standardized difference of 

–1.442.  Evaluating this t-value reveals that the patient’s obtained score is not 

significantly below the score predicted from his initial letter fluency score (p = 0.076, 
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one-tailed).  The point estimate of the abnormality of this discrepancy (i.e., the 

percentage of the population that would be expected to exhibit a discrepancy larger 

than that observed) is thus 7.60% and the 95% confidence interval is from 3.94% to 

12.63%.  In summary, the patient’s semantic fluency is considerably lower than 

expected given his initial letter fluency performance; although not statistically 

significant at the .05 level, the discrepancy is nevertheless fairly unusual and is 

consistent with a differential deficit in semantic versus initial letter fluency. 

Note that a good case could be made for the use of a two- rather than 

one-tailed test in this situation.  That is, a case may turn out to have a discrepancy 

favoring semantic fluency over initial letter fluency (a pattern that is liable to be 

relatively uncommon in AD).  Had this occurred in the present case then the logic of 

hypothesis testing would have precluded testing for the significance of this difference.  

The two-tailed p value in this example is 0.152. 

This foregoing analysis also provides a good opportunity to discuss the weight 

given to null hypothesis significance tests in neuropsychology.  When a difference 

does achieve statistical significance the neuropsychologist can be particularly 

confident that a problem has been uncovered.  However, as noted, we suggest that the 

principal focus should be on the abnormality of the patient’s discrepancy rather than 

whether it falls below or above the cusp for conventional statistical significance.  In 

this example the discrepancy between initial and semantic fluency tests is fairly 

uncommon.  Thus such evidence should be given weight when arriving at a 

formulation, particularly when it is consistent with other indications of impairment, 

such as here, where the patient’s semantic fluency score was also lower than expected 

given his age. 

Turning to Study 3: neuropsychologists commonly have to attempt to detect 



Use of Regression Equations 21

change in cognitive functioning in the individual case, whether this be to determine 

whether recovery is progressing following a stroke or TBI, to monitor the positive or 

negative effects of intervention, or to detect decline in degenerative conditions.  In the 

case of AD, serial assessment plays a particularly important role in diagnosis because 

the results of testing from a single time period will often be equivocal (Morris, 2004).  

When test data from two occasions are to be compared, regression provides a useful 

means of drawing inferences concerning change: the neuropsychologist simply needs 

to find test-retest data for the measures used in an appropriate sample retested over an 

interval similar to that of the patient.  Study 3 is a hypothetical test-retest study in 

which a sample of healthy elderly participants (N = 45) were tested on the semantic 

fluency test and retested after 6 months (this is a slightly longer interval than that for 

the case but sufficiently close to justify use of the data).   

The regression equation and associated statistics obtained from Study 3 are 

presented in Table 1.  Using this equation, the patient’s predicted semantic fluency 

score at retest is 29.29 (based on his initial score of 21) compared to his obtained 

retest score of 11.  Dividing the raw discrepancy between the obtained score and 

predicted score (-18.29) by sN+1 yields a standardized difference of –1.95.  Evaluating 

this t-value reveals that the patient’s retest score is significantly below the score 

predicted from his score on first testing (p = 0.0287, one-tailed).  The point estimate 

of the abnormality of this discrepancy is thus 2.87% and the 95% confidence interval 

is from 0.27% to 9.88%.  In conclusion, the analysis indicates that the patient’s 

performance on semantic fluency has declined over the interval between the two 

testing occasions.  That is, it is unlikely that a member of the cognitively intact elderly 

population would exhibit this large a decline in performance. 

Finally, Study 4 provides an example of the use of an equation built in a 
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clinical rather than healthy sample.  Having found evidence of a decline using the 

equation built using data from Study 3, the data from Study 4 are used to examine 

whether or not the change from test to retest is unusual for patients with AD.  Note 

also that, in this last example the study did not report the correlation between test and 

retest scores for semantic fluency but did report the results form a paired samples 

t-test used to test for a significant difference between mean scores on the two 

occasions (see Table 1). 

There are much published data of this form in neuropsychology (McCaffrey et 

al., 2000), and it is therefore fortunate that we can still build the equation in the 

absence of a reported correlation between the predictor and criterion variable.  Using 

formula (8), or using the program that implements it (regbuild_t.exe) we can recover 

the correlation between the scores at test and retest using the data provided.  In this 

example, the correlation is 0.72 and we now have the information required to build 

the equation to predict the patient’s score at retest score from his initial score (see 

Table 1 for the regression equation statistics).  Had the study used a two-way 

ANOVA to compare means at test and retest (with each participant as a block) then, 

as noted earlier, we can still recover the correlation. For this example, the F value 

from the ANOVA for the difference between test and retest would be 22.94 and 

taking its square root gives us the necessary t value for entry into formula (8) or into 

the program. 

Using the equation built using the data from Study 4, the patient’s predicted 

semantic fluency score at retest is 15.44 (based on his initial score of 21) compared to 

his obtained retest score of 11.  Dividing the raw discrepancy between the obtained 

score and predicted score (-4.44) by sN+1 yields a standardized difference of –0.532.  

Evaluating this t-value reveals that the patient’s retest score is not significantly below 
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the score predicted from his score on first testing (p = 0.597, two-tailed).  The point 

estimate of the abnormality of this discrepancy is 29.9% and the 95% confidence 

interval is from 20.23% to 40.68%.  Note that the population referred to on this 

occasion is the population of patients with early AD, not the general (healthy) elderly 

population as in the previous examples.  Note also that in the present example a 

two-tailed test is employed: even if the neuropsychologist had independent grounds to 

believe that the patient’s cognitive decline would be atypically rapid for AD, or 

atypically slow, it is unlikely that they would have sufficient confidence in this to rule 

out the alternative possibility.  In conclusion, the present analysis indicates that, 

although the patient has shown a decline that is somewhat greater than the average 

decline found in the AD sample, the indications are that the difference in the patient’s 

performance on the two occasions will nevertheless not be unusual in patients with 

early AD. 

The foregoing example of the use of equations built using data from clinical 

samples is only one of many potential uses.  Indeed, given the vast number of clinical 

studies in the literature, this process is limited only by the ingenuity of the 

neuropsychologist and by the time involved in conducting a search for published 

studies relevant to the question in hand.  For example, data such as that in Study 4 

could also be used to study the potential effectiveness of a pharmacological (or other 

form of) intervention in the individual case.  That is, in the example, the data were 

obtained from untreated early AD cases and thus, if a treated early AD patient’s score 

at retest substantially exceeded that predicted by the regression equation (i.e. if the 

discrepancy was estimated to be unusual among untreated AD cases), this would be 

consistent with a beneficial effect of the intervention.   

Finally, the examples featured have primarily had a clinical focus.  However, 
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the use of regression equations to draw inferences concerning the individual case 

(whether these equations are provided by a third party, or are built from summary data 

using the methods set out here) have numerous applications in neuropsychological 

research.  Most obviously there has been a massive resurgence of interest in 

single-case studies in neuroscience as a means of specifying the functional 

architecture of cognition (Coltheart, 2001).  Although the focus of these studies is on 

a single-case, the patient’s pattern of performance is usually interpreted by referring 

to control values.  The use of regression equations can play a useful role in providing 

such comparisons (i.e., through analysis of the discrepancy between a patient’s 

obtained scores and those predicted by equations built in the healthy control sample).  

Note that, as the control samples in single-case studies are normally modest in size 

(Crawford & Garthwaite, 2005), this is an example of where the exact methods set out 

here are clearly to be preferred over the approximate method. 

As pointed out by a reviewer, the methods can also usefully supplement 

results obtained in group studies.  For example, in a clinical trial of a new drug or 

other form of intervention, researchers are interested not only in the magnitude of the 

group differences between the active and placebo groups, but also in the number of 

individuals that show significant improvement from baseline (or attenuation of 

decline).  The methods set out here could be used to set the criterion for improvement 

or attenuation in the individual case which in turn could be used as a basis for 

calculating relative risk (via odds ratios) or numbers-needed-to-treat.   

 

Advantages of the proposed method of drawing inferences concerning an individual’s 

discrepancy over existing methods 

As noted, regression equations are already widely used to draw inferences 
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concerning an individual’s neuropsychological status.  Currently, the “standard” 

approach in neuropsychology to analyzing the discrepancy between an individual’s 

predicted and obtained score is simply to divide the discrepancy by the standard error 

of estimate for the equation, treat the resulting quantity as a standard normal deviate 

(i.e., z), and convert this quantile to a probability using a table of areas under the 

normal curve (Crawford & Garthwaite, 2006a).  Just as is the case with the approach 

presented here, it is possible to apply this method when only summary data are 

available; i.e., a pre-existing equation is not required.  It is therefore appropriate to 

briefly contrast the two approaches. 

In essence the alternative method treats the sample used to build the equation 

as if it were the entire population; that is the regression statistics are treated as 

population parameters rather than sample statistics.  Monte Carlo simulations have 

demonstrated that, in contrast to the method used in the present paper, the Type I error 

rate is inflated above the nominal rate and, relatedly, the abnormality of discrepancies 

between individuals’ obtained and predicted scores is exaggerated (Crawford & 

Garthwaite, 2006a).  These effects can be marked when the sample used to build the 

equation is modest in size and when an individual’s score on the predictor variable is 

extreme.  This latter phenomenon is a direct consequence of failing to allow for the 

uncertainty in estimating the slope of the population regression line from a sample: as 

noted earlier, error in estimating the slope will have a greater effect on extreme 

values. 

It should be acknowledged, however, that the two methods will yield very 

similar results when the sample used to build the regression equation has a moderately 

large n, particularly when the individual’s score on the predictor variable is not 

extreme (see the worked example for Study 1 in which sN+1 and Y Xs ⋅  are very similar 
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in magnitude).  As noted by a reviewer, in such circumstances the Y Xs ⋅  method could 

be used as in place of the technically correct method presented here.  On the other 

hand, if the computer programs that accompany this paper are used, there is little to be 

gained by such a substitution as the correct calculations can be applied in much less 

time than would be required for hand calculation of the approximate method.  

A further difference between the two methods is that, unlike the method 

advocated here, the alternative method cannot provide confidence limits on the 

abnormality of an individual’s discrepancy: it does not acknowledge any uncertainty 

in the sample’s regression statistics and therefore cannot quantify the effects of this 

uncertainty on the estimate of the individual’s level of abnormality.  This can be seen 

as a significant disadvantage given that (a) confidence limits remind us that our data 

are fallible and quantify the effects of this fallibility and (b) many bodies, such as the 

APA (Wilkinson & APA Task Force on Statistical Inference, 1999), stress the 

importance of incorporating such limits into research and practice.  

 

Multiple regression equations from summary data? 

Compared to equations with a single predictor, multiple regression equations 

provide a more flexible and potentially more sensitive means of testing hypotheses 

concerning an individual.  For example, when testing for change in an individual’s 

neuropsychological functioning, if age is related to the magnitude of practice effects, 

then age can be incorporated into an equation along with the initial test score to obtain 

a more precise estimate of an individual’s expected change. 

Although the computations involved are considerably more complex than 

those involved in the bivariate case, it is possible to build multiple regression 

equations from summary data alone.  However, there is a major impediment to 
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actually carrying this out in practice: published studies rarely report the full matrix of 

correlations between the criterion and predictor variables but this matrix is required to 

build the equation (the means and standard deviations for all variables are also 

required but these are usually available). 

The studies most likely to include a full correlation matrix are those reporting 

the results of a multiple regression analysis.  For example, the American 

Psychological Association recommends that such studies report the full matrix (e.g., 

see APA 2001) but of course there is no need to calculate the coefficients of the 

regression equation from summary data in these circumstances as they will already be 

available.   

A further practical difficulty is that, even if the correlation matrix is available, 

the precision with which the correlations are reported would be much more of a 

problem in using multiple regression than it is in the bivariate case (Sokal & Rohlf, 

1995).  In view of these practical considerations we have not set out the methods for 

calculating and analyzing the results of multiple regression equations using summary 

data, nor have we implemented these methods in a program. 

Finally, note that, when a multiple regression is available (i.e., from a 

published study or from a psychologist’s analysis of her/his own raw dataset), then it 

is possible to apply methods for analyzing the discrepancy between an individual’s 

obtained and predicted score that are directly analogous to those covered here for the 

bivariate case.  These methods have been set out by Crawford and Garthwaite (2006a) 

and have been implemented in an accompanying computer program (this program 

requires direct entry of the intercept and the regression coefficients for each predictor 

variable).  
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Caveats on the use of these methods and some pragmatic considerations 

The validity of inferences made using the methods set out here is dependent 

on the quality of the data used to build the equation; that is, the methods will not 

provide accurate results if the assumptions underlying regression analysis have been 

violated (see Tabachnick & Fidell, 1996 for a succinct treatment of this topic).  For 

example, one assumption underlying the use of linear regression is that of 

homoscedasticity of the residuals.  If the size of the residuals increases as scores on 

the predictor variable increase (as indicated by a fan-like appearance on a scatterplot) 

then this assumption would be violated.  Another assumption is that the relationship 

between the predictor and criterion variable is linear. 

In the case of regression equations published in peer reviewed journals or in 

test manuals, it is probable (but not guaranteed) that these threats to validity will have 

been identified (by examination of residual plots and so forth) and rectified or 

ameliorated (e.g., by transforming the Y variable in the case of heteroscedasticity).  In 

the absence of the raw data such strategies are not possible. 

These concerns need to be balanced by two pragmatic considerations.  First, 

with many of the combinations of predictor and criterion variables likely to be 

employed in practice there is little evidence that heteroscedasticity and / or 

non-linearity is a pervasive problem.  For example, if the predictor and criterion 

variables are both standardized psychological tests (as is the case when attempting to 

infer change from test to retest or when comparing an estimate of an individual’s 

premorbid functioning with their current functioning) such problems do not appear to 

be very common.   

Second, in an ideal world, neuropsychologists would have access to regression 

equations that had been built using large samples and had been carefully evaluated.  
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However, it is clear that the number of such equations is very limited in comparison to 

the wide variety of hypotheses that neuropsychologists may wish to test.  Therefore, 

in the absence of an existing equation, and when relevant summary data are available, 

the approach suggested here needs to be contrasted with the alternatives open to the 

neuropsychologist.  These are that the neuropsychologist will either simply ignore the 

existence of such data despite its relevance to the assessment question, or will attempt 

to use the data informally to generate a “guesstimate”.  For example, in the latter case 

the reasoning might proceed along the following lines: “given that this test appears to 

have fairly high test-retest reliability and is subject to a moderate practice effect, the 

difference between this individual’s scores looks fairly unusual”.  It is well known 

that our subjective estimates of such probabilities are not very accurate and are prone 

to systematic biases (Beach & Braun, 1994; Tversky & Kahneman, 1971); for 

example, we typically underestimate the magnitude of the differences expected by 

chance.   

Finally, although it has been demonstrated that it is relatively straightforward 

to build an equation from summary data (particularly if the computer programs 

accompanying this paper are used), we also hope this paper will encourage 

researchers to consider including regression equations in their papers.  By doing so 

they would provide a means whereby their results can be directly applied by other 

neuropsychologists to draw inferences in the individual case. 
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Table 1.  Illustrative examples of the use of summary data from published studies to draw 

inferences concerning an individual patient: summary data from four hypothetical studies are 

presented, together with the statistics for the resultant regression equations built using either 

the formulas included in the text or accompanying computer programs 

  Study 1  Study 2  Study 3  Study 4 

         

Predictor   Age  FAS  SF Time 1  SF Time 1 

Predictor mean  63.80  36.60  44.3  22.3 

Predictor SD  8.42  12.50  12.8  11.5 

SF Mean  41.30  43.4  48.1  16.4 

SF SD  13.20  13.14  13.6  11.8 

Correlation (r)  -0.58  0.67  0.76  - 

Paired t value  -  -  -  4.79 

Sample size (N)  160  120  45  50 

         

Slope (b)  -0.909  0.708  0.808  0.740 

Intercept (a)  99.31  17.51  12.33  -0.094 

Y Xs ⋅   10.787  10.110  8.941  8.264 

sN+1  10.821  9.872  9.367  8.346 

Note: SF = semantic fluency. Note: unlike the other statistics for the regression equation, sN+1 

is not a fixed quantity as it is partly determined by the extremity of an individual’s score on 

the predictor variable. 
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Appendix 1 

A proof that, for Crawford and Garthwaite’s (2006) method, the estimated proportion 

of the population2 that exhibit a larger discrepancy in the same direction as a case 

equals the one-tailed p value of the significance test 

Let d ∗  be the discrepancy between the obtained score ( 0Y ) and predicted score 

( Ŷ ) for the case.  Then the proportion of controls who have a discrepancy that is both 

in the same direction as the case and larger than that of the case is 

 ( )Pr ,d d ∗>  (9) 

where d is the discrepancy of a control.  

Dividing both quantities by 1Ns +  (defined in equation (5)), 

 ( )
1 1

Pr Pr .
N N

d dd d
s s

∗
∗

+ +

⎛ ⎞
> = >⎜ ⎟

⎝ ⎠
 (10) 

Now 

 
1N

d
s +

 

has a t-distribution on 2 dfn − , so that 

 ( ) 2
1

Pr Pr .n
N

dd d t
s

∗
∗

−
+

⎛ ⎞
> = >⎜ ⎟

⎝ ⎠
 (11) 

Also, the test statistic for testing if d ∗  is from the same normal distribution as the 

control d’s, is 
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and this is compared with a t-distribution on 2 dfn − .  Comparison of equations 

                                                           
2 Note that, this proportion is the proportion of the population with the same score on the predictor 
variable as the case 
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(11)and (12) shows that ( )Pr d d ∗>  is equal to the p value for the one-tailed test. 

Because the present paper is concerned with the use of regression equations 

built form summary data and, as noted, this is not practical in the vector case (i.e., 

when there is more than one predictor variable), the proof is couched in terms of the 

bivariate case.  However, it is easily extended to the vector case by simply 

substituting 1 dfn k− −  for 2 dfn − in the relevant equations, where k is the number 

of predictor variables. 


