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a b s t r a c t

Five inferential methods employed in single-case studies to compare a case to controls are

examined; all of these make use of a t-distribution. It is shown that three of these osten-

sibly different methods are in fact strictly equivalent and are not fit for purpose; they are

associated with grossly inflated Type I errors (these exceed even the error rate obtained

when a case’s score is converted to a z score and the latter used as a test statistic). When

used as significance tests, the two remaining methods (Crawford and Howell’s method and

a prediction interval method first used by Barton and colleagues) are also equivalent and

achieve control of the Type I error rate (the two methods do differ however in other

important aspects). A number of broader issues also arise from the present findings,

namely: (a) they underline the value of accompanying significance test results with the

effect size for the difference between a case and controls, (b) they suggest that less care is

often taken over statistical methods than over other aspects of single-case studies, and (c)

they indicate that some neuropsychologists have a distorted conception of the nature of

hypothesis testing in single-case research (it is argued that this may stem from a failure to

distinguish between group studies and single-case studies).

ª 2011 Elsevier Srl. All rights reserved.

1. Introduction

The focus of the present paper is on single-case studies in

neuropsychology that employ the case-controls design; that

is, studies in which inferences concerning the cognitive

performance of a single case are made by comparing the case

to a sample of matched healthy controls. Until relatively

recently the standard way of testing for a difference between

a case and controls was to convert the case’s score to a z score

using the control sample mean and standard deviation (SD),

and refer the resultant value to a table of areas under the

normal curve or algorithmic equivalent. If z was less than

�1.645 (assuming a one-tailed test) then it was concluded that

the case was significantly lower than controls.

Theproblemwith thismethod is that itdoesnotallowfor the

uncertainty over the control mean and SD; it treats the control

sample means and SD as though they were known control pop-

ulation means and SD. The result is that the use of z leads to

inflated Type I errors (in this context a Type I error occurswhen

it is concluded that the case’s score is not an observation from

the population of controls’ scores) and a corresponding exag-

geration of the abnormality of a case’s scores. As suggested by

* Corresponding author. School of Psychology, College of Life Sciences and Medicine, King’s College, University of Aberdeen, Aberdeen
AB24 2UB, UK.

E-mail address: j.crawford@abdn.ac.uk (J.R. Crawford).

Available online at www.sciencedirect.com

Journal homepage: www.elsevier.com/locate/cortex

c o r t e x 4 8 ( 2 0 1 2 ) 1 0 0 9e1 0 1 6

0010-9452/$ e see front matter ª 2011 Elsevier Srl. All rights reserved.
http://dx.doi.org/10.1016/j.cortex.2011.06.021



Author's personal copy

Crawford and Howell (1998), the solution is to treat the control

mean and SD as what they are, that is, as a sample mean and

a sample SD, and use a t-test to test for a difference between the

case and controls. However, in the course of reviewing the

single-case literature, it became apparent that Crawford and

Howell’s (1998) method is only one of a variety of forms of

t-testused tocompareacase tocontrols.Aswill beshown, these

alternatives are in fact evenmore problematic than the use of z.

Theaimof thispaper is toevaluate thesecompetingapproaches

to the analysis of the single case through a mixture of thought

experiments/worked examples, andMonte Carlo simulation. In

the next section the different methods are set out although, as

will be shown, the differences between some of them aremore

apparent than real.

1.1. Deficit inferred if a significant result is obtained
using Crawford and Howell’s (1998) method

This method (Crawford and Howell, 1998; see also Crawford

and Garthwaite, 2002) is widely used (for recent examples

see Berteletti et al., 2010; Tsapkini and Rapp, 2010; Starrfelt

et al., 2010; Lallier et al., 2010; Herbert and Best, 2010; Ham

et al., 2010; d’Honincthun and Pillon, 2008; Dubois et al.,

2010; Dalla Barba and Decaix, 2009; Peters et al., 2009). As

noted, it differs from the use of z in that the control sample

statistics are treated as statistics rather than as population

parameters. The formula for the test is

tn�1 ¼ x� � x

s

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
n

r ; (1)

where x� is the patient’s score, x and s are the mean and SD of

scores in the control sample, and n is the size of the control

sample.

If the t-value obtained from this test falls below the

(negative) one-tailed 5% critical value for t on n� 1 degrees of

freedom (df), then it can be concluded that the case’s score is

sufficiently low to reject the null hypothesis that it is an

observation from the population of scores for controls and the

case is considered to exhibit a deficit on the task in question.

The one-tailed p-value obtained (unlike the p-value obtained

for a z score) is also an unbiased point estimate of the

abnormality of a case’s score. Thus if the p-value is .023, then

it is estimated that only 2.3% of the control population will

obtain lower scores (i.e., in this example the case’s score is

abnormally low). For a formal proof of this dual role for the

p-value see Crawford and Garthwaite (2006).

1.2. Deficit inferred if a case’s score is outside of
prediction interval (PI) on controls versus an additional case

To our knowledge this method was first employed by Barton

and colleagues (e.g., Barton et al., 2002) but it has since been

employed in a number of other single-case studies (Barton

et al., 2003, 2005; Behrmann et al., 2006; Rosenthal and

Behrmann, 2006; Ravizza et al., 2005; Barton, 2008). It

involves calculating the standard error of the difference

between a sample mean and an additional case (this standard

error should definitely not be confused with the standard

error of the control mean as used in methods covered later).

The standard error is multiplied by t on n� 1 df to provide

a 100p% (two-sided) PI centred on the control mean. To illus-

trate, suppose that the mean and SD for a sample of 12

controls was 50 and 10 respectively, and that a 95% two-sided

PI is required. Then

95% PI ¼ x� tn�1; 0:975

 
s

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
n

r !
¼ 50� 22:9; (2)

where the quantity in brackets is the standard error of the

difference referred to above. Thus the PI is from 27.1 to 72.9.

Suppose that a single-case obtains a score of 25, then, as the

patient’s score lies outside (i.e., below) the PI, it is concluded

that the case has a deficit.

In essence this method is equivalent to Crawford and

Howell’s (1998) method as it will yield exactly the same

outcome. That is, if comparison of a case to controls using

Crawford and Howell’s test yields a significant result ( p< .05)

on a two-tailed test, then the patient’s scorewill be outside the

95% two-sided PI. However, there are a number of differences

between themethods; thesewill be dealt with in the Section 4.

1.3. Deficit inferred if a case’s score is outside
a confidence interval (CI) on the control mean

This method calculates a CI on the control mean and exam-

ines whether the case’s score lies outside the interval.

Although it generates CIs, it relies on t-distributions to obtain

these and in practice it is used as a significance test: a deficit is

inferred if the patient lies outside of the interval. We therefore

classify it as a t-test. Themethod has been widely used (Butler

et al., 2006; Kotz et al., 2005; Smith and Gilchrist, 2005; Rochon

et al., 2004; Newport and Jackson, 2006; Woods et al., 2006;

Terao et al., 2006; Castelo-Branco et al., 2006; Ferber and

Danckert, 2006; Delazer et al., 2006; Steinvorth et al., 2005;

Larsen et al., 2004; Roy et al., 2004).

The steps involved are to first obtain the standard error of

the control mean ðs= ffiffiffi
n

p Þ and then multiply it by t1�a=2 on n� 1

df. For example, if the mean and SD for 15 controls on a task

was 50 and 10 respectively then the standard error of the

mean is 2.582. If a two-sided 95% CI is required then this

standard error is multiplied by the 97.5th percentile point of

a t-distribution on 14 df (the t-value is 2.145) and thus the 95%

CI is 44.46e55.54 (i.e., 50� 5.54). The presence of a deficit is

inferred if a case’s score lies below the lower confidence limit

(or above the upper limit if the score is an error score). Thus, in

this example, if a patient obtained a score of 41, it would be

concluded they exhibited a deficit on the task in question as

the score lies outside the CI.

We could find no explicit rationale or justification for the

use of this method but it is clear that the aim is to provide

evidence that the patient has “a deficit” or is “impaired” on the

task in question. Unfortunately it is far from satisfactory for

such a purpose.

This is best illustrated with an extreme example: suppose

that a very large sample of controls (1000) had been recruited

and that, as in the previous example, the mean and SD in this

sample on a task was 50 and 10 respectively. Further suppose

that a case obtained a score of 49. The 95% (two-sided) CI on

the mean for these data is from 49.38 to 50.62. Thus the case’s

c o r t e x 4 8 ( 2 0 1 2 ) 1 0 0 9e1 0 1 61010
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score lies outside the CI, but of course so will close to 100% of

the healthy control population (or close to 50% if we limit

consideration to those below the lower limit). The fatal flaw in

the method seems obvious using this example, but is not

nearly so obvious with the modest control sample sizes typi-

cally found in single-case studies: with a modest sample the

uncertainty attached to the mean will be considerable and

thus the CI will be wide.

It is likely that another factor contributing to the use of this

method is a carryover from group studies. In group studies the

interest is often in testing for a difference between population

means: the danger is that the single-case researcher inad-

vertently slips into thinking in terms of whether the

single-case is below the control mean, rather than being

concerned with whether the case’s score is sufficiently low to

make it unlikely that it is an observation from the control

population.

In some studies using this method a 99% CI was used,

rather than a 95% interval, as featured in the examples. This

will serve to reduce the very high Type I error rates associated

with the method but the effect will be relatively modest. To

illustrate, in the first worked example, if we substitute a 99%

interval for the 95% interval, then the lower limit is 42.31 and

the patient is still classified as exhibiting a deficit. In conclu-

sion, we suggest that this method is entirely inappropriate as

a mean of testing for a deficit and should be abandoned.

1.4. Deficit inferred if a control mean was significantly
different from case’s score using a one-sample t-test

The standard use of one-sample t-test is to test if a sample

mean differs significantly from a known population mean, or

a mean predicted by theory (Howell, 2002), when the

population SD is unknown. Such usage is entirely legitimate.

However, this test has been used in a number of studies (e.g.,

Reinhold and Markowitsch, 2007; Vecera and Rizzo, 2004;

Brand et al., 2004) to draw inferences concerning the differ-

ence between a single case and a control sample: the single-

case’s score was designated as the hypothesised population

mean and the control sample mean compared to it. That is,

the formula used was

tn�1 ¼ x� x�

s=
ffiffiffi
n

p ; (3)

where all terms have previously been defined. Reinhold and

Markowitsch (2007) describe the procedure in this way,

“Separately for each patient, all comparisons were computed

by t-tests for one group with the score of each patient as the

tested value” (p. 60). Similarly, Vecera and Rizzo (2004), in

describing their study of Case EVR state that, “We compared

the control participants’ cuing effect against EVR’s cuing

effect (i.e., we used EVR’s cuing effect as the hypothesized

mean)” (p. 1662).

This is a highly unorthodox use of a one-sample t-test. As

previously noted, the more common problem in single-case

studies is that the control sample statistics are treated as

population parameters (i.e., z is used as a significance test). In

the present procedure the control sample statistics are treated

as statistics, but the score of the case is treated as a parameter.

This is even more problematic. We suggest that the

appropriate test in this situation is to treat all data as random

variables and thus apply Crawford and Howell’s (1998) test.

The effect of using a one-sample t-test is a high Type I error

rate. This is easily shownwith a thought experiment: Suppose

that a control sample, consisting of 10 persons, obtains

a mean of 50 and SD of 10 on a task, and that a patient obtains

a score of 40; note that the patient is exactly one SD below the

control mean. Applying Crawford and Howell’s (1998) test

yields a t-value on 9 df of .954 and a one-tailed probability of

.365. That is, the patient’s score is not low enough for us to

reject the null hypothesis that the score is an observation

from the scores in the control population. In contrast, if we

apply a one-sample t-test to this problem, we obtain a t on 9 df

of 3.162 and the one-tailed probability is .012. We would thus

incorrectly conclude that the case differs significantly from

controls when this is far from being the case.

This method is directly equivalent to the method set out in

Section 1.3, in which a deficit is inferred if a case’s score is

outside the 95% CI on the control mean. That is, if the case’s

score is outside the 95% CI on the control mean, then the

two-tailed p-value for the presentmethodwill be less than .05.

To illustrate, in the first example for the CI method (in which

the control mean and SD for 15 controls was 50 and 10

respectively), a case obtaining a score of 41 was outside the

95% CI; using these data the present t-test therefore

necessarily yields a two-tailed p-value that is less than .05 (the

t-value is 3.486 and the obtained p-value is .0364).

1.5. Use of a t-test employing the standard error of the
control mean in the denominator

This method involves subtracting the control mean from the

single-case’s score (just as would be done in Crawford and

Howell’s test), then dividing this quantity by the standard

error of the control mean (rather than the standard error of

the difference between a case and controls, as in Crawford

and Howell’s method). The result is treated as t and evaluated

on n� 1 df. The formula is therefore

tn�1 ¼ x� � x

s=
ffiffiffi
n

p ; (4)

where all terms have previously been defined. This method

has been used in a number of single-case studies (Gardiner

et al., 2006, 2008; Brandt et al., 2009; Brandt et al., 2006).

The rationale underlying this test is not clear but it does

not yield satisfactory results. In fact it can easily be seen that it

is directly equivalent to two of the methods previously

covered. That is, it will give identical results to those

obtained using a CI on the control mean (Section 1.3) and

those obtained using a one-sample t-test (Section 1.4). By

comparing equations (3) and (4) it can be seen that the t values

from the tests will be identical in magnitude and will differ

only in sign.

Given that the method is equivalent to these two foregoing

methods, the arguments and examples used earlier to

highlight the problems with these other methods also apply

here. The method, therefore, will be associated with grossly

inflated p values and will therefore also exaggerate the

abnormality of a case’s score.

c o r t e x 4 8 ( 2 0 1 2 ) 1 0 0 9e1 0 1 6 1011
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1.6. Empirical examination of the methods through
Monte Carlo simulation

In the foregoing discussion of methods of testing for a deficit

we have tried to avoid amathematical treatment of the issues,

instead relying on concrete examples to highlight issues.

Single examples however have limitations. In particular, at

some points we have used extreme examples as they clearly

expose the underlying statistical problems with a method.

The potential downside of such an approach is that single-

case researchers may remain unconvinced; i.e., it may be

thought that with the type of data they typically workwith the

problems exposed are of little concern. Monte Carlo simula-

tion provides a means of supplementing these examples as it

can provide a systematic evaluation of the competing

methods through examining their ability to control the Type I

error rate. It also provides a convenient means of quantifying

the severity of these problems as a function of control sample

size. In conducting the simulation we include the use of z as

a method for inferring a deficit for comparison purposes.

2. Method

2.1. Monte Carlo simulation

The approach employed is based on previous simulations

conducted by Crawford and Garthwaite (2005b). Further

technical information can be found in that paper: in the

present paper we provide only basic details.

To perform the simulation, n controls plus an additional

case were sampled from a standard normal distribution. Five

values of n were used: 5, 10, 20, 50 and 100. For each of these

values of n, 2 million trials were performed. On each trial the

score of the case was compared to that of the control sample

using each of the five methods referred to in the Introduction

(plus the z-value approach), and a tally kept of whether

a significant result was obtained. For example, z was

computed for the case, based on the control samplemean and

SD for that trial, and a significant result recorded if this z was

<�1.645. Similarly, Crawford and Howell’s method was

applied and a significant result recorded if t was negative (i.e.,

the case’s score was below controls) and its magnitude

exceeded the critical value for a one-tailed test on n� 1 df with

alpha set at .05. For each method, at each sample size the

percentage of significant results was obtained.

Note that in this simulation, because the case is an obser-

vation from the same population as controls, if a method

records a significant result then a Type I error has been

committed e it is wrongly concluded that the case exhibits

a deficit (i.e., it is erroneously concluded that the score is not

an observation from the population of control scores).

3. Results

The results of the simulation are presented in Table 1. This

table reports the Type I error rates as percentages for each of

the sixmethods (the fivemethods using a t-distribution, plus z)

at each of the five different sample sizes examined. Most

aspects of the data are immediately apparent. As expected

from theory and from previous simulation results (Crawford

and Garthwaite, 2005b), the Type I error rate obtained closely

matches the specified error rate of 5% for Crawford and

Howell’s method (the small deviations are within the bounds

expected from Monte Carlo variation).

In addition, it was noted earlier that Barton et al’s (2003) PI

method is equivalent to Crawford and Howell’smethod. Thus,

as expected, identical results were obtained for the two

methods and thus Barton’s method also maintains the Type I

error rate at the level specified. Note however that, in all of the

examples we encountered the use of Barton’s PI method, it

was used to provide a two-sided test. A one-sided version was

used in the simulation in order to confirm that the two

methods are equivalent. Were a two-sided test applied then

the error rate would be below the specified 5% rate (i.e., it

would be x2.5%). Thus the test would be more conservative

and consequently would have lower power to detect a deficit.

It was suggested that a further three of the inferential

methods are directly equivalent to each other: use of a CI

on the control mean (denoted as CIX in Table 1), use of

a one-sample t-test in which the case’s score is entered as the

populationmean (denoted as OSt), and use of a t-test in which

the standard error of the mean is used rather than the stan-

dard error of the difference between case and controls

(denoted as SEt). The simulation results confirm that these

three methods are directly equivalent: the error rates are

identical for all three methods.

It can also be seen that these latter methods are associated

with particularly high error rates. For example, it is estimated

that 29.7% of controls would be incorrectly classified as

exhibiting a deficit when compared to a control sample of size

10. It can also be seen that, in contrast to Crawford and

Howell’s and Barton et al’s. method, the Type I error rate

varies with sample size. The error rate becomes more inflated

as the control sample size is increased; this is to be expected

given that the standard error of the mean shrinks with

increasing sample size.

Table 1 also shows that, as expected, the Type I error rate is

not under control when z is used as an inferential method.

However, it can also be seen that the inflation of the error rate

Table 1 e Results of a Monte Carlo simulation examining
control of the Type I error rate for six methods of testing
for a deficit by comparing a single-case to a control
sample; the nominal error rate is 5% (one-tailed).

Control n Inferential method

z CHt PInþ1 CIX SEt OSt

5 10.39 5.00 5.00 21.67 21.67 21.67

10 7.58 5.01 5.01 29.71 29.71 29.71

20 6.25 5.00 5.00 35.49 35.49 35.49

50 5.49 4.99 4.99 40.81 40.81 40.81

100 5.24 5.00 5.00 43.46 43.46 43.46

Note: z¼ “standard” use of z (one-tailed) i.e., deficit inferred if

z<�1.645; CHt¼Crawford & Howell’s (1998) method;

PInþ1¼ Barton et al’s (2003) method; CIX ¼ case below lower limit of

95% CI on control mean; SEt ¼ t-test based on dividing difference

between case and controls by SE of control mean;OSt ¼ one-sample

t-test in which case’s score is entered as the population mean.
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is not nearly as marked as it is for the three foregoing

methods. For example, for a sample size of 10, the estimated

error rate for z is 7.58%, whereas it is 29.71% for the foregoing

methods. Thus, although Crawford and Howell (1998) rightly

cautioned against the use of z for inferential purposes and

recommended the use of a t-test in its stead, it is very clear

that it has to be the right kind of t-test, otherwise things can be

made much worse rather than better. Finally, it can also be

seen that, in contrast to the pattern observed for the foregoing

methods, the inflation of the error rate observed for z when

sample size is small becomes attenuated as sample size

increases (because z approaches t fromCrawford andHowell’s

test for large n).

4. Discussion

4.1. Convergence conveys confidence in results: an
exception to the rule

It may be surprising to some readers that identical yet erro-

neous results should be obtained from the application of three

ostensibly different approaches (CIX, SEt, and OSt) to the same

problem. Usually, when a series of different approaches

converge on the same solution, one would have confidence

that the approaches are sound. For example, classical (i.e.,

frequentist) statistics and Bayesian statistics often yield

identical results for a particular problem, despite their radi-

cally different assumptions. Indeed a Bayesian approach to

comparing a case’s score to that of controls yields results that

are identical to those obtained by Crawford and Howell’s

(1998) classical test (Crawford and Garthwaite, 2007). Such

convergence is reassuring, regardless of whether a neuropsy-

chologist is classical, Bayesian, or eclectic in orientation.

Thus the current situation is highly unusual. It suggests

that many single-case researchers may be operating on

a common underlying set of erroneous assumptions. As was

noted in Section 1, when discussing the use of CIs on the

control mean, we suspect this stems from a failure to make

the cognitive shift between testing for a difference between

population means (as is done when testing for a difference

between groups) to testing whether an individual’s score is

sufficiently low to allow rejection of the null hypothesis that it

is an observation from the control population.

4.2. Reporting the effect size for the difference between
a case and controls

Crawford et al. (2010a) have recently argued that single-case

research reports should always report effect sizes for the

differencebetweena caseandcontrols. The relevant effect size

index is simply z, computed in the standardway, and is a direct

analogue of Cohen’s d, as used in group studies. Crawford et al.

(2010a) denote this z as zCC, the subscript serving to identify it

as an effect size index for the case-controls design and to help

avoid any potential confusionwith critical values of z etc. Note

that sample size does not feature in calculating a z score; this

characteristic (as we have seen in the results of the current

simulation) makes z unsuitable as a significance test (because

it cannot factor in the uncertainties over the controlmean and

SD). However, this very featuremakes it eminently suitable as

an index of effect size.

There are a variety of arguments in favour of the reporting

of effect sizes in single-case studies (Crawford et al., 2010, a),

but the present findings provide a particularly compelling

justification. That is, although there may be factors that go

some way to explaining the adoption of the faulty methods

reviewed above, it remains the case that their use suggests

that some single-case researchersmay exhibit a worrying lack

of engagement with their data. In many instances simply

computing an effect size (zCC) for a case would make it very

obvious that the case’s score is not extreme, and that an

appropriate inferential method cannot possibly support such

a claim. For example, referring back to the very first worked

example for the CIX method, the case’s score of 41 is less than

one SD below the control mean of 50 (i.e., zCC ¼ .9); for the

second (extreme) example the case’s score of 49 is only very

marginally below the control mean of 50 (i.e., zCC ¼�.1) and

yet both differences would be recorded as statistically signif-

icant under some of the methods discussed here.

4.3. Comparison of Crawford and Howell’s method with
that of Barton’s PI

The Monte Carlo simulation confirmed that, when used as

a significance test, Crawford and Howell’s (1998) method and

the PI used by Barton et al. yield strictly equivalent results.

However, some important differences remain. First, although

Crawford and Howell’s method can be used as a one- or

two-tailed test, Crawford and colleagues have recommended

use of a one-tailed test when testing for a deficit. In contrast,

Barton and colleagues, and all of the other papers employing

this method, used two-sided intervals. As noted, this will

result in a more conservative test and consequently will have

lower power to detect a deficit. (Note that, just as Crawford

and Howell’s method can be used as a one- or two-tailed test,

there is nothing inherent in the Barton method to prevent it

being used as a one-sided test; thus the difference here is not

with the methods themselves but with how they have been

applied in practice).

Second, Barton’smethod gives only a dichotomous decision

(deficit vs no deficit, depending on whether the patient’s score

lies within or outside the interval), whereas Crawford and

Howell’s method yields a precise probability. Note also that, as

described earlier, the probability from the significance test is

simultaneously a point estimate of the proportionof the control

population thatwill exhibit a lower score (i.e., it provides apoint

estimate of the abnormality of the patient’s score).

Third, the point estimate of the abnormality of a case’s

score can be supplemented with 95% confidence intervals

(Crawford and Garthwaite, 2002). These latter intervals are

entirely different from Barton’s prediction intervals (which

essentially serves as a significance test) and they follow a non-

central (rather than central) t-distribution. The development

of these intervals is in keeping with contemporary opinion in

psychology and statistics that point estimates of any quantity

should be supplemented with interval estimates in order to

quantify the uncertainty associated with them. To illustrate,

these intervals allow neuropsychologists to make statements

like the following, “it is estimated that only 1.36% of controls
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would exhibit a lower score than the case and the 95% CI on

this percentage runs from .08% to 5.34%”. Lastly, as discussed

in the previous section, Crawford and Howell’s method now

incorporates point (and interval) estimates of the effect size

(zCC) for the difference between case and controls (Crawford

et al., 2010a). Although the provision of these limits was

motivated by other considerations, it transpires that these

effect sizes can serve as a useful reality check for both

researchers and consumers of research.

In concluding this section, it is important that Barton’s

method (e.g., Barton et al., 2002) is not confused with the use

of a CI on a control mean. Unlike the latter method, Barton’s

approach is statistically sound; that is, it will maintain the

Type I error rate at the rate specified by the user, subject to the

proviso that the assumption of normality is not violated. It is

directly equivalent to Crawford and Howell’s (1998) method

except that it only provides dichotomous information and, in

practice, has consistently been used to provide a two-tailed

rather than a one-tailed test.

4.4. The assumption of normality

All of themethods considered here assume that control scores

are normally distributed. However, it is not uncommon for the

scores of controls on neuropsychological tests to depart from

normality (Capitani and Laiacona, 2000; Crawford and

Garthwaite, 2005b). For example, negative skewness is

common in control data because the tasks employed often

measure abilities that may be largely within the competence

of most healthy individuals and thus yield ceiling, or

near-ceiling, levels of performance in controls. As an extreme

example, in a review of single-case studies of the living versus

non-living distinction in object naming, it was reported that

the accuracy of naming in controls was 95% or greater in the

majority of these studies (Laws et al., 2005).

It would have been possible to study the effects of violating

the normality assumption through Monte Carlo simulation by

sampling control scores from skew and/or leptokurtic distri-

butions. However, we did not pursue this because (1) control

over the Type 1 error rate is very poor for most of themethods

examined here even when the normality assumption holds so

there is little to be gained by further study of them, and (2) for

the methods that do control the Type I error rate (Crawford

and Howell’s method and Barton’s PI equivalent), it has

previously been established that the effects of violating the

normality assumption are surprisingly modest (Crawford

et al., 2006; Crawford and Garthwaite, 2005b).

4.5. Conclusion

Most single-case studies in neuropsychology reveal that the

researchers concerned have a sophisticated grasp of the

relevant cognitive theory. Moreover, the designs of these

studies are often founded on a careful, logical analysis of the

questions to be addressed, and great care is taken to develop

tasks and materials (Crawford et al., 2003). In contrast, it is

often the case thatmuch less care and attention is given to the

statistical methods employed. At the risk of being glib, some

studies could be considered to exhibit a classical dissociation

between these different components.

Theneglectof statisticalmethods is also reflected in the fact

that the Section 2 ofmany single-case studies provide detailed

clinical histories of the cases together with elaborate descrip-

tions of the materials and procedures, but give only a cursory

mention of the statistical methods employed (often with no

supporting references or justification), or indeed make no

mention of these at all. Thiswas evident in someof the studies

referred to in the present paper: descriptionswere often vague

and back engineering from the results reported (i.e., t values or

CI widths, togetherwith control summary statistics) was often

necessary to determine what method had been employed.

It is clear from the thought experiments and the results of

simulation that the three equivalent methods of testing for

a deficit in the case-controls design should be abandoned.

Therewouldalsobea strongargument for reanalysis of studies

that have employed these methods, particularly as, in many

instances, thesewere theonly inferentialmethodsuponwhich

conclusions were drawn. Note also that, despite evidence and

recommendations to the contrary (Crawford and Garthwaite,

2005a), it is still common for dissociations to be inferred

whenacase is significantly different formcontrols onone task,

but not significantly different from controls on another. Thus,

it is not simply the case that these studiesmay be replete with

Type I errors (although they oftenwill) but also that potentially

important dissociationsmay have been passed over. That is, if

impaired performance was observed on a targeted task, the

task or tasks that would have provided the other half of the

dissociation (because the score was comfortably within

normal limits of performance) may have been recorded as

impaired. In other words a Type I error in testing for a deficit

may have led to a Type II error for a dissociation.

Finally, in summary: five ostensibly different inferential

methods used to compare a single case to controls can in fact

be reduced to two methods; of these two methods, one is

clearly not fit for purpose. The remaining method comes in

two different flavours (Crawford and Howell, 1998; Barton

et al., 2002) both of which are fundamentally sound. The

Crawford and Howell method, however, offers a number of

advantages, including a point and interval estimate of the

abnormality of a case’s score (Crawford and Garthwaite, 2002),

and has recently been extended to also provide point and

interval estimates of effect sizes (Crawford et al., 2010a).
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