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1 Summary: Rankine-Hugoniot Equations 

 
Figure 1.  Constant velocity piston-generated shock transition from state 0 to state 1. 

 

(1) Density ratio across the shock wave 
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(3) Change of the specific energy 
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2 Hugoniot Equations 
By an ideal shock, one means that a planar pusher is driven at constant velocity into 

the sample. The resulting shock wave is characterized by a planar shock front that 

travels at constant velocity during the measurement. Furthermore, one assumes that 

unshocked material remains at known initial conditions. Under these assumptions, one 

can determine the equation of state (EOS) from the measured velocities D and u using 

Eqs. (1), (2) and (3). 

 

The term Hugoniot used here means the sequence of thermodynamic equilibrium 

states reached behind each shock for a sequence of different-strength shocks from a 

given initial state. 

 

The Hugoniot equation could be determined from experimental data, and viewed from 

different planes (such as D-u plane, pressure-volume plane). 

2.1 Shock – particle velocity plane 

It is found that the shock velocity D is linearly related to the particle velocity u for 

lots of materials, and can be expressed as 

 0D c su= + . (4) 

If we determined D and u experimentally for a particular material, at a number of 

shock states, we could plot the data at the D-u plane, strike a straight line through the 

data points and easily find the D-u Hugoniot equation. 

 

Problem: Study the Water shock Higoniot in the shock-particle velocity plane. 

 

 
 

Figure 2. Water shock Higoniot in the shock-particle velocity plane. Closed circles are 

the data from Nagayama et al. (2002), while open symbols are data from other 

sources. 

Solution: From the curve, 0 1.45km/sc = , 1.99s = . 

 



Physics of Explosions (part II)  ©2008 Henry Tan 

 3 

2.2 Pressure – volume plane 

The specific volume, volume per unit mass, is defined as 

 
1

v
ρ

=  (5) 

From the D-u Hugoniot equation, the specific volume 1v   and the pressure P after the 

shock can be derived form Eqs. (1) and (2), respectively. 

 

Problem: From the shock-particle velocity plane in Figure 2, calculate the specific 

volume and the pressure when the particle velocity is 0.3km/su = , respectively. The 

water density at the initial state is 3

0 1000kg/mρ = . 

Solution:  

From 0D c su= + , 0 1.45km/sc =  and 1.99s = . One has the shock velocity 

     2.05km/sD =  (which is 4600 mph ). 

 

From Eq. (2), the pressure is 

     0.615GPaP = . 

 

From Eq. (1), the specific volume  is: 
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Comparing with the specific volume for water in the initial state (zero pressure and 

zero velocity) 

     -3 3

0 1 10 m /kgv = × , 

the change of specific volume is not that dramatic. 
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Problem: From the shock-particle velocity plane in Figure 2, draw the curve in the 

Hugoniot pressure-volume plane. 

Solution:  

Let the particle velocity u change from 100m/s  to 500m/s . As in the last problem, the 

pressure can be calculated from Eq. (2), and the ratio of the specific volume across the 

shock 1 0/v v  can be calculated from Eq. (1) with 1 11/v ρ=  and 0 01/v ρ= . The 

Hugoniot curve in the pressure-volume plane can therefore be calculated and is shown 

in Figure 3. 
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Figure 3. Hugoniot pressure-volume data for water. 
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