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XV. 	012 the Themnodynamic Theory of' Waves of finite Longitudi~zul Bisturdance. 

By \V. J. ~ ~ A C Q U O R N  C.E., LL.D., P.R.fl8. Lond. & Zdi~b.,&c.R-~IYKINE, 

Received August 13,-Read December 16, 1869. 

Q I. TIIEobject of the present investigatio~l is to determine the relations which must 
exist between the laws of the elasticity of any substance, whether gaseous, liquid, or 
solid, and those of the wave-like propagation of a finite longitudinal disturbance in that 
substance ; in ot,her words, of a disturbance consisting in displace~nents of particles along 
the direction of propagation, the velocity of displacement of the particles being so great 
that it is not to be neglected in compaiison with the velocity of propagation. I11 par-
ticular, the investigation aims at ascertaining ~ v h a t  conditions as to the transfer of heat 
from particle to particle must be fulfilled in order that a finite longitudiiial disturbance 
niay be propagatecl along a prismatic or cylindrical mass without loss of energy or change 
of' type : the word type being used to denote the relation between the extent of distuxbance 
at a given instant of a set of particles, and their respective undisturbed positions. The 
disturbed matter in these inquiries may be conceived to be contained in  a straight 
tube of uniform cross-section and indefinite length. 
0 2. 31~1ss-Yelocity.-A cnnaeiiient quantity in the present investigation: is what may 

bc ternicd the i)lmss-velocity or somatic velocify-that is to say, the mass of matter through 
~vliicli a disturbance is propagated in a unit of time while advancing along a prism of 
the sectional area unity. That mass-velocity will be denoted by m. 

Let X denote the 6t~lki?zess, or the space filled by unity of mass, of the substance in 
the undisturbed state, and a the linear velocity of advance of the wave ; then we have 
evidently 

u=mS. . . . . . . . . . . . . (1) 

Q 3. Ci~zeit~zaticul Permaneqzcy of Type.-If it be possible for a wave of Condition of 
disturbance to be propagsted in a uniform tube without cliange of type, that possibility- 
is espressecl by the uiiiforniity of the mass-~elocity ??% for all parts of the wave. 

Conceive a space in the supposed tube, of an  invariable length Ax, to be contained 
between a pair of trans~erse planes, and let those planes advance with the linear velocity 
u in the direction of propagation. Let the values of the bulkiness of the matter a t  the 
foremost and afteriiiost planes respecti~ely be denoted by s, and s,, and those of the 
velocity of longitudinal disturbance by u,and u,. Then the linear velocities with which 
the p:lrticles traverse tlie two planes respectively are as follows: for the foremost plane 
z6,-a, for the aftcrmost plane zc,-a. The uniforn~ity of type of the disturbance involves 
as a condition, that equal masses of matter traverse the two planes respectively in a given 
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time, being each, in unity of time, expressed by the emns-velocify ; hence me have, as 
the ci~zemafical condition of uniformity of type, the following equation: 

Another way of expressing the same conditioil is as follo~vs: 

Q 4. Dyzantical Colzdition of Per17zaqzency of Type.-Let p, and p, be the intensities 
of the longitudinal pressure at  the foremost and afternlost advancing planes respecti~rely. 
Then in each unit of time the difference of pressure, p2--22,, impresses on the mass 12% 

the acceleration ZG, -TC , ,  and consequently, by the second law of nlotion; we have the 
following value for the difference of pressure : 

p,-p,=?72(~&~-%,)' . . . . . . . . . . (4) 

Then substituting for the acceleration u,-er, its ralue in terms of the change of bulki- 
ness as given by cyuatio:l (3), we obtain, for the dylzccnzical colzdition of pernianency of 
type, the following cquation, 

p2-p,=ln2(s,-s2), . . . . . . . . . . . ( 5 )  
which may also be put in the forni of an expression giving the value of the square of 
the mass-velocity, viz. 

The square of the linear velocity of ad~ance  is giren by the follo~ving equation: 

The integl-a1 form of the preceding equations may be expressed as follows. Let S, as 
before, be the bulkiness in the undisturbed state, and P the longitudinal pressure ; then 
in  a wave of disturbance of permanent type, we must have the following condition ful- 
filled : 

p +1?z2s-P+- 11Z2S. . . . . . . . . . . . (8) 


Q 5. Waves of Sudden Distus.bance.-The condition expressed by the equations of the 
preceding section holds for any type of disturbance, contiiiuous or discontinuous, gradual 
or abrupt. To represent, iii particular, the case of ,z single abrupt disturbance, we must 
conceive the foremost and aftermost advancing planes already mentioned to coalesce into 
one. Then P is the longitudinal pressure, and S the bulkiness, in  front of the advancing 
plane; p is the lonigtudinal pressure, and s the bulkiness, behind the advancing plane; 
and the advancing plane is a wave-front of sudden conzpression or of szcdder~ rarefaction* 

* (ATote,ccddecl 1s t  Auyust, 1370.) Sir WILLIANTITOIISOXhas pointed out to tho author, that a wave of 
sudden rarefaction, thougli mathematically possible, is an unstable condition of motion ; any de~iation from 

rtbaolute suddenness tending to make the disturbance become more and more gradual. Eence the only wave 
of sudden disturbance whose permanency of type is physieaUy possible, is one of sudden compression ; and this 
is to be taken into account in connexion with a11 that is stated in the paper respecting such waves. 
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according a s p  is greater or less than P. The squares of the 7nass-velocity and of the linear 
velocity of advance are respectively as follows : 

The velocity of the disturbed particles is as follows : 

and i t  is forward or backward accorcling as the Tvavc is one of compression or of rarefaction. 
The energy expended in unity of time, in producing any such wave, is expressed by pzc; 

for the wave may be coiiceived to be produced in a tube closed at one encl by a moveable 
piston of inappreciable mass, to which there ic; applied a pressurep different from the 
uildisturbed pressure P, and which coi~sequently inoves with the velocity tc. The way 
in which that energy is disposed of is as follows: actual energy of the disturbance, 

- work done in altering bulkiness, m(p+P)(S-s)--------- ; and the equation of tile conserva-
-2- ' 2 

tion of energy is 

. . (lla). 

Q 6. TZ~e?"7~zody~za1nic the equations of the two preceding sections Conditions.-TVhile 
impose the constancy of the rate of variation of pressure with bulkiness cluriiig the ilis- 

tulrbance (%=-m" ) as an indispensable condition of ~rcrrnnnency of type of the n7ave, 

they leave the limits of pressure and of bulliiness, being four quantities, coiinected by 

one equation only (p2-~'=s,-s, -d2- n2).ds- Two oidy of those cll~antities can be arbitrary ; 

therefore one more equation is required, and that is to be determined 1)y the aid of the 
lams of therniodynan~ics. 

I t  is to be observed, in the first place, that no substance yet linown f~ilfils the con- 

dition expressed by the equation dp(~s= --ria2= constant, betwccn finite limits of disturb- 

ance, at  a constant temperature, nor in a state of non-conclnction of heat (called the 
adiabatic state). I n  order, thcn, that permanency of type may kie possible in a wave 
of longitudinal disturbai~ce, there must be both change of temperature and conduction 
of heat during the disturbance. 

The cylindrical or prismatic tube in which the disturbance is supposed to talre place 
being ideal, is to be considered as 11011-conducting. Also, the forelllost and afternlost 
transverse advancing-planes, or front and back of the wave, which contain between them 
the particles whose pressure and bulkiness are in the act of varying, are to be considered 
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as non-conducting, because of there being an indefinite length of matter before the fore- 
most and behind the aftermost plane, to resist conduction. 

The transfer of heat, therefore, takes place ~vholly amongst the particles unclergoing 
variation of pressure and bulliiness; and therefore for any given particle, during its 
passage from the front to the back of the wave, the i~ztegral a ~ ~ z o v ~ z t  ?nasto f  Iteat ~*ecuiced 
Ite ~zothiny ; and this is the thermodynamic condition which gives the reql~ircd equation. 
That equatioii is expressed as follows : 

in which r clenotes absolute t~mperature,  and 9 the '' thertnodynamic fixnction." The 
value cf that function, as explained in various papers and treatises on theriliodynamics, 
is given by the follo~ving forninla : 

dU
p=Jc hyp log r+).;(I) . . . . . . . .+z, (12 A) 

in which J in the dynaniical value of a unit of lieat; c, the real specific heat of the 
substance; X ( ~ ) ,a function of the temperature alone, which is = O  for all temperatures 
at which the substance is capable cf approxilnating indefinitely to the perfectly gaseous 
state, and is iiltrocluced into the formula solely to provide for the possible existence of 
substances which at some temperatures are incapable of approximating to the perfectly 
gaseous state; and 1J,the work which the elastic forces in unity of mass are capable 
of doing at the constant temperature I. The substitution for the integral in equation 
(12) of its value in terms of p ancl s for any particular substance, gives a relation between 
thc limits of pressure p, and p,, and the limits of bulkiness s, and s,, which being corn- 
bined with equation (5), or with any one of the equivalent equations (6), (s),or (9), com-
pletes the expression of the l a w  of the propagation of waves of finite longitudinal dis- 
turbance and perinanent type in that particular substance. 

§ 7. Asszi?npfioirLCLS t o  T ~ w z s f e r  of 11ent.-In applying the principles of the preceding 
section to the propagation of waves of loagitudiiial clisturbance, i t  is obviouslj- assumcd 
that the transfer of heat takes place between the various particles which are undergoing 
disturbance at a giren time, in such a manner as to ensure the f~~lfilment of the dyiia- 
mica1 condition of pcrrnanency of type. It appears highly probable, that how great 
soever the resistance of the substance to the concluctioii of heat may be, that assumptioli 
as to the transfer is realized when the disturbance is suddeyz, as described in $ 5 ; for 
then particles in all the successive stages of the change of pressure ancl bulkiness within 
thc limits of the disturbance are at inappreciable distance.; from each other; so that the 
resistance to the transfer of heat between them is inappreciable. 

But when the disturbunce is not sudden, it is probable that the assumption as to the 
transfer of heat is fulfilled in an approximate nlanner only ; and if such is the case, i t  
follows that the o d y  lo17gitudi~zal disturbance which can be propagated with absolute per- 
mmzence o f  type i s  a szcdden distzcrba~zce. 

$ 8. Cotnbi~zation o f  tJ~e  Dynamic and TJ~e~rnocZyna~?~ic every fluid, and 3qzcations.-In 
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probably in many solids, the quantity of heat received during an indefinitely small 
change of pressure dp and of bulkiness ds is capable of being expressed in either of the 
following forms : 

dr dr 
dp+cp &,d s ;  

in which c, and cp denote the specific heat at constant bulkiness and at constant pres- 
d~ dr

sure respectively ; and the differential coefficients - and of the absolute temperature 
dp 

are taken, the former on the supposition that the bulkiness is constant, and the latter 
on the supposition that the pressure is constant. Let it  now be supposed that the 
bulkiness varies with the pressure according to some definite law; and let the actual 

ds
rate of variation of the bulkiness with the pressilre be denoted by - Then equation 

dp'
(12) may be expressed in the following form : 

Now, according to the dynamic condition of permanence of type, we have by equa- 
tion (6), 

ds 1 
dp--$; 

which, being substituted in the preceding integrals, gives the following equations from 
which to deduce the square of the mnss-velocity : 

dr
I t  is sometimes convenient to substitute for cp the following value, which is a known 

consequence of the laws of thermodynamics : 

c !?=Ca-+- , .  rdpr . . . . . . . . .  

ds J ~ T  (I3A) 

the differential coefficient ;l;dp being taken on the supposition that s is constant. The 

equations (13) and (13 A) are applicable to all fluids, and probably to many solids also, 
especially those which are isotropic. 

The determination of the squared mass-velocity, m2,enables the bulkiness s for any 
given pressure p, and the corresponding velocity of disturbance zc, to be found by means 
of the following fo rmul~ ,  which are substantially identical with equations (8) and (3) 
respectively : 

s=Sf - -p-P
& , . . . . . . . . . . . . . (14) 


MDCCCLXX. 2 P 
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Equation (15) also serves to calculate the pressure p corresponding to a given velocity 
of disturbance u. It may here be repeated that the linear velocity of advance is a=mS 
(equation 1). 
0 9. Application to  a Perflect Gas.-In a perfect gas, the specific heat at constant 

volume, c,, and the specific heat at  constant pressure, c,, are both constant; and conse- 

quently bear to each other a constant ratio, 2,whose value for air, oxygen, nitrogen, 
cs 

and hydrogen is nearly 1.41, and for steam-gas nearly 1.3. Let this ratio be denoted 

by y. Also, the differential coefficients which appear in equations (13) and (13a) have 
the following values :-

When these substitutions are made in equation (13), and constant common factors can- 
celled, i t  is reduced to the following: 

But according to the dynamical condition of permanence of type, as expressed in equa- 
tion (B), we have m2s=m2S +P-p ; whence it follows that the value of the integral in 
equation (17) is 

which, being divided by p,-p,, gives for the square of the mass-velocity of advance the 
following value : 

The square of the linear velocity of advance is 

The velocity of disturbance u corresponding to a given pressurep, or, conversely, the 
pressurep corresponding to a given velocity of disturbance, may be found by means of 
equation (15). 

Such are the general equations of the propagation of waves of longitudinal disturbance 
of permanent type along a cylindrical mass of a perfect gas whose undisturbed pressure 
and bulkiness are respectively P and S. I n  the next two sections particular cases will 
be treated of. 

10. Wave of Oscillation in a Perfect Gas.-Let the mean between the two extreme 
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pressures be equal to the undisturbed pressure ; that is, let 

then equations (18) and (19) become simply 

and 
a"=.yPS ; . . . . . . . . . . . . (22)  


the last of which is LAPLACE'S The three well-known law of the propagation of sound. 
equations of this section are applicable to an indefinitely long series of waves in which 
equal disturbances of pressure take place alternately in opposite directions. 

$ 11. &ve of Perfnanmt Compression or Dilatation in a Tube of Perfect Gas.-To 
adapt equation (18) to the case of a wave of permanent compression or dilatation in a 
tube of perfect gas, the pressure at the front of the wave is to be made equal to the un- 
disturbed pressure, and the pressure at  the back of the wave to the final or permanently 
altered pressure. Let the final pressure be denoted simply byp; then p,=P, andp2=p;  
giving for the square of the mass-velocity 

for the square of the linear velocity of advance 

and for the final velocity of disturbance 

Equations (23) and ( 2 4 )  show that a wave of condensation is propagated faster, and 
a wave of rarefaction slower, than a series of waves of oscillation. They further show 
that there is no upper limit to the velocity of propagation of a wave of condensation ; 
and also that to the velocity of propagation of a wave of rarefaction there is a lower 
limit, found by making p=O in equations (23)  and (24). The values of that lower 
limit, for the squares of the mass-velocity and linear velocity respectively, are as 
follows :-

m2(p=0 )=(r--ljP. . . . . . . . . .  

2s ' ( 2 6 )  

and the corresponding value of the velocity of disturbance, being its negative limit, is 
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I t  is to be borne in mind that the last three equations represent a state of matters which 
may be approximated to, but not absolutely realized. 

Equation (25) gives the velocity with which a piston in a tube is to be moved inwards 
or outwards as the case may be, in order to produce a change of pressure from P to p, 
travelling along the tube from the piston towards the further end. Equation (25) may 
be converted into a quadratic equation, for finding p in terms of u ; in other words, for 
finding what pressure must be applied to a piston in order to make it move at a given 
speed along a tube filled with a perfect gas whose u~ldisturbed pressure and bulkiness 
are P and S. The quadratic equation is as follows: 

and its alternative roots are given by the following formula : 

The sign + or - is to be used, according as the piston moves inwards so as to produce 
condensation, or outwards so as to produce rarefaction. Suppose, now, that in a tube of 
unit area, filled with a perfect gas whose undisturbed pressure and volume are P and S, 
there is a piston dividing the space within that tube into two parts, and moving at the 
uniform velocity u :  condensation will be propagated from one side of the piston, and 
rarefaction from the other; the pressures on the two sides of the piston will be 
expressed by the two values of p in equation (29) ; and the force required in order to 
keep the piston in motion will be the difference of these values; that is to say, 

Two limiting cases of the last equation may be noted: first, if the velocity of the piston 
Su2

is very small compared with the velocity of sound, that is if - is very small, we have 
YP 

AJI nearly =2u.  ( ) . . . .  
secondly, if the velocity of the piston is very great compared with the velocity of sound, 

that is if s2YPis very small, we have 

(r+ l)u2Ap nearly =-----. . . . . . . . . . . 

2s 

9 12. A6solute Temperature.-The absolute temperature of a given particle of a given 
substance, being a function of the pressure p and bulkiness s, can be calculated for a point 
in a wave of disturbance for which p and s are given. I n  particular, the absolute tempe- 
rature in a perfect gas is given by the following well-known thermodynamic formula: 

and if,in that formula, there be substituted the value of s in terms ofp,  given by equa-
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tions (8)and (18) combined, we find, for the absolute temperature of a particle at which 
the pressure i sp ,  in a wave of permanent type, the following value: 

PSin which the first factor -is obviuusly the undisturbed value of the absolute tem- 
J ( c p-~ 8 )  

perature. For brevity's sake, let this be denoted by T. 
The following particular cases may be noted. In  a wave of oscillation, as defined in 
l o ,  we have p,fp,=2P ; and consequently 

In a wave of permanent condensation or rarefaction, as described in 9 11,let p,=P, 
p2=P; then the final temperature is 

9 13. Types of Disturbance capable of Permanence.-In order that a particular type 
of disturbance may be capable of permanence during its propagation, a relation must 
exist between the temperatures of the particles and their relative positions, such that 
the conduction of heat between the particles may effect the transfers of heat required by 
the thernlodynamic conditions of permanence of type stated in Q 6. 

During the time occupied by a given phase of the disturbance in traversing a unit 
of mass of the cylindrical body of area unity in which the n7ave is travelling, the quan- 
tity of heat received by that mass, as determined by the thermodynamic conditions, is 
expressed in dynamical units by rdp. 

1
The time during which that transfer of heat takes place is the reciprocal ;of the mass- 

dr
velocity of the wave. Let d;2: be the rate at  which temperature varies with longitudinal 

distance, and k the conductivity of the substance, in dynamical units; then the same 
quantity of heat, as determined by the laws of conduction, is expressed by 

The equality of these two expressions gives the following general differential equation 
for the determination of the types of disturbance that are capable of permanence: 

The following are the results of two successive integrations of that differential equation :-
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in which A and B are arbitrary constants. The value of A depends on the magnitude 
of the disturbance, and that of B upon the position of the point from which x is reckoned. 
I n  applying these general equations to particular substances, the values of 7 and p are to 
be expressed in terms of the pressure p, by the aid of the formula: of the preceding 
section; when equation (33 B) will give the value of x in terms ofp ,  and thus will show 
the type of disturbance required. 

Our knowledge of the laws of the conduction of heat is not yet sufficient to enable 
us to solve such problems as these for actual substances with certainty. As a hypo- 
thetical example, however, of a simple kind, we may suppose the substance to be per- 
fectly gaseous and of constant conductivity. The assumption of the perfectly gaseous 
condition gives, according to the f o r m u l ~  of the preceding sections, 

and 

I t  is unnecessary to occupy space by giving the whole details of the calculation ; and 
i t  may be sufficient to state that the following are the results. Let 

then 

I n  equation (34 A) i t  is obvious that x is reckoned from the point where q=O ; that 

is, where the pressure ; a mean between the greatest and least pressures. The='* 
direction in which x is positive may be either the same with or contrary to that of the 
advance of the wave ; the former case represents the type of a wave of rarefaction, the 

latter that of a wave of compression. For the two limiting pressures when q= fp -dx 
" dq 

becomes infinite, and x becomes positively or negatively infinite ; so that the wave is 
infinitely long. The only exception to this is the limiting case, when the conductivity R 

dx
is indefinitely small; and then we have the following results : when p=p,, or p=p
2, & 

dx

is infinite, and x is indefinite ; and for all values of p between p, and p2,+ and x are 

each indefinitely small. These conditions evidently represent the case of a wave of 
abrupt rarefaction or compression, already referred to in $0 6 and 7. 
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Note as to previous investi,qations.-Four previous investigations on the subject of the 
transmission of waves of finite longitudinal disturbance may be referred to, in orcier to 
show in what respects the present investigation was anticipated by them, and in what 
respects its results are new. 

The first is that of POISSON,in the Journal de 1'Ecole Polytechnique, vol. vii. Cahier 14, 
p. 319. The author arrives at  the following general equations for a gas fulfilling 
MARIOTTE'Slaw :-

in which p is the velocity-function; 2 the velocity of disturbance, at  the time t, of a 

particle whose distance from the origin is x ;  a is the limit to which the velocity of 
-

propagation of the wave approximates when 4 becomes indefinitely small, viz. 
4,' 

p, being the undisturbed pressure and p, the undisturbed density; and f denotes an 
arbitrary function. This equation obviously indicates the quicker propagation of the 
parts of the wave where the disturbance is forward (that is, the compressed parts) and 
the slower propagation of the parts where the disturbance is backward (that is, the 
dilated parts). 

The second is that of Mr. STOKES,in the Philosophical Magazine for November 1848, 
3rd series, vol. xxxiii. p. 349, in which that author shows how the type of a series of 
waves of finite longitudinal disturbance in a perfect gas alters as it advances, and tends 
ultimately to become a series of sudden compressions followed by gradual dilatations. 

The third is that of Mr. AIRY, Astronomer Royal, in the Philosophical Magazine for 
June 1849, 3rd series, vol. xxxiv. p. 401, in which is pointed out the analogy between 
the above-mentioned change of type in waves of sound, and that which takes place in 
sea-waves when they roll into shallow water. 

The fourth, and most complete, is that of the Rev. SAMUEL received by the EARNSHAT, 
Royal Society in November 1858, read in January 1859, and published in the Philoso- 
phical Transactions for 1860, page 133. That author obtains exact equations for the 
propagation of ~vayes of finite longitudinal disturbance in a medium in which the pressure 
is any function of the density ; he shows what changes of type, of the kind already men- 
tioned, must go on in such wayes; and he points out, finally, that in order that the type 

2 d~may be permanent g 6 (= -$ in the notation of the present paper) must be a constant 
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quantity; being the proposition which is demonstrated in an elementary may near the 
beginning of the present paper. Mr. EARXSHAWregards that condition as one which 
cannot be realized. 

The new results, then, obtained in the present paper may be considered to be the fol- 
lowing :-the conditions as to transformation and transfer of heat which must be fulfilled, 
in order that permanence of type may be realized, exactly or approximately; the types 
of wave which enable such conditions to be fulfilled, with a given law of the conduction 
of heat ; and the velocity of advance of such waves. 

The snefl~od of inztestigcltio~zin the present paper, by the aid of mass-velocity to express 
the speed of advance of a wave, is new, so far as I know ; and it seems to me to have 
great advantages in point of simplicity, enabling results to be demonstrated in a very 
elementary manner, which otherwise would have required comparatively long and elabo- 
rate processes of investigation. 


