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Motif.

Let R be a commutative ring. Let Q be a quiver, whose underlying graph is

a tree. We reveal derived equivalences of increasing sophistication, between:

I. The path algebra RQ, and its Koszul dual.

II. The trivial extension algebra of RQ, and the trivial extension algebra of

its Koszul dual.

III. The Schur algebra of RQ, and the Schur algebra of its Koszul dual.

IV . A double of the Schur algebra of RQ, and a double of the Schur algebra

of its Koszul dual.

Let Q be a Dynkin quiver, of type A. We lift the derived equivalences of IV

to equivalences between:

V . A deformation of the double of the Schur algebra of RQ, and a deforma-

tion of the double of the Schur algebra of its Koszul dual.

V I. A quotient of the deformation of the double of the Schur algebra of

RQ, and a quotient of the deformation of the double of the Schur algebra of its

Koszul dual.

Let p be a prime number, and (K,O, k) a p-modular system. Let Q be a

Dynkin quiver, of type Ap−1. We conjecture that any block of a symmetric
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group over O, is equivalent to a quotient of the deformation of the double of

the Schur algebra of OQ, and equivalent to a quotient of the deformation of the

double of the Schur algebra of the Koszul dual of OQ, as in VI.

History.

Let p be a prime number, and k a field of characteristic p. A conjecture of

M. Broué states that every p-block of a finite group of abelian defect is derived

equivalent to its Brauer correspondent [4]. This conjecture has been proved for

symmetric groups, following a strategy developed by R. Rouquier, by assembly

of the following sequence of equivalences:

Db(bab) // Db(bRock) // Db(b0 o Σw) // Db(k(Cp o Cp−1) o Σw).

Here, bab denotes a block of a symmetric group of abelian defect, and weight w.

All such blocks have equivalent derived categories, by a theorem of J. Chuang

and R. Rouquier [7]. There is a family of distinguished blocks bRock of weight w,

the Rock blocks. By a theorem of J. Chuang and R. Kessar [6], the Rock blocks

of abelian defect, and weight w, are all Morita equivalent to the wreath product

b0 o Σw of the principal block b0 of the symmetric group algebra kΣp with the

symmetric group Σw on w letters. By a theorem of J. Rickard, b0 is derived

equivalent to the group algebra kCp o Cp−1 of a semidirect product of cyclic

groups [13]. Taking wreath products, we find that b0 oΣw and k(Cp oCp−1) oΣw

also have equivalent derived categories.

Since the Brauer correspondent of bab is Morita equivalent to the wreath

product k(Cp oCp−1) oΣw, the above sequence of equivalences implies the truth

of Broué’s abelian defect group conjecture for symmetric groups.

For blocks of nonabelian defect, there is no obvious generalisation of Broué’s

conjecture. However, it has become apperent that for symmetric groups, a subtle

generalisation of the sequence discussed above should hold in arbitrary defect.

Chuang and Rouquier’s theory applies equally well in nonabelian defect. In

the article “Rock blocks”, we overturned a conjectural analogue of the Chuang-

Kessar equivalence [18], thus suggesting a sequence of equivalences:

Db(b) // Db(bRock) // Db(DQ(w,w)).

Here, b denotes a block of a symmetric group, of weight w, and arbitrary de-

fect. The Rock blocks are no longer Morita equivalent to wreath products in

nonabelian defect, but there is considerable evidence that they are Morita equiv-

alent to a family of finite dimensional algebras DQ(w,w), the Schiver doubles.
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The Schiver doubles are defined via a double construction applied to bialgebras

of functions on certain quadratic super-algebras PQ(n). Here, Q is a quiver,

obtained by giving an orientation to the Dynkin graph Ap−1.

In this paper, we develop further the theory of Schur algebras of quiver

algebras, their doubles, and their deformations [19]. One consequence of our

work is the existence of a new family of doubles EQop(w,w), which are derived

equivalent to DQ(w,w). Our sequence of equivalences thus extends as follows:

Db(b) // Db(bRock) // Db(DQ(w,w)) // Db(EQop(w,w)).

In the special case that Q is a linear orientation of Ap−1, and w < p, the algebra

EQ(w,w) is Morita equivalent to k(Cp oCp−1) oΣw, and we recover the sequence

of equivalences in abelian defect.

A further novelty of the present article is the consideration of algebras which

we expect to describe symmetric group blocks over complete discrete valuation

rings, such as the p-adic integers, rather than merely fields of positive charac-

teristic. Such algebras arise as quotients of non-trivial deformations of doubles.

Indeed, a suitable deformation DQ of the double DQ can be constructed via a

homological duality with the Schur algebra of a preprojective algebra. A defor-

mation of the double EQop can then be defined to be the endomorphism ring of

certain tilting complex for DQ.

Memories.

Let R be a commutative ring. Unless otherwise stated, all algebras and

modules will be defined over R, and free over R. Given R-modules M,N ,

we write M ⊗ N for M ⊗R N . We assume R-modules can be written as a

direct sum M =
⊕

i∈I M i of R-modules of finite rank. We then write M∗ =
⊕

i∈I HomR(M i, R) for the dual of M .

Let B be a super-bialgebra over R, with dual B∗. The double D(B) =

B⊗B∗ attains the structure of a symmetric associative algebra, whose product

is described by the following picture (see [20]):
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a α b β

Let A be a finite dimensional super-algebra over R. Let A(n) = EndA(A⊕n).

Let

S(A)(n) =
⊕

r≥0

S(A)(n, r),

be the Schur super-bialgebra associated to A, where

S(A)(n, r) = (A(n)⊗r)Σr .

Let us write A(A)(n) for the graded dual of S(A)(n). The super-bialgebra

A(A)(n) can be thought of as the ring of regular functions on A(n).

The double

D(A)(n) = D(S(A)(n)) = S(A)(n) ⊗A(A)(n),

decomposes as a direct sum

D(A)(n) =
⊕

r≥0

D(A)(n, r)

of finite dimensional algebras,

D(A)(n, r) =
⊕

r1+r2=r

S(A)(n, r1) ⊗A(A)(n, r2).

If C is an abelian category, we write C(C) (resp. K(C),D(C)) for the corre-

sponding category of chain complexes (resp. homotopy category, derived cate-

gory). We write X[n] for the translation of a chain complex X by n degrees.
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Equivalences I. Hereditary algebras.

Let Q be a finite quiver, whose set of vertices is V = V (Q). Let RQ be

the path algebra of Q. We write ev for the idempotent in RQ corresponding to

vertex v. Let PQ = RPQ be the quiver algebra of Q, modulo the ideal of paths

of length ≥ 2.

For the length of this section, we assume that the underlying graph of Q is

a finite, connected tree. That is to say, Q has finitely many vertices and edges,

and contains no circuits. We prove the derived equivalence of PQ, RQop.

Lemma 1 There is a unique map η : V → Z≥0 such that,

(i) η(v) = η(w) + 1, whenever there is an arrow from v to w in Q, for

v, w ∈ V .

(ii) 0 ∈ im(η). ¤

Here is an example of such a map η:

1 2
1

3

0

0

2

2

3
4

Let

JQ = PQ

⊗

RV

RQop∗

be the Koszul complex for PQ. Thus, JQ is a differential PQ-RQop-bimodule,

equipped with a homological grading,

JQ =
⊕

i≥0

J i
Q,

J i
Q =

⊕

v,w∈V,η(v)−η(w)=i

(

PQ

⊗

RV

evRQop∗ew

)

.

The grading defines the structure a complex of PQ-modules on JQ. This com-

plex defines a projective resolution of the module PQ
RV , concentrated in degree

zero.

In the special situation we are studying, we can shift the grading by η.
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Definition 2 Let KQ be the complex of PQ-RQop-bimodules,

KQ = PQ

⊗

RV

RQop∗,

with Koszul differential, and homological grading

KQ =
⊕

i≥0

Ki
Q,

Ki
Q =

⊕

v∈V,η(v)=i

(

PQ

⊗

RV

evRQop∗

)

.

We have

KQ
∼=

⊕

w∈V

JQew[η(w)],

as complexes of PQ-modules.

Theorem 3 KQ is a tilting complex of PQ-RQop-bimodules. There is a derived

equivalence,

Db(PQ − mod) ∼= Db(RQop − mod).

This theorem is a consequence of the following more general result.

Theorem 4 Let A,C be Z+-graded finite dimensional algebras over R, such

that

C ∼= Ext∗A(A0, A0).

Let {ξy, y ∈ Y} be a collection of orthogonal idempotents in A0 ∼= C0, such that
∑

y∈Y ξy = 1. Suppose there exists a function,

ζ : Y → Z,

such that ξyCξz ⊆ Cζ(y)−ζ(z), for all y, z ∈ Y. If R is a field, then A has finite

global dimension. Furthermore, any perfect complex which is quasi-isomorphic

to

T =
⊕

y∈Y

A0ξy[ζ(y)]

is a tilting complex for A, whose endomorphism ring in the derived category is

isomorphic to C. There is an equivalence of derived categories,

Db(A − mod) ∼= Db(C − mod).
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Proof:

Since A is finite dimensional, and positively graded, its positive part ⊕i>0A
i

is a nilpotent ideal, and therefore simple A-modules can be identified with simple

A0-modules. For this reason, T is a generator for Db(A).

Because B is finite dimensional, ExtnA(A0, A0) = 0, for n >> 0. Therefore,

A has finite global dimension, whenever R is a field.

Furthermore,

HomDb(A)(T, T [n]) =
⊕

y,z∈Y

HomDb(A)(A
0ξy[ζ(y)], A0ξz[ζ(z) + n])

=
⊕

y,z∈Y

Extζ(y)−ζ(z)−n(A0ξy, A0ξz)

= ξyCζ(y)−ζ(z)−nξz =

{

ξyCξz if n = 0
0 if n 6= 0.

Therefore, T is a tilting complex, and EndDb(A)(T ) ∼= C. By Rickard’s Morita

theory for derived categories, we have Db(A) ∼= Db(C). ¤

Proof of theorem 3:

Apply theorem 4, in case A = PQ, C = RQop, ζ = η. Indeed, KQ is a perfect

complex of PQ-modules, which is quasi-isomorphic to

⊕

v∈V

Rev[η(v)].¤

Equivalences II. Trivial extension algebras.

For the length of this section, we again assume that Q is a quiver, whose

underlying graph is a finite, connected tree.

Let T (A) be the trivial extension algebra of A. Thus, T (A) ∼= A⊕A∗, with

multiplication given by

(a, φ).(b, ψ) = (ab, aψ + φb).

Note that T (A) is a symmetric algebra, with symmetric associative, non-degenerate

bilinear form

< (a, φ), (b, ψ) >=< a,ψ > + < φ, b > .

Example 5 Let Γ be a tree. Let Γ̄ be the double quiver whose vertices are in

one-one correspondence with vertices V of Γ, and whose arrows A are in two-one
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correspondence with the edges of Γ. Thus, an edge joining vertices v1, v2 in Γ

corresponds to two arrows in Γ̄, one pointing from v1 to v2, the other pointing

from v2 to v1.

Let Γ have more than one edge. Let v be a vertex of Γ attached to two edges

α, β. Let the corresponding arrows in Γ̄ pointing towards v be labelled α1, β1.

Let the corresponding arrows pointing away from v be labelled α2, β2. Let

Rα,β,v = {α1β2, β1α2, α2α1 − β2β1},

The zigzag algebra ZZΓ is defined to be the path algebra RΓ̄, modulo the

quadratic ideal generated by
⋃

α,β,v Rα,β,v.

Let Γ have one vertex, and no arrows. Then the zigzag algebra ZZΓ is

defined to be R[x]/x2.

Let Γ be a Dynkin graph of type A1. Let the arrows of Γ be denoted α, β.

Then the zizag algebra ZZΓ is defined to be the path algebra RΓ̄, modulo the

ideal generated by αβα, βαβ.

Lemma 6 The trivial extension algebra of PQ is isomorphic to the zigzag alge-

bra ZZΓ. ¤

Let UQ be the trivial extension algebra T (PQ) of PQ. By lemma 6 above,

UQ is isomorphic to a zizag algebra, and independent of the orientation of Q.

Let VQ be the trivial extension algebra T (RQ) of RQ.

It is a general result of Rickard that two derived equivalent algebras have

equivalent trivial extension algebras [13]. In particular, UQ, VQop have equivalent

derived categories. As a warm-up to our proof of derived equivalences between

doubles which appear later in the paper, let us re-prove the derived equivalence

of UQ, VQop , with our notation.

Definition 7 Let

TQ = UQ

⊗

PQ

KQ,

EQ = EndUQ−mod(TQ).

Note that KQ is free as a PQ-module, and so

TQ
∼= UQ

⊗

RV

RQop∗,

as UQ-RQop-modules.
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Because TQ is a complex of UQ-RQop-bimodules, EQ is a dg algebra, and a

complex of RQop-RQop-bimodules. By the adjunction

(

UQ

⊗

RV

−,HomUQ
(UQ,−)

)

,

we have the following lemma.

Lemma 8

EQ
∼= RQop

⊗

RV

UQ

⊗

RV

RQop∗,

as RQop-RQop-bimodules. ¤

The homological degree of RQopev

⊗

RV UQ

⊗

RV ewRQop∗ is η(w) − η(v).

Theorem 9 (Rickard [13]) TQ is a tilting complex for UQ. Its endomorphism

ring in the homotopy category is isomorphic to VQop . There is a derived equiv-

alence,

Db(UQ − mod) ∼= Db(VQop − mod).

Proof:

We show that EQ has homology concentrated in degree zero, and that

H0(EQ) is isomorphic to VQop .

There is a direct sum decomposition,

UQ = PQ ⊕ P ∗
Q,

of PQ-PQ bimodules. The differential on EQ is given by,

dE1
(qev ⊗ x ⊗ ewr) =

(qev ⊗ dT1
(x ⊗ ewr)) − (−1)η(w)−η(v)(dT∗

1
(qev ⊗ x) ⊗ ewr).

Consequently, there is a direct sum decomposition,

EQ
∼= El

Q ⊕ Er
Q,

of complices of RQop-RQop-bimodules, where

Er
Q = RQop

⊗

RV

PQ

⊗

RV

RQop∗,

El
Q = RQop

⊗

RV

P ∗
Q

⊗

RV

RQop∗.
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Indeed, we have isomorphisms,

Er
Q
∼= EndPQ

(KQ),

El
Q
∼= K∗

Q

⊗

PQ

KQ,

of complices of RQop-RQop-bimodules.

Note that El
Q is dual to Er

Q,

El∗
Q = HomR(K∗

Q

⊗

PQ

KQ, R) ∼= EndPQ
(KQ) ∼= Er

Q.

By Koszul duality, the map

RQop → Er
Q,

is a quasi-isomorphism of RQop-RQop-bimodules. Therefore, the dual map

El
Q → RQop∗,

is also a quasi-isomorphism of RQop-RQop-bimodules.

Since Er
Q, El

Q have homology concentrated in degree zero, EQ itself has ho-

mology concentrated in degree, and so TQ is indeed a tilting complex, as re-

quired. By Rickard theory, there is a derived equivalence between UQ, and

H0(EQ). However,

H0(EQ) ∼= RQop ⊕ RQop∗ ∼= VQop ,

as RQop-RQop bimodules. To complete the proof of the theorem, we need only

verify that elements of the component RQop∗ multiply to zero in H0(EQ). This

happens to be so, because elements of the component El
Q of EQ represent en-

domorphisms which map UQ

⊗

RV RQop∗ to P ∗
Q

⊗

RQop∗. Therefore elements

of El
Q compose to zero, because elements of the component P ∗

Q multiply to zero

in UQ. ¤

Remark 10 When Q,Q′ are orientations of the same graph Γ, we have iso-

morphisms UQ
∼= ZZΓ

∼= UQ′ . We thus have derived equivalences between ZZΓ,

VQ and VQ′ . In particular, when Γ is a Dynkin graph of type A, we recover some

of the equivalences between Brauer tree algebras, first observed by Rickard [13].

As we explain in a separate article, the Brauer trees are all caterpillars, with

multiplicity one [20]. Beneath are some pictures, explaining how a caterpillar

corresponds to an orientation of Γ.

Caterpillar:
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Quiver:

Interlude I: Wreath products.

Let A be a unital super-algebra. Let n ≥ r.

Definition 11 Let sr be the symmetrising map from A(n)⊗r to S(A)(n, r),

sr : a1 ⊗ ... ⊗ ar 7→
∑

σ∈Σr

a1σ ⊗ ... ⊗ arσ .

Let tr be the multiplication map from A(n)∗⊗r to A(n, r),

tr : b1 ⊗ ... ⊗ br 7→ b1...br.

Definition 12 Let {ξij , 1 ≤ i, j ≤ n} be a basis of elementary matrices in

EndR(R⊕n).

Given a subset J ⊂ {1, ..., n}, let

ξJ =
∑

σ∈ΣJ

(ξ1σ1σ ⊗ ... ⊗ ξrσrσ ),

an element of S.(n, r). Let ξn,r = ξ{1,...,r}.

According to a primitive form of Schur-Weyl duality [10], ξn,r is an idempo-

tent in S.(n, r), such that

ξn,rS.(n, r)ξn,r
∼= Σr.

The unital embedding of R = P. in A extends to a unital embedding of P. in

A(n), and thus to a unital embedding of S.(n, r) in S(A)(n, r). Let us identify

ξn,r with its image in S(A)(n, r), under this embedding.

Lemma 13 Let A be a super-algebra. Let n ≥ r. There is an algebra isomor-

phism,

A o Σr
∼= ξn,rS(A)(n, r)ξn,r,
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where the left hand side is the super wreath product of A with Σr. The functor,

Hom(S(A)(n, r)ξn,r,−) : S(A)(n, r) − mod → A o Σr − mod,

is fully faithful on projective objects.

Proof:

Consider the sequence of natural isomorphisms of R-modules,

A o Σr = A
N

r ⊗ RΣr
∼=

ξ11A(n)ξ11 ⊗ ... ⊗ ξrrA(n)ξrr ⊗ RΣr
∼=

ξ{1,...,r}S(A)(n, r)ξ{1,...,r} = ξn,rS(A)(n, r)ξn,r,

The second isomorphism here is the map,

a1 ⊗ ... ⊗ ar ⊗ θ 7→ sr(a1 ⊗ ... ⊗ ar).sr(ξ11θ ⊗ ... ⊗ ξrrθ ).

The composition of this sequence of isomorphisms of R-modules defines an al-

gebra isomorphism,

A o Σr
∼= ξn,rS(A)(n, r)ξn,r.

To complete the proof of the lemma, we are required to observe that

Hom(S(A)(n, r)ξn,r,−) : S(A)(n, r) − mod → A o Σr − mod,

is fully faithful on projective objects. However, S(A)(n, r)ξn,r is isomorphic to

A(n)⊗r, as an A o Σr-module, and therefore

S(A)(n, r) = EndAoΣr
(S(A)(n, r)ξn,r),

by definition. ¤

Given a super-algebra A, let BA = R⊕A be the super-bialgebra, which is a

direct sum of R and A as algebras, with coproduct

∆(λ, a) = (1, 0) ⊗ (0, a) + (0, a) ⊗ (1, 0) + (λ, 0) ⊗ (1, 0).

Let BA(r) = B⊗r
A be the r-fold tensor product of BA, a super-bialgebra.

The trivial extension algebra T (A) is a super-algebra, with Z/2-grading in-

herited from that on A. Note the actions of A on A∗ involve the introduction

of signs. For example, the right action of A on A∗ is pictured in the diagram,

A∗ A
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Lemma 14 The double D(BA(r)) has a component CA(r), which is isomorphic

to the tensor product T (A)⊗r of r trivial extension super-algebras T (A).

Proof:

The degree r part of D(BA(r)) has a component,

CA(r) =
⊕

r1+r2=r





⊕

σ∈Σr/Σr1
×Σr2

(

(A⊗r1 ⊗ R⊗r2) ⊗ (R∗⊗r1 ⊗ A∗⊗r2)
)σ



 ,

which is naturally isomorphic to

T (A)⊗r =
⊕

r1+r2=r





⊕

σ∈Σr/Σr1
×Σr2

(

A⊗r1 ⊗ A∗⊗r2
)σ



 ,

as an R-module. This R-module isomorphism is in fact an algebra isomorphism.

Multiplicativity is easy to check, given there is a unique natural way to put an

algebra structure on this super-space. Of course, one must be careful with the

signs, and a little thought tells us that there is also a unique natural choice of

sign convention. Note that it is enough to check multiplicativity on the subspace

A⊗r ⊕





⊕

σ∈Σr/Σr−1

(

A⊗r−1 ⊗ A∗
)σ



 ,

which generates T (A)⊗r. ¤

Theorem 15 Let A be a super-algebra. Let n ≥ r There is an algebra isomor-

phism,

Λ : T (A) o Σr
∼= ξn,rD(A)(n, r)ξn,r,

where the left hand side is the super wreath product of T (A) with Σr.

Proof:
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We have direct sum decompositions,

ξn,rD(A)(n, r)ξn,r
∼=

⊕

r1+r2=r

ξn,r(S(A)(n, r1) ⊗A(A)(n, r2))ξn,r.

T (A) o Σr
∼=





⊕

r1+r2=r

⊕

σ∈Σr/Σr1
×Σr2

(A⊗r1 ⊗ A∗⊗r2)σ



 ⊗ RΣr.

Here, we are careful to employ the super sign convention, when conjugating by

a permutation σ.

We proceed to write down an explicit isomorphism Λr1,r2
between the (r1, r2)

th

components of the above decompositions. Indeed, Λr1,r2
is defined to be the

composition of the sequence of natural isomorphisms,





⊕

σ∈Σr/Σr1
×Σr2

(A⊗r1 ⊗ A∗⊗r2)σ



 ⊗ RΣr
∼=





⊕

σ∈Σr/Σr1
×Σr2

(

r1
⊗

i=1

ξiσiσA(n)ξiσiσ ) ⊗ (
r

⊗

i=r1+1

ξiσiσA(n)∗ξiσiσ )



 ⊗ RΣr
∼=

⊕

σ,τ∈Σr/Σr1
×Σr2

(ξ{1σ,...,rσ
1
}S(A)(n, r1)ξ{1τ ,...,rτ

1
}⊗

ξ{(r1+1)σ,...,rσ}A(A)(n, r1)ξ{(r1+1)τ ,...,rτ}) =

ξ{1,...,r} (S(A)(n, r1) ⊗A(A)(n, r2)) ξ{1,...,r} =

ξn,r(S(A)(n, r1) ⊗A(A)(n, r2))ξn,r.

The second isomorphism here is the map,

(a1 ⊗ ... ⊗ ar1
) ⊗ (b1 ⊗ ... ⊗ br2

) ⊗ θ 7→

sr1
(a1 ⊗ ... ⊗ ar1

) ⊗ tr2
(b1 ⊗ ... ⊗ br2

).sr(ξ11θ ⊗ ... ⊗ ξrrθ ).

By summing our isomorphisms, we obtain an isomorphism of R-modules.

Λ : T (A) o Σr
∼= ξn,rD(A)(n, r)ξn,r,

To complete the proof of the theorem, we prove that Λ is an algebra isomor-

phism. It is enough to check,

(i) Λ restricted to RΣr is an isomorphism,

(ii) Λ restricted to T (A)⊗r is an isomorphism,
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(iii) Λ(θx) = Λ(θ)Λ(x), for x ∈ T (A)⊗r, θ ∈ Σr,

(iv) Λ(xθ) = Λ(x)Λ(θ), for x ∈ T (A)⊗r, θ ∈ Σr.

Statements (i), (iii), (iv) follow from the basic observation,

Λ(θ) = s(ξ11θ ⊗ ... ⊗ ξrrθ ),

for θ ∈ Σr. To see the truth of statement (ii), note that the image of Λ restricted

to T (A)⊗r can be naturally identified with the algebra CA(r) of lemma 14,

and that the restriction of Λ to T (A)⊗r can be identified with the algebra

isomorphism of lemma 14. This completes the proof of the theorem. ¤

Corollary 16 Suppose R is a field of characteristic zero, and n ≥ r. The

algebras S(A)(n, r) and A o Σr are Morita equivalent. The algebras D(A)(n, r)

and T (A) o Σr are Morita equivalent.

Proof:

Let us assume that R is a field, of characteristic zero. The summands of the

right S.(n, r)-module S.(n, r) can all be identified with summands of ξn,rS.(n, r)

Correspondingly, the indecomposable summands of the right A o Σr-module

S(A)(n, r)ξn,r, can be identified with summands of ξn,rS(A)(n, r)ξn,r
∼= A oΣr.

Therefore, S(A)(n, r)ξn,r is a progenerator for A oΣr, which is Morita equivalent

to the endomorphism ring S(A)(n, r).

The surjection from T (A) o Σr to A o Σr has nilpotent kernel, as does the

surjection from D(A)(n, r) to S(A)(n, r). Therefore T (A)oΣr, AoΣr, S(A)(n, r),

and D(A)(n, r) all have the same number of simple modules. Consequently,

D(A)(n, r)ξn,r is a progenerator for D(A)(n, r), which is Morita equivalent to

the endomorphism ring T (A) o Σr. ¤

Equivalences III. Schur algebras.

Given a quiver Q, let

RQ(n) = EndRQRQ⊕n,

RPQ(n) = EndRPQ
RP⊕n

Q .

Here, we think of RQ(n) as an ordinary associative algebra, and RPQ(n) as a

super-algebra, where paths of length i in Q have parity i ∈ Z/2. We write

SQ(n) = S(PQ(n)),
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TQ(n) = S(RQ(n)),

SQ(n, r) = S(PQ(n))(r),

TQ(n, r) = S(RQ(n))(r).

Let Q be a quiver, whose underlying graph is a finite, connected tree. Let n ≥ r.

In this section, we prove the derived equivalence of SQ(n, r), TQop(n, r).

Let PQ o Σr be the wreath product of the super-algebra PQ, with Σr. Let

RQop o Σr be the wreath product of the associative algebra RQop, with Σr.

Wreathing the Koszul differential bimodule PQ

⊗

RV RQop∗ with Σr, we obtain

a differential PQ o Σr-RQop o Σr-bimodule,

PQ o Σr

⊗

RV oΣr

RQop∗ o Σr,

which is isomorphic to

PQ o Σr

⊗

RV oΣr

RQ o Σr.

Applying HomPQoΣr
(−, (P⊕n

Q )⊗r) functorially on the left, and functorially ap-

plying HomRQoΣr
((RQ⊕n)⊗r,−) on the right, we obtain a differential SQ(n, r)-

TQop(n, r)-bimodule,

(P⊕n
Q )⊗r

⊗

RV oΣr

(RQop∗⊕n)⊗r,

which is isomorphic to

(P⊕n
Q )⊗r

⊗

RV oΣr

(RQ⊕n)⊗r ∼=

SQ(n, r)ξr

⊗

RV oΣr

ξrTQ(n, r),

as a complex of SQ(n, r)-SV (n, r)-bimodules. By lemma 13, this bimodule is

isomorphic to a differential SQ(n, r)-TQop(n, r)-bimodule,

JQ(n, r) = SQ(n, r)
⊗

SV (n,r)

TQ(n, r).

The differential bimodule JQ(n, r) inherits a homological grading from the ho-

mological grading on JQ o Σr. In this way, JQ(n, r) is a complex of SQ(n, r)-

SV (n, r)-bimodules.
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Definition 17 Given a subquiver O of Q, let fQ be the unit of the subalgebra

SV (O)(n) of SV (Q)(n). In particular, if v ∈ V (Q), let fv be the unit of the

subalgebra Sv(n) of SV (Q)(n)

For the rest of this section, we assume Q is a quiver, whose underlying graph

is a finite, connected tree.

Proposition 18 The complex JQ(n, r) of SQ(n, r)-SV (n, r)-bimodules defines

a projective resolution of the bimodule SV (n, r),

SQ(n, r)
⊗

SV (n,r)

TQ(n, r) ³ SV (n, r).

Proof:

We proceed by induction on the number of vertices of Q. If Q has no edges,

the proposition is obvious. Otherwise, assume that Q′ is a finite quiver whose

underlying graph is a finite connected tree, and assume the proposition is known

to be true for all such quivers with fewer edges than Q′. We demonstrate the

truth of the proposition for the quiver Q′.

In Q′, there exists a vertex v with no arrows pointing into v. Let Q be the

quiver obtained by removing v, and all arrows connected to v, from Q′. By

assumption, the proposition is true for the quiver Q.

Let V = V (Q), V ′ = V (Q′). We wish to show that JQ′(n, r) defines a

resolution of SV ′(n, r). It is enough for us to show that JQ′(n, r)fx defines a

resolution of Sx(n, r), for x ∈ V ′, because the inductive hypothesis then tells us

that

JQ′(n, r) ∼= JQ′(n, r)(fx ⊗ fQ) ∼=
⊕

j≥0

JQ′(n, j)fx ⊗ JQ(n, r − j)

defines a resolution of SV ′(n, r) ∼=
⊕

j≥0 Sx(n, j) ⊗ SV (n, r − j), for all j.

There are now three cases to consider:

(i) x = v

(ii) x ∈ V , and there is no path from v to x in Q.

(iii) x ∈ V , and there is some path from v to x in Q.

Case (i) is easy to face down: Sv(n, r) ∼= JQ′(n, r)fv is a projective SQ′(n, r)-

module.
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Case (ii) is similarly elementary: JQ′(n, r)fx
∼= JQ(n, r)fx, because there is

no path from x to v in Qop. However, JQ(n, r)fx is known to define a projective

resolution of Sx(n, r), by the inductive hypothesis.

Case (iii). Note that the path from v to x in Q′ is necessarily unique, because

the underlying graph of Q′ is a tree. Let us write this path as a composition

a.p, where a is the arrow at the beginning of the path whose source is v, and p

is a path in Q.

We have,

PQ′ = PQ ⊕ Ra ⊕ Rv,

JQ′x = Rv → C,

where

C = PQ′

⊗

RV

JQfx
∼= JQ ⊕ (Ra ⊗ p).

In this way, we have a direct sum decomposition of complexes,

JQ′fx
∼= (Rv → Ra)

⊕

JQfx.

The component (Rv → Ra) is acyclic, whilst the component JQfx is quasi-

isomorphic to Rx.

Analogously,

JQ′(n, r)fx =

Sv(n, r) → Sv(n, r− 1)⊗C1 → Sv(n, r− 2)⊗C2 → ... → Sv(n, 1)⊗Cr−1 → Cr,

where

Cj = SQ′(n, j)
⊗

SV (n,j)

JQ(n, j)fx

∼=
j

⊕

i=0

JQ(n, i)fx ⊗





∨

a

(n, j − i)
⊗

SV (n,r)

Sp(n, r)



 .

Here,
∨

a(n) is our notation for the fixed points of Σr on the super tensor

product (EndR(Ra⊕n))⊗r. In this way, we have a direct sum decomposition of

complices,

JQ′(n, r)fx
∼=

r
⊕

i=0

Wi,

where

W0 = JQ(n, r)fx,
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and

Wi
∼=

(

Sv(n, i) → Sv(n, i − 1) ⊗
∨

a

(n, 1) → ... →
∨

a

(n, i)

)

⊗ JQ(n, r − i)fx,

for i > 0.

Whilst i > 0, the complex Wi can be thought of as a tensor product of the

Koszul complex
(

(Mn(Rv) → Mn(Ra))⊗i
)Σi ∼=

Sv(n, i) → Sv(n, i − 1) ⊗
∨

a

(n, 1) → ... →
∨

a

(n, i),

for the space Mn(Ra) = EndR(Ra⊕n), with JQ(n, r − i). The Koszul complex

is acyclic, and thus Wi is acyclic, for i > 0.

Therefore, JQ′(n, r)fx is quasi-isomorphic to W0 = JQ(n, r)fx, which de-

fines a resolution of Sx(n, r), by the induction hypothesis. This completes the

proof of the proposition. ¤

Corollary 19

Ext∗SQ(n,r)(SV (n, r),SV (n, r)) ∼= TQop(n, r).¤

Let us write I for the set of V -tuples i = (iv)v∈V of elements iv ∈ Z≥0, such

that
∑

v∈V iv = r.

We have a direct sum decomposition of algebras,

SV (n, r) ∼=
⊕

i∈I,
P

v∈V iv=r

(

⊗

v∈V

S.(n, iv)

)

.

We write ξi for the unit element of the component
(
⊗

v∈V S.(n, iv)
)

of SV (n, r).

By definition, the set V embeds in Q. Correspondingly, SV (n, r) embeds as

a unital subalgebra in SQ(n, r). We may therefore think of ξi as an element of

SQ(n, r).

Definition 20 Let KQ(n, r) be the complex of SQ(n, r)-TQop(n, r)-bimodules,

KQ(n, r) = SQ(n, r)
⊗

SV (n,r)

TQ(n, r),

with Koszul differential, and homological grading

KQ(n, r) =
⊕

j≥0

Kj
Q(n, r),
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Kj
Q(n, r) =

⊕

i∈I,
P

V η(v)iv=j



SQ(n, r)
⊗

SV (n,r)

ξiTQ(n, r)



 .

We have

KQ(n, r) ∼=
⊕

i∈I

JQ(n, r)ξi[
∑

V

η(v)iv],

as complices of SQ(n, r)-SV (n, r)-bimodules.

Theorem 21 KQ(n, r) is a tilting complex of SQ(n, r)-TQop(n, r)-bimodules.

There is a derived equivalence,

Db(SQ(n, r) − mod) ∼= Db(TQop(n, r) − mod).

Proof:

This is an application of theorem 4. We put A = SQ(n, r). We assume the

grading on A is inherited from the grading on PQ which places vertices in degree

zero, and arrows in degree one. Thus, A0 = SV (n, r). We put C = TQop(n, r),

and Y = I. We define

ζ : I → Z,

i 7→
∑

V

η(v)iv,

and identify the ξi defined above with idempotents ξy, y ∈ Y. The hypotheses

of theorem 4 apply, and consequently the present theorem holds. ¤

Corollary 22 The action of TQop(n, r) on KQ(n, r) defines a quasi-isomorphism

of complices of TQop(n, r)-TQop(n, r)-bimodules,

Υ(n, r) : TQop(n, r) → HomSQ(n,r)−mod(KQ(n, r),KQ(n, r)).

The dual map defines a quasi-isomorphism of complexes of TQop(n, r)-TQop(n, r)-

bimodules,

Υ(n, r)∗ : KQ(n, r)∗
⊗

SV (n,r)

KQ(n, r) → BQop(n, r).¤

Equivalences IV. Doubles.

Let Q be a quiver. We write AQ(n) for the graded dual of SQ(n), and BQ(n)

for the graded dual of TQ(n).

We write DQ(n) for D(PQ)(n). We write EQ(n) for D(RQ)(n). Thus,

DQ(n) = SQ(n) ⊗AQ(n),
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EQ(n) = TQ(n) ⊗ BQ(n).

We have algebra direct sum decompositions,

DQ(n) =
⊕

r≥0

DQ(n, r),

EQ(n) =
⊕

r≥0

EQ(n, r).

Let n ≥ r. For the rest of this section, we again assume that Q be a quiver,

whose underlying graph is a finite, connected tree. In this section, we prove the

derived equivalence of DQ(n, r), EQop(n, r).

Definition 23 Let TQ(n, r) be the complex of DQ(n, r)-modules, given by

TQ(n, r) = DQ(n, r)
⊗

SQ(r,r)

KQ(n, r).

Remark 24 Since TQ(n, r) is a projective SV (n, r)-module, we have,

TQ(n, r) ∼= DQ(n, r)
⊗

SV (n,r)

TQ(n, r),

as DQ(n, r)-TQop(n, r)-bimodules.

Taking the endomorphism ring of TQ(n, r) in the category of modules, we

obtain a dg algebra,

EQ(n, r) = EndDQ(n,r)−mod(TQ(n, r)).

Lemma 25

EQ(n, r) ∼= TQop(n, r)
⊗

SV (n,r)

DQ(n, r)
⊗

SV (n,r)

TQ(n, r),

as TQop(n, r)-TQop(n, r)-bimodules.

Proof:

EQ(n, r) = EndDQ(n,r)(TQ(n, r)) ∼=

HomDQ(n,r)



DQ(n, r)
⊗

SV (n,r)

TQ(n, r),DQ(n, r)
⊗

SV (n,r)

TQ(n, r)




∼=
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HomSV (n,r)



TQ(n, r),HomDQ(n,r)(DQ(n, r),DQ(n, r)
⊗

SV (n,r)

TQ(n, r))




∼=

HomSV (n,r)



TQ(n, r),DQ(n, r)
⊗

SV (n,r)

TQ(n, r)




∼=

TQop(n, r)
⊗

SV (n,r)

DQ(n, r)
⊗

SV (n,r)

TQ(n, r).¤

Definition 26 Let r1 + r2 = r. Let

EQ(n, r1, r2) = TQop(n, r)
⊗

SV (n,r)

(SQ(n, r1) ⊗AQ(n, r2))
⊗

SV (n,r)

TQ(n, r).

Lemma 27 There is a direct sum decomposition of complexes of TQop(n, r)-

TQop(n, r)-bimodules,

EQ(n, r) ∼=
⊕

r1+r2=r

EQ(n, r1, r2).

Proof:

By definition,

DQ(n, r) =
⊕

r1+r2=r

SQ(n, r1) ⊗AQ(n, r2)

as SQ(n, r)-SQ(n, r)-bimodules. Therefore,

EQ(n, r) ∼=
⊕

r1+r2=r

EQ(n, r1, r2),

as an SQ(n, r)-SQ(n, r)-bimodule. We need to check that the differential on

EQ(n, r) honours this direct sum decomposition. It is enough to check this

over Z, and therefore over its field of fractions Q. Note that SV (n, r) is Morita

equivalent to QV oΣr, over Q. It is therefore enough to observe a corresponding

decomposition for the complex EQ oΣr of QV oΣr-QV oΣr-bimodules. However,

we know that

EQ = El
Q ⊕ Er

Q,

as complexes, and therefore we have isomorphisms of complexes,

EQ o Σr = E⊗r
Q ⊗ Σr

∼=

⊕

r1+r2=r









⊕

σ∈Σr/(Σr1
×Σr2

)

(El⊗r1

Q ⊗ Er⊗r2

Q )σ



 ⊗ Σr



 ,
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where the (r1, r2) summand corresponds to SQ(n, r1) ⊗ AQ(n, r2). This com-

pletes the proof of the lemma. ¤

The following technical lemma, and its corollary, can be interpreted thus:

when you tensor up Schur algebras, the resulting bimodule is the only thing it

could possibly be.

Lemma 28 Let r ∈ Z≥0. Let ri, si ∈ Z≥0, for i = 1, ..., k, such that
∑

i ri =
∑

i si = r. Then there is an isomorphism,

(

k
⊗

i=1

S(n, ri)

)

⊗

S(n,r)

(

k
⊗

i=1

S(n, si)

)

∼=

⊕

ti
j∈Z≥0,i,j=1,...,r,

P

i ti
j=rj ,

P

j ti
j=si





k
⊗

i,j=1

S(n, tij)



 ,

as
(

⊗k
i=1 S(n, ri)

)

-
(

⊗k
i=1 S(n, si)

)

-bimodules. ¤

Corollary 29

(SV (n, r1) ⊗ SV (n, r2))
⊗

SV (n,r)

TQ(n, r) ∼= TQ(n, r1) ⊗ TQ(n, r2),

as SV (n, r)-TQop(n, r)-bimodules.

TQop(n, r)
⊗

SV (n,r)

(SV (n, r1) ⊗ SV (n, r2)) ∼= TQop(n, r1) ⊗ TQop(n, r2),

as TQop(n, r)-SV (n, r)-bimodules. ¤

Lemma 30 There is an isomorphism of complexes of TQop(n, r)-TQop(n, r)-

bimodules,

EQ(n, r1, r2) ∼=

(

EndSQ(n,r1)(KQ(n, r1))
)

⊗



KQ(n, r2)
∗

⊗

SQ(n,r2)

KQ(n, r2)



 ,

where the lower expression is thought of as a tensor product of complexes,

HomSQ(n,r1)(KQ(n, r1),KQ(n, r1)) , KQ(n, r2)
∗

⊗

SQ(n,r2)

KQ(n, r2),

whose differentials are inherited from the differentials on KQ(n, r1),KQ(n, r2).
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Proof:

We have

EQ(n, r1, r2) =

TQop(n, r)
⊗

SV (n,r)

(SQ(n, r1) ⊗AQ(n, r2))
⊗

SV (n,r)

TQ(n, r) ∼=

TQop(n, r)
⊗

SV (n,r)

(SV (n, r1)⊗SV (n, r2))
⊗

SV (n,r1)⊗SV (n,r2)

(SQ(n, r1)⊗AQ(n, r2))

⊗

SV (n,r1)⊗SV (n,r2)

(SV (n, r1) ⊗ SV (n, r2))
⊗

SV (n,r)

TQ(n, r) ∼=

(TQop(n, r1) ⊗ TQop(n, r2))
⊗

SV (n,r1)⊗SV (n,r2)

(SQ(n, r1) ⊗AQ(n, r2))

⊗

SV (n,r1)⊗SV (n,r2)

(TQ(n, r1) ⊗ TQ(n, r2)) ∼=



TQop(n, r1)
⊗

SV (n,r1)

SQ(n, r1)
⊗

SV (n,r1)

TQ(n, r1)



⊗



TQop(n, r2)
⊗

SV (n,r2)

AQ(n, r2)
⊗

SV (n,r2)

TQ(n, r2)




∼=

(

EndSQ(n,r1)−mod(K(n, r1))
)

⊗



K(n, r2)
∗

⊗

SQ(n,r2)

K(n, r2)



 .¤

Lemma 31 The homology of EQ(n, r1, r2) is concentrated in degree zero. There

is an isomorphism of TQop(n, r)-TQop(n, r)-bimodules,

ΦQ(n, r1, r2) : TQop(n, r1) ⊗ BQop(n, r2) → H0(EQ(n, r1, r2)).

Proof:

The complexes

HomSQ(n,r1)(KQ(n, r1),KQ(n, r1)) , KQ(n, r2)
∗

⊗

SQ(n,r2)

KQ(n, r2),

both have homology concentrated in degree zero, and their zeroth homologies

are isomorphic to

TQop(n, r1) , BQop(n, r2),

respectively. Lemma 30 implies the existence of ΦQ(n, r1, r2). ¤
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Corollary 32 TQ(n, r) is a tilting complex for DQ(n, r). There is an isomor-

phism of TQop(n, r)-TQop(n, r)-bimodules,

ΦQ(n, r) : EQop(n, r) → H0(EQ(n, r)).

Proof:

By definition,

EQop(n, r) =
⊕

r1+r2=r

TQop(n, r1) ⊗ BQop(n, r2).

By lemma 27,

EQ(n, r) ∼=
⊕

r1+r2=r

EQ(n, r1, r2),

as complices of TQop(n, r)-TQop(n, r)-bimodules. By lemma 31, EQ(n, r1, r2) has

homology concentrated in degree zero. Therefore, EQ(n, r) has homology con-

centrated in degree zero, and TQ(n, r) is a tilting complex. We define ΦQ(n, r)

to be the sum of isomorphisms

ΦQ(n, r1, r2) : TQop(r, r1) ⊗ BQ(r, r2) → H0(EQ(n, r1, r2)).

¤

We wish to show that ΦQ(n, r) is an algebra homomorphism. The follow-

ing lemma allows us to reduce the pursuit of algebra homomorphisms from

EQop(n, r) to the pursuit of algebra homomorphisms from VQop o Σr.

Lemma 33 Let A be an algebra, containing a subalgebra S. Let ξ ∈ S be an

idempotent, such that A is generated by the subalgebras ξAξ, S. Suppose that

φ : A → B

is a morphism of S-S-bimodules, and that

φξAξ : ξAξ → φ(ξ)Bφ(ξ)

is an algebra homomorphism. Then φ is an algebra homomorphism. ¤

If A is a super-algebra, we denote by A o Σr the super-wreath product of

A with Σr. Note that A o Σr is not isomorphic to the wreath product of the

associative algebra A with Σr.
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Lemma 34 Suppose that A,B are super-algebras over K, that X is a tilting

complex of A-supermodules, and that

Ψ : B → EndDb(A−mod)(X)

is an isomorphism of super-algebras. Then the map,

Ψ o Σr : B o Σr → EndDb(AoΣr−mod)(X o Σr)

is an isomorphism of super-algebras.

Proof:

B o Σr → HomDb(AoΣr)(A o Σr

⊗

A⊗r

X⊗r, A o Σr

⊗

A⊗r

X⊗r)

∼= HomDb(A⊗r)(X
⊗r, A o Σr

⊗

A⊗r

X⊗r)

∼= HomDb(A⊗r)(X
⊗r,X⊗r ⊗ RΣr)

∼= HomDb(A⊗r)(X
⊗r,X⊗r) ⊗ RΣr

∼= B o Σr.¤

Theorem 35 There is an equivalence of derived categories,

Db(DQ(r, r) − mod) ∼= Db(EQop(n, r) − mod).

Proof:

We know that TQ(n, r) is a tilting complex for DQ(n, r), and we have an

isomorphism

ΦQ(n, r) : DQ(n, r) ∼= EndDb(DQ(n,r))(TQ(n, r)).

So far, it is only clear that this is an isomorphism of TQop(n, r)-TQop(n, r)-

bimodules. To prove the theorem, we ought to show that Φ is an algebra ho-

momorphism. Indeed, assuming the multiplicativity of Φ, these algebras must

have equivalent derived categories by Rickard theory, since TQ(n, r) is a tilt-

ing complex for DQ(n, r), whose endomorphism ring in the derived category is

isomorphic to EQop(n, r).

To prove that Φ is an algebra homomorphism, we may assume R = Z, since

Φ is compatible with base change. In fact, since Z is a subring of Q, we may

assume R = Q. We know that the map

EQop(1, 1) o Σr
∼= EndDb(UQoΣr)(TQ o Σr)
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is an algebra homomorphism, by proposition 34. That is to say, the map,

ξn,rEQop(n, r)ξn,r
∼= EndDb(ξn,rDQ(n,r)ξn,r)(ξn,rTQ(n, r)ξn,r)

is an algebra homomorphism. However, because R = Q, we know that EQop(n, r)

is Morita equivalent to VQop o Σr, by corollary 16. EQop(n, r) is therefore gen-

erated by the subalgebras SV (n, r), and ξn,rEQop(n, r)ξn,r. By lemma 33, the

map

λ−1µ : QEQop(n, r) ∼= EndDb(DQ(n,r))(TQ(n, r))

is an algebra homomorphism, as required. ¤

We have the following theorem:

Theorem 36 ([18], theorem 154) Let Q,Q′ be finite quivers, with the same

underlying graph Γ. Then, DQ(n, r) ∼= DQ′(n, r). ¤

Corollary 37 Let Q,Q′ be finite quivers, with the same underlying graph Γ.

Suppose that Γ is a tree. Then,

Db(EQ(n, r) − mod) ∼= Db(EQ′(n, r) − mod).¤

Equivalences V. Deformations of doubles.

Let n ≥ r, and let Q be a finite Dynkin quiver, of type A. We define one

parameter polynomial deformations DQ(n, r), EQ(n, r) of DQ(n, r), EQ(n, r). We

prove the derived equivalence of DQ(n, r), EQop(n, r).

We have conjectured that the algebras DQ(n, r) possess certain deformations,

and proved the existence of such deformations, in type A [19]. We summarise

our construction here. It is based on a pair of theorems, which we restate below

as theorems 38 and 40.

Given a graded algebra A =
⊕

i∈Z+ Ai, let A>0 =
⊕

i>0 Ai, and let A! =

Ext∗A(A0∗, A0∗).

Theorem 38 Let Γ̃ be an affine Dynkin graph of type A. Let ΠΓ̃(n) be the

Schur algebra of the preprojective algebra of Γ̃. Let Q̃ be an orientation of Γ̃,

and let n ≥ r. Then

ΠΓ̃(n, r)! ∼= DQ̃(n, r),

DQ̃(n, r)! ∼= ΠΓ̃(n, r).¤
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Here, the degree zero parts of ΠΓ̃(n, r),DQ̃(n, r) are both isomorphic to

SṼ (n, r), where Ṽ is the set of vertices of Γ̃. When one forms its Schur algebra,

one thinks of ΠΓ̃ as concentrated in parity zero.

Definition 39 Let A and B be Z+-graded k-algebras. An algebra C is a graded

multiplicative extension of A by B if we have a graded algebra embedding

iC : A0 ⊗ B ↪→ C,

and a graded algebra epimorphism

πC : C ³ A ⊗ B0,

such that

1. The following diagram commutes:

C
πC

## ##GGGGGGGGG

A0 ⊗ B
- °

iC

;;wwwwwwwww iA⊗πB // A ⊗ B0.

where iA : A0 ↪→ A denotes the natural embedding, and πB : B → B0 the natural

projection.

2. The left and right actions of B on C are free, and commute.

3. We have C ⊗
B

B>0 = B>0 ⊗
B

C = ker(πC).

We draw a graded multiplicative extension of A by B thus:

C

## ##GGGGGGGGG

A0 ⊗ B
- °

;;wwwwwwwww

A ⊗ B0.

Theorem 40 Let C be a graded multiplicative extension,

C

## ##GGGGGGGGG

A0 ⊗ B
- °

;;wwwwwwwww

A ⊗ B0.

Suppose that AA0 , BB0 , CA0⊗B are projective modules, and that AA0∗, BB0∗

possess linear resolutions of the form,

... → A ⊗A0 A2!∗ → A ⊗A0 A1!∗ → A ⊗A0 A0!∗ → A0∗,
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... → B ⊗B0 B2!∗ → B ⊗B0 B1!∗ → B ⊗B0 B0!∗ → B0∗,

where Ai!, Bi! are finite dimensional modules over A0, B0, for i ≥ 0. Then CC0∗

possesses a linear resolution of the form

... → C ⊗C0 C2!∗ → C ⊗C0 C1!∗ → C ⊗C0 C0!∗ → C0∗,

and C ! is a graded multiplicative extension,

C !

%% %%JJJJJJJJJJ

B!0 ⊗ A!
, ¯

;;vvvvvvvvv

B! ⊗ A!0.¤

To deform DQ̃(n, r), one first observes the presence of a distinguished cen-

tral quadratic element a in ΠΓ̃(n, r). One then defines a multiplicative ex-

tension ΠΓ̃(n, r) = R[λ] ⊗ S(ΠΓ̃)(n, r)/(λ2 − a) of ΠΓ̃(n, r) by the Koszul al-

gebra R[λ]/λ2. Here, ΠΓ̃ and R[λ] are thought of as super-algebras, whose

Z/2-gradings are inherited from their Z+-gradings.

Definition 41

DQ̃(n, r) = ΠΓ̃(n, r)!

The Koszul dual of R[λ]/λ2 is a polynomial ring R[ζ] in one variable. By

theorem 40, DQ̃(n, r) is a multiplicative extension of R[ζ] by DQ̃(n, r). Since λ

super-commutes with ΠΓ̃(n, r), the variable ζ commutes with DQ̃(n, r). There-

fore, DQ̃(n, r) is a one-parameter deformation of DQ̃(n, r).

Removing a vertex v from the graph Γ̃, one obtains an ordinary Dynkin graph

Γ, of type A. Removing v, from the quiver Q̃, one obtains an orientation Q of

Γ. Cutting DQ̃(n, r) at the corresponding idempotent fV , one obtains DQ(n, r).

Cutting D̃Q̃(n, r) at fV , one obtains a deformation DQ(n, r) of DQ(n, r).

Remark 42 We are lucky that we can define a deformation of DQ(w,w) so

easily. Fortunately, DQ̃(n, r) has a homological dual, ΠΓ̃(n, r), which is an

associative algebra. In general, the homological dual of an algebra is an A∞-

algebra.

Example 43 Let Q̃ have p vertices. In case w = 1, the R[ζ]-algebra DQ̃(1, 1)

is isomorphic to the the R[ζ]-algebra generated by the quiver,
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.. ..

.. ..

.. ..

0

p−1

p−2

1

2

a

a a

a

b

b b

b

modulo relations aibi + bi−1ai−1 + ζ2vi = 0. Here, vi represents the vertex

i, and ai (respectively bi) represents the arrow from vertex i to vertex i + 1

(respectively vertex i + 1 to vertex i), given i ∈ Z/p.

Lemma 44 Let Q be a Dynkin quiver, of type A. The algebra embedding,

SQ(n, r) ↪→ DQ(n, r)

lifts to an algebra embedding,

SQ(n, r) ↪→ DQ(n, r).

We have,

DQ(n, r) ∼= R[ζ] ⊗DQ(n, r),

as R[ζ]-SQ(n, r)-SQ(n, r)-trimodules.

Proof:

It is sufficient for us to prove this theorem for the affine quiver Q̃, of type

A. One approach to this uses homological algebra. There is a commutative

diagram of algebra homomorphisms,

ΠΓ̃(n, r) Â Ä //

%% %%KKKKKKKKKK
ΠΓ̃(n, r)

yyyyssssssssss

TQ̃(n, r)

giving rise to a commutative diagram of exact functors

ΠΓ̃(n, r) − mod ΠΓ̃(n, r) − modoo

TQ̃(n, r) − mod
U5

hhQQQQQQQQQQQQQ ) ª

66mmmmmmmmmmmmm
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which extend to exact functors

D(ΠΓ̃(n, r)) D(ΠΓ̃(n, r))oo

D(TQ̃(n, r))
T4

ggOOOOOOOOOOO * ­

77ooooooooooo

The degree zero parts of our three algebras are all isomorphic to SṼ (n, r), and

ExtiA(M,N) ∼= HomD(A)(M,N [i]). Therefore, we have a commutative dia-

gram

ΠΓ̃(n, r)! ΠΓ̃(n, r)!oooo

TQ̃(n, r)!
S3

eeKKKKKKKKKK + ®

99ssssssssss

which is a commutative diagram

DQ̃(n, r) DQ̃(n, r)oooo

SQ̃(n, r)
S3

eeKKKKKKKKKK + ®

99ssssssssss

as required. Since its construction is entirely homological, the R[ζ]-module

decomposition,

DQ̃(n, r) ∼= R[ζ] ⊗DQ̃(n, r),

can also be taken to be a decomposition of SQ̃(n, r)-SQ̃(n, r)-bimodules. ¤

Definition 45 Let

TQ(n, r) = DQ(n, r)
⊗

SQ(n,r)

KQ(n, r).

Theorem 46 Let Q be an ordinary Dynkin quiver, of type A. Then TQ(n, r) is

a tilting complex for DQ(n, r). Its endomorphism ring in the derived category,

EndDb(DQ(n,r)−mod), is a deformation EQop(n, r) of EQop(n, r). There is an

equivalence of derived categories,

Db(DQ(r, r) − mod) ∼= Db(EQop(n, r) − mod).

¤
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Proof:

By lemma 25, and lemma 44, we have

EQ(n, r) = EndDQ(n,r)(TQ(n, r)) ∼=

TQop(n, r)
⊗

SV (n,r)

DQ(n, r)
⊗

SV (n,r)

TQ(n, r) ∼= R[ζ] ⊗ EQ(n, r),

as dg R[ζ]-TQop(n, r)-TQop(n, r)-trimodules. This complex has homology con-

centrated in degree zero, and R[ζ] acts freely. Modulo ζ, we have the complex

EQ(n, r), which is quasi-isomorphic to EQop(n, r). Therefore, its endomorphism

ring in the derived category is a deformation

EQop(n, r) = R[ζ] ⊗ EQop(n, r),

of EQop(n, r). ¤

Dreams and reflections.

Let p be a prime number. Let (K,O, k) be a p-modular system.

We have made a detailed study of Rock blocks of symmetric groups [18]. We

made the following conjecture...

Conjecture 47 Let Q be an orientation of the Dynkin quiver Ap−1. Every Rock

block of a symmetric group, of weight w, is Morita equivalent to DQ(w,w), over

k.

Thanks to the work of Chuang and Rouquier [7], we have the following

equivalent conjecture:

Conjecture 48 Let Q be an orientation of the Dynkin quiver Ap−1. Every

symmetric group block of weight w is derived equivalent to DQ(w,w), over k.

After theorem 35, we now have the following equivalent conjecture.

Conjecture 49 Let Q be an orientation of the Dynkin quiver Ap−1. Every

symmetric group block of weight w is derived equivalent to EQ(w,w), over k.

Originally, we defined the deformations DQ(n, r) in order to compare the

algebras DQ(n, r) with the Cubist algebras, another family of algebras which

are also related to blocks of symmetric groups [8]. However, it appears these

deformations may play a more fundamental role: they provide interesting O-

forms for the algebras kDQ(n, r). We assume that
√

p ∈ O.
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Conjecture 50 Let Q be an orientation of the Dynkin quiver Ap−1. Every

Rock block of a symmetric group, of weight w, is Morita equivalent to

DQ(w,w)/(ζ −√
p),

over O. Every symmetric group block of weight w, is derived equivalent to

DQ(w,w)/(ζ −√
p),

over O.

Thanks to theorem 46, we have the following equivalent conjecture:

Conjecture 51 Let Q be an orientation of the Dynkin quiver Ap−1. Every

symmetric group block of weight w is derived equivalent to

EQ(w,w)/(ζ −√
p),

over O.

Remark 52 In case w = 1, blocks of symmetric groups of weight one are

Morita equivalent over O to the path algebra of the quiver,

1 2 3 p−1 p

a

b

a

b

a

b

............

modulo relations aibi + bi−1ai−1 +pvi = 0, where vi represents the vertex i, and

ai (respectively bi) represents the arrow from vertex i to vertex i+1 (respectively

vertex i + 1 to vertex i), for i = 1, ..., p − 1.

By comparison with example 43, we see that over O, this algebra is isomor-

phic to DQ(1, 1)/(ζ − √
p), whenever Q is an orientation of Ap−1. Therefore,

conjectures 50, and 51 hold in case w = 1. By the work of Chuang and Kessar

[6], the conjectures also hold in case w < p.

Remark 53 It is possible to define subalgebras of DQ(n, r), EQ(n,w) which

are multiplicative extensions of DQ(n, r), EQ(n, r) by O[ζ2] [19]. Working with

these deformations instead, we can remove the assumption that
√

p ∈ O.

Remark 54 Let X = DQ(w,w) (respectively EQ(w,w)) and let X = DQ(w,w)

(respectively EQ(w,w)). Let us choose a splitting X = O[z]⊗X . Given x, y ∈ X ,
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we write xy =
∑

ζi⊗(xy)i, where (xy)i ∈ X . We can lift the nondegenerate, as-

sociative, symmetric bilinear form <,> on X , with values in O, to an associative

form (, ) on X , with values in O[ζ], via the formula

(x, y) =
∑

< 1, (xy)i > zi.

Passing to the quotient O[ζ]/(ζ − √
p) ∼= O, we obtain an associative bilinear

form (, )p on Xp = X/(ζ − √
p). Over k, the forms (, )p, <,> are identical

forms on Xp. Therefore, (, )p is non-degenerate over k, and consequently non-

degenerate over O.

In conclusion, we have defined a bilinear form on Xp which is non-degenerate,

and associative. Thus, Xp is a Frobenius algebra, over O.

Remark 55 When Q is the quiver of type A2, the Brauer tree algebras UQ,

and VQop are isomorphic. However, DQ(n, r) and EQop(n, r) are not Morita

equivalent in this case, for r > 1.

Remark 56 There ought to be braid group actions on the derived categories of

DQ(n, r), EQ(n, r), generalising those of Rouquier-Zimmermann [16], and Seidel-

Thomas [17].

Remark 57 Let A be a block of a symmetric group G. Let D be a defect

group of A. Then D contains an elementary abelian p-subgroup E, such that

NG(E) > NG(D). Let B be the Brauer correspondent of A in NG(E). The

truth of conjecture 50 would imply the existence of an algebra E , containing an

idempotent e, such that A is derived equivalent to E , and B is Morita equivalent

to eEe.

Remark 58 In this paper, we have considered Schur bialgebras of the form,

S(A) =
⊕

r≥0

(A⊗r)Σr ,

where A is an associative algebra. Another way to generalise the classical Schur

bialgebra is the following:

Let B be a bialgebra, and let V be a B-module. Let φr : B → End(V ⊗r) be

the natural map corresponding to the action of B on V ⊗r. Let S(B, V )(r) =
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im(φr), and let

S(B, V ) =
⊕

r≥0

S(B, V )(r).

Given r1, r2, such that r1 + r2 = r, we have V ⊗r = V ⊗r1 ⊗ V ⊗r2 . There is

consequently an algebra homomorphism

∆r1,r2
: S(B, V )(r) → S(B, V )(r1) ⊗ S(B, V )(r2).

The map

∆ =
∑

r1,r2≥0

∆r1,r2
: S(B, V ) → S(B, V ) ⊗ S(B, V )

is a coproduct, giving S(B, V ) the structure of a bialgebra.

The bialgebra S(U(gln), E) associated to the universal enveloping algebra of

gln and its n dimensional irreducible module E, is the classical Schur bialgebra

S.(n).

So long as V is finite dimensional, one can take the double of S(B, V ), and

obtain a symmetric algebra with finite dimensional components. Are these of

any interest, for example when B is the enveloping algebra of a classical Lie

algebra, and V its natural module ?
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