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Abstract

This paper encircles the Schiver doubles, introduced in the article
“Rock blocks” [26]. The doubles are a gang of symmetric algebras DΓ(n),
an algebra being associated to each graph Γ, and natural number n.

We discuss algebraic relations between the Schiver doubles, and six
other families of algebras... blocks of symmetric groups, Zigzag algebras,
Preprojective algebras, Rhombal algebras, symplectic reflection algebras,
and blocks of category O.

One unifying concept is that of a multiplicative extension of algebras,
which is an analogue, in the category of algebras, of the concept of a group
extension, in the category of groups. A second is homological duality.
We prove that, under favourable conditions, the homological dual of a
multiplicative extension is a multiplicative extension of homological duals.

Summary.

An investigation into blocks of symmetric groups over fields of finite charac-

teristic encouraged the definition of certain finitely generated algebras, named

“Schiver doubles” [26]. Conjecturally, every block of a symmetric group is de-

rived equivalent to a Schiver double, corresponding to an ordinary Dynkin graph

of type A. We review this conjecture, and make a precise comparison between

Schiver doubles, and wreath products of zigzag algebras. We consequently de-

scribe a homological duality between Schiver doubles of affine type A, and Schur

algebras associated to the corresponding preprojective algebra.

Following these results, we propose the existence of a pair of generalisations.

First, algebras enveloping M. Peach’s Rhombal algebras [20] at one limit,

and realising the Schiver doubles at a separate limit. These essentially corre-

spond to polynomial deformations of the Schiver doubles. Such deformations

are analogous to certain deformations of S(V +V ∗)oG which define symplectic

reflection algebras.
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We next define Koszul algebras over any field, which are equivalent, over

C, to blocks of category O. We exhibit a relation between these algebras, and

tensor powers of zigzag algebras. Indeed, our second generalisation, describes

extensions of such tensor powers by algebraic representatives of blocks of O.

Introduction.

The Rock blocks are a collection of blocks known to be a set of derived rep-

resentatives for all blocks of symmetric groups [5]. J. Chuang and R. Kessar

proved a structure theorem for Rock blocks of symmetric groups of abelian de-

fect, in [4]. In [26], I proposed a generalisation of Chuang and Kessar’s theorem

to arbitrary defect, and made steps towards proving it. I conjectured the blocks

should be equivalent to Schiver doubles, finite dimensional algebras which re-

semble fat wreath products. The Schiver doubles, and a soap opera of related

families of algebras, are the subject of this note.

It is not immediately clear to me how Schiver doubles should be judged.

Should they be weighed as an interesting quirk of symmetric group blocks, a

momentary glimpse into the murky world of nonabelian defect whose general

consequence is slight ? Or can they be perceived to be of weightier significance,

genuine Rocks upon which a solid foundation can be built ?

Is my conjecture correct ? Some scepticism was expressed by experts at

a recent conference I attended in Banff [2], their suspicion being aroused by

the fact the Schiver doubles are Z+-graded in a natural way. The existence

of such gradings on blocks of symmetric groups of nonabelian defect would be

surprising. However, I know of no counterexample, and all the evidence of which

I am aware suggests such a grading. Indeed, naively accepting the truth of this

conjecture, we can innocently ask further questions. Is it possible to describe

more sophisticated finite dimensional algebras, which are Morita equivalent to

more general blocks of symmetric groups ? The representation of Rock blocks

by Schiver doubles could be one small aspect of a greater phenomenon.

In this paper, we develop this possibility, encouraged by results of M. Peach

[20], who has defined a collection of “Rhombal algebras”, which are related to

weight two blocks of symmetric groups. To be precise, the unramified region

of a weight two symmetric group block, is Morita equivalent to a region of

some Rhombal algebra. We seek algebras which generalise both the Schiver

doubles, and the Rhombal algebras. Such would be certain subquotients of

polynomial deformations of Schiver doubles, whose existence we predict. We

prove their existence in type A. These deformations suggest a union between

Schiver doubles, and symplectic reflection algebras in the “wreath product case”

[13].
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In early sections, we discuss relations between Schiver doubles and wreathed

Zigzag algebras, and an interesting homological duality involving the Schur al-

gebra of a preprojective algebra. These make our new definition possible.

We would like yet more subtle generalisations of the Schiver doubles. Such

are not apparent to me at the moment. However, given the sympathy between

Schiver doubles and tensor powers of Zigzag algebras, generalisations of these

latter algebras may be suggestive.

In the final section of the paper we develop this idea. We unveil extensions

of tensor powers of Zigzag algebras, by algebraic analogues of principal blocks of

category O. Here, O is the highest weight category of modules for a semisimple

Lie algebra defined by J. Bernstein, I. Gelfan’d, and S. Gelfan’d.

We wish always, if possible, to work over fields of positive characteristic.

With this in mind, in a latter section of this paper we define algebras, over

fields of positive characteristic, whose module categories behave structurally

like categories O. It is only possible to perform this sculpture, after we have

plundered deep geometric results of W. Soergel concerning category O.

The methods of this paper are mostly homological. The general idea which

unites our constructions is that of a multiplicative extension of algebras. Ex-

amples of such extensions are group algebras of group extensions, and algebra

deformations. Our definition of multiplicative extension possesses an intrinsic

symmetry, which allows us to prove that under agreeable circumstances, the

homological dual of a multiplicative extension is a multiplicative extension of

homological duals.

Our paper is concerned with, in writing, a septuple of familiar algebras:

Schiver doubles, blocks of symmetric groups, Zigzag algebras, Preprojective al-

gebras, Rhombal algebras, symplectic reflection algebras, and blocks of category

O.

I am most grateful to Joe Chuang for introducing me to the Rhombal alge-

bras, and for many interesting discussions.

Recollections.

We recall some of the principal definitions of the Schiver doubles [26], as well

as the definition of the preprojective algebra, and the zigzag algebra.

Let k be a field. Let Γ be a graph, whose set of vertices is denoted V , and

whose set of edges is denoted E. Let Q be an orientation of Γ.

Let kQ be the path algebra of Q. Let kQ(n) = EndkQ(kQ⊕n). The set

of regular functions on the affine variety kQ(n), is a bialgebra. Its polynomial

dual decomposes as a direct sum of algebras,

TQ(n, r) =
⊕

r≥0

TQ(n, r).
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Here, the rth homogeneous component TQ(n, r) = (kQ(n)⊗r)Σr is the fixed point

set of the r-fold tensor product of kQ(n), under the action of the symmetric

group Σr on r letters.

Let PQ be the path algebra of Q, modulo all quadratic relations. We define

on PQ the structure of a super-algebra, giving vertices parity 0, and arrows

parity 1. Let PQ(n) = EndPQ
(P⊕n

Q ). The set of regular functions AQ(n) on the

affine super-variety, PQ(n), is a super-bialgebra. We name the polynomial dual

of this bialgebra a Schiver bialgebra. It decomposes as a direct sum of algebras,

SQ(n) =
⊕

r≥0

SQ(n, r).

where SQ(n, r) = (PQ(n)⊗r)Σr .

Performing an algebraic double construction on SQ(n) ([26], chapter 8), we

obtain the Schiver double associated to Q,

DQ(n) = SQ(n) ⊗AQop(n).

The product is described by the diagram,

This is a symmetric, associative algebra, which is independent of the orientation

Q of Γ ([26], theorem 154). It decomposes as a direct sum of algebras,

DΓ(n) =
⊕

r≥0

DΓ(n, r).

Here, DQ(n, r) =
⊕

r1+r2=r SQ(n, r1) ⊗AQop(n, r2).

The algebra DΓ(n) is Z+-graded ([26], remark 153), its degree zero part

being,

SV (n) ∼=
⊗

v∈V

Sv(n).

Here, Sv(n) ∼= S.(n) is a classical Schur algebra [14].
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Let l be a prime number. Let Σr be the symmetric group on r letters. Any

defect group of a symmetric group l-block, is isomorphic to the Sylow l-subgroup

of Σl oΣw, for some unique number w. The definition of DΓ(n) was made, with

the expectation that the following conjecture holds.

Conjecture 1 (see [26], pg. 96) Let B be an l-block of a symmetric group,

whose defect group is equal to the Sylow l-subgroup of Σl o Σw. Then B is

derived equivalent to DAl−1
(w,w).

Let D(Γ) be the double quiver whose vertices are in one-one correspondence

with vertices V of Γ, and whose arrows A are in two-one correspondence with

the edges of Γ. Thus, an edge joining vertices v1, v2 in Γ corresponds to two

arrows in Q, one pointing from v1 to v2, the other pointing from v2 to v1.

Given a ∈ A, we denote its source s(a), and its tail t(a).

Let v be a vertex of Γ attached to two edges α, β. Let the corresponding

arrows in D(Γ) pointing towards v be labelled α1, β1. Let the corresponding

arrows pointing away from v be labelled α2, β2.

Γ : ◦
α

v
β

◦

D(Γ) : ◦
α1

((
v

α2

gg

β2
''
◦

β1

hh

Let

RΠ±
α,β,v = α2α1 ± β2β1

RZZ±
α,β,v = {α1β2, β1α2, α2α1 ∓ β2β1},

dual sets of quadratic elements of kD(Γ).

The preprojective algebra Π±
Γ is the algebra generated by the path algebra

kD(Γ), modulo the quadratic ideal generated by
⋃

α,β,v RΠ±
α,β,v (I.M. Gelfan’d,

V.A. Ponomarev, see [21]).

The zigzag algebra ZZ±
Γ is the algebra generated by the path algebra kD(Γ),

modulo the quadratic ideal generated by
⋃

α,β,v RZZ±
α,β,v (R.S. Huerfano, M.

Khovanov, see [15]).

When Γ is not a Dynkin graph, the algebras Π+
Γ , and ZZ+

Γ are in Koszul

duality, as are the algebras Π−
Γ , and ZZ−

Γ [18].

If Γ is bipartite, then Π+
Γ
∼= Π−

Γ , and ZZ+
Γ

∼= ZZ−
Γ .

Let Π±
Γ (n, 1) = EndΠΓ

(Π±⊕n
Γ ). The set of regular functions on the affine

variety Π±
Γ (n, 1), is a bialgebra. We call its polynomial dual the Schur prepro-

jective algebra. It decomposes as a direct sum of algebras,

Π±
Γ (n) =

⊕

r≥0

Π±
Γ (n, r),
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where Π±
Γ (n, r) = (Π±

Γ (n, 1)⊗r)Σr . We will write ΠΓ(n, r) for Π+
Γ (n, r) in the

sequel.

Schiver doubles and Wreath products of Zigzag algebras.

We prove that the Schiver doubles DΓ(r, r) can be thought of as chubby

wreath products of the zigzag algebra on Γ, with a symmetric group.

Let us view ZZ+
Γ as a super-algebra whose Z/2-grading is inherited from the

natural Z+-grading by quiver path length.

For r ≥ 1, we denote by ZZ+
Γ o Σr, the wreath product of the super-algebra

ZZ+
Γ , with the symmetric group Σr. It is a simple exercise to write down

generators and relations for this algebra:

Lemma 2 The super wreath product ZZ+
Γ oΣr may be described by generators,

{ev|v ∈ V r} ∪ Σr,

in degree zero; by generators,

{qv,a,i|v ∈ V r−1, a ∈ A, 1 ≤ i ≤ r},

in degree one; and by relations,

ev.ew = δv,w.ev,

for v, w ∈ V r

σ.ev = eσ(v).σ,

for v ∈ V r, σ ∈ Σr.

ev.qw,a,i = δv,(w1,..,wi−1,s(a),wi,...,wr−1).qw,a,i,

qw,a,i.ev = δ(w1,..,wi−1,t(a),wi,...,wr−1),v.qw,a,i,

for v ∈ V r, w ∈ V r−1, a ∈ A, 1 ≤ i ≤ r.

σ.qv,a,i = q(vσ1,...,v
σ(σ−1i−1),vσ(σ−1i+1),...,vσr),a,σi,

for a ∈ A, v ∈ V r−1, σ ∈ Σr, 1 ≤ i ≤ r.

Let v be a vertex of Γ attached to two edges α, β. Let the corresponding

arrows in D(Γ) pointing towards v be labelled α1, β1. Let the corresponding

arrows pointing away from v be labelled α2, β2. Let v ∈ V r−1, and 1 ≤ i ≤ r.

Then,

qv,α1,i.qv,β2,i = 0,

qv,β1,i.qv,α2,i = 0,
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qv,α2,i.qv,α1,i − qv,β2,i.qv,β1,i = 0.

Let a, b ∈ A, v, w ∈ V r−1, i 6= j.

qv,a,i.qw,b,j + qw,b,j .qv,a,i = 0.

¤

As we have already noted, DΓ(n) is Z+-graded, its degree zero part being a

tensor product of classical Schur algebras,

SV (n) ∼=
⊗

v∈V

Sv(n).

Let Ev denote the unique irreducible Sv(n, 1)-module. Let n ≥ r. Upon fixing

a basis for E, inside the direct sum,

Sv(n,≤ r) =

r⊕

i=0

Sv(n, i)

an idempotent ξv =
∑r

i=0 ξ(1i) can readily be identified ([14], section 6), such

that,

Sv(n,≤ r)ξv
∼=

r⊕

i=0

E⊗i
v .

Thus, ξV =
⊗

v∈V ξv is an idempotent in SV (n). Let ξV (n, r) be the component

of ξV in SV (n, r). Upon writing EV = ⊕V Ev, we find that,

SV (n, r)ξV (n, r) ∼= E⊗r
V .

The theorem below generalises the classical isomorphism between EndS(n,r)(E
⊗r)

and kΣr.

Theorem 3 Let n ≥ r. Then,

ξV (n, r)DΓ(n, r)ξV (n, r) ∼= ZZ+
Γ o Σr.

If k has characteristic zero, or characteristic greater than r, then DΓ(n, r) is

Morita equivalent to ZZ+
Γ o Σr.

Proof:

We have proved the isomorphism of this theorem in a more general form, in

a separate article. For a complete proof, we refer the reader to that paper [27].

In order to be explicit however, let us define elements of ξΓ(n, r)DΓ(n, r)ξΓ(n, r)

which correspond to the generators of ZZ+
Γ o Σr described in Lemma 2. If the

reader wishes, he may check that these elements are generators of the subalgebra
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ξΓ(n, r)DΓ(n, r)ξΓ(n, r), that the relations of Lemma 2 hold inside DΓ(n, r), and

that ξΓ(n, r)DΓ(n, r)ξΓ(n, r) has the same dimension as ZZ+
Γ oΣr. This is enough

to confirm the isomorphism, ξΓ(n, r)DΓ(n, r)ξΓ(n, r) ∼= ZZ+
Γ o Σr.

The symmetric group Σr acts as permutations on E⊗r
V

∼= SV (n, r)ξV (n, r).

This provides the elements Σr of degree zero in ξV (n, r)DΓ(n, r)ξV (n, r). The el-

ements e(v1,...,vr) we identify with tensors of r idempotents ξvi
(n, 1) ∈ EndSV (n,1)(Evi

).

Let a ∈ A. Let us fix an orientation Q of Γ, whose set of arrows contains a.

In this way, DΓ(n, r) = DQ(n, r) contains a subalgebra SQ(n, r). If we identify

the source and tail of a with s, t, we have,

SQ(n, r)[1]ξV (n, r)e(v1,...,vi−1,t,vi+1,...,vr)

∼= Ev1
⊗ ... ⊗ Evi−1

⊗ Es ⊗ Evi+1
... ⊗ Evr

.

where SQ(n, r)[1] is the degree one part of SQ(n, r). This implies that in degree

one,

e(v1,...,vi−1,s,vi+1,...,vr)ξV (n, r)SQ(n, r)[1]ξV (n, r)e(v1,...,vi−1,t,vi+1,...,vr)

∼= kv1
⊗ ... ⊗ kvi−1

⊗ ks ⊗ kvi+1
... ⊗ kvr

∼= k,

Our fixed basis for E identifies a natural generator for this copy of k. We identify

q(v1,...,vi−1,vi+1,...,vr),a,i with this generator.

The finite dimensional algebra DΓ(n, r) can be positively graded, with degree

zero part

SV (n, r) ∼=
⊕

rv≥0,
P

rv=r

(⊗

v∈V

Sv(n, rv)

)
.

Simple Sv(n, rv)-modules are in bijection with the set of partitions of rv. There-

fore, simple DΓ(n, r)-modules are in natural bijection with the set

Λ = {(λi)i∈V , λi ` ri,
∑

ri = r}.

If k has characteristic zero, or characteristic greater than r, then the simple

ZZ+
Γ o Σr-modules are also in natural bijection with Λ [6]. It follows that

DΓ(n, r)ξV (n, r) is a progenerator for DΓ(n, r), and the two algebras are Morita

equivalent. ¤

Homological duality.

We discuss homological duality for Z+-graded k-algebras A =
⊕

i≥0 Ai,

whose degree zero part A0 is not necessarily semisimple. We assume that Ai is

finite dimensional, for i ≥ 0.
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Definition 4 Let M = (Mi, di) be a complex of modules for a Z+-graded algebra

A. Then M is said to be linear if the differential

di : Mi → Mi+1

is a degree one map, for every i.

Given a left/right module M , let M∗ = Hom(M,k) denote the k-dual of M ,

a right/left module.

Definition 5 For a Z+-graded algebra A, let A! = Ext∗A(A0∗, A0∗) denote the

homological dual of A, taken with respect to A0∗.

Lemma 6 Suppose that A is a Z+-graded algebra, such that AA0 is a projective

module, and that AA0∗ possesses a linear resolution,

... → A ⊗A0 A2!∗ → A ⊗A0 A1!∗ → A ⊗A0 A0!∗ → A0∗,

where Ai! is a finite dimensional A0-module, for i ≥ 0. Then A!j ∼= Aj!.

Proof:

Let Âi!∗ denote a projective resolution of A0Ai!∗. Since A0A is flat, A⊗A0 Âi!∗

is a projective resolution of A ⊗A0 Ai!∗, and we can therefore manufacture a

complex of complexes

... → A ⊗A0 Â2!∗ → A ⊗A0 Â1!∗ → A ⊗A0 Â0!∗,

whose total complex is quasi-isomorphic to A0∗. Applying HomA(−, A0∗) to our

projective resolution of A0∗ gives a complex, with zero differential, of complexes

... → HomA0(Â2!∗, A0∗) → HomA0(Â1!∗, A0∗) → HomA0(Â0!∗, A0∗).

Because A0∗ is an injective A0-module, the functor HomA0(−, A0∗) is exact.

Our cohomology complex is therefore quasi-isomorphic to the complex

... → HomA0(A2!∗, A0∗) → HomA0(A1!∗, A0∗) → HomA0(A0!∗, A0∗),

all of whose differentials are zero. This is isomorphic to the complex

... → A2! → A1! → A0!,

all of whose differentials are zero. For this reason Aj! ∼= A!j . ¤

Definition 7 For a Z+-graded algebra A, let A† = Ext∗A(A0, A0) denote the

homological dual of A, taken with respect to A0.
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Lemma 8 ([29], Theorem 2.5) Suppose that A is a Z+-graded algebra, and that

AA0 possesses a linear resolution,

→ A ⊗A0 A2† → A ⊗A0 A1† → A ⊗A0 A0† → A0,

where Ai† is a finite dimensional projective A0-module, for i ≥ 0. Then A†j ∼=

Aj†, and A† is generated in degrees zero and one, modulo quadratic relations.

¤

Recall a Z+-graded algebra A is Koszul if A0 is semisimple, and possesses

a linear projective resolution. For a Koszul algebra A, the algebra A! ∼= A† is

also a Koszul algebra, known as the Koszul dual of A. In this case, A!! = A [3].

Homological duality for Schiver doubles.

When Γ is an affine Dynkin graph of type A, and n ≥ r, we prove a homo-

logical duality between DΓ(n, r), and ΠΓ(n, r).

For a quiver Q, the algebra PQ is Koszul, its dual being the path algebra

kQop. Therefore, there exists a differential kQ-PQop -bimodule, the Koszul dif-

ferential bimodule,

kQ
⊗

kV

P ∗
Qop .

We may identify P ∗
Qop with PQ, as a kV -kV -bimodule. Our differential bimodule

can therefore otherwise be written kQ
⊗

kV PQ. Restricting on the left, we

obtain a complex which provides a linear projective resolution of kQ-modules,

kQ
⊗

kV

PQ ³ kV.

In the same way, there is a differential PQ-kQop-bimodule PQ

⊗
kV kQ, restric-

tion of which provides a linear projective resolution of PQ-modules,

PQ

⊗

kV

kQ ³ kV.

We have the following generalisation of these relations. Here, we write
∨

V (n, r)

(dual to
∧

V (n, r)) for the invariant subspace of the action of Σr on (kV ⊕n)⊗r

via signed permutations:

Lemma 9 Let n ≥ r. Let Q be an orientation of a connected graph Γ, so that

each vertex is the tail and source of precisely one arrow. Thus, Γ is an affine

Dynkin graph of type A.

Then there exists a differential TQ(n, r)-SQop(n, r)-bimodule,

TQ(n, r)
⊗

SV (n,r)

SQ(n, r).
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Restricting on the left, we obtain a complex which provides a linear resolution

of left TQ(n, r)-modules,

TQ(n, r)
⊗

SV (n,r)

SQ(n, r) ³

∨
V (n, r).

There exists a differential SQ(n, r)-TQop(n, r)-bimodule,

SQ(n, r)
⊗

SV (n,r)

TQ(n, r).

Restricting on the left, we obtain a complex which provides a linear projective

resolution of left SQ(n, r)-modules,

SQ(n, r)
⊗

SV (n,r)

TQ(n, r) ³ SV (n, r).

Proof:

We prove the existence of the second of these bimodules. The first can be

observed similarly.

Let PQ o Σr be the wreath product of the super-algebra PQ, with Σr. Let

kQoΣr be the wreath product of the associative algebra kQ, with Σr. Wreathing

the Koszul complex for PQ with Σr, we obtain a differential bimodule,

PQ o Σr

⊗

kV oΣr

kQ o Σr,

providing a left resolution of kV oΣr. Applying HomPQop oΣr
(−, (P⊕n

Qop)⊗r) func-

torially on the left, and HomkQopoΣr
((kQop⊕n)⊗r,−) on the right, we obtain a

differential SQ(n, r)-TQop(n, r)-bimodule,

(P⊕n
Q )⊗r

⊗

kV oΣr

(kQ⊕n)⊗r,

providing a left resolution of SV (n, r). This differential bimodule is isomorphic

to the differential bimodule,

SQ(n, r)
⊗

SV (n,r)

TQ(n, r).

Its restriction on the left is a complex with a filtration whose top section is

SV (n, r), concentrated in degree zero, and whose other sections are sums of

tensor products over k of exact Koszul complexes of the classical form

rv⊕

j=0

(
Sv(n, j) ⊗

∨
v
(n, rv − j)

)
∼=

rv⊕

j=0

(
Si(M) ⊗

∧
rv−j(M)

)∗

,

where M = Endk(kn) (cf. [26], Theorem 180). ¤

11



Recall that DΓ(n, r) is realised as a component of a double of the super-

bialgebra,

SQ(n) =
⊕

r≥0

SQ(n, r),

where Q is some orientation of the graph Γ. The following lemma describes a

triangular decomposition for Schiver doubles associated to affine Dynkin quivers

of type A.

Lemma 10 Let n ≥ r. Let Q be an orientation of a connected graph Γ, so

that each vertex is the tail and source of precisely one arrow. Let Qop be the

orientation of Γ, opposite to that of Q. Then,

DΓ(n, r) ∼= SQ(n, r)
⊗

SV (n,r)

SQop(n, r),

ΠΓ(n, r) ∼= TQ(n, r)
⊗

SV (n,r)

TQop(n, r),

as SV (n, r)-SV (n, r)-bimodules.

Proof:

The hypotheses of the lemma allow us to identify V,E.

There is a natural subalgebras PQ (respectively PQop) of ZZΓ, generated by

all the arrows pointing clockwise (respectively anticlockwise). Multiplication

between these subalgebras brings forth a triangular decomposition,

ZZΓ = PQ

⊗

kV

PQop .

Wreathing this up, we obtain a decomposition,

ZZΓ o Σr = PQ o Σr

⊗

kV oΣr

PQop o Σr.

by Theorem 3, we have an isomorphism

φ : ξDΓ(n, r)ξ ∼= ξSQ(n, r)ξ
⊗

ξSV (n,r)ξ

ξSQop(n, r)ξ,

where ξ = ξV (n, r). We may now observe that the summand

⊗

v∈V

(
S(n, av) ⊗

∨
(n, bv) ⊗A(n, cv) ⊗

∧
(n, dv)

)
,

of DΓ(n, r) corresponds under φ to the summand

(⊗

v∈V

S(n, av + dv) ⊗
∨

(n, cv + bv)

) ⊗

SV (n,r)
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(⊗

v∈V

S(n, av + bv) ⊗
∨

(n, cv + dv)

)
,

of SQ(n, r)
⊗

SV (n,r) SQop(n, r), where
∑

av + cv + bv + dv = r. But these two

summands are isomorphic, since
∨

(n, bv) ∼=
∨

(n, bv)
⊗

S(n,bv)

S(n, bv),

A(n, cv) ∼=
∨

(n, cv)
⊗

S(n,cv)

∨
(n, cv),

∧
(n, dv) ∼= S(n, dv)

⊗

S(n,dv)

∨
(n, dv),

as SV -SV -bimodules. The second of these isomorphisms is the dual of the Ringel

self-duality isomorphism

S(n, cv) ∼= HomS(n,cv)(
∧

(n, cv),
∧

(n, cv)),

due to S. Donkin ([9], chapter 4).

The triangular decompostion for ΠΓ(n, r) is proven in the same manner. It

is in fact easier, since there is no need to invoke Ringel duality. ¤

Lemma 11 Let Q be an orientation of a connected graph Γ, so that each vertex

is the tail and source of precisely one arrow. Then there is an isomorphism of

SV (n, r)-SV (n, r)-bimodules,

TQ(n, r)
⊗

SV (n,r)

SQop(n, r) ∼= SQop(n, r)
⊗

SV (n,r)

TQ(n, r).

Proof:

Since each vertex is the tail and source of precisely one arrow, we have

kQ
⊗

kV PQop ∼= kQ⊕2, and PQop

⊗
kV kQ ∼= kQ⊕2, as kV -kV -bimodules. There-

fore

kQ
⊗

kV

PQop ∼= PQop

⊗

kV

kQ,

as kV -kV -bimodules. Schurifying this isomorphism, by wreathing it with Σr,

before applying the functor HomkV oΣr
(−, (kV ⊕n)⊗r) on the left, and the functor

HomkV oΣr
((kV ⊕n)⊗r,−) on the right, we obtain an isomorphism,

(kQ⊕n)⊗r
⊗

kV oΣr

(P⊕n
Qop)⊗r ∼= (P⊕n

Qop)⊗r
⊗

kV oΣr

(kQ⊕n)⊗r,

which can be identified as an isomorphism,

TQ(n, r)
⊗

SV (n,r)

SQop(n, r) ∼= SQop(n, r)
⊗

SV (n,r)

TQ(n, r).¤

Under the specialised hypotheses of the above lemma, we prove a homological

duality for the Schiver doubles DΓ(n, r).
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Proposition 12 Let n ≥ r. Let Γ be an affine Dynkin graph of type A. Then

there exists a differential ΠΓ(n, r)- DΓ(n, r)-bimodule,

ΠΓ(n, r)
⊗

SV (n,r)

DΓ(n, r)

Restricting on the left, we obtain a linear resolution

ΠΓ(n, r)
⊗

SV (n,r)

DΓ(n, r) ³ AV (n, r),

of AV (n, r) by left ΠΓ(n, r)-modules.

There exists a differential DΓ(n, r)- ΠΓ(n, r)-bimodule,

DΓ(n, r)
⊗

SV (n,r)

ΠΓ(n, r)

Restricting on the left, we obtain a linear projective resolution

DΓ(n, r)
⊗

SV (n,r)

ΠΓ(n, r) ³ SV (n, r),

of SV (n, r) by left DΓ(n, r)-modules.

Proof:

We prove the existence of the differential bimodule ΠΓ(n, r)
⊗

SV (n,r) DΓ(n, r),

and prove that its left restriction gives a linear projective resolution. The anal-

ogous facts for DΓ(n, r)
⊗

SV (n,r) ΠΓ(n, r) can be proven entirely analogously.

I. There exists such a differential SV (n, r)-SV (n, r)-bimodule.

We have a differential SV (n, r)-SV (n, r)-bimodule,

TQ(n, r)
⊗

SV (n,r)

SQ(n, r).

Tensoring the above module with the corresponding one for Qop, we obtain a

differential bimodule,

TQop(n, r)

⊗

SV (n,r)

SQop(n, r)


 ⊗

SV (n,r)


TQ(n, r)

⊗

SV (n,r)

SQ(n, r)


 .

By Lemma 11, this is isomorphic to a differential bimodule,

TQop(n, r)

⊗

SV (n,r)

TQ(n, r)


 ⊗

SV (n,r)


SQop(n, r)

⊗

SV (n,r)

SQ(n, r)




which is isomorphic, by Lemma 10, to the differential bimodule,

ΠΓ(n, r)
⊗

SV (n,r)

DΓ(n, r). (1)
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This maps onto the SV (n, r)-SV (n, r)-bimodule
∨

V (n, r)
⊗

SV (n,r)

∨
V (n, r).

Therefore, by the dual of the Ringel self-duality isomorphism, 1 maps onto

AV (n, r).

Why is the complex a resolution of AV (n, r) ? Because for r = r1 + r2,

the SV (n, r)-module (
∧

V (n, r1) ⊗ SV (n, r2)) is filtered by standard modules.

Therefore the functor

(
∧

V (n, r1) ⊗ SV (n, r2))
⊗

SV (n,r)

−

is exact on the category of ∆-filtered SV (n, r)-modules ([9], appendix A4), and

both the rows and columns of the double complex


TQop(n, r)

⊗

SV (n,r)

SQop(n, r)


 ⊗

SV (n,r)


TQ(n, r)

⊗

SV (n,r)

SQ(n, r)




are exact in nonzero degrees. Thus the total complex provides a resolution of

AV (n, r), by the acyclic assembly lemma ([28], 2.7.3).

II. The natural actions of ΠΓ(n, r) and DΓ(n, r) commute with the differen-

tial on ∗. Therefore, 1 is a differential ΠΓ(n, r)-DΓ(n, r)-bimodule.

It is enough to check this over a complete discrete valuation ring R, lifting

k (all we have said carries over to such a ring); it is therefore enough to check

it over the field of fractions K of R, a field of characteristic zero; by the Morita

equivalence of theorem 3, it is enough to check it for the wreath products,

ZZ+
Γ o Σr, and Π+

Γ o Σr. However, the complex in this case,

Π+
Γ o Σr

⊗

KV oΣr

ZZ+∗
Γ o Σr,

is just a wreathing of the the classical Koszul bimodule,

Π+
Γ

⊗

KV

ZZ+∗
Γ ,

where the actions of Π+
Γ , ZZ+

Γ certainly commute with the differential.

III. 1 defines a projective resolution of right DΓ(n, r)-modules, because ΠΓ(n, r)

is a projective SV (n, r)-module. ¤

We release the following consequences of the above proposition.

Corollary 13 Let n ≥ r. Let Γ be an affine Dynkin graph of type A. Then

DΓ(n, r) is generated in degrees zero and one, modulo only quadratic relations.

¤
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Corollary 14 Let n ≥ r. Let Γ be an affine Dynkin graph of type A. Then we

have algebra isomorphisms ΠΓ(n, r) ∼= DΓ(n, r)†, and DΓ(n, r) ∼= ΠΓ(n, r)!.

Proof:

The first formula follows from Lemma 8 and Proposition 12. The second

follows from Lemma 6 and Proposition 12. ¤

Remark 15 Applying the same argument as we did to prove Corollary 14,

only using right resolutions instead of left resolutions, and applying duality, we

find that ΠΓ(n, r) ∼= DΓ(n, r)!, and DΓ(n, r) ∼= ΠΓ(n, r)†.

Theorem 16 Let n ≥ r. Let Γ be an affine Dynkin graph of type A. There is

an equivalence of derived categories,

D(mod −DΓ(n, r)) → Ddg(ΠΓ(n, r)),

where ΠΓ(n, r) is considered to be a dg algebra, whose grading is inherited from

the grading on ΠΓ by path length, and whose differential is zero.

Proof:

The action of ΠΓ(n, r) on the complex

HomSV (n,r)(ΠΓ(n, r),DΓ(n, r)),

resolving the DΓ(n, r)-module SV (n, r), defines a quasi-isomorphism of dg alge-

bras,

ΠΓ(n, r) →

Hom•
DΓ(n,r)

(
HomSV (n,r)(ΠΓ(n, r),DΓ(n, r)),HomSV (n,r)(ΠΓ(n, r),DΓ(n, r))

)
.

Thus, Hom•
DΓ(n,r) above is a formal A∞-algebra, and by B. Keller’s theory ([16],

section 3), there is a derived equivalence,

D∞(DΓ(n, r)) → D∞(ΠΓ(n, r)),

taking the regular representation DΓ(n, r) to

HomDΓ(n,r)(SV (n, r),DΓ(n, r)) ∼= AV (n, r).

Here, DΓ(n, r) is considered to be a unital dg algebra, concentrated entirely in

degree zero. The derived equivalences,

D(mod −DΓ(n, r)) → D∞(DΓ(n, r)),

Ddg(ΠΓ(n, r)) → D∞(ΠΓ(n, r)),

due to K. Lefèvre ([17], 4.1.3.1, 4.1.3.9), complete the proof of the theorem. ¤
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Remark 17 If k has characteristic zero, or characteristic greater than r, then

SV (n, r) is semisimple, and the algebras DΓ(n, r) and ΠΓ(n, r) are in Koszul du-

ality. If the characteristic of k is smaller than r, then SV (n, r) is not semisimple,

so the algebras above cannot be Koszul.

Remark 18 The above theorems should hold under the more general hypoth-

esis that Γ is not an ordinary Dynkin graph. In this situation, R. Martinez-Villa

has proved proposition 12 in case r = 1 [18].

Remark 19 We may define a negative version of the Schiver double, D−
Γ (n, r) =

Π−
Γ (n, r)!. This is isomorphic to DΓ(n, r) as a vector space, but only isomorphic

as an algebra if Γ is bipartite. When we form deformations in the sequel, it will

be more convenient to work with D−
Γ (n, r).

Multiplicative extensions.

We give a definition of a multiplicative extension. Examples are group al-

gebras of group extensions, and algebra deformations. We prove that, under

favourable conditions, the homological dual of a multiplicative extension is a

multiplicative extension of homological duals.

Definition 20 Let A and B be k-algebras. An algebra C is a multiplicative

extension of A by B if we have algebra embeddings

iA : A0 ↪→ A, iC : A0 ⊗ B ↪→ C,

and algebra epimorphisms

πB : B ³ B0 πC : C ³ A ⊗ B0,

such that

1. The following diagram commutes:

C
πC

## ##GGGGGGGGG

A0 ⊗ B
-

°

iC

;;wwwwwwwww iA⊗πB // A ⊗ B0.

2. The left and right actions of B on C are free, and commute.

3. We have C ⊗
B

ker(πB) = ker(πB) ⊗
B

C = ker(πC).

Remark 21 All our algebras, and algebra homomorphisms are assumed to be

unital.
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The embeddings of C ⊗
B

ker(πB) and ker(πB) ⊗
B

C in C implicit in 3, are

obtained by applying the exact functors C ⊗
B
− and −⊗

B
C to the embedding of

kerB in B.

We draw a multiplicative extension of A by B as follows:

C

## ##GGGGGGGGG

A0 ⊗ B
-

°

;;wwwwwwwww

A ⊗ B0.

Example 22 Let G be a group containing a normal subgroup N . The group

algebra kG is a flat multiplicative extension of A = kG/N by B = kN . Thus,

kN acts freely on C = kG, whilst iA : k ↪→ kG/N is the unital embedding,

and πB : kG ³ k is the algebra epimorphism, which takes all group elements

to 1 ∈ k.

Example 23 An infinitesimal (respectively polynomial, or formal) deformation

of a unital k-algebra A is a multiplicative central extension of A by k[x]/x2

(respectively by k[x], or k[[x]]).

In this paper, we would like to consider multiplicative extensions of positively

graded algebras A =
⊕

i∈Z+
Ai.

Definition 24 Let A and B be Z+-graded k-algebras. A Z+-graded algebra C

is a graded multiplicative extension of A by B, if it is a multiplicative extension,

where A0, B0 denote the degree zero parts of A,B, where iA, πB are the natural

algebra homomorphisms, and where iC , πC are graded algebra homomorphisms.

Remark 25 If C is a graded multiplicative extension of A by B, then the

embedding of A0 ⊗ B in C, and the algebra epimorphism C → A ⊗ B0, induce

an algebra isomorphism A0 ⊗ B0 ∼= C0.

Theorem 26 Let C be a graded multiplicative extension,

C

## ##GGGGGGGGG

A0 ⊗ B
-

°

;;wwwwwwwww

A ⊗ B0.

Suppose that AA0 , BB0 , CA0⊗B are projective modules, and that AA0∗, BB0∗

possess linear resolutions of the form,

... → A ⊗A0 A2!∗ → A ⊗A0 A1!∗ → A ⊗A0 A0!∗ → A0∗,
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... → B ⊗B0 B2!∗ → B ⊗B0 B1!∗ → B ⊗B0 B0!∗ → B0∗,

where Ai!, Bi! are finite dimensional modules over A0, B0, for i ≥ 0. Then CC0∗

possesses a linear resolution of the form

... → C ⊗C0 C2!∗ → C ⊗C0 C1!∗ → C ⊗C0 C0!∗ → C0∗,

and C ! is a graded multiplicative extension,

C !

$$ $$IIIIIIIII

B!0 ⊗ A!
,

¯

;;vvvvvvvvv

B! ⊗ A!0.

Proof:

Let Âi!∗ denote a projective resolution of A0Ai!∗, and let B̂i!∗ denote a pro-

jective resolution of B0Bi!∗.

We can form a complex of complexes

.. → A ⊗A0 Â2!∗ → A ⊗A0 Â1!∗ → A ⊗A0 Â0!∗

whose total complex is quasi-isomorphic to AA0∗. Tensoring with B̂0!∗, we

obtain a complex of double complexes

... → (A ⊗ B0) ⊗
A0⊗B0

(Â2!∗ ⊗ B̂0!∗) → (A ⊗ B0) ⊗
A0⊗B0

(Â1!∗ ⊗ B̂0!∗)

→ (A ⊗ B0) ⊗
A0⊗B0

(Â0!∗ ⊗ B̂0!∗), (2)

of A ⊗ B0-modules, whose total complex is quasi-isomorphic to A0!∗ ⊗ B0∗.

We can also form a complex of complexes

.. → B ⊗B0 B̂2!∗ → B ⊗B0 B̂1!∗ → B ⊗B0 B̂0!∗

whose total complex is quasi-isomorphic to BB0∗. Tensoring with Âi!∗, we

obtain a complex of double complexes

.. → (A0 ⊗ B) ⊗
A0⊗B0

(Âi!∗ ⊗ B̂2!∗) → (A0 ⊗ B) ⊗
A0⊗B0

(Âi!∗ ⊗ B̂1!∗)

→ (A0 ⊗ B) ⊗
A0⊗B0

(Âi!∗ ⊗ B̂0!∗),

of A0 ⊗ B-modules, whose total complex is quasi-isomorphic to Ai!∗ ⊗ B0∗.

Applying the exact functor C ⊗A0⊗B −, we obtain a complex

.. → {Âi!∗ ⊗ B̂2!∗} → {Âi!∗ ⊗ B̂1!∗} → {Âi!∗ ⊗ B̂0!∗} (3)

of double complexes of C-modules, where {M} = C ⊗
A0⊗B0

M . Since

C ⊗
A0⊗B

(A0 ⊗ B0) ∼= A ⊗ B0,
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the total complex is quasi-isomorphic to (A ⊗ B0) ⊗
A0⊗B0

(Âi!∗ ⊗ B0∗).

Splicing together complexes 2 and 3, we form a double complex with linear

differentials,

.. // {Â2!∗ ⊗ B̂0!∗} // {Â1!∗ ⊗ B̂0!∗} // {Â0!∗ ⊗ B̂0!∗}

.. // {Â2!∗ ⊗ B̂1!∗} //

OO

{Â1!∗ ⊗ B̂1!∗} //

OO

{Â0!∗ ⊗ B̂1!∗}

OO

.. // {Â2!∗ ⊗ B̂2!∗}

OO

// {Â1!∗ ⊗ B̂2!∗}

OO

// {Â0!∗ ⊗ B̂2!∗}

OO

.. ..

OO

..

OO

..

OO

,

of double complexes of C-modules, whose total complex is quasi-isomorphic to

C0∗ = A0∗ ⊗ B0∗. Applying the functor HomC(−, C0∗), we obtain a double

complex

.. [Â2!∗ ⊗ B̂0!∗]oo

²²

[Â1!∗ ⊗ B̂0!∗]oo

²²

[Â0!∗ ⊗ B̂0!∗]oo

²²
.. [Â2!∗ ⊗ B̂1!∗]

²²

oo [Â1!∗ ⊗ B̂1!∗]

²²

oo [Â0!∗ ⊗ B̂1!∗]

²²

oo

.. [Â2!∗ ⊗ B̂2!∗]

²²

oo [Â1!∗ ⊗ B̂2!∗]

²²

oo [Â0!∗ ⊗ B̂2!∗]

²²

oo

.. .. .. ..

of double complexes, where [M ] denotes HomA0⊗B0(M,C0∗). The cohomology

of the total complex is, by definition, Ext∗C(C0∗, C0∗). Since the original res-

olutions of A0∗, B0∗ were linear, so are the differentials in the above diagram.

However, all terms in the above double complex are concentrated in graded

degree zero, and therefore the differentials are all zero. Furthermore,

[Âi!∗ ⊗ B̂j!∗] ∼= HomA0⊗B0(Âi!∗ ⊗ B̂j!∗, C0∗),

which is quasi-isomorphic to

HomA0⊗B0(Ai!∗ ⊗ Bj!∗, A0∗ ⊗ B0∗) ∼=

HomA0⊗B0(A0 ⊗ B0, Ai! ⊗ Bj!) ∼= Ai! ⊗ Bj!,

since A0∗ ⊗ B0∗ is injective as an A0 ⊗ B0-module. It follows that this double
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complex is quasi-isomorphic to the double complex

.. A2! ⊗ B0!oo

²²

A1! ⊗ B0!oo

²²

A0! ⊗ B0!oo

²²
.. A2! ⊗ B1!oo

²²

A1! ⊗ B1!oo

²²

A0! ⊗ B1!oo

²²
.. A2! ⊗ B2!

²²

oo A1! ⊗ B2!

²²

oo A0! ⊗ B2!

²²

oo

.. .. .. ..

(4)

all of whose differentials are zero. Taking the homology of the total complex,

we realise that Ext∗C(C0∗, C0∗) is isomorphic (as a vector space) to

⊕

i,j∈Z≥0

Ai! ⊗ Bj! ∼= Ext∗A(A0∗, A0∗) ⊗ Ext∗B(B0∗, B0∗),

as the statement of the theorem predicts.

What about multiplicative structure ? We have A0! ∼= EndA0(A0∗) ∼= A0,

and B0! ∼= B0. The surjection C ³ A ⊗ B0 defines an exact functor

F : A ⊗ B0 − mod → C − mod

between module categories, which extends to an exact functor between derived

categories

D(A ⊗ B0 − mod) → D(C − mod).

We have F (A0∗ ⊗ B0∗) = C0∗. For any algebra A, we have an isomorphism

ExtiA(M,M) ∼= HomD(A)(M,M [i]),

and we therefore recover an algebra homomorphism,

A! ⊗ B!0 ∼= Ext∗A⊗B0(A0∗ ⊗ B0∗, A0∗ ⊗ B0∗) ↪→ Ext∗C(C0∗, C0∗) ∼= C !.

Note that A! acts along horizontal lines A! ⊗ Bi! in double complex 4, whose

total homology is C !. Since A!
A! and A!A! are free, C !

A! and A!C ! are also free.

Restriction from C to A0 ⊗ B defines an exact functor between module

categories, which extends to an exact functor between derived categories

D(C − mod) → D(A0 ⊗ B − mod),

taking C0∗ to A0∗ ⊗ B0∗. We therefore have an algebra homomorphism

C ! = Ext∗C(C0, C0) → Ext∗A0⊗B(A0∗ ⊗ B0∗, A0∗ ⊗ B0∗) ∼= A!0 ⊗ B!.

From our homology double complex, it is visible that this map is surjective, and

the kernel is equal to A!>0 ⊗ B!. This completes the proof of the theorem. ¤
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Corollary 27 Suppose that an algebra C is a graded multiplicative extension of

A by B, where A and B are Koszul algebras. Then C is Koszul, and its Koszul

dual is a multiplicative extension of the Koszul dual of B, by the Koszul dual of

A. ¤

Given an algebra A, let J (A) denote the Jacobson radical of A. The follow-

ing theorem is proved entirely analogously to Theorem 26, only using minimal

resolutions instead of linear ones.

Theorem 28 Let A,B be finite dimensional algebras, and

A0 = A/J (A) B0 = B/J (B).

Suppose that C is a multiplicative extension of A by B; let C0 = A0⊗B0. Then

there is a dg algebra D, which is a multiplicative extension of Ext∗B(B0, B0) by

Ext∗A(A0, A0), whose cohomology is isomorphic to Ext∗C(C0, C0). ¤

We obtain the following corollary, by considering the case when C is the

group algebra of an extension of two p-groups.

Corollary 29 Let

1 → P1 → Q → P2 → 1

be an extension of p-groups. Then there is a dg algebra D, which is a multi-

plicative extension of H∗(P1) by H∗(P2), whose cohomology is isomorphic to

H∗(Q). ¤

Remark 30 We have stated the results of this sections for algebras over a field

k. The same results hold, with suitable refinements, for R-free algebras over a

commutative ring R.

On M. Peach’s Rhombal algebras.

Rhombal algebras are locally finite dimensional algebras, defined by quiver

and relations, geometrically described by planar rhombi [20]. They are radi-

cally graded symmetric algebras of Loewy length 5. There are infinite families

of Rhombal algebras, the members of which are all derived equivalent. The

derived equivalences are non-trivial, given by compositions of two-term tilting

complexes. The “unramified region” of a weight two symmetric group block, is

Morita equivalent to a region of some Rhombal algebra.

We do not describe Peach’s definition of a Rhombal algebra here, but a more

general construction, which generalises his notion from weight two to arbitrary
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weight r ∈ N. In a paper with Joseph Chuang, we study these algebras, and

the associated combinatorics, in detail [7].

The Heisenberg Lie super-algebra Hr is isomorphic to kz + W , where W is

an orthogonal vector space of dimension 2r and parity one, z is a central element

of parity zero, and there is the commutation relation [w1, w2] =< w1, w2 > z.

Its universal enveloping algebra U(Hr) can be described as follows.

Generators α1, ..., αr, β1, ..., βr, z

Relations αiαj = βiβj = 0, all i, j; αiβj + βjαi = δi,jz, all i, j.

Thus U(Hr) is a noncommutative deformation of the super-polynomial ring

k[z|a1, ..., ar, b1, ..., br].

Over the complex numbers, the torus T (r) = (R/Z)r acts on W , inducing

an action on Hr, and consequently on U(Hr), by

(x1, ..., xr).αi = e2πxiiαi,

(x1, ..., xr).βi = e−2πxiiβi.

Since T (r) is a compact group, it acts semisimply on complex representations.

Its group of characters is Hom(T (r), C∗) ∼= Zr.

Lemma 31 The category of finite dimensional graded representations of the

semidirect product U(Hr) o T (r) is equivalent to the category of finite dimen-

sional graded modules over the algebra Ur, given by generators,

{ex, x ∈ Zr},

in degree zero; by generators,

{αx,i, βx,i, x ∈ Zr, 1 ≤ i ≤ r},

in degree one, by a single generator z, in degree two; and relations,

exαy,i = δx,yαy,i,

exβy,i = δx,yβy,i,

αy,iex = δx,(y1,...,yi−1,yi+1,yi+1,...,yr)αy,i,

βy,iex = δx,(y1,...,yi−1,yi−1,yi+1,...,yr)βy,i,

αx,iα(x1,...,xi−1,xi+1,xi+1,...,xr),j + αx,jα(x1,...,xj−1,xj+1,xj+1,...,xr),i = 0,

βx,iβ(x1,...,xi−1,xi−1,xi+1,...,xr),j + βx,jβ(x1,...,xj−1,xj−1,xj+1,...,xr),i = 0,

αx,iβ(x1,...,xi−1,xi+1,xi+1,...,xr),j + βx,jα(x1,...,xj−1,xj+1,xj+1,...,xr),i = 0,
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for i 6= j,

αx,iβ(x1,...,xi−1,xi+1,xi+1,...,xr),i + βx,iα(x1,...,xi−1,xi+1,xi+1,...,xr),i = exz,

αx,iα(x1,...,xi−1,xi+1,xi+1,...,xr),i = 0,

βx,iβ(x1,...,xi−1,xi−1,xi+1,...,xr),i = 0,

and the condition that z is central. ¤

The action of the symmetric group Σr has a natural action on Zr, which

lifts to an action on Ur as super-algebra isomorphisms. In this way, we have

eσ
x = exσ , ασ

x,i = αxσ,iσ , and βσ
x,i = βxσ,iσ .

Let us define a subset X of Zr to be connected, if for any x, y ∈ X , there

exists a sequence x = x0, x1, ..., xl = y, such that xi ∈ X and for each i ≥ 1, we

have xi+1 = (xi,1, ..., xi,j−1, xi,j ± 1, xi,j+1, ..., xi,r), for some j = j(i).

For x ∈ Zr, let us define x[i] = (x1 + i, ..., xr + i) ∈ Zr.

Definition 32 A subset X ⊂ Zr is Cubist, if it is a maximal connected subset,

such that x ∈ X implies x[i] is not in X , for i 6= 0.

For any Cubist subset X of Zr, we define the Cubist algebra UX , to be the

algebra Ur, modulo the ideal generated by {ey, y ∈ Zr\X}.

The Cubist algebra UX has graded simple modules in one-one correspon-

dence with X . In case r = 3, we recover the Rhombal algebras.

Polynomial deformations of Schiver doubles.

Observing the definition of Rhombal algebras, in the awareness that Rhom-

bal algebras in case r = 3, as well as Schiver doubles, resemble blocks of sym-

metric groups, the sensitive reader will ask himself whether there is a general

construction giving both families of algebras at certain limits. This is indeed the

case, as the following theorem demonstrates. Let Ur oΣr denote the semidirect

product of the super-algebra Ur with Σr.

Theorem 33 Let n ≥ r. Let Γ be an ordinary, or affine Dynkin graph, of

type A. There exist natural polynomial deformations D̃−
Γ (n, r) ⊂ D−

Γ (n, r) of

D−
Γ (n, r). When Γ is the infinite affine Dynkin diagram of type A, we have

ξV (n, r)D̃−
Γ (n, r)ξV (n, r) ∼= Ur o Σr.

Our proof of this theorem is homological, using the theory of multiplicative

extensions. It follows from Proposition 36 below.
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Remark 34 The polynomial deformations of the above theorem should gen-

eralise to an arbitrary finite graph Γ.

The passage from an algebra to an associative formal deformation is of-

ten known as quantisation. The above deformation of D−
Γ (n) should thus be

perceived as a generalisation of the quantisation of the commutative Lie super-

algebra in 2r odd dimensions, into the super-Heisenberg algebra Hr.

Remark 35 The deformations D̃−
Γ (n, r) are related to symplectic reflection

algebras in the wreath product case [10], [13]. The deformations of doubles

D−

Ãp−1
, localised at the idempotent ξV (n, r), correspond to rational Cherednik

super-algebras for the group Cp o Σr.

We do not consider here the specialisation of central elements i.z, for idem-

potents i in SV (n, r), to elements of the ground field. It is such specialisations,

which provide multiparametric deformations of the classical wreath products,

which are apparently so valuable to students of these algebras.

Furthermore, there is an extra parameter (denoted ν in [13]) which does not

play any rôle in our exposition. There might be interesting generalisations in

this direction.

Let us introduce a square root ζ of z into the algebra Ur, a degree one

element which super-commutes with odd elements in Ur. The quadratic dual of

the resulting algebra Ur(ζ) is the commutative algebra,

k[x1, ...xr, y1, ..., yr, λ]/(λ2 =
∑

xiyi).

After Remark 36, this algebra is Koszul; its Koszul dual is Ur(ζ). It is now

clear how deformations of DΓ(n, r) ought to be defined, when Γ is not a Dynkin

graph.

Let Π−
Γ be the preprojective algebra on Γ. Let a be the central quadratic

element of Π−
Γ in degree two, a =

∑
V xvyv, where xv, yv are the arrows corre-

sponding to a single edge in Γ emanating from v. Let Π−
Γ (n, 1) = EndΠΓ

(Π⊕n
Γ ).

Streamlining notation, let a ∈ Π−
Γ (n, 1) be the element corresponding to the

central action of a ∈ Π−
Γ . Let α =

∑
i 1⊗i ⊗ a ⊗ 1⊗r−i−1 ∈ Π−

Γ (n, r). Let

Π−
Γ (n, r) = Π−

Γ (n, r)/(λ2 − α),

D−
Γ (n, r) = Π−

Γ (n, r)!.

D̃−
Γ (n, r) = (Π−

Γ (n, r)/a)!.

We will see these algebras form deformations of D−
Γ , after some generalities

concerning multiplicative extensions.
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Given an algebra A, containing a central element α, let us define A to be

the quotient A = A⊗ k[λ]/(λ2 − α) of the super tensor product of A with k[λ],

a multiplicative extension of A by the exterior algebra in one variable.

Proposition 36 Suppose that A is a Z+-graded algebra, such that AA0 is pro-

jective. Suppose that there exists a Koszul complex
⊕

i,j≥0 Ai ⊗A0 A!j∗ for A, a

differential A-A! bimodule whose left restriction defines a linear resolution

... → A ⊗A0 A2!∗ → A ⊗A0 A1!∗ → A ⊗A0 A0!∗ → A0∗

of A0∗, and the dual of whose right restriction defines a linear resolution

... → A! ⊗A!0 A2 → A! ⊗A!0 A1 → A! ⊗A!0 A0 → A!0

of A!0. Suppose that α ∈ A2 is a central element which acts freely on A. Then

A! and (A/α)! are polynomial deformations of A!,

A!

ÂÂ ÂÂ@
@@

@@
@@

@

A0 ⊗ k[ζ]
-

°

;;wwwwwwwww

A!,

(A/α)!

$$ $$IIIIIIIII

A!0 ⊗ k[ζ2]
+

®

99rrrrrrrrrr

A! ⊗ k.

Proof:

By Theorem 26, the homological dual of A is a multiplicative extension

A!

ÂÂ ÂÂ>
>>

>>
>>

>

A0 ⊗ k[ζ]
-

°

;;wwwwwwwww

A!

of A! by the polynomial ring in a single variable ζ. In fact, since λ super-

commutes with A, the dual variable ζ commutes with A!. Therefore, A! is a

polynomial deformation of A!.

Suppose now that α ∈ A2 is a central element which acts freely on A. Then

A/λ ∼= A/α, and we have a multiplicative extension,

A

$$ $$IIIIIIIIII

A0 ⊗ k[λ]
,

¯

;;vvvvvvvvv

(A/α) ⊗ k.
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Let

... // (A/λ)e2
f̄2 // (A/λ)e1

f̄1 // (A/λ)e0
// A0∗

denote a projective resolution of the A/λ-module A0∗. We have a quasi-isomorphism

between A →λ A and A/λ. We thus have a double complex of projective A-

modules,

... // Ae2
f2 // Ae1

f1 // Ae0

... // Ae2
f2 //

λ

OO

Ae1
f1 //

λ

OO

Ae0,

λ

OO

whose total complex is quasi-isomorphic to A0∗. Applying Hom(−, A0∗), we

obtain a double complex

... Hom(Ae2, A
0∗)oo

0

²²

Hom(Ae1, A
0∗)

f∗
2

oo

0

²²

Hom(Ae0, A
0∗)

f∗
1

oo

0

²²
... Hom(Ae2, A

0∗)oo Hom(Ae1, A
0∗)

f∗
2

oo Hom(Ae0, A
0∗),

f∗
1

oo

which can be identified with the double complex,

... Hom((A/λ)e2, A
0∗)oo

0

²²

Hom((A/λ)e1, A
0∗)

f̄∗
2

oo

0

²²

Hom((A/λ)e0, A
0∗)

f̄∗
1

oo

0

²²
... Hom((A/λ)e2, A

0∗)oo Hom((A/λ)e1, A
0∗)

f∗
2

oo Hom((A/λ)e0, A
0∗),

f̄∗
1

oo

Taking homology, we observe that A! ∼= (A/λ)! ⊕ (A/λ)![1], where

(A/λ)! = Ext∗A/λ(A0∗, A0∗).

We thus have a multiplicative extension,

A!

$$ $$IIIIIIIIII

k ⊗ (A/λ)!
,

¯

::vvvvvvvvvv ∧
(ζ) ⊗ A0!.

Thus, A! is a multiplicative extension of (A/λ)! by
∧

(ζ). Thanks to the existence

of the Koszul complex, we know that A! is the quadratic dual of A. Also

λ2 = 0 ∈ (A/λ)2. Therefore, in the quadratic dual A!, we have ζ2 ∈ (A/λ)!2,

and so (A/λ)! is a multiplicative extension,

(A/λ)!

%% %%JJJJJJJJJJ

A!0 ⊗ k[ζ2]
+

®

99rrrrrrrrrr

A! ⊗ k.¤
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Proof of theorem 33:

Let Γ̃ be affine of type A. Removing a vertex from Γ̃, one obtains an ordinary

Dynkin diagram Γ. Algebraically, this means that DΓ(n, r) is obtained from

DΓ̃(n, r) by cutting at an idempotent, the unit of SV (Γ)(n, r) in SV (Γ̃)(n, r).

By Proposition 12, and Proposition 36, the algebras D̃−

Γ̃
(n, r) ⊂ D−

Γ̃
(n, r)

are deformations of D−

Γ̃
(n, r). Cutting at the appropriate idempotent, we reduce

deformations for affine Dynkin diagrams to deformations for ordinary Dynkin

diagrams.

Localising at the idempotent ξV (n, r) has the effect of cutting Schur algebras

down to symmetric groups. When Γ is infinite affine, localising Π−
Γ (n, r) at this

idempotent, we obtain the algebra,
(

Π−
Γ ⊗ k[λ]/(λ2 =

∑

i

1⊗i ⊗ a ⊗ 1⊗r−i−1)

)
o Σr,

The Koszul dual of this algebra is isomorphic to its quadratic dual, the de-

formation Ur(ζ) o Σr of ZZ−
Γ o Σr. This completes the proof of the theorem.

¤

Base change.

In this section, we consider a special situation, in which algebras are defined

over an modular system (K,R, k), and possess similar structural properties over

both fields K and k. Under certain circumstances, such a situation appears

to occur naturally in representation theory. For example, close relations are

expected between representations of quantum groups at roots of unity over K,

and representations of algebraic groups over k.

Let l be a prime number, and let (K,R, k) be an l-modular system. Let A

be an R-free R-algebra, of finite rank. We write KA = K ⊗R A, kA = k ⊗R A.

Let N be an R-free A-module. We write KN = K ⊗R N , kN = k ⊗R

N . Let Rad(KN) (respectively Rad(kN)) denote the Jacobson radical of KN

(respectively kN). We define Rad(N) to be the intersection Rad(KN)∩N , an

R-pure submodule of N . We have KRad(N) = Rad(KN), and kRad(N) ⊆

Rad(kN).

Any KA-module N̂ lifts (nonuniquely) to an R-free A-module N , such that

KN = N̂ . Any projective indecomposable kA-module lifts to a projective

indecomposable A-module. A map P → N of A-modules is a minimal projective

cover if, and only if kP → kN is a minimal projective cover.

Proposition 37 Suppose that KP is indecomposable, for any projective inde-

composable A-module P . Then,
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1. If KN is an irreducible KA-module, then kN is an irreducible kA-module.

2. The irreducible KA-modules are in bijection with the irreducible kA-

modules.

3. kRad(A) = Rad(kA).

4. If KN is semisimple, then kN is semisimple.

Proof:

1. The Cartan numbers for kA are equal to Cartan numbers for KA, both

being described by the R-rank of eiRAej , where {RAei}i∈I is a collection of

principal indecomposable modules for RA. Furthermore, RAei inherits a filtra-

tion Radi(KAei) ∩ RA from the radical filtration of KAei. Since the Cartan

matrices of KA and kA are equal, the subquotients in this filtration cannot have

any more composition factors over k than they do over K. The top of KAei

is the first subquotient in the radical filtration, and therefore remains simple

modulo l.

2. There is a natural map,

{projective indecomposable kA − modules} →

{projective indecomposable KA − modules},

obtained by first lifting over R, and then tensoring over K. This map is surjec-

tive, since every projective module is a summand of the free module. The map

is injective, since an isomorphism KP ∼= KQ of projective indecomposable KA-

modules implies an isomorphism KP/KRadP ∼= KQ/KRadQ which implies,

in turn, isomorphisms kP/kRadP ∼= kQ/kRadQ, and kP ∼= kQ.

3. Let us write A =
⊕

i Aei, where {ei} denotes a complete set of prim-

itive orthogonal idempotents in A. Then Rad(A) =
⊕

Mi, where Mi =

Rad(KAei) ∩ A. By 1, we see that kMi = Rad(kAei), and so kRad(A) =

Rad(kA).

4. If KN is semisimple, then KN is a KA/KRadA-module. Therefore, RN

is an RA/RadA-module, and kN is a kA/kRad(A) = kA/Rad(kA)-module,

that is to say, semisimple. ¤

We have a similar result to proposition 37 for base change, over a splitting

field.

Proposition 38 Let FA be a finitely generated F -algebra, over a splitting field

F. Let K be a field containing F . Then,

1. Every projective indecomposable FA-module is indecomposable over K.

2. The irreducible FA-modules are in bijection with the irreducible KA-

modules.
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3. An FA-module FN is semisimple if, and only if KN is semisimple.

4. If FN is an FA-module, and FP → FN a minimal projective cover,

then KP → KN is a minimal projective cover.

5. If FN is an FA-module, then FN is projective if, and only if, KN is

projective.

6. Let FA be a positively graded algebra, whose graded pieces are finite

dimensional. Then KA is Koszul if, and only if, FA is Koszul.

7. KA is quasi-hereditary if, and only if, FA is quasi-hereditary.¤

Lemma 39 Suppose that A is a graded algebra, that N is a graded A-module,

and that L is a graded submodule of KN . Then L̃ = L ∩ KN is an R-pure

graded submodule of N . ¤

Lemma 40 Suppose that A is a graded R-algebra, that N is a graded A-module,

and that M is a quotient of KN as a graded KA-module. Suppose that

grHomKA(KN,M) ∼= K.

Let M̃ = N/KN ∩ kerφ, where φ is some non-zero graded homomorphism

between KN and M . Then M̃ is R-free, graded, and independent of the chosen

φ, thus defining a canonical R-form for M .

Proof:

The intersection of an R-form for a K-vector space with a vector subspace

is always R-pure. Therefore, M̃ is R-free. Since φ is defined uniquely up to a

scalar, kerφ is uniquely defined, and M̃ is canonically defined. The grading on

M̃ comes by applying lemma 39, with L = kerφ. ¤

Modular reduction of blocks of category O.

Let l be a prime number, and let (K,R, k) be an l-modular system. Let g

be a complex semisimple Lie algebra over C.

We define algebraic analogues A(g), and B(g), of principal blocks of category

O(g), over the discrete valuation ring R. Over fields of characteristic zero, these

algebras were defined by W. Soergel, and they are known to be Koszul dual (and

even isomorphic). Over R, we give a more convoluted definition, generalising

Soergel’s. The algebras we define are in Koszul duality over the field k. My

justification for this construction is a desire to work over fields of arbitrary

characteristic, whenever it is possible to do so. This is due to an interest in

modular representations of finite groups, the exploration of which motivated

this paper. In modular representation theory, one cares most about fields of

positive characteristic.
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In the last section of this article, we reveal extensions of tensor powers of

Zigzag algebras by the algebras B(g).

Let G be a complex semisimple Lie group over C, with Borel subgroup B,

and Weyl group W . Let V denote the reflection representation of W . Let

C = S(V )/S+(V )W be the algebra of coinvariants associated to W . Then C

is isomorphic to the cohomology ring of G/B, and Poincaré duality gives C

the structure of a symmetric algebra. Over a field of characteristic zero, C

is isomorphic, as a W -module, to CW . We think of C is a graded algebra,

generated by V in degree 2.

Given a simple reflection s ∈ W , let Cs = S(V )s/S+(V )W denote the sub-

algebra generated by s-fixed points. Then Cs is isomorphic to the cohomology

ring of G/Bs, where Bs is the parabolic subgroup generated by B and s. Thus

Cs also attains the structure of a symmetric algebra. Since s generates a sub-

group of W of order 2, the dimension of Cs is half the dimension of C. As

graded modules, we have CsC ∼= Cs ⊕ Cs < 2 >, where < i > denotes the ith

degree shift.

The bimodule CsCC is projective on both sides, and its dual is isomorphic

to CCCs . The functors

IndC
Cs = C ⊗Cs − : Cs − mod → C − mod,

ResC
Cs = C ⊗C − : C − mod → Cs − mod,

are therefore exact, and left and right adjoint to each other. In the graded

module category, the left adjoint of ResC
Cs is IndC

Cs , whilst the right adjoint is

the shifted functor, IndC
Cs < −2 >.

For w = s1...sm a reduced expression in W , and a C-module M , let

Fs1...sm(M) = IndC
Cs1 ResC

Cs1 ...IndC
Csm ResC

Csm (M).

Then Fs1...sm is an exact functor, whose left and right adjoint is Fsm...s1 . In

the graded category, the right adjoint of Fs1...sm is Fsm...s1 < −2m >

If M is a graded module with Hilbert polynomial p(q), then Fs1...sm(M)

is a graded module over the coinvariant algebra with Hilbert polynomial (1 +

q)m.p(q). This module is dependent on the reduced expression chosen for w.

Theorem 41 (Soergel [23]) There is a family {CMw}w∈W of mutually non-

isomorphic, self-dual, graded CC-modules, such that

Fs1...sm(C) ∼= Mw ⊕
⊕

v<w

(Mv)⊕mvw ,

for some multiplicities mvw ∈ Z+. ¤
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Let < i > denote the ith graded shift. Let

CA(g) = End(
⊕

w∈W

Mw).

We have the following structural properties of CA(g). The first is due to

Soergel [23]. The second is due to E. Cline, B. Parshall and L. Scott ([8], 3.3c).

The third was proved by Soergel, after a conjecture by A. Beilinson and V.

Ginzburg ([23], see also [3]).

Theorem 42 (i) The category CA(g)−mod is equivalent to the principal block

of category O(g).

(ii) The algebra CA(g) is quasi-hereditary. Its poset is W , with respect to

the Bruhat order.

(iii) The algebra CA(g) is Koszul, and Koszul self-dual. ¤

The Z+-grading on CA(g) comes from the grading on CC, as described by

the following formula:

CA(g) =
⊕

i∈Z

grHomCC(Mv < l(v) >,Mw < l(w) + i >),

Lemma 43 grHom(Fs1...sm(C), CMw) ∼= C.

Proof:

The graded CC-module Fs1...sm(C) is self-dual, and concentrated in degrees

0, ..., 2m. Its degree zero part is isomorphic to C, as is its degree 2w part. The

component CMw also has degree zero and 2w part isomorphic to C. This implies

that any graded component CMw′ < −2j > of Fs1...sm(C), for w′ 6= w, satisfies

the inequality

1 ≤ j ≤ l(w) − l(w′) − 1.

If grHom(CMw′ < l(w′) − d >, CMw < l(w) >) is non-zero, then we must

have d ≥ l(w)− l(w′), since CA(g) is generated in degrees zero and one. There-

fore, if

grHom(CMw′ < −2j >, CMw) ∼= grHom(CMw′ < l(w)−2j >, CMw < l(w) >)

is non-zero, we must have l(w′) − l(w) + 2j ≥ l(w) − l(w′), which implies

l(w) − l(w′) ≤ j.

It follows that CMw is the only graded component of Fs1...sm(C) with any

graded homomorphisms to CMw. Since grEnd(CMw) ∼= C, the proof of the

lemma is complete. ¤
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Because Q is a splitting field for C, and CEnd(Fs1...sm(Q)) ∼= End(Fs1...sm(C)),

we may lift the decomposition of Fs1...sm(C) over Q, or indeed any field of char-

acteristic zero. Thus, Fs1...sm(K) decomposes as a direct sum of KMw, and

some KMv’s, for v < w.

Since Fs1...sm(K) is graded, KMw is a graded C-module. As a graded

module, Fs1...sm(K) is isomorphic to a direct sum of KMw, and some modules

KMv < i >, where w > v, i > 0.

By lemma 43, up to a scalar, there is a unique graded homomorphism ψ :

Fs1...sm(K) → KMw. These homomorphisms define a unique kernel KLs1...sm
⊂

Fs1...sm(K). This subspace defines a unique R-pure sublattice

Ls1...sm
= KLs1...sm

∩ Fs1...sm(R)

of Fs1...sm(R). Let us define Ms1...sm
= Fs1...sm(R)/Ls1...sm

. By Lemma 40,

Ms1...sm
is a graded R-form for KMw.

Proposition 44 If s1...sm and t1...tm are two reduced expressions for w, then

there is an isomorphism, Ms1...sm
∼= Mt1...tm

.

Proof:

Since M0
s1...sm

∼= M0
t1...tm

∼= R, we have natural maps,

grHom(Ms1...sm
,Mt1...tm

) → grHom(Ms1...sm
,M0

t1...tm
)

∼= grHom(Ms1...sm
, R) ∼= HomR(R,R) ∼= R.

Since the graded endomorphisms of KMw are given by scalar multiplication,

the map

φ : grHom(Ms1...sm
,Mt1...tm

) → grHom(Ms1...sm
, R)

is an injection from R to R. If φ is surjective, for any choice of si, ti, then the

natural composition map

grHom(Ms1...sm
,Mt1...tm

) × grHom(Mt1...tm
,Ms1...sm

) →

grHom(Ms1...sm
,Ms1...sm

),

is an isomorphism, and it follows that Ms1...sm
∼= Mt1...tm

. Therefore, to com-

plete the proof of the proposition, we show that φ is surjective.

There is a commuting diagram of natural morphisms,

grHom(Ms1...sm
,Mt1...tm

)
φ //

²²

grHom(Ms1...sm
, R)

' //

²²

R

²²
grHom(Fs1...sm(R),Mt1...tm

) //

²²

grHom(Fs1...sm(R), R)
' //

²²

R

²²
grHom(R,Fsm...s1(Mt1...tm

) < −2m >)
ψ // grHom(R,Fsm...s1(R) < −2m >)

' // R
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The top left square is given by pulling back the map Fs1...sm(R) → Ms1...sm
,

and the map Mt1...tm
→ R. The bottom left square is obtained by adjunction.

The downwards maps are all isomorphisms. It is therefore enough for us to

show that ψ is surjective.

Pulling back the sequence of morphisms,

Fsm...s1F t1...tm(R) → Fsm...s1(Mt1...tm
) → Fsm...s1(R),

we find it is enough for us to show that the map

grHom(R,Fsm...s1F t1...tm(R) < −2m >) → grHom(R,Fsm...s1(R) < −2m >)

is surjective. Forgetting the grading, we see it is enough for us to show that the

map

Hom(R,Fsm...s1F t1...tm(R)) → Hom(R,Fsm...s1(R))

is surjective, or equivalently, by adjunction, the map

Hom(F tm...t1Fs1...sm(R), R) → Hom(Fs1...sm(R), R)

is surjective which, by Frobenius reciprocity, is to say the map

R ⊗C F tm...t1Fs1...sm(R) → R ⊗C Fs1...sm(R)

is surjective. In other words, it is sufficient for us to know that the natural map

R ⊗C C ⊗Ctm C ⊗Ctm−1 ... ⊗Ct1 C ⊗Cs1 C ⊗Cs2 ... ⊗Csm C ⊗ R →

R ⊗C C ⊗Cs1 C ⊗Cs2 ... ⊗Csm C ⊗ R

is surjective, which is obvious. ¤

Let w = s1...sm be a reduced expression in W . We write Mw for Ms1...sm
, a

uniquely defined R-form for KMw. Let

A(g) = EndC(
⊕

W

Mw).

Proposition 45 The R-lattice A(g) is a Z+-graded algebra. The algebra kA(g)

has the same Cartan-Hilbert matrix as CA(g). All irreducible kA(g)-modules are

one dimensional. ¤

Extending powers of Zigzag algebras by principal blocks of

category O.
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Levi’s theorem states that any complex Lie algebra l decomposes as a semidi-

rect product,

l = h o g,

of a solvable ideal h, and a semisimple subalgebra g. There are notable violations

of this principle, when one restricts study to certain module categories of Lie

algebras.

Let g be a complex semisimple Lie algebra, h a Cartan subalgebra. W.

Soergel’s investigations of Harish-Chandra bimodules reveal the existence of a

graded algebra which is a non-split central extension CÂ(g) of the finite dimen-

sional algebra CA(g) describing the principal block of O(g), by S(h). Here, h

lies in degree two.

If the dimension of a vector space U is equal to the rank of g, we can identify

h with the diagonal entries of gl(U) ∼= U ⊗U∗ ⊂ S(U +U∗), and form the tensor

product

CÂ(g)
⊗

S(h)

S(U + U∗).

The resulting extension of A(g) by S(U + U∗) is generated in degrees zero, and

one. It can even be seen to be Koszul, its Koszul dual being an extension of∧
(U + U∗) by CA(g).

In this section, we describe a generalisation of this duality. We replace

S(U + U∗) with a tensor power of preprojective algebras,
∧

(U + U∗) with a

tensor power of Zigzag algebras. In this way, we release multiplicative extensions

of tensor powers of Zigzag algebras by the algebras B(g) of the last section.

Consider the algebra Ĉ = S(h)
⊗

S(h)W S(h). Soergel has shown that on the

stage of Harish-Chandra bimodules, this algebra plays a similar rôle to that of

the coinvariant algebra, in the theatre of category O.

Let the Weyl group W act on Ĉ, on the first component (x⊗y)w = (xw⊗y).

For w = s1...sm a reduced expression in W , and a Ĉ-module M , let,

ÎR
s1...sm

(M) = Ind
bC
bCs1

Res
bC
bCs1

...Ind
bC
bCsm

Res
bC
bCsm

(M).

There exist Ĉ-modules CM̂w, for w ∈ W , such that ÎR
s1....sm

(S(h)) is isomor-

phic to a direct sum, with one indecomposable summand CM̂w, and all other

indecomposable summands isomorphic to CM̂v, for v < w ([24], Theorem 2).

Let S(h)1 = S(h)
⊗

1 be the subalgebra of Ĉ defined on the first component.

This subalgebra is isomorphic to the symmetric algebra on h. Note that CĈ,

and CM̂w are S(h)1-free, that

C
⊗

S(h)1

Ĉ ∼= C,
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as algebras, and,

C
⊗

S(h)1

CM̂w ∼= CMw,

as C-modules. Thus, Ĉ is truly a lift of C, and CM̂w a lift of CMw.

Let us define Â(g) = End bC(
⊕

W M̂w). Soergel’s structure theorem for

Harish-Chandra bimodules ([24], Theorem 3), states that,

Theorem 46 The algebra CÂ(g) is a graded algebra. It is a non-split central

extension of CA(g) by S(h). Thus, S(h) is a central subalgebra of Â(g), and

C
⊗

S(h)

CÂ(g) ∼= CA(g).

The category CÂ(g) − nil of modules on which the elements of positive degree

act nilpotently is equivalent to the regular block of Harish-Chandra bimodules

for g. ¤

Let us assume that Γ is an affine Dynkin diagram, of type A.

There is a central embedding k[z] → Π−
Γ , taking z to the sum of terms∑

V xvyv, where xv, yv are arrows corresponding to some edge attached to v.

The tensor power of such maps defines an embedding

S(h) → Π−⊗r
Γ ,

where r is the rank of g. Let us define,

Π̂r
Γ = Π−⊗r

Γ

⊗

S(h)

Â(g).

Then Π̂r
Γ is a multiplicative extension,

Π̂r
Γ

%% %%KKKKKKKKKKK

C⊕W ⊗ Π⊗r
Γ

,

¯

::tttttttttt

A(g) ⊗ C⊕V r

.

By Theorem 26, we have the following.

Theorem 47 Π̂r
Γ is a Koszul algebra. Its Koszul dual, ẐZ

r

Γ, is a graded mul-

tiplicative extension,

ẐZ
r

Γ

&& &&MMMMMMMMMMM

C⊕V r

⊗ A(g)

+

®

99ssssssssss

ZZ⊗r
Γ ⊗ C⊕W .¤
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Remark 48 For simplicity, we have only considered principal blocks of O in

this paper. It should be possible to manipulate singular, and parabolic blocks

as well, using fixed point subalgebras CWλ of C, where Wλ < W is a parabolic

subgroup.
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