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Let p be a prime number. Broué’s abelian defect conjecture [4] states that

any p-block of a finite group is equivalent to its Brauer correspondent.

In [9], we introduced a double construction, which associates a symmetric

associative algebra to certain bialgebras. We predicted that the derived category

of a block b of a symmetric group is equivalent to the derived category of a block

of some double. In fact, there are a number of different doubles which we expect

to have components derived equivalent to b. There is the Rock double D, which

comes from a super-bialgebra, as well as a family of doubles E , associated to

quiver algebras of type A [11].

This note was formulated, with the intention of clarifying these conjectures.

We first simplify our double construction, by giving a more symmetric formula,

which holds for all bialgebras B. We prove that in degree one, the doubles

associated to quiver algebras of type A have components which are isomorphic to

Brauer caterpillar algebras, with exceptional multiplity one. More generally, we

define bialgebras whose doubles have natural subalgebras which are isomorphic

to Brauer caterpillar algebras, with exceptional multiplicity. Even in this simple

situation, the bialgebras involved are a little subtle.

Bialgebras.

Let k be a field. The following result is a simplification of the double con-

struction of [9].

Theorem 1 Let B be a bialgebra over k, with dual B∗. Then the tensor product

D(B) = B ⊗B∗ is a symmetric associative algebra, with product

(a⊗ α).(b ⊗ β) =
∑

a(2)b(1) ⊗ α(2)β(1) < a(1), β(2) >< α(1), b(2) >,
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and symmetric associative bilinear form,

< a⊗ α, b⊗ β >=< a, β >< b, α > .

Proof:

We prove D(B) is associative.

((a⊗ α).(b⊗ β)) .(c⊗ γ) =
(∑

a(2)b(1) ⊗ α(2)β(1) < a(1), β(2) >< α(1), b(2) >
)
.(c⊗ γ) =

∑
(a(2)b(1))(2)c(1) ⊗ (α(2)β(1))(2)γ(1)

< a(1), β(2) >< α(1), b(2) >< (a(2)b(1))(1), γ(2) >< (α(2)β(1))(1), c(2) >=
∑

a(3)b(2)c(1) ⊗ α(3)β(2)γ(1)

< a(1), β(3) >< α(1), b(3) >< a(2), γ(2) >< b(1), γ(3) >< α(2), c(2) >< β(1), c(3) >,

(a⊗ α). ((b⊗ β).(c⊗ γ)) =

(a⊗ α).
(∑

b(2)c(1) ⊗ β(2)γ(1) < b(1), γ(2) >< β(1), c(2) >
)

=

∑
a(2)(b(2)c(1))(1) ⊗ α(2)(β(2)γ(1))(1)

< b(1), γ(2) >< β(1), c(2) >< a(1), (β(2)γ(1))(2) >< α(1), (b(2)c(1))(2) >=
∑

a(3)b(2)c(1) ⊗ α(3)β(2)γ(1)

< b(1), γ(3) >< β(1), c(3) >< a(1), β(3) >< a(2), γ(2) >< α(1), b(3) >< α(2), c(2) > .

The symmetry and non-degeneracy of the bilinear form on D(B) are clear. Let

us confirm its associativity.

< (a⊗ α).(b⊗ β), c⊗ γ >=

∑
< a(2)b(1), γ >< α(2)β(1), c >< a(1), β(2) >< α(1), b(2) >=

∑
< a(2), γ(1) >< b(1), γ(2) >< α(2), c(1) >

< β(1), c(2) >< a(1), β(2) >< α(1), b(2) >,

< (a⊗ α), (b⊗ β).(c ⊗ γ) >=
∑

< a, β(2)γ(1) >< α, b(2)c(1) >< b(1), γ(2) >< β(1), c(2) >=
∑

< a(1), β(2) >< a(2), γ(1) >< α(1), b(2) >

< α(2), c(1) >< b(1), γ(2) >< β(1), c(2) > .�

A picture of the above construction can be drawn as follows:
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a α b β

Remark 2 The basic law of super-mathematics is: introduce a sign when-

ever two strings cross each other. Applying this to our situation, we find that

given a super-bialgebra B, and a dual super-bialgebra B∗, we have a symmetric

associative algebra D(B) = B ⊗B∗, with product

(a⊗ α).(b⊗ β) =
∑

(−1)sa(2)b(1) ⊗ α(2)β(1) < a(1), β(2) >< α(1), b(2) > .

Here,

s = |a(1)|(|a(2)|+ |b(1)|) + (|α(2)|+ |β(1)|)|β(2)|+

|α(1)||b(1)|+ |α(2)||b(2)|+ |α(2)||b(1)|,

whilst |x| denotes the parity of a homogeneous element x.

let A be a unital associative k-algebra.

Lemma 3 Let B = B(A) = k ⊕A. Then B is a bialgebra, with product

(λ, a).(λ′, a′) = (λλ′, aa′),

and coproduct

∆(a) = 1k ⊗ a+ a⊗ 1k,

∆(1k) = 1k ⊗ 1k,

for a, a′ ∈ A, and λ, λ′ ∈ k. �
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Let M be a left A-module. Let d be a natural number.

Let V = V (d) be a d-dimensional free left R-module, with basis V =

{v1, ..., vd}.
Let X = X(d) be the set of right endomorphisms of V which are upper

triangular with respect to V . Thus, V is a right X-module, and X has a basis

X = {xi,j , 1 ≤ i ≤ j ≤ d} of elementary upper triangular matrices. We write

xi,j = 0 for i, j ∈ Z, if either i /∈ {1, .., d}, or i /∈ {1, .., d}, or i > j.

Let E be the tensor product of M,V over R, an A-X-bimodule. We write

Mi = M ⊗ vi ⊂ E, and given m ∈M , we write mi = m⊗ vi ∈Mi.

Lemma 4 Let C = C(A,M, d) = A ⊕ E ⊕ X. Then C is a bialgebra, with

product

(a, e, x).(a′, e′, x′) = (aa′, ae′ + ex′, xx′),

for a, a′ ∈ A, e, e′ ∈ E, x, x′ ∈ X and coproduct

∆(a) = (
∑

l∈Z
xll)⊗ a,

∆(mi) = (
∑

l∈Z
xl,i+l)⊗mi,

∆(xi,j ) = (
∑

l∈Z
xi+l,j+l)⊗ xi,j ,

for a ∈ A,m ∈M, 1 ≤ i ≤ j ≤ d. �

If B is a bialgebra, we define Bassoc to be the underlying associative algebra.

Lemma 5 Let B1, B2 be bialgebras, with coproducts ∆1,∆2. Suppose that B =

B1assoc
∼= B2assoc, and that

∆1(b).∆2(b′) = ∆2(b).∆1(b′) = 0,

for b, b′ ∈ B.

Let ∆ = ∆1 + ∆2. Then B a bialgebra, with coproduct ∆. �

Definition 6 Let

B1 = B1(A,M, d) = k ⊕ C(A,M, d),

B2 = B2(A,M, d) = B(C(A,M, d)assoc).
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Both B1 and B2 are bialgebras, and we have

B1assoc
∼= B2assoc

∼= k ⊕ C(A,M, d)assoc.

The coproducts ∆1,∆2 of B1,B2 multiply to zero on k ⊕ C(A,M, d)assoc.

Definition 7 Let B = B(A,M, d) be the bialgebra, whose underlying algebra is

k ⊕ C(A,M, d)assoc, and whose coproduct is ∆1 + ∆2.

Brauer caterpillars.

Let C be a Brauer caterpillar. In other words, let C be a Brauer tree

embedded in the plane, whose sets of edges E and vertices V may be divided

into two parts, E = Abdomenq Legs, V = Segmentsq Suckers, so that,

(i) A vertex is a sucker if, and only if, it is connected to precisely one edge.

(ii) An edge is a leg if, and only if, it is connected to a sucker.

(iii) Every abdominal edge is connected to precisely two segments.

(iv) The legs all rest beneath the abdomen.

(v) The exceptional vertex is a segment.

Here is an example of a Brauer caterpillar:

The exceptional vertex has multiplicity e.

To any Brauer caterpillar C, we may associate a quiver Q = Q(C) of type A,

whose vertices are in one-one correspondence with the edges of T , as illustrated

by the following picture:
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We thus start with the leftmost leg of C, and draw an arrow from this to

its anticlockwise neighbour. We now draw an arrow between this edge, and its

anticlockwise neighbour. We continue drawing arrows between edges and their

anticlockwise neighbours, until we reach the rightmost leg of C. We do this

in such a way that all arrows surrounding any given segment have the same

orientation, whilst two arrows connected to the same abdominal edge should

have opposite orientation. The arrows surrounding the exceptional vertex are

drawn with dotted lines.

Let A = kQ be the path algebra of Q. Thus A has a basis P of paths in Q.

Let P∗ be the dual basis to P . If p ∈ P , let p∗ be the dual element in P∗.
If v is a vertex of Q, let iv be the path of length zero stationed at v. The

element iv is an idempotent in kQ.

Let t be the vertex of Q which is the terminus of the longest path in Q which

can be obtained by composing dotted arrows. Thus, v is the unique vertex of

Q which is the terminus of a dotted arrow, bit the source of no such arrow.

Let M = kQit. Thus, M is a projective kQ-module, with a basis given by

paths of dotted arrows, terminating at v.

Let d = e− 1.

We write V∗ = {v∗i } for the basis of V ∗ dual to V , and given n ∈ M∗, we

write ni = n⊗ v∗i ∈M∗i .

Theorem 8 Let B = B(A,M, d). Let U be the Brauer tree algebra associated

to C. Let

T = T (A,M, d) = (A⊗ k∗)⊕
(
e−1⊕

i=1

Mi ⊗M∗e−i

)
⊕ (k ⊗A∗).

Then T is a subalgebra of D(B), and T ∼= U .

Proof:

Let us first observe that T is indeed a subalgebra of D(B)...

The subalgebra A acts on the left and right of T in the natural way. The

product of A∗ with itself, and with
(⊕e−1

i=1 Mi ⊗M∗e−i
)

is zero. It remains for

us to show that the product of elements mi ⊗ ne−i,m′j ⊗ n′e−j , lies in T , given

m,m′ ∈M,n, n′ ∈M∗. We have

(mi ⊗ ne−i).(m′j ⊗ n′e−j) =

∑
mi(2)m

′
j(1) ⊗ ne−i(2)n

′
e−j(1) < mi(1), n

′
e−j(2) >< ne−i(1),m

′
j(2) > .
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Assuming this expression is non-zero, the following formulae are implied by our

definition of bialgebra structure on B:

m′j(2) = m′j , ne−i(1) = nj .

Tracing carefully through the definition of B, we can now observe two possibil-

ities. The first is,

m′j(1) = xi,j ,mi(2) = mi,

ne−i(2) = x∗j,e−i, j ≤ e− i,

n′e−j(1) = n′e−i−j , j < e− i,

n′e−j(2) = x∗e−i−j,e−j ,mi(1) = xe−i−j,e−j ,

mi(2)m
′
j(1) = mi+j ,

ne−i(2)n
′
e−j(1) = n′e−i−j .

The second is,

m′j(1) = 1k,mi(2) = 1k,

m′j(2) = mj ,mi(1) = mi,

n′e−j(2) ∈M∗i , e− j = i, n′e−j(1) ∈ A∗,

ne−i(1) = ne−i, ne−i(2) = x∗e−i,e−i,

mi(2)m
′
j(1) = 1k,

ne−i(2)n
′
e−j(1) ∈ A∗.

To clarify, we have shown that multiplication between Mi⊗M∗e−i and Mj⊗M∗e−j
is just multiplication End(M)⊗End(M)→ End(M), when i+ j < m. In case

i + j = m, this multiplication is given by the map M ⊗M ∗ → A∗, dual to

the map A → End(M) ∼= M ⊗M∗ defined by the action of A on M . In case

i+ j > m, this multiplication is zero.

For a segment s, let qs be an arrow which completes the path around the

edges attached to s to a loop around s. The algebra U is generated by the path

algebra of the quiver Q′ = Q ∪ {qs, s ∈ Segments}:
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Let Pord be the set of paths around ordinary segments s in C, which are

subpaths of a circuit c about s. Let Pexc be the set of paths around the excep-

tional segment s of C, which are subpaths of cd+1. A basis for U is given by

Pord q Pexc. We have,

dim(evUew) = dim(evTew) =




d if v = w is an exceptional abdominal edge,
2 if v = w is not an exceptional abdominal edge,

d− 1 if v 6= w are edges attached to the exceptional segment,
1 if v 6= w are edges attached to a single ordinary segment,
0 otherwise.

Therefore, T and U have the same dimension.

We wish to identify T with U . We must introduce an extra generator as of

T for every segment s of C. Let p = p(s) be the longest path in Q around s.

If s is not the exceptional segment, let as = (1k ⊗ p∗), where p ∈ A. If s is the

exceptional segment, then let as = it1 ⊗ p∗d, where t is the terminal vertex of p.

Note that it1 ∈M1, p
∗
d ∈Md.

Let p = r.q be a decomposition of p as the product of two paths q, r. Let v

be the tail of r, otherwise known as the source of q. If s is not the exceptional

segment, then

(q ⊗ 1∗k).as.(r ⊗ 1∗k) = (q ⊗ 1∗k).(1k ⊗ p∗).(r ⊗ 1∗k) =

(q ⊗ 1∗k).(1k ⊗ q∗) = 1k ⊗ i∗v,

in T . Otherwise, if s is the exceptional segment, then our previous computations

of multiplication on T tell us,

((q ⊗ 1∗k).as.(r ⊗ 1∗k))d+1 = ((q ⊗ 1∗k).(it1 ⊗ p∗d).(r ⊗ 1∗k))d+1 =

(q ⊗ 1∗k).(it1 ⊗ p∗d).(p1 ⊗ p∗d)d.(r ⊗ 1∗k) =
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(q ⊗ 1∗k).(it1 ⊗ p∗d).(pd ⊗ p∗1).(r ⊗ 1∗k) =

(q1 ⊗ p∗1).(pd ⊗ q∗d) = 1k ⊗ i∗v,

in T .

An algebra homomorphism φ is now visible from U to T , which identifies

arrows in Q, and takes qs to as, for segments s. The computations above show

that c = 1k ⊗ e∗v, for circuits c about segments different from the exceptional

vertex, whilst cd+1 = 1k⊗e∗v, for circuits c around the exceptional segment. Such

conditions imply that φ is injective. Since U and T have the same dimension,

φ is an isomorphism. �

Corollary 9 Let B be a block of a finite group, of cyclic defect. Then

Db(B −mod) ∼= Db(T (A,M, d)−mod),

for some algebra A, module M , and dimension d. �

Remark 10 It was my ambition, as I began to write this letter, to give a Schur

algebra formulation of the above constructions, generalising the case d = 0 of

other articles [9], [10], [11]. I would expect the double resulting from such a

generalisation to describe blocks of finite general linear groups in nondescribing

characteristic, up to derived equivalence. However, it is not clear to me how to

make this extension.
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