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Abstract. Via a species of noncommutative symplectic reduction, we asso-
ciate algebras to parallelohedral tilings of Euclidean space. Such tilings arise

as projections of cubical complexes in Z
r onto a linear space of dimension w.

We study the combinatorics of such tilings, along with homological aspects of
the corresponding algebras. In case w = 2, we obtain new theorems concerning

planar tilings, such as the quasi-periodic rhombic tilings of R. Penrose.
We give an alternative definition, that is more general, in which algebras

are associated to rhombohedral tilings of arbitrary Riemannian manifolds.
The Cubist algebras studied in the prequel to this paper correspond to the

case w = r−1 [8]. In case r =
w(w+1)

2
, we expect there to be relations between

Cubist algebras, and modular representations of symmetric groups, as we have
previously found in case w = 2.

1. Introduction

Study of the intricate communion between algebra and geometry is an ancient

ritual. According to modern orthodoxy, the mathematical approach to a space

begins with the association of an algebra, such as a group of symmetries, a ring

of functions, a group of homotopies, or a category of sheaves. Conversely, the

authority of an algebraic object is often magnified when one associates to it some

geometry, such as a space on which it acts, a space of which it is the fundamental

group, or a category of representations.

Our paper is one more opus in this geometric-algebraic tradition. We couple cer-

tain associative algebras to rhombohedral tilings of a Riemannian manifold. These

algebras are highly noncommutative, and their structure is reflected in the combi-

natorics of the corresponding tiling. We consider in detail the algebras associated

to tilings of Euclidean space; much harmony is to be found in their nature, which is

revealed homologically. We expect applications to modular representation theory,

and to toric geometry.

I am most grateful to Joe Chuang, and to Raphaël Rouquier for their interest

and insight.

2. Progression

We consider aspects of geometry and homological algebra associated to cubical

tilings of Riemannian manifolds. We are especially interested in tilings of Euclidean

space, where a detailed theory can be developed.

In chapter three, we examine geometric and combinatorial aspects of parallelo-

hedral tilings of Euclidean space. We describe how such a parallelohedral tiling

can be realised via linear projection of a subcomplex of an integral cubical tiling
1
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of some larger Euclidean space. We describe how such sets can arise, by taking a

layer parallel to a linear subspace of Euclidean space. Examples arising this way

include quasi-periodic Penrose tilings.

In chapter four, we consider bijections between facets and vertices of parallelo-

hedral tilings, induced by vectors in the ambient Euclidean space. In chapter five,

we consider related orderings on the collection of vertices. Orderings of a particular

kind are necessary for our development of a homological theory associated to such

a tiling.

In chapter six, we state our algebraic setup, which coincides with that of the

prequel to this paper, ”Cubist algebras” [8].

In chapter seven, we define the Cubist algebras, which are associated to paral-

lelohedral tilings of Euclidean space. They possess a number of strong homological

properties. In chapter eight, we observe that the Cubist algebras are Koszul, that

they have highest weight module categories, that they obey a strict form of Serre

duality, and that their derived categories admit a polarization [25]. We prove that

the category of standardly filtered modules is a thick subcategory of the stable

category.

In the prequel to this paper, we considered algebras associated to tilings of a

special kind: those arising from projections of codimension one. Our proofs of

Koszulity, and of the existence of highest weight structures resemble the proofs of

the prequel, and therefore the passages in which the proofs are identical are only

briefly outlined.

We describe derived equivalences between Cubist algebras in chapter nine. Such

arise from local mutations on the relevant tiling. Similar results were also obtained

in the prequel. However, here our exposition is quite different. We work less com-

binatorially, and more homologically. Whilst some of the combinatorial results of

the prequel are missed by our new approach, further insight is gained, from a ho-

mological perspective. In particular, we see the derived equivalences are induced

by a tilting bimodule. In chapter ten, we use this fact to show the derived equiva-

lences are compatible with gradings in a particular way. We also observe the Cubist

algebras obey an algebraic condition akin to integrability.

In the eleventh chapter, we consider deformations of Cubist algebras. Deforma-

tion parameters are in a natural correspondence with certain Cubist subquotients

of the algebra, or combinatorially, with parallel strips in the tiling. These parallel

strips are analogous to the nodes of a Dynkin diagram in classical Lie theory.

In chapter twelve, we generalize the definition of Cubist algebras to rhombohe-

dral tilings of arbitrary Riemannian manifolds. Given a pair of tiled submanifolds

of a Riemannian manifold tiled by rhombohedra, there is a functor between the

representation categories of the corresponding Cubist algebras.

In chapter thirteen, we describe a conjectural application we had in mind when

we began this work: an asymptotic description of modular representations of sym-

metric groups.
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The combinatorial results of this paper are all exercises in discrete Euclidean

geometry. Their proofs were figured out after drawing numerous rough pictures

with a pen and paper. Many arguments and definitions, which might seem opaque

in writing, become readily comprehensible after a couple of sketches. We have

therefore included a number of figures. However, a large gallery would be required,

if we were to exhibit all the doodles we have made, and we exhort the reader to

make his own drawings as he makes his way through the article.

3. Cubist geometry

We consider here parallelohedral pavings of Euclidean space, and the associated

combinatorics.

Let r be a natural number, or ∞, and let r = {1, ..., r}. Let E = R
⊕r denote

Euclidean space, of dimension r. Let ǫi denote the standard basis elements of E,

for i ∈ r.

Suppose S ⊂ r. Let FS = F1 × ... × Fr ⊂ E, where Fi = [0, 1], if i ∈ S, and

Fi = {0}, if i /∈ S.

Let Z = Zr denote the polytopal complex, homeomorphic to E, whose i-

dimensional cells are i-cubes in E of the form x + FS , x ∈ Z
r, |S| = i. Let Z

(j)
r

denote the j-skeleton of Zr, for 0 ≤ j ≤ r. In other words, Z
(j)
r is the polytopal

complex whose facets take the form x + FS , x ∈ Z
r, |S| ≤ j.

Let w be a finite natural number between 0 and r. Let c = r − w. Let H be a

w-dimensional vector space. Let p : E ։ H be a surjective linear map.

If E is finite dimensional, then we can identify H with the subspace ker(p)⊥,

and p with the orthogonal projection of E onto H.

Definition 1. A polytopal subcomplex C ⊂ Z is Cubist relative to H, if the pro-

jection p : C → H is a homeomorphism.

If C is a Cubist complex, we denote by Fi the set of i-dimensional cells in C. We

write X = F0, and F = Fw.

Remark 2 Let i : T (w) → T (r) be an embedding of a torus of dimension w in a

torus of dimension r. Applying Hom(−, k∗), we obtain a map Z
r → Z

w. Tensoring

over R, we obtain a linear map E → H. Whilst not all the projections we consider

are realised in this way, it can be conceptually helpful to think of our projection p

as coming from a toric embedding.

Example 3 Let E be the permutation representation of the symmetric group

Σr, defined by the action of Σr on r. Let H be the r − 1-dimensional irreducible

component of E. Let X− be a nonempty proper ideal of the partially ordered set

Z
r. Let X = X−\(X− − (1, ..., 1)). Let C be the subcomplex of Z whose cells are

all cubes of the form x + FS , for x ∈ X , S ⊂ r, such that x + FS is a subset of X .

Then C is a Cubist complex in E of dimension r − 1 (see [8], 2.2).
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We now describe a special collection of Cubist sets, which are obtained by taking

layers close to affine subspaces of Euclidean space.

Suppose r < ∞. Let H ⊂ E be a subspace of dimension w. Let p denote

the orthogonal projection of E onto H. Let π : E → H⊥ denote the orthogonal

projection of E onto the orthogonal complement of H. Thus H⊥ is a c dimensional

space.

Identified as a subset of R
r, the topological space Z

(j)
r is the set of vectors with

at least r − j integral coordinates.

Suppose that H⊥ = π(Z
(c)
r ). Let x ∈ H⊥\π(Z

(c−1)
r ). Let C(H,x) denote the

complex whose cells are those cells of Zr which are contained in a cube of the form

x + h + [0, 1]r, for some h ∈ H.

Theorem 4. C(H,x) is a Cubist complex, relative to H.

C(H,x)

x+H

x+h+[0,1]x[0,1]

Figure 1. A Cubist set C(H,x), in case w = 1, and r = 2.

Before proving Theorem 4, let us make some preliminary comments on duality

for polytopal complexes.

Recall that two w-dimensional polytopal complexes A and A′ are said to be dual

if the i-cells of A are in one-one correspondence with the w − i-cells of A′, so that

inclusion of faces in A corresponds to containment of faces in A′, and inclusion of

faces in A′ corresponds to containment of faces in A.

Lemma 5. Suppose A is a polytopal complex, homeomorphic to R
w. Then there

exists a polytopal complex A′, dual to A, and a homeomorphism from A′ to R
w.

Proof. Any polytope P in R
n containing 0 has a dual polytope P ′ (see [15]), which

can be defined to be

P ′ = {x ∈ R
n|〈x, P ′〉 ≤ 1}.

Let us define a set P (A), by stereographically projecting A ∼= R
w onto a w-

dimensional sphere in R
w+1, and then taking the convex hull in R

w+1 of the result-

ing vertices, all of which lie on the sphere. Note that P (A) is not in fact a polytope,

since it has an accumulation of faces at infinity, but we can define its dual P (A)′

nonetheless. We then define A′ to be the polytopal complex obtained by linearly
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projecting the w-skeleton of P (A)′ onto the w-dimensional sphere from 0, before

applying the inverse of stereographic projection, onto R
w. Then A′ is a polytopal

complex, dual to A, and homeomorphic to R
w, as required. ¤

Proof of Theorem 4: If C is an r-dimensional cell in Zr which is contained in a

cube of the form x + h + [0, 1]r, for some x ∈ H⊥, h ∈ H, then C = x + h + [0, 1]r,

and so x + h ∈ Z
r = Z

(0)
r . Therefore x ∈ π(Z

(0)
r ).

Now suppose 0 ≤ i ≤ c − 1. More generally, if C is an r − i-dimensional cell in

Zr which is contained in a cube of the form x+h+[0, 1]r, for some x ∈ H⊥, h ∈ H,

then x + h has at least r − i integral components. Therefore x + h ∈ Z
(i)
r , and we

conclude x ∈ π(Z
(i)
r ).

We have assumed that x /∈ π(Z
(c−1)
r ). Therefore, every cell of Zr which is

contained in a cube of the form x + h + [0, 1]r, for some h ∈ H, has dimension

smaller than r − (c − 1). In other words, every cell of C = C(H,x) has dimension

less than, or equal to, w.

We have also assumed that x ∈ H⊥ = π(Z
(c)
r ), and therefore x + h ∈ Z

(c)
r , for

some h ∈ H. For such an element h, the cube x + h + [0, 1]r contains a w-cell of

Z
(c)
r . It follows that C contains some w-cell. In fact, each w-cell C in C corresponds

to a unique point hC ∈ H, such that C ⊂ x + hC + [0, 1]r. More generally, each

w − i-cell C in C corresponds to a w − i-dimensional set

hC = {h ∈ H | C ⊂ x + h + [0, 1]r} ⊂ H.

Since all our spaces are linear in nature, hC is enclosed by a collection of hyperplanes

in a w − i-dimensional affine space. Therefore, hC is a compact convex polytope.

We have thus shown that H is naturally homeomorphic to a polytopal complex

C′, whose i-cells are in correspondence with w − i-cells of C. Inclusions of faces in

C′ correspond to reverse inclusions of faces in C. In other words, the complex C′ is

dual to C.

By Lemma 5, C is homeomorphic to H. It remains for us to prove that the

projection map p defines a homeomorphism from C to H. To see this, some more

delicate analysis is required.

Let x be a vertex of C, and let Xx be the w-cell of C′ which is dual to x. If y is a

1-cell of C containing x, then the line in H normal to the corresponding w−1-cell in

Xx is parallel in H to the line p(y). More generally, the affine subspace normal to

a w − i-cell in Xx is parallel to the projection via p of the corresponding i-cell of C

containing x. Let Mx denote the union of cells of C containing x. Let Nx = p(Mx),

a submanifold of H. By this parallel property, there is a polyhedron Px contained

in Nx, centred at p(x), whose vertices lie on the lines p(y), which is a polytopal

dual polyhedron of Xx. Since Px is the dual of the dual of the local configuration

about x, in fact p restricts to a homeomorphism inside p−1(Px). Furthermore,

Mx is a piecewise linear extension of p−1(Px), and we conclude p restricts to a

homeomorphism from Mx to Nx.
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Any face of C containing x takes the form F = x +
∑

s∈S [0, 1]σsǫs, where S ⊂ r

is a set of w elements, and σs = ±1. For such a face, let us define F
1
2

x = x +
∑

s∈S [0, 1
2 ]σsǫs. Let M

1
2
x =

⋃
x∈F F

1
2

x , a subset of Mx, whose volume is 1
2w of the

volume of Mx. Let N
1
2
2 = p(M

1
2
x ). The restriction of p to M

1
2
x is a homeomorphism

between M
1
2
x and N

1
2
x . Furthermore, the vertices of Xx are in bijection with centres

of faces F containing x, all of which are vertices of N
1
2
x . The polytope Xx can

be homeomorphically deformed into N
1
2
x , in such a way as to conform with this

bijection.

x

Figure 2. The sets N
1
2
x and Xx.

We can write C as a union
⋃

x∈X M
1
2
x , since for every element x of a cube there

is a vertex v, whose coordinates’ lengths differ from those of x by at most one half.

We have an entirely analogous decomposition of C′ as a union
⋃

x∈X Xx. We can

homeomorphically deform the polyhedra Xx, to obtain a decomposition of H as a

union
⋃

x∈X N
1
2
x . We thus have a collection of commuting diagrams

M
1
2
x

p //

∼

ÃÃA
AA

AA
AA

A
N

1
2
x

∼
~~}}

}}
}}

}

X

which unite to give a commutative diagram

C =
⋃

x∈X M
1
2
x

p //

∼

((PPPPPPPPPPPP

⋃
x∈X N

1
2
x

∼
wwppppppppppp

H =
⋃

x∈X Xx

Since the downwards pointing arrows in this diagram are homeomorphisms, we

conclude the projection p from C to H is also a homeomorphism, as required. ¤

Example 6 Let r = 5. Let w − 2. Let C5 be the cyclic group of order 5,

with generator g. Let E be the regular representation of C5 defined over R, with

the standard inner product defined by 〈ga, gb〉 = δab, for a, b ∈ Z/5. Then E

decomposes as an orthogonal direct sum of irreducible representations, E = R ⊕

E1 ⊕E2, where Ei is a two dimensional irreducible representation, on which g acts

as rotations by 2πi/5.
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Let H = Ei, for some i. Let x ∈ H⊥\π(Z
(2)
5 ). Then C(H,x) is a Cubist subset

of E of dimension 2, and the projection of C(H,x) onto H gives a tiling of the plane

by rhombi, whose angles are a multiple of π
5 . Our planar tiling is in fact a quasi-

periodic Penrose tiling [21], as has been observed by de Bruijn [11]. Indeed, H is

irrationally sloped, and so the local relation of the integer lattice to H at distinct

lattice points can be arbitrarily close, but never identical. It follows that the tiling

has no translational symmetry, and yet a copy any finite region of C(H,x) is to be

found elsewhere in C(H,x), in infinitely many places.

Aperiodic planar tilings similar to those discovered by Penrose have been found

in Islamic shrines, going back 500 years [18]. Beautiful pictures of Penrose tilings,

and other rhombic tilings of the plane, can be found on the website of Jos Leys

[17].

As the above example illustrates, there is a close intimacy between Cubist sets,

and tilings of Euclidean space. Let us make this intuitive idea formal.

Definition 7. A parallelohedral tiling of Euclidean space T is a cell complex C,

and a homeomorphism φ from that cell complex to T , such that

(i) The image under φ of every i-cell in C is a parallelohedron of dimension i.

(ii) If two cells C1, C2 of C have a non-empty intersection, then the image φ(C1)∩

φ(C2) of that intersection, is a face of the parallelohedron φ(Ci), for i = 1, 2.

When we discuss a tiling T , we call the images of cells in C under φ, cells of T .

We call the cells of T with the same dimension as T , the tiles of T .

Now suppose C is a 1-cell in a tiling T of Euclidean space by parallelohedra. Let

us write C = η + [0, 1]ζ.

Definition 8. A strip of T , parallel to C, is a cell subcomplex Υ of T , minimal

such that

(i) Υ contains at least one tile.

(ii) If t1, t2 are tiles of T , if C is a face of the parallelohedron x + t1 ∩ t2, for

some x ∈ T , and if t1 is a tile of T , then t2 is a tile of Υ.

Figure 3. A strip
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Lemma 9. Suppose T is a tiling of Euclidean space by parallelohedra of dimension

w. Any strip Υ of T , parallel to C, is homeomorphic to R
w−1×C. The complement

T\Υ is a union of two connected components,

T\Υ = (T\Υ)+ ∐ (T\Υ)−,

where (T\Υ)+ = Υ + R>1ζ, and (T\Υ)− = Υ + R<−1ζ.

Proof. Consider the projection π of a strip Υ onto C⊥. The image is nonempty, by

assumption (i). Let t be a tile of Υ. By the minimality of Υ, the strip Υ is a union

of tiles t = t1, t2, t3, ..., where ti ∩ ti+1 has a face xi + C, for some xi. Since the

fibres of π, restricted to ti are all isomorphic to C, we conclude that Υ ∼= π(Υ)×C.

Note however, that π is surjective, by assumption (ii). Thus, Υ is homeomorphic

to R
w−1 × C, as required.

The fibres f of π are all isomorphic to R. Such fibres can be written f =

f− ∐ f0 ∐ f+, where f0 = f ∪ Υ ∼= C, and where f− < f0 < f+. For this reason,

we have a decomposition of T , as written. ¤

For a fixed 1-cell C of T , let SC denote the set of strips of T , parallel to C. As

an immediate corollary of lemma 9, we can index such strips by an interval:

Lemma 10. There is an isomorphism γ between SC and an interval in Z, such

that γ(Υ) ≤ γ(Υ′) if, and only if, Υ ⊂ Υ′ + R≤0ζ.

Lemma 11. The projection of a Cubist complex onto H gives a parallelohedral

tiling of H.

Conversely, if T is a tiling of w dimensional Euclidean space by parallelohedra,

then T is the projection of some Cubist complex in Euclidean space onto a subspace

of dimension w.

Proof. A Cubist complex C is tiled by w-dimensional cubes. Since the image of a

cube under a linear map is a parallelohedron, such a complex C defines a tiling of

H by parallelohedra.

Now suppose T is a tiling of H = R
w by parallelohedra. Let us translate all

1-cells of T inside H so that they form a collection of vectors Ξ = {ξα}α∈A be the

set of all vectors in H obtained by translating 1-cells to the origin. We make choices

as we define Ξ, so that 1-cells which are parallel of the same length are identified

in Ξ. Therefore, ξα ∈ Ξ implies that −ξα /∈ Ξ. However, parallel 1-cells of different

lengths, we do not identify in Ξ.

Let α ∈ A. The collection of slices parallel to ξα can be identified with an interval

Iα ⊂ Z. For each α, let us fix such an identification γα, so that Iα contains zero.

The strip associated to i ∈ Iα, we denote Υα(i). We write

Tα(i) = (T\Υα(i + 1))− ∩ (T\Υα(i))+,

for the region lying between Υα(i) and Υα(i + 1).
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If t lies on strip Υα(i), we write tα = i + x, where x ∈ [0, 1] is the vα coordinate

of t in Υα(i). If t lies on Tα(i), we write tα = i. The function t 7→ tα is a continuous

map from T to R.

Let us choose an identification of A with r, where r = |A|. Let p : E → H denote

the linear map taking ǫα to vα. We have a map from T to Z, taking t to
∑

tαǫα.

This provides a splitting of the projection p : Z → H, and realises T as a Cubical

subcomplex of Z, as required. ¤

Example 12 Cubist sets of dimension w, and codimension 1, as in Example 3, are

in one-one correspondence with tilings of Euclidean space of dimension w, whose

vertices form the weight lattice of SLw+1.

Remark 13 A strip in a Cubist set C is the intersection of C with R
l−1 × [z, z +

1] × R
r−l, for some l ∈ r, and some integer z.

Strips of Cubist sets are naturally identified with strips of parallelohedral tilings,

under the correspondence of Lemma 11.

Let Cub(r, w) denote the collection of Cubist subsets of dimension w, in Eu-

clidean space of dimension r.

For l ∈ r, let ql denote the projection of E = R
r onto the lth component.

Lemma 14. Let C ∈ Cub(r, w), such that [z, z + 1] ⊂ ql(C). Then there exists a

Cubist set Cl,z ∈ Cub(r − 1, w − 1), such that

l = ll,z = {x ∈ C|ql(x) = z, x + ǫl ∈ C} ∼= Cl,z.

Proof. Let C be a w-dimensional cube in C, such that ql(C) = [z, z + 1]. If F is

a face of C of dimension w − 1, such that ql(F ) = [z, z + 1], then there exists a

w-dimensional cube C ′ in C, distinct from C, which contains F . Then ql(C
′) =

[z, z + 1]. Let us define a polytopal complex C1 by adjoining C ′ to C.

Continuing to extend in this manner, in all directions, we may define a polytopal

complex which, upon projection to Hl = H ∩ ǫ⊥l , covers a large region of Hl.

Extending infinitely, we obtain a polytopal complex which projects onto the w− 1-

dimensional space Hl. The fibres take the form x + [0, 1]ǫl, where ql(x) = z. The

collection of elements x appearing in such a fibre form a Cubist complex Cl,z of

dimension w − 1. These elements are precisely those which lie on the boundary

of C ∩ q−1
l ((−∞, z]), which is homeomorphic to Hl. But the boundary of C ∩

q−1
l ((−∞, z]) consists precisely of those elements, such that ql(x) = z, x + ǫl ∈ C.

This completes the proof of the lemma. ¤

Definition 15. Given C ∈ Cub(r, w), such that [z, z + 1] ⊂ ql(C), let

CSl = Sz,l(C) =
(
q−1
l ((−∞, z] ∩ C)

)
∪

(
q−1
l ([z + 1,∞) ∩ C) − ǫl

)

be the Cubist set, obtained by slicing the strip ll,z + [z, z + 1]ǫl from C.
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Let l ∈ r. Let El = ǫ⊥l , a subspace of E of dimension r − 1. Let H l = p(ǫl)
⊥, a

subspace of H of dimension w − 1.

For z ∈ Z, let Zz = Z ∩ q−1
l (z), a polytopal complex homeomorphic to El.

The inverse procedure to slicing from a Cubist set is parting it:

Lemma 16. Let C ∈ Cub(r, w), Suppose that l is a polytopal subcomplex of C ∩Zz,

such that l is a Cubist subset relative to H l. Then there exists a Cubist set CPl ∈

Cub(r, w), obtained by parting C along l in direction ǫl. We have

(CPl)Sl = C.

Given C ∈ Cub(r, w) such that [z, z + 1] ⊂ ql(C), and l ∼= Cl,z, we have

(CSl)Pl = C.

Proof. Note that H\H l has two connected components, E+, E−. Without loss of

generality, we may assume that ql(E
−) ≤ z, and ql(E

+) ≥ z. Since l is homeomor-

phic to H l, C\l also has two connected components, C+, C−. We define

CPl = C− ∐ (l + [0, 1]ǫl) ∐ (C+ + ǫl),

a Cubist subcomplex of Z relative to H, which satisfies the hypotheses of the

lemma. ¤

slice part

Figure 4. Slicing and parting a Cubist set

Let Cub(r, w) denote the collection of Cubist complexes of dimension w in Eu-

clidean space of dimension r.

Let Cubb(r, w) denote the set of convex Cubist complexes with boundary. By

definition, these are w-dimensional polytopal subcomplexes C of Z, such that p :

C → H is an embedding, whose image is a convex subset of H.

Lemma 17. Any element of Cubb(r, w) can be extended to an element of Cub(r, w).
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Proof. Let C ∈ Cubb(r, w). Suppose that C is not an element of Cub(r, w).

Since p(C) is convex, we may find i ∈ r, σ ∈ {±1}, and a w− 1-dimensional face

F on the boundary of C, such that p((F + σtǫi) ∩ C) = ∅, for all t ∈ R>0. Upon

fixing such an i, σ, we define Θ to be the collection of all w − 1-dimensional faces

F of C, such that p((F + σtǫi) ∩ C) = ∅, for all t ∈ R>0.

Let C′ be the smallest polytopal subcomplex of Z containing C, as well as the

w-dimensional cubes F + σ[t, t + 1]ǫi, for t ∈ R>0.

Note that C′ is strictly larger than C, and embeds in H under the map p. We

claim further, that it is convex, and therefore an element of Cubb(r, w). Indeed,

p(C′) can be thought of as the shadow cast by the body p(C) from a light source

at in infinite distance in the direction −p(σǫi). The convex body, along with the

silhouette cast by it, together form a convex region.

So passing from C to C′, we obtain a larger convex Cubical complex with bound-

ary. Iterating this procedure, we may ensure that the resulting convex Cubist

complex envelops a large finite region in H, upon the application of p. A number of

iterations ensures the whole of H is covered, so we have an extension of C belonging

to Cub(r, w). ¤

light

dark side

silhouette

Figure 5. Casting a shadow

For l ∈ r, let Φl denote the orthogonal projection of E onto R
l−1 × 0 × R

r−l.

Lemma 18. Any Cubist complex C ∈ Cub(r, w) can be extended to a Cubist complex

C̃ ∈ Cub(r, w + 1).

Proof. Note that Φl(H) is an affine subspace of R
r−1 of dimension w, for some

l. Therefore, the space Φl(C) is an element of Cubb(r, w + 1). By Lemma 17,
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the convex Cubist set with boundary Φl(C) can be extended to an element C′ of

Cub(r, w + 1). Let C̃ = C′ × Rl. Then C̃ is in Cub(r, w + 1), and contains C, as

required. ¤

We have seen that we can remove slices from Cubist sets, and part Cubist sets at

suitable subsets. The next lemma demonstrates that we can also truncate Cubist

sets. Note that the truncated Cubist set CT defined here is not unique.

Lemma 19. Let C be a Cubist set, such that z ∈ ql(C). Then there exists a

truncated Cubist set CT , containing C ∩ q−1
l [z,∞), such that ql(C

T ) ⊂ [z,∞).

Proof. If ql(C) ⊂ [z,∞), then let CT = C.

Otherwise, to obtain such a CT , we first form q−1
l ([z,∞)) ∩ C, whose boundary

∂ = Cz−1 lies in Cub(r − 1, c), by Lemma 14. We then extend ∂ to an element of

Cub(r − 1, c − 1), by Lemma 18. Taking a product with {z} in component l, we

obtain ∂̃ ∈ Cub(r, c − 1), such that ql(∂̃) = z.

We now divide C into two portions C = C1 ∐ C2, where C1 = q−1
l ([z,∞)), and

C1 = q−1
l ((∞, z)). We decompose ∂̃ = ∂̃1 ∐ ∂̃2 into two portions, so that the

images under p of C1 and ∂1 are identified, and the images under p of C2 and ∂2 are

identified. We finally define CT to be the union of C2, and ∂̃2. By definition, CT

satisfies the conditions proposed in the statement of the lemma. ¤

Figure 6. Truncation

4. Bijections on Cubist sets

We consider bijections between vertices and facets of Cubist sets, and related

combinatorics.

Let C be a Cubist complex. Let

RS = {(x1, ..., xr) ∈ E, xi = 0, i /∈ S},

for S ⊂ r. Let v ∈ H be a vector, such that Rv ∩ p(RS) = 0, for |S| = w − 1.

Definition 20. Let λ = λv : X → F be the map which takes a vertex x to the

unique w-dimensional facet containing x + ǫv, for small ǫ > 0.
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Lemma 21. λ is a bijection between X and F .

Proof. Let F ∈ F . Let f be the centre of F . The parallelohedron F divides up

into 2w similar parallelohedra, after one divides its edges in half. Each vertex x

of F is contained in precisely one such parallelohedron pax, and the line f − ǫv is

contained in one such parallelohedron, pax(f), for small ǫ. An inverse to λ is given

by the map which takes F to x(f). ¤

X

Figure 7. Vertex facet bijection; λx and µx.

Given x ∈ X , let us write λx = x +
∑

i∈Sx
[0, 1]σiǫi, where Sx ⊂ r contains w

elements, and where σi ∈ {±1}. Let

µx =



x + (
∑

s∈Sx

R≤0σiǫi) + (
∑

s∈r\Sx

Zǫi)



 ∩ C.

Then λx is the tile of C containing x into which v is directed. The set µx is the

region of C containing x, cut out by the collection of parallel strips passing through

λx.

For x, y ∈ Z
r, let d(x, y) =

∑r
i=1 |qi(x) − qi(y)|.

Let DUC
(q) denote the X × X matrix whose xy entry is qd(x,y), if y ∈ λx, and

zero otherwise.

Let DVC
(q) denote the X × X matrix whose xy entry is qd(x,y), if y ∈ µx, and

zero otherwise.

Theorem 22. Let C ∈ Cub(r, w). Then DUC
(q).DVC

(−q)T = 1.

Proof. Let x, y ∈ X . The xy entry in DUC
(q).DVC

(−q)T is given by
∑

z∈λx∩µy

(−1)d(y,z)qd(x,z)+d(y,z).

Note that λx∩µy is a cube of dimension ≤ w, and that
∑

z∈C(−1)d(y,z)qd(x,z)+d(y,z) =

0, for all cubes of dimension greater than zero. Furthermore, λy ∩ µy = {y}, so it

suffices to show that

|F ∩ µy| = 1 implies F = λy, for all F ∈ F . (∗)



14 WILL TURNER

We work by induction on w. The case w = 0 is trivial. Therefore, assume that

statement (∗) is true for all smaller w. We proceed to divide C up into three

subcomplexes C−, C0, C+, and establish (∗) for all F ∈ F contained in each of the

three subcomplexes.

Let

C− = µy =



y + (
∑

i∈Sy

R≤0σiǫi) + (
∑

i∈r\Sy

Rǫi)



 ∩ C,

C1 =



y + (
∑

i∈Sy

R≤1σiǫi) + (
∑

i∈r\Sy

Rǫi)



 ∩ C,

Let C0 denote the closure in C of C1\C−. Let C+ denote the closure in C of C\C1.

By definition, we have

C = C− ∪ C0 ∪ C+.

Y

Figure 8. C = C− ∪ C0 ∪ C+.

Note that C− ∩ C+ = ∅, since qi(ξ) ≤ 0, for all i ∈ Sy, for all elements ξ ∈ C−,

whilst qi(η) ≥ 1, for some i ∈ Sy, for all η ∈ C+. Therefore, for every cube F ∈ F

contained in C+, we have |F ∩ µy| = 0.

It remains to consider the case F ⊂ C− ∪ C0. Let N(F ) denote the cardinality

of the set {i ∈ Sy | (yi + σi) ∈ qi(F )}.

We claim that |F ∩ µy| = 2w−N(F ). To see this, let us begin with a face F

which lies in C− = µy. Note that here, N(F ) = 0, for F ⊂ µy, and |F ∩ µy| = 2w.

Therefore the formula is true for all faces contained in C−. Let us now walk around

from face to face inside C−∪C0, at each step moving to an adjacent face, by crossing

a w − 1-cell. As we move out of C− into C0, in direction σiǫi, we inevitably find

our chosen face intersects the hyperplane x ∈ R
r, qi(x) = (yi + σi). At the same

time, N(F ) increases to one, and the number of vertices in |F ∩µy| is halved. More

generally, weaving between faces, one step at a time, we find that each time N(F )

increases by one, |F ∩ µy| halves, and each time N(F ) decreases by one, |F ∩ µy|

doubles. If N(F ) is not altered by a step, then |F ∩ µy| is not altered. Since the
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formula |F ∩µy| = 2w−N(F ) holds inside C−, we find the same formula holds inside

C− ∪ C0, by induction.

Now suppose |F ∩ µy| = 1. We conclude N(F ) = w, and so (yi + σi) ∈ qi(F ),

for all i ∈ Sy. For F ⊂ C− ∪ C0, we have qi(F ) ⊂ (yi + R≤1σi), for all i ∈ Sy , and

therefore F = λy, as required.

This completes the proof of the proposition. ¤

5. Orderings on Cubist sets

We describe special orderings on the collection of vertices of Cubist set.

Definition 23. A Cubist set C is ν-ordered, if there exists a bijection ν : X → F ,

and a partial order º on X , generated by the relations x º y, for y ∈ νx.

Let v ∈ H, such that Rv ∩ p(RS) = 0, for S ⊂ r, |S| = w − 1. The dominant

result of this chapter is the following:

Theorem 24. Let C be a Cubist set in E. Then C is λv-ordered.

In the sequel, we write ºv for the ordering induced by λv, or else we drop the v

and write º.

Theorem 24 is obvious, in case w = 0, or w = 1. It can be proved in case w = 2,

or c = 1, fairly easily, by induction on w, c, as in the prequel to this paper [8]. The

case w ≥ 3 is more subtle. In this chapter, we give a proof by induction on w.

We define a bounded Cubist set to be a bounded subcomplex C of Z, such that

the projection p restricted to C is an embedding.

Let us make some technical comments. The following lemma is easy to prove.

Lemma 25. Suppose C is a bounded Cubist set. The map λ−1
v defines an injection

from the facets of C to the vertices of C.

We define strips of bounded Cubist sets, and the operations of slicing and parting

of bounded Cubist sets, just as we did for Cubist sets.

Definition 26. A Cubist complex C is v-convex if x, x + tv ∈ p(C) implies x +

[0, 1]tv ∈ p(C).

Definition 27. A source tile in a bounded Cubist set C is a facet f , such that

λ−1
v (f) lies on the light side of C, and such that every w − 1-dimensional face on

the light side of λ−1
v (f) lies on the light side of C.

Let L be the collection of all w−1-dimensional faces of C, which are illuminated

in by light cast from in direction v. Projection in H orthogonal to v identifies L

with a bounded Cubist set in v⊥.

Let L1 = L, and v1 = v. We inductively define Li to be the collection of all

w − i− 1-dimensional faces of Li−1, which are illuminated in by light cast from in

direction vi, where vi ∈ v⊥
i−1. Projection in v⊥

i−1 orthogonal to vi identifies Li with

a bounded Cubist set in v⊥
i .
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Figure 9. A source facet, and its corresponding vertex, viewed
from ∞, in case w = 3.

Proposition 28. Suppose C is a bounded v-convex Cubist set, such that every

i-dimensional face is contained in some w − 1-dimensional face, for i ≤ w − 1.

Suppose that Li is a vi-convex Cubist set, with respect to some vi ∈ v⊥, for every

i. Then either L contains a v2-source, which is not a face of any tile of C, or else

C contains a v-source in L. Furthermore, C is λv-ordered.

Proof. For the length of this proof, when we write the ”light side”, or ”dark side”,

we mean, as seen illuminated by a light in direction v, unless stated otherwise.

We work by induction on w, and on the total number of faces in C. When C has

only one w − 1-dimensional face, the lemma is obvious. Therefore assume C has

more than one such face.

Note that L contains no i-dimensional faces which are not contained in some

w − 1-dimensional facet of L. Indeed, such a face could not be contained in any

w−1-dimensional face of C, since otherwise there would be some w−1-dimensional

face of C, not contained in L, yet containing an i-dimensional face on the light

side, isolated from the facets of L. This is impossible, because v does not run

perpendicular to any face in C. So the light side of L, with respect to v2 cannot

contain any facet, which is not a facet of L. Therefore, by induction on w, the

w − 1-dimensional bounded Cubist set L contains a source, with respect to λv2
.

Let f ′ denote such a source tile in L, relative to v2. There are now two possibil-

ities to consider. Either f ′ is a w − 1-dimensional face of some w-dimensional tile

in C, or it is not. If it is not, then we have overturned a v2-source in L, which is

not a face of any tile of C, as desired.

f’

Figure 10. Removing a w − 1-dimensional tile f ′, in case w = 3.
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Otherwise, assume that f ′ is a w − 1-dimensional face of some w-dimensional

tile f ′′ of C. Then f ′′ lies on the boundary of C. If we remove f ′′ from C, we obtain

a smaller Cubist set C′.

By induction, we conclude that C′ contains a source tile f ′′′.

There are now two possibilities. Either f ′′ shades some face of f ′′′, or it does

not. If not, then f ′′′ is a source of C, as well as of C′, and our lust for a source of C

is sated. Otherwise, f ′′ shades some light side face of f ′′′. We prove that in such

circumstances, f ′′ is a source of C.

Suppose first that f ′′ shades some w − 1-dimensional face of f ′′′. Thus, f ′′ and

f ′′′ are adjacent in C, and their intersection is a w − 1-dimensional face W , which

is on the light side of f ′′′, and the dark side of f ′′. We have a bijection between the

light-side faces of f ′′′, and the light side faces of f ′′, which takes W to f ′, and any

other light side face F to that face of f ′′′ which intersects F in a w− 2-dimensional

face of W . We claim this map is a bijection between the light side faces of f ′′, and

the light side faces of f ′′′ in C\f ′′. Since f ′′′ is a source in C\f ′′, it follows that f ′′

is a source of C. Indeed, we know that f ′ is not shaded in C. If any other light side

face of f ′′ is cast in the shade by a facet of C\f ′′, then it follows that the intersection

with f ′′′ is cast in the shade by the same facet, which is a contradiction, since f ′′′

is a source in C\f ′′. Therefore, C contains a source, as required.

f’’

f’’’
f’’’

W

Figure 11. Removing f ′′, when it shades a w−1-dimensional face
of f ′′′.

The other case to consider is when f ′′ does not shade a w − 1-dimensional face

of f ′′′, but does cover some face ξ of dimension < w − 1. In this case, f ′′ and f ′′′

are joined only along ξ, This contradicts the v-convexity of C (see Figure 12)

Let us now prove that C is ordered, under the hypotheses of the proposition. We

again proceed by induction on the total number of faces of C. There are two cases

to consider. Either L contains a v2-source, which is not a face of any tile of C, or

else C contains a v-source in L.

Suppose C contains a v-source in L. If f = x +
∑

s∈S σs[0, 1]ǫs is that source

facet, for some light side vertex x in C, and σs = ±1, S ⊂ r, such that |S| = w,

let us write f̂ = x +
∑

s∈S σs[0, 1)ǫs. Then C\f̂ is a bounded Cubist set satisfying

the hypotheses of the Lemma, with a smaller number of tiles. Therefore C\f̂ is

λv-ordered. Since f is a source, C is also λv-ordered. Note that removing such
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f’’’

f’’

Figure 12. When f ′′ does not shade a w − 1-dimensional face of f ′′′.

a source has little effect on the topology of Li, since it corresponds to a Cubist

mutation (cf [8], and chapter 9):

Figure 13. A Cubist mutation: removing a source.

Otherwise, if L contains a v2-source, which is not a face of any tile of C, we can

remove it, and obtain a smaller set satisfying the hypotheses of the proposition.

This set is λv-ordered by induction, and since removing a w − 1-dimensional face

has no effect on the ordering whatsoever, we conclude that C itself is λv-ordered.

This completes the proof of the Proposition. ¤

Corollary 29. Suppose C is a bounded convex Cubist set. Then C is λv-ordered.

Proof. Bounded Cubist sets satisfy the hypotheses of Proposition 28 ¤

Before proceeding further towards a the proof of Theorem 24, let us give a

number of technical definitions.

Definition 30. We say two tiles t, t′ of a bounded Cubist set C are strongly con-

nected, if there exists a sequence t = t1, t2..., tn = t′ of tiles, such that ti ∩ ti+1 is a

w − 1-dimensional face, for 1 ≤ i ≤ n − 1.

We say a bounded Cubist set C is strongly connected if any two tiles in C are

strongly connected.

Definition 31. A polytopal subcomplex l of a bounded Cubist set C is submerged

if l is a bounded Cubist set, relative to v⊥, if every cell is the face of some tile of l,

and if l is strongly connected.

Definition 32. A submerged subcomplex l of C is restricted, if no tile of l which

lies in the light side of C is a face of a tile of C.
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Definition 33. A polytopal subcomplex l of a bounded Cubist set C is a part set

if it is submerged, and there exist connected subcomplexes C+, C− of C, such that

C ∩ (l + R+v) ⊂ C+, such that C ∩ (l + R−v) ⊂ C− and such that C+ ∩ C− = l.

The reason for our interest in part sets is that slicing a strip from a bounded

region of a Cubist set leaves a part set along its remnant boundary. Furthermore,

the operation of parting may be performed along a part set l inside a bounded

region of a Cubist set.

Lemma 34. Let C be a connected bounded Cubist set, satisfying the hypotheses of

proposition 28. Suppose that l is a restricted submerged subcomplex of C.

Then there exists a restricted part set l̃ in C, containing l.

Proof. We work by induction on the number of tiles in C.

We apply proposition 29, to conclude that C either L contains a v2-source, which

is not a face of any tile of C, for some v2, or else C contains a source tile.

Let us consider the first possibility. We denote the pertinent v2-source by f .

Either f is contained in l, or it is not.

Suppose it is not. Then we may remove it, apply induction to the resulting

smaller bounded Cubist set C′, to obtain a restricted part set l′ in C′. If f is not

connected to C−, then we put f in C+, and set l̃ = l′ - done.

If f is not connected to C+, then we put f in C−, and set l̃ = l′ - done.

Otherwise, if f is connected to both C+ and C−, in which case we set l̃ = l′ ∪ f -

done.

Now suppose f is contained in l. Then we remove f from both C and l, apply

induction, and glue f onto the resulting restricted part set - done

We now consider the case when C contains a source tile s. This we can remove,

to obtain a smaller Cubist set C′, in which l is contained, since it is restricted. We

can apply induction, to extend to a part set l′ submerged in C′. If the shadow of s

in C′ lies in C−, then we put s in C−, and set l̃ = l′- done.

If the shadow of s in C′ lies in C+, then we put s in C+, and set l̃ = l′- done.

Otherwise, half the shadow of s in C′ lies in C−, and the other half in C+. Let us

call these halves ss− and ss+ respectively. We put s in C−, and set l̃ = l′ ∪ ss+-

done.

Figure 14. l and l̃, in case half the shadow of s in C′ lies in C−,
and the other half in C+.

¤
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Corollary 35. Suppose C is a bounded convex Cubist set. Suppose that l is a

restricted submerged subcomplex of C.

Then there exists a restricted part set l̃ in C, containing l.

Proposition 36. Every Cubist set can be approximated, in an arbitrarily large

finite region, by a bounded convex Cubist set.

Proof. (See Figure 15) We prove this by induction on the number of tiles in the

finite region F , which we assume, without loss of generality, to be contractible. The

case when F has only one tile is trivial.

We extend F in seven steps. Let S be a strip in F , parallel to p(ǫl).

• If necessary, we tilt the vector v = p(ǫl) by a miniscule amount, within the

strip, so that S is the unique strip in F parallel to v, and so that Rv ∩ p(RS) = 0,

for S ⊂ r\{l}, |S| = w − 1. Note this does not alter the combinatorics of F in any

way.

• We slice F , removing the strip S. Inside the resulting finite region F 1, we leave

a part set l.

• We extend F 1 to a large bounded convex Cubist set F 2, by induction.

• We extend l within F 2 to a part set l̃ containing l, by Corollary 35.

• We part F 2 in direction v along l̃, creating a strip S̃. The resulting Cubist

complex F 3 contains F .

• We cast shadows in direction v, to create an unbounded Cubist complex F 4

containing F 3.

• We extend S̃ to a strip Ŝ of F 4. We put F 5 = F 3 ∪ Ŝ, a bounded Cubist

complex containing F .

Figure 15. Approximation with a convex Cubist set.

To complete the proof of the Proposition, we need to observe that F 5 is a convex

Cubist set. Note that ql(F
5) is an interval [z, z + 1] in R, since S was the unique

strip in F parallel to v. It is not difficult to see that F 5 is in fact the convex hull

in H of the projection under p of the union q−1
l (z) ∪ q−1

l (z + 1).

¤
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Figure 16. F5 as a convex hull.

Proof of theorem 24: Every finite region of a Cubist set can be approximated

by a bounded convex Cubist set, by Proposition 36. Every bounded convex Cubist

set is λv-ordered, by Proposition 29. Since any circuit x = x1 ≻ x2 ≻ ... ≻ xn = x

in the equivalence relation induced by λv must occur in some finite region, in fact

any Cubist set is λv-ordered. ¤

We have now proved that C is λv-ordered. We wish to show further that C can

be approximated by a Cubist set, in which every interval is finite.

Definition 37. A Cubist set C possesses the finite interval property, with respect

to ºv, if the interval [x, y] in the partially ordered set (X ,ºv) is finite, for all

x, y ∈ X .

Suppose that r < ∞, and C0 ∈ Cubb(r, w) is compact. Let v1, ..., vw be a

sequence of vectors in H, of the same length as v, and extremely close to v. Let

θi ∈ [0, 2π] denote the angle between vi and v, for 1 ≤ i ≤ w. Suppose that
θi+1

θi
<< 1, for 1 ≤ i ≤ w − 1. In other words, we assume that v1, ..., vw gets

successively closer to v.

Suppose that Cw is the Cubist set, obtained by casting shadows from C0, in

directions ±v1,±v2, ...,±vw successively.

Lemma 38. The Cubist set Cw possesses the finite interval property, with respect

to ºv.

Proof. Obviously, within C0, there can only be finitely many strictly descending

sequences x = x0 ≻ x1 ≻ ... ≻ xN = y between x, y ∈ X 0. Casting shadows in

directions ±v1, we obtain C1, a convex Cubist set with boundary.

Let x, y ∈ X 1. Any strictly decreasing sequence of elements x = x0 ≻ x1 ≻ ... ≻

xN = y in X 1 must divide up into subsequences, g1 = (xi)n1
i=1, g2 = (xi)n2

i=n1+1,

..., g3 = (xi)nN

i=nN−1
, where the v1 components of elements of gi are all equal, and

greater than the v1 components of gi+1. Furthermore, since C1 is obtained from C0

by casting a shadow in direction v1, these subsequences gi can be identified with

strictly decreasing sequences of elements of C0. There are only finitely many such

sequences, and yr − xr is finite. Therefore, there are only finitely many descending

sequences from x to y. Therefore, C1 obeys the finite interval property. Note that

every w-dimensional cube on the boundary of C1 has an edge parallel to v1.
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Shining a light in direction v2, the dark side of C1 is isomorphic to D1 × Z1v1,

where D1 is a subset of C0. Casting a shadow in direction v2, and then in direc-

tion −v2, we obtain a Cubist set C2 with boundary. Descending sequences in X 2

can be thought of as compositions of finitely many subsequences gi, whose v1 and

v2-components are all equal. As before, the sequences gi can be identified with de-

scending sequences in C0, and so our convex Cubist set with boundary C2 possesses

the finite interval property.

The dark side of C2 in direction v3, is isomorphic to D2 ×Z1ǫr−1 ×Z1ǫr, where

D2 is a subset of C0. Casting a shadow in directions ±v3, we obtain a Cubist set

with boundary, possessing the finite interval property. Iterating this procedure, we

eventually cover the entire space with a Cubist set Cw, possessing the finite interval

property.

Figure 17. An example of C0, C1, C2, in case w = 2.

¤

Corollary 39. Any Cubist set can be approximated in an arbitrarily large finite

region by some Cubist set which possesses the finite interval property.

Proof. Let C be a Cubist set, and F a finite region. We can extend F to a convex

Cubist set F ′, by Proposition 36. Casting shadows from F ′, as in Lemma 38 we

obtain a Cubist set containing F , which possesses the finite interval property. ¤

6. Algebraic preliminaries

We state our general algebraic setup, which coincides with that of the prequel

to this article [8]. Further technicalities can be found in that paper.

Let k be a field. We shall be working with associative k-algebras A graded over

the integers. So A = ⊕i∈ZAi and AiAj ⊂ Ai+j . While not assuming the existence of

a unit, we require A to be equipped with a set of mutually orthogonal idempotents

{es | s ∈ S} ⊂ A0 such that A = ⊕s,s′∈SesAes′ . Unless stated otherwise, all

A-modules M are assumed to be graded left modules, so that M = ⊕i∈ZMi and

AiMj ⊂ Mi+j , and to be quasi-unital, i.e., M = ⊕s∈SesM . Given n ∈ Z, we let
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M〈n〉 be the A-module obtained by shifting the grading by n, so that M〈n〉i =

M〈n − i〉.

Now suppose that A is positively graded, i.e. Ai = 0 for i < 0, and that {es | s ∈

R} is a basis for A0. Let us also impose the finiteness condition dim esAi < ∞ for

all s ∈ and i ∈ Z. Let A be the category of all graded A-modules, where the space

of morphisms between graded modules M and N , which we denote HomA(M,N),

consists of A-module homomophisms preserving degree. We denote by A -mod the

full subcategory consisting of modules M such that dim esMi < ∞ for all s ∈ and

i ∈ Z, and that Mi = 0 for i << 0.

We define A -nod to be the category of (not necessarily graded) finite dimensional

A-modules.

7. Definitions

Here we define the Cubist algebras, via a species of noncommutative symplectic

reduction.

We wish to consider algebras defined over a field k, such as Fp. Cubist complexes

are geometric objects, defined over R. We therefore require an algebraic setup which

is flexible enough for change base from R to Fp.

Our general conditions are the following: R is a subring of R; k is a field, and

we have a ring homomorphism R → k. For example, we might take R = Z, and

k = Fp.

Let ER = R⊕r.

We assume the existence of a free R-module HR, and epimorphism of R-modules,

pR : ER ։ HR, such that R ⊗R HR
∼= H, and R ⊗R pR

∼= p. We write

Ek = k ⊗R ER, Hk = k ⊗R HR, pk = k ⊗R pR.

Thus, pk : Ek ։ Hk.

Let Q be the quiver with vertex set Z
r, and set of arrows

{ax,i, bx,i|x ∈ Z
r, 1 ≤ i ≤ r}.

The arrow ax,i is directed from x to x + ǫi. The arrow bx,i is directed from x to

x − ǫi. Let fx be the primitive idempotent in kQ corresponding to x ∈ Z
r

Let Π be the path algebra kQ, modulo commutation relations

ax,iax+ǫi,j = ax,jax+ǫj ,i,

bx,ibx−ǫi,j = bx,jbx−ǫj ,i,

ax,ibx+ǫi,j = bx,jax−ǫj ,i,

for 1 ≤ i, j ≤ r.

Let Γ = k[a1, ..., br, b1, ..., br] be a polynomial ring in 2r variables. The algebra

Π is a Γ-Γ-bimodule, where ai acts on the right of Πfx as ax,i and on the left of

fxΠ as ax−ǫi,i; where bi acts on the right of Πfx as bx,i and on the left of fxΠ as

ax+ǫi,i.
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We have an embedding φ : Ek →֒ Γ2, taking ǫi ∈ Ek to the quadratic element

aibi of Γ. By the commutation relations, the left action of Ek on Π is identical to

the right action of Ek on Π. The subalgebra S(Hk) of Γ therefore acts centrally on

Π.

Let V = Π
⊗

S(ker(pk)) k, the quotient of Π by the ideal generated by Hk. As

a graded algebra, V is quadratic. We define U be the quadratic dual of V . We

denote the generating arrows of U , dual to ax,i, bx,i, by αx,i, βx,i, for x ∈ Z
r, i ∈ r.

Definition 40. Given a Cubist complex C, let

UC = U/
∑

x∈Zr\X

UfxU,

VC =
⊕

x,y∈X

fxV fy.

The algebras UC , VC are the Cubist algebras associated to C.

Remark 41 Thinking of Π as the ring of regular functions on a smooth noncom-

mutative variety P, of dimension 2r, the Cubist algebras VC can be thought of as

representing a symplectic quotient

P//T

of P by a c-dimensional torus T [19]. Thus, V represents the zero fibre V of a mo-

ment map µ : P → Lie(T )∗, whilst cutting by idempotents fx, x ∈ X corresponds

to factoring out further the action of T on V.

We will see that the algebra VC has finite global dimension, equal to 2(r − c).

In the language of noncommutative geometry, our symplectic quotient is a smooth

variety, of dimension 2(r − c). By comparison, note that V is singular.

The prima materia for classical symplectic reduction is a Hamiltonian group

action on a symplectic manifold. After transmutation, one obtains a second sym-

plectic manifold. In our situation, strong properties of the algebra Π descend to

strong properties of the algebra VC . Indeed, both Π, VC are Koszul algebras, with

highest weight module categories, respecting a form of Serre duality.

There are numerous different possible Cubist complexes C tiling H, and therefore

numerous different algebras VC . However, there exist derived equivalences relating

many of these algebras, representing their common origin.

Remark 42 Any lattice in Euclidean space defines a collection of parallelohedral

tilings: namely, those tilings whose vertices lie on the lattice. There are algebras

in Lie theory corresponding to lattices; for example, there is the vertex operator

algebra construction of Borcherds [5]. It would be interesting if there were some

relation with the corresponding Cubist algebras.
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8. Homological algebras

The Cubist algebras possess many strong homological properties, such as Koszulity,

quasi-heredity, and self-injectivity. In this section, we prove these facts, generalising

the case c = 1 treated in the prequel to this paper. Many of the arguments required

to prove the results of this section are identical to arguments given in the prequel

to this paper [8]. We do not repeat these here, but choose instead to outline proofs,

providing details only where the logic of our previous article seems insufficient.

We prove that the category of standardly filtered modules is a thick subcategory

of the stable module category, for a self-injective algebra with highest weight module

category.

We prove that the derived categories of Cubist algebras admit a polarization

([25]).

Following the convention of the prequel, given a positively graded algebra A, we

denote by CA(q) the Cartan-Hilbert matrix, which records the graded composition

series of principal indecomposable modules of A. In case the degree zero part of A

is a field, CA(q) is the Hilbert polynomial of A.

Lemma 43. Γ is free over S(Ek). The algebra Λ = Γ
⊗

S(ker(pk)) k is Koszul, with

Hilbert polynomial (1 − q2)c/(1 − q)2r.

Proof. It is easy to check that Γ is free over S(Ek). Furthermore, S(Ek) is free over

S(ker(pk)), so Γ is free over S(ker(pk)). Therefore, Λ has Hilbert polynomial

C(Γ)/C(S(ker(pk))) = (1 − q2)c/(1 − q)2r.

Furthermore, Λ is a quadratic complete intersection. Quadratic complete intersec-

tions are always Koszul [13]. ¤

Corollary 44. Λ acts freely on the left and right of V . V is a Koszul algebra, and

its Koszul dual is isomorphic to U .

Proof. Π is a Γ-Γ-bimodule. Tensoring over k with S(ker(pk)), we find that V has

the structure of a Λ-Λ-bimodule.

The Koszul complex for Λ is a linear resolution of the trivial Λ-module. Inducing

up to V , we obtain a linear resolution of V 0 = V ⊗V k, the degree zero part of V .

Therefore, V is Koszul. The Koszul dual of V is the quadratic dual of V , namely

U . ¤

We wish to prove that VC -mod is a highest weight category. To this end, we

define a collection of Λ-modules, a subset of which, after inducing up to V , and

projecting down to VC , will define a collection of standard VC-modules. These

modules possess natural linear resolutions which allow us to prove the Koszulity of

VC , as well.

Let r̃ = {ai, bi|i ∈ r}. Let γ be the projection of r̃ onto r, which takes αi and βi

to i.



26 WILL TURNER

Let θ be a subset of r̃ of order w, such that the restriction γ : θ →֒ r of γ to

theta is an embedding. Let Ωθ = k[θ] be a polynomial ring in w variables. We have

a natural algebra homomorphism from Ωθ to Λ.

Lemma 45. The algebra Λ is free over Ωθ, with basis

Bθ =
⋃

φ∈r̃,θ⊂φ,γ:φ∼=r.

{ monomials in φ}.

Proof. We first show that Ωθ acts freely. Indeed, let Fθ be the subspace of Ek

spanned by {ǫi, i ∈ γ(θ)}. Note that Ek = Fθ ⊕ ker(pk), by assumption. Fur-

thermore, Γ is free over S(Ek). Therefore, Λ = Γ ⊗S(ker(pk)) k is free over S(Fθ).

Moreover, Λ⊗S(Fθ) k ∼= Γ⊗S(Ek) k is free over Ωθ ⊗S(Fθ) k. It follows that Λ is free

over Ωθ.

We now show that Bθ forms a basis. Note that the quadratic relations ker(pk) in

Λ allow us to reduce any monomial in r̃ to a sum of monomials of the form m1m2,

where m1 ∈ Bθ, and where m2 is a monomial in θ. Therefore, Λ = Bθ.Ωθ. This

implies that C(Bθ).C(Ωθ) ≥ C(Λ), with equality if, and only if, Bθ forms a basis.

By Lemma 43, we have

C(Λ) = (1 − q2)c/(1 − q)2r = (1 − q)c(1 + q)c/(1 − q)c(1 − q)w+r

= (1 + q)c/(1 − q)w+r.

However, by definition, C(Ωθ) = 1/(1 − q)w. Furthermore, we can decompose Bθ

as a disjoint union

Bθ =
∐

ψ⊂r̃,γ:ψ∼=r\γ(θ)




∏

βi∈ψ

βi.{ monomials in θ ∪ ψ}



 ,

so that

C(Bθ) =
∑

ψ⊂r̃,γ:ψ∼=r\γ(θ)

q|{βi∈ψ}|1/(1 − q)r

= (1 + q)c/(1 − q)r.

Combining our three formulas, we see that C(Λ) = C(Bθ).C(Ωθ). ¤

Suppose θ ⊂ r̃ has order w. Let Pθ denote the subalgebra of V generated by fx,

and fxθ, for x ∈ Z
r. Let ∆θ(x) = V ⊗Pθ

kx, for x ∈ Z
r.

Given x ∈ X , we have λ(x) = x +
∑w

i=1[0, 1]σiǫxi
, for some increasing sequence

xi ∈ r, and some σi = ±1. Let θx ⊂ r̃ be the subset of r̃ of order w, which contains

αxi
, whenever σi = 1, and βxi

, whenever σi = −1, for i = 1, ..., w.

Let ∆VC
(x) denote the standard VC-module, for x ∈ X .

Lemma 46. Let x ∈ X . We have an isomorphism of VC-modules

∆VC
(x) ∼= ⊕x∈XHomV (V fX ,∆θx

(x)).

We have a linear projective resolution,

. . . →
⊕

y∈λx
d(x,y)=2

VCfy〈2〉 →
⊕

y∈λx
d(x,y)=1

VCfy〈1〉 → VCfx → ∆VC
(x).
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Proof. (see [8], Lemma 39) We induce a Koszul resolution of Ωθx
up to V , and then

project down to VC via ⊕x∈XHomV (V fX ,−). Taking a component, we obtain a

linear resolution of the standard VC-module, as required. ¤

Theorem 47. UC and VC are Koszul dual algebras.

UC -mod is a highest weight category, with respect to º. VC -mod is a highest

weight category, with respect to ºop.

The graded decomposition matrix of UC is DUC
(q). The graded decomposition

matrix of VC is DVC
(q).

Proof. The highest weight structure on VC -mod follows by a numerical criterion,

from Proposition 22 and Lemma 46 (see [8], Theorem 41).

To prove the Koszulity of VC , one then applies a result of Ágoston, Dlab, and

Lukács [1], which states that a finite dimensional algebra with a highest weight

module category, whose standard modules have linear resolutions, is Koszul, and

its Koszul dual has a highest weight module category. In order to apply this result

to our situation, it must be possible to approximate a Cubist set in an arbitrarily

large region by a Cubist set satisfing the finite interval property. This is possible

by Lemma 38 (see [8], Theorem 47).

We know that U and V are Koszul dual algebras. From a recollement of E.

Cline, B. Parshall and L. Scott, it then follows that the Koszul dual of VX is in

fact UX (see [8], Theorem 53). We then conclude that UX -mod is a highest weight

category (see [8], Corollary 56). ¤

The statements above imply a homological duality between UC and VC [3]:

KC : Db(UC -mod) ∼= Db(VC -mod),

as well as an algebraic stratification of the derived categories of these algebras. A

second set of results describes the homological self-duality of UC and VC :

Theorem 48. There exist graded algebra automorphisms ηU , ηV of UC, VC, acting

trivially on the degree zero parts of these algebras, such that

Hom(X,Y )ηU ∼= Hom(Y,X)∗,

naturally in X ∈ UC -perf, Y ∈ Db(UC -mod), such that

Hom(X,Y )ηV ∼= Hom(Y,X[2w])∗,

naturally in X ∈ VC -perf, Y ∈ Db(VC -mod), and such that the diagram

Db(UC -mod)
KC //

ηU

²²

Db(VC -mod)

ηV

²²
Db(UC -mod)

KC // Db(VC -mod)

commutes.
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Proof. The algebra UC is a graded Frobenius algebra (for a proof, see [8], Theorem

69). Therefore, UC possesses a graded twist ηU , known as the Nakayama automor-

phism, such that UηU

C
∼=

⊕
x,y∈X Hom(fxUCfy, k), as UC-UC-bimodules. It follows

that the derived category of UC satisfies a duality of the form stated in the theorem.

Since the injective hull of kx is isomorphic to the projective cover of kx, for x ∈ X ,

twisting by ηU fixes simple modules. Therefore, ηU acts trivially on the semisimple

degree zero part of UC .

Passing through the Koszul duality functor KC , we find that there is a graded

Morita self-equivalence ηV of VC , twisting by which induces a commutative diagram,

and a natural isomorphism as stated. The Morita self-equivalence is induced by an

algebra automorphism, since VC is basic. ¤

Remark 49 In case c = 1, the automorphisms ηU , ηV can be taken to be the

identity (see [8]). In this case, the Cubist algebras are Calabi-Yau. It would be

interesting to know whether this is true, for c > 1.

Remark 50 We have combinatorial formulas ([8], Theorem 90),

CVC
(q)xy = qd(x,y)(1 − q2)−w, CVC

(q) = DVC
(q)T DVC

(q),

CUC(q)CVC(q) = 1, CUC(q) = DUC
(q)T DUC

(q), CUC
(q−1) = q−2wCVC

(q).

We have a recollement

Db(V -mod)C // Db(V -mod)
oo
oo // Db(VC -mod)

oo
oo

where Db(V -mod)C denotes the subcategory of Db(V -mod) of complexes of mod-

ules, whose homology is given by simple modules outside C ([8], Corollary 52).

If T is the tiling of Euclidean space corresponding to the Cubist set C, we have

algebra isomorphisms UC
∼= UT , and VC

∼= VT ([8], Proposition 58, Theorem 53).

Remark 51 Since the collection of Cubist sets is so rich, in case w > 1, we

obtain a large collection of Koszul Frobenius algebras of Loewy length 2w + 1,

whose Nakayama automorphism fixes simple modules, which possess infinitely many

highest weight structures. This contrasts markedly with Loewy length three, in

which case there is a unique self-injective algebra whose Nakayama automorphism

fixes simple modules, in possession of a highest weight structure: the Brauer tree

algebra on an infinite line.

The category of self-injective algebras with highest weight module category is

a pleasing one. For example, the subcategory of ∆-filtered modules is not abelian

in a general highest weight category, and is therefore homologically somewhat un-

satisfactory. However, if the algebra is also self-injective, the stable category of

∆-filtered modules admits a triangulated structure:

Theorem 52. Let A be a self-injective algebra, with highest weight module category,

which is not semisimple. Then A is Ringel self-dual, and infinite dimensional. The
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category F(∆) of ∆-filtered modules is a thick subcategory of the stable module

category, A -nod.

Proof. Recall the stable module category A -nod of a self-injective algebra is trian-

gulated [16].

A finite dimensional algebra with highest weight module category has finite

global dimension. A non-semisimple self-injective algebra has infinite global di-

mension, since the Heller translation functor is invertible. Therefore, A is infinite

dimensional.

By definition, all projective A-modules are filtered by standard modules.

Costandard A-modules are dual to standard Aop-modules. Since A is self-

injective, projective A-modules are dual to projective Aop-modules, Therefore, pro-

jective A-modules are filtered by costandard modules.

Therefore, the projective indecomposable A-modules are precisely the indecom-

posable tilting modules for A. Consequently, A = EndA -nod(A) is Ringel self-dual

(see [12], A4). Thus, AAA is a tilting bimodule. Since Ringel duality exchanges

standard and costandard modules, the standard A-modules can also be thought of

as costandard modules, with respect to the opposite partial order.

We can thus write F(∆) ∼= Fop(∇). Since the category F(∆) is precisely the

collection of modules left Ext>0-orthogonal to the corresponding costandard mod-

ules, whilst the category Fop(∇) is precisely the collection of modules right Ext>0-

orthogonal to the corresponding standard modules ([12], A2, proposition 1(v)) , we

conclude that if

0 → M1 → M2 → M3 → 0

is an exact sequence in A -mod, and any two of M1, M2, M3 lie in F(∆), then the

third also lies in F(∆).

Projective A-modules are the same as injective A-modules. These lie in F(∆),

so Heller translation preserves F(∆). Also, we know that taking a pushout of maps

between objects of F(∆), one of which is injective, we obtain an object of F(∆).

It follows that any map M1 → M2 in the stable category, with M1,M2 ∈ F(∆) can

be extended to an exact triangle

M1 → M2 → M3 Ã,

with M3 ∈ F(∆), since exact trangles in the stable category are formed by taking

such pushouts [16]. We have thus proven that the category of ∆-filtered modules

is a triangulated subcategory of the stable module category of A.

In the module category, direct summands of ∆-filtered modules are also ∆-

filtered, as can be seen by their characterisation as the modules which are Ext>0

orthogonal to costandard modules. Modulo projective indecomposable summands,

modules which are isomorphic in the stable category, are isomorphic in the module
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category. Therefore, modulo projective indecomposable summands, direct sum-

mands in the module category coincide with direct summands in the stable cat-

egory. Therefore, F(∆) is a thick subcategory of the stable module category of

A. ¤

Thanks to the above theorem, for a self-injective quasi-hereditary algebra, the

standard hierarchy of triangulated categories has a natural extension,

Kb(A -nod) → Db(A -nod) → A -nod → A -nod∆ .

Here, we write A -nod∆ for the quotient of the stable category by the thick subcat-

egory F(∆).

Corollary 53. The category F(∆) of ∆-filtered modules is a thick subcategory of

the stable module category, UC -nod.

We have introduced the following homological restriction:

Definition 54. (see [25]) A polarization of a triangulated category T is a quadruple

(φ,X+,X−, w), where X+ and X− are generating collections of objects of T , where

Hom(X+,X−[i]) = Hom(X−,X+[i]) = 0, for i 6= w,

and where φ : T → T op is an equivalence, such that

φ(X+) = X−, φ(X−) = X+, φ∨.φ = 1.

The most basic example of a triangulated category admitting a polarization

is the derived category Db(k[W ] -mod), where W is a symplectic vector space of

dimension 2w. We have proved the following theorem.

Theorem 55. (see [25]) Let A,B be Koszul dual algebras. Suppose that B is self-

injective, and that B is standard Koszul, with respect to partial orderings ¹i of a

set Λ, for i ∈ Z/2. Suppose that the standard modules, taken with respect to ¹i, are

also standard modules for a graded cellular structure on B, for i ∈ Z/2. Suppose

that all standard B-modules have Loewy length w + 1, and there exists a bijection

θ : Λ → Λ, such that

∆i(λ) ∼= ∇i+1(λ
θ),

Hom(∆i(λ),∇i(µ)) = 0,

for λ 6= µ ∈ Λ, i ∈ Z/2. Then Db(A) admits a polarization (φ,∆0,∆1, w).

Theorem 56. The derived category Db(VC -mod) admits a polarization.

Proof. We observe that UC satisfies the hypotheses of Theorem 55, from which it

follows that Db(VC -mod) admits a polarization.

Upon choosing a non-zero vector v ∈ H which does not run parallel to any

edges in T , we obtain a pair of orderings ¹v and ¹−v with respect to which the

standard Koszulity, and graded cellularity of UC are known (Theorem 47, see also

[8], theorem 60).
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We show that there is a bijection θ : X → X , such that

∆¹sv

UC
(x) ∼= ∇

¹−sv

UC
(xθ),

for x ∈ X , and s ∈ ±1. Indeed, we already have a bijection λv between the vertices

and faces of T . We define θ to be the map which takes a vertex x to the vertex

opposite x in the parallelogram λv(x). The inverse to this map, θ−1, takes a vertex

y to the vertex opposite y in the parallelogram λ−v(x). The standard module

∆≺sv

UC
(x) is a facetious module, whose dual is the facetious module ∆

≺−sv

UC
.

It only remains for us to show that

Hom(∆¹sv

UC
(x),∇¹sv

UC
(y)) = 0,

for x 6= y ∈ X , and s ∈ ±1.

We claim that in the graded module category, Hom(∆¹v

UC
(x),∆

¹−v

UC
(y)〈i〉) is iso-

morphic to the field k, if x, y are opposite in λv(x) and i = w, and zero otherwise.

Indeed, since the facetious module ∆¹v

UC
(x) has simple top kx and simple socle kxθ,

this formula is clear in case x, y are opposite in λv(x). However, if there is a non-

zero homomorphism from ∆¹v

UC
(x) to ∆

¹−v

UC
(y), then x ∈ λ−v(y) = λv(yθ−1

). This

implies x ¹v yθ−1

. Furthermore, by duality there is a non-zero homomorphism

from ∆¹v

UC
(yθ−1

) to ∆
¹−v

UC
(xθ) which implies yθ−1

∈ λv(x). This implies yθ−1

¹v x.

Therefore, x = yθ−1

, which implies that x, y are in fact opposite in λv(x) = λ−v(y).

We have thus proven that Hom(∆¹v

UC
(x),∇¹v

UC
(y)〈i〉) is isomorphic to the field k,

if x = y and i = w, and zero otherwise.

Similarly, we find that Hom(∆
¹−v

UC
(x),∇

¹−v

UC
(y)〈i〉) is isomorphic to the field k, if

x = y and i = w, and zero otherwise. This completes the proof of the Theorem. ¤

9. Derived equivalences

In this section, we define derived equivalences between Cubist algebras whose

Cubist sets are related by local mutations. The proof given here is different from

that given in case c = 1 in the prequel to this paper. In our previous paper, the

proof of the derived equivalences were tied to an interesting combinatorial formula

for the Cartan matrix of UC , of which we do not have an analogue here. However,

our new perspective allows us to describe equivalences of a form not considered

there, and provides further theoretical insight. For example, it allows us to observe

the compatibility of the derived equivalences with various gradings (section 10),

and limiting procedures [23].

Our method is to derive naturally defined functors between Cubist algebras VC .

It is convenient to perform homological calculations on the Koszul dual algebra UC .

Let us begin with a lemma. For the notation D↑,D↓, and the Koszul duality

equivalences, we refer to the article of Beilinson, Ginzburg, and Soergel [3].

Lemma 57. Suppose U, V are Koszul dual algebras, that e is an idempotent in

U0 ∼= V 0, and that Ue = U/U(1− e)U and Ve = eV e are also Koszul dual algebras.
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Then we have commutative diagrams,

D↑(U -mod)

RHomU (Ue,−)

²²

∼

K
// D↓(V -mod)

HomV (V e,−)

²²
D↑(Ue -mod)

∼

Ke

// D↓(Ve -mod),

D↓(U -mod)

Ue⊗
L
U−

²²

D↑(V -mod)∼
Koo

eV ⊗V −

²²
D↓(Ue -mod) D↑(Ve -mod),∼

Keoo

where K and Ke denote the Koszul duality functors. We have a full embedding of

bounded derived categories

Db(Ue -mod) → Db(U -mod).

Proof. The U -Ue-bimodule Ue corresponds, under Koszul duality on the right, to

the U -Ve-bimodule U0e. The V -Ve-bimodule V e corresponds, under Koszul duality

on the left, to the same U -Ve-bimodule U0e. Therefore, the U -Ue-bimodule Ue

corresponds, under Koszul duality, to the V -Ve-bimodule V e. We thus have a

commutative diagram,

D↑(U -mod)

RHomU (Ue,−)

²²

∼

K
// D↓(V -mod)

HomV (V e,−)

²²
D↑(Ue -mod)

∼

Ke

// D↓(Ve -mod),

We similarly have a commutative diagram

D↓(U -mod)

Ue⊗
L
U−

²²

D↑(V -mod)∼
Koo

eV ⊗V −

²²
D↓(Ue -mod) D↑(Ve -mod).∼

Keoo

Now suppose that S, T are irreducible Ue-modules, and eS , eT corresponding

degree zero idempotents in U . Let F denote the exact functor

Ue ⊗Ue
− : Db(Ue -mod) → Db(U -mod).

satisfies the condition Hom(FS, FT 〈i〉) ∼= eSVieT = eSVeeT
∼= Hom(S, T 〈i〉).

Therefore F is a full embedding on the collection of irreducible Ue-modules. Since

the collection of irreducible Ue-modules generates , F is a full embedding on

Db(Ue -mod). ¤

Let C and D be Cubist subcomplexes of Z of dimension w, whose sets of vertices

are denoted X and Y.

Definition 58. Suppose there exist x ∈ X , S ⊂ r, such that |S| ≥ c, and

X ∪ Y ⊃ x + Z
r\S +

∑

s∈S

{0, 1}ǫs,
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X\Y = x + Z
r\S , Y\X = x + Z

r\S +
∑

s∈S

ǫs.

Then we say C,D are related by a Cubist mutation.

Remark 59 Let S be fixed. If the above definition is satisfied for some x ∈ X\Y,

then it is satisfied for every x ∈ X\Y.

A picture of a mutation, in case w = 2, and|S| = 3, is given in Figure 13.

Lemma 60. Suppose C and D are related by a Cubist mutation. Then

X ∩ (z +
∑

s∈S

Z≥0ǫs +
∑

t∈r\S

Zǫt) = ∅,

for z ∈ Y\X , and

Y ∩ (z +
∑

s∈S

Z≤0ǫs +
∑

t∈r\S

Zǫt) = ∅,

for z ∈ X\Y.

Suppose X ,Y are Cubist sets related by a mutation. Let z ∈ Y\X .

Let V S denote the subalgebra of V generated by the arrows az,i, for i ∈ S. As

a vector space, V Sfz is isomorphic to the symmetric algebra S(kS), for z ∈ Z
r.

Let US denote the quotient of U by the arrows βz,i, for i ∈ r\S, and αz,i, for

i ∈ r. As a vector space, Mz = USez is isomorphic to the exterior algebra
∧

(kS).

The algebras US and V S are Koszul duals.

If M and N are modules over an algebra A, with fixed direct sum decompositions,

M = ⊕i∈IMi, N = ⊕j∈JNj ,

where Mi and Ni are indecomposable objects of A -mod. Then we write

Hom⋆(M,N) =
⊕

i∈I,j∈J,k,l∈Z

Hom(M,N〈k〉[l]), End⋆(M) = Hom⋆(M,M).

If A,B are subsets of Z0, we write

VA,B =
∑

a∈A,b∈B

faV fb.

Then VA,B is a VA-module, with a canonical decomposition VA,B = ⊕b∈BVA,{b}, as

a direct sum of indecomposables.

We have natural isomorphisms

VC
∼= VX ,X

∼= End⋆
VC

(VX ,X ).

Lemma 61. We have

Hom⋆
V (V fX ,K(Mz)) = Hom⋆

U (kX ,Mz) =

Hom⋆
U (M∗

z , kX ) = Hom⋆
V (K(M∗

z ), V fX ) =

Hom⋆
V (K(Mz), V fY) = Hom⋆

U (Mz, kY) =

Hom⋆
U (kY,M∗

z ) = Hom⋆
V (V fY ,K(M∗

z )) = 0,

for z ∈ Y\X .
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Proof.

K(Mz) = V ⊗kZ0 M∗
z
∼= V ⊗V S V S ⊗kZ0 M∗

z

But US and V S are in Koszul duality, and M∗
z is an injective US-module, and

therefore

V S ⊗kZ0 M∗
z
∼= kz.

Consequently K(Mz) ∼= V ⊗V S kz The composition factors of V ⊗V S kz lie in

z +
∑

s∈S Z≥0ǫs +
∑

t∈r\S Zǫt, which does not intersect X by Lemma 60. Therefore

Hom⋆
V (V fX ,K(Mz)) ∼= Hom⋆

V (V fX ,K(Mz)) ∼= Hom⋆
V (V fX , V ⊗V S kz) ∼= 0

By Koszul duality, and k-duality, we also have

Hom⋆
U (kX ,Mz) = Hom⋆

U (M∗
z , kX ) = Hom⋆

V (K(M∗
z ), V fX ) = 0.

So the first four spaces of homomorphisms listed in the statement of the theorem

are zero. The four following spaces are zero, by the same argument, using Y instead

of X . ¤

We denote by Lz the kernel of the U -module homomorphism Mz ։ kz.

Lemma 62. Lz is a UC-module.

Proof. The composition factors of Mz lie in x + [0, 1]
∑

s∈S ǫs, where x = z −
∑

s∈S ǫs ∈ X\Y. Since C and D are related by a Cubist mutation, the composition

factors of Lz lie in X . Therefore fwLz = 0, for all w ∈ Z
r\C, and so Lz is a

UC-module. ¤

Lemma 63. KC(Lz)[−1] ∼= fXV fz.

Proof. We have a short exact sequence

0 → Lz → Mz → kz → 0.

Applying the Koszul duality functor, and the exact functor Hom⋆
V (V fX ,−), we

obtain an exact triangle,

Hom⋆
V (V fX ,K(Lz)) → Hom⋆

V (V fX ,K(Mz)) → Hom⋆
V (V fX , V fz) Ã,

which by Lemma 61 is an exact triangle,

KC(Lz) → 0 → fXV fz Ã .

We therefore have an isomorphism fXV fz
∼= KC(Lz)[−1], as required. ¤

Lemma 64. We have

HomUC
(X,Lz[−1]) ∼= HomU (X, kz),

HomUC
(Lz[−1],X) ∼= HomU (kz,X),

for X ∈ Db(UC -mod).
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Proof. We have an adjunction

D−(U -mod)

φ ..
D−(UC -mod),

ψ
nn

where φ = RHomU (Ue,−), and ψ = UC ⊗UC
−. There is an isomorphism φ(kz) ∼=

Lz[−1], by Lemmas 57 and 63. We therefore have isomorphisms

HomUC
(X,Lz[−1]) ∼= HomUC

(X,φ(kz)) ∼= HomU (ψX, kz),

for X ∈ Db(UC -mod). However, ψ is the lift functor, and so

HomUC
(X,Lz[−1]) ∼= HomU (X, kz),

as required.

The second formula is proved analogously. ¤

Theorem 65. Suppose that C,D are Cubist complexes, related by a Cubist muta-

tion. Then we have an equivalence of triangulated categories

Db(VD -mod) → Db(VC -mod).

Proof. There is a natural map VD → End⋆
VC

(VX ,Y), whose image has homological

degree zero. We prove this map is an isomorphism. Indeed,

Hom⋆
VC

(VX ,Y , VX ,Y) ∼=

Hom⋆
VC

(VX ,X∩Y ⊕ VX ,Y\X , VX ,Y) ∼=

Hom⋆
VC

(VX ,X∩Y , VX ,Y) ⊕ Hom⋆
VC

(VX ,Y\X , VX ,Y) ∼=

VX∩Y,Y ⊕ Hom⋆
UC

(K−1
C (VX ,Y\X ),K−1

C (VX ,Y)),

which, by Lemma 63 is isomorphic to

VX∩Y,Y ⊕ Hom⋆
UC

(LY\X [−1], LY\X [−1] ⊕ kX ∩ Y) ∼=

VX∩Y,Y ⊕ Hom⋆
UC

(LY\X [−1], LY\X [−1] ⊕ kX ∩ Y)

which, by Lemma 64 is isomorphic to

VX∩Y,Y ⊕ Hom⋆
U (kY\X , LY\X [−1] ⊕ kX ∩ Y)

which, by Lemma 61 is isomorphic to,

VX∩Y,Y ⊕ Hom⋆
U (kY\X , kY\X ⊕ kX ∩ Y) ∼=

VX∩Y,Y ⊕ Hom⋆
U (kY\X , kY) ∼=

VX∩Y,Y ⊕ VY\X ,Y
∼= VY,Y

∼= VD.

Therefore,

End⋆
VX

(VX ,Y) ∼= VY ,

as required. By Rickard’s tilting theory [22], we have a derived equivalence between

VX and VY . ¤
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Remark 66 We expect derived equivalences between Cubist algebras to pass to

the subcategory of Db(UC -mod) generated by standard modules to the subcategory

of Db(UD -mod) generated by standard modules. Therefore, the equivalences should

also pass to an equivalence of quotients

UC -mod∆
∼= UD -mod∆ .

10. Gradings

Here, we consider the existence of certain gradings on the Cubist algebras. The

degree zero parts of these gradings are Koszul algebras, whose derived categories

are quotients of the graded derived category of the Cubist algebras.

These quotients are sometimes compatible with the derived equivalences, so that

derived equivalences between Cubist algebras pass to derived equivalences between

degree zero parts.

Geometrically, these degree zero parts correspond to closed Lagrangian subvari-

eties of the noncommutative symplectic variety.

Group theoretically, these gradings correspond, via derived equivalences, to grad-

ings on the group algebra of the defect group of a block.

We describe Cubist algebras as multiplicative extensions, giving an algebraic

structure with features resembling an integrable system.

Recall we have a natural 2-1 map from r̃ to r, which takes ai and bi to i ∈ r.

Let ξ : r → r̃ be some section of this map.

We have a Z+-grading on Γ, where r̃\ξ(r) lies in degree zero, and where ξ(r) lies

in degree one. This grading extends to a Z+-grading on Π

The subspace φ(Ek) of Γ is homogeneous of degree one, with respect to this

grading, Therefore the grading on Γ descends to a grading on Λ, and the grading

on Π descends to a grading on V . Taking a component, we obtain a Z+-grading

on VC . We denote by VC the degree zero part of VC , with respect to this grading.

We denote by Db(VC -grmod) the derived category of VC-modules which respects

this grading. We denote by JC the subcategory of Db(VC -grmod), whose terms in

homology have composition factors which all lie in non-zero degree.

We have a Z+-grading on U which places the variables dual to ξ(r) in degree

one, and the variables dual to r̃\ξ(r) in degree zero. We denote by UC the degree

zero part of UC , with respect to this grading. We denote by Db(UC -grmod) the

derived category of UC-modules which respects this grading. We denote by IC the

subcategory of Db(UC -grmod), whose terms in homology have composition factors

which all lie in non-zero degree.

Note the quiver of UC is the opposite of the quiver of VC .

Theorem 67. UC, and VC are Koszul dual algebras. UC is concentrated in degrees

0, 1, ..., w, and VC has global dimension w.
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Figure 18. The quiver of VC

We have recollements of triangulated categories, and a commuting diagram,

IC

≀

²²

// Db(UC -grmod)

≀KC

²²

oo
oo // Db(UC -mod)

≀

²²

oo
oo

JC
// Db(VC -grmod)

oo
oo // Db(VC -mod)

oo
oo

Proof. The Koszul complex for VC defines a projective resolution of kX ,

VC ⊗kX U∗
C → kX ,

linear with respect to the Koszul grading. The differentials in this complex thus

have a degree one part, corresponding to arrows in UC in ξ(r)∗, and a degree one

part, corresponding to arrows in UC outside ξ(r)∗. Restricting to degree zero, we

thus obtain a linear projective resolution

VC ⊗kX UC
∗ → kX .

It follows that VC is Koszul, with Koszul dual UC .

Note that paths in a cube in the quiver of UC must have minimal length. If two

paths have the same endpoints, are equal, up to a sign in UC , by the supercommu-

tation relations. Furthermore, paths in the quiver of UC which do not lie in a single

w-dimensional cube either have a component of length two in some direction, or are

equal, up to sign, to a path in the quiver of U which does not all lie in C. In case

the path has a component of length two, the path must vanish in UC , by the square

relations. Paths in the quiver of U which do not lie in C must vanish in C, since

vertex idempotents outside C are zero. In conclusion, paths in the quiver of UC ,

which do not vanish, must all lie in a single w-dimensional cube, Therefore UC is

concentrated in degrees 0, ..., w. The Koszul dual algebra VC has global dimension

w.
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The existence of the bottom recollement follows from the finite global dimension

of VC , by a theorem of Parshall and Scott ([20], Theorem 2.7(b)). The recollement

lifts to Db(UC -grmod), by Koszul duality. ¤

Remark 68 Suppose two Cubist sets C,D are related by a mutation, with respect

to some S ⊂ r. Suppose that ξ(S) ⊂ {a1, ..., ar}. Then the bimodule VC,D inducing

a derived equivalence between VC , VD is naturally compatible with the gradings

on these algebras. It is not difficult to see that, in these circumstances, we have a

commuting diagram of equivalences.

JC

≀

²²

//
//
Db(VC -grmod)oo

≀

²²

//
//
Db(VC -mod)oo

≀

²²
JD //

//
Db(VD -grmod)oo //

//
Db(VD -mod).oo

The quivers of the algebras VC , VD induce the structure of a partially ordered set

on C,D. Poset algebras, and derived equivalences between them, have been studied

by S. Ladkani.

Remark 69 We think of the degree zero part Vξ
C as cutting out a Lagrangian

subvariety Lξ in a noncommutative symplectic variety YC defined by VC (cf Example

72).

Let T be a w-dimensional torus, and t its Lie algebra.

Theorem 70. We have a multiplicative extension of algebras,

VC

## ##GG
GG

GG
GG

G

kX ⊗ k[t∗]
,
¯

::uuuuuuuuuu

V̄C ⊗ k.

and a split embedding

V̄C →
∏

ξ

Vξ
C

of V̄C into an algebra of global dimension w.

Proof. Multiplicative extensions of algebras are analogues in the category of alge-

bras, of group extensions in the category of groups (see [24]).

The algebra k[t∗] acts centrally on the left and right of VC , with t∗ acting in degree

two. This action should be thought of as a collection of commuting Hamiltonions

on YC , defining a map from the variety YC to affine space t∗. The zero fibre has

a ring of functions V̄C = VC ⊗k[t∗] k of infinite global dimension, and is therefore

singular.

Let x, y ∈ C. The xy entry in the Cartan-Hilbert matrix of VC is qd(x,y)(1−q2)−w,

where d(x, y) is the length of a shortest path in the one-skeleton of C between x

and y. A basis for fxVCfy is p.k[t∗], where p is a path in the one-skeleton of
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C of length d(x, y). The algebra k[t∗] acts centrally and freely, and so we have

a multiplicative extension as drawn. The vector space fxV̄Cfy is therefore one

dimensional, generated by any shortest path in the one-skeleton of C. Furthermore,

every shortest path in X is also a shortest path p in the one-skeleton of Z, and

so every time it passes along an arrow parallel to a given 1-cell, it points in the

same direction. Therefore, for some ξ, the path p defines a non-zero path in Vξ
C . It

follows that the natural map

V̄C →
∏

ξ

Vξ
C

is a split embedding. The algebras VC
ξ all have global dimension w, by Theorem

67. ¤

Remark 71 We visualise our zero fibre ȲC as a union of smooth Lagrangian

subvarieties, Lξ in YC . The Lagrangians Lξ should be thought of as noncommutative

toric varieties (cf. example 72).

A symplectic manifold of dimension 2w, with w commuting Hamiltonions, whose

fibres are tori is known as an integrable system. The variety YC thus resembles a

noncommutative integrable system.

Example 72 Suppose c = 1. Then r = w + 1. Let H be the hyperplane ǫ1 + ... +

ǫr = 0 in E = R
r. Let C denote the polytopal subcomplex of Zr, whose cells are

entriely contained in the band {x ∈ E| − 1 ≤
∑

xi ≤ 1}. Then C is Cubist, and

{z ∈ Z
r|

∑
zi = 0} ∼= Z

w acts on the collection of vertices X . Let ξ : i 7→ αi. Then

the algebra Vξ
C admits a Z

w-action.

2

1

3

2

2

1

1

2

1

3

2

2

1

1

3

3 3 3 3
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Figure 19. k×2-equivariant P
2

The algebra Vξ
C has no fixed points under the Z

w-action. However, we can pass to

a completion, which contains infinite sums
∑

x,y∈X vxy of elements vxy, of bounded

degree. The resulting algebra now contains fixed points. Indeed, the algebra of

Z
w-fixed points is an algebra, given by a quiver with w + 1 vertices,

•
a1

... ((

...

ar

66 •
a1

... ((

...

ar

66 • ... •
a1

... ((

...

ar

66 •

and relations aiaj −ajai, for 1 ≤ i, j ≤ w+1. This algebra was proved by Beilinson

to be derived equivalent to P
w [2].
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Given that this is so, it makes sense to enquire as to the geometric meaning of

the Cubist algebra in this case. We expect the derived category of modules over the

Cubist algebra to be equivalent to the derived category of k×w-equivariant coherent

sheaves over T ∗
P

w.

We expect to study more general toric varieties than P
w from our perspective,

in future work.

11. Strips

We discuss strips of Cubist sets, and their relevance for the Cubist algebras.

Recall a strip in a Cubist set C is the intersection of C with R
l−1×[z, z+1]×R

r−l,

for some l ∈ r, and some integer z.

We have already that strips have significance in Cubist combinatorics, when we

defined the operations “slicing” and “parting” on Cubist sets. Indeed, slicing was

the surgical operation of removing a strip from a Cubist set, whilst parting was the

operation of enhancing a Cubist set by the insertion of a strip.

X

Figure 20. µx cut out by strips

The module ∆VX
(x) is correspondingly induced from a subalgebra Pθ. The

region µx, for x ∈ X , which describes the composition factors of the Cubist algebra

VX is cut out by a w-tuple of strips. By analogy with Lie theory, we think of the

region µx as Borel, obtained as an intersection of parabolic subgroups. Continuing

the analogy, we therefore think of the half-spaces p = C ∩ (Rl−1 × R≥z × R
r−l),

corresponding to a strip, as maximal parabolic. We think of the Cubist subset l ∼=

Cl,z on the boundary of a strip, as maximal Levi. We do not have Cubist subalgebras

corresponding to Levi subsets, in general. Nonetheless, there is a natural algebraic

relation.

Proposition 73. Let C be a Cubist set of dimension w. For a given strip in C, let

l be the associated Levi subset of dimension w − 1. Then Vl is a subquotient of VC.

There is a natural Vl- VC-bimodule, Ml,C.
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Proof. Let Vp = VC/
∑

b∈l VCfb+ǫl
VC . Then we have an isomorphism

Vl
∼=

⊕

x,y∈l

fxVpfy,

since by definition, fxalbl = 0 ∈ Vp, for x ∈ l. A Vl-VC-bimodule is given by

Ml,C =
⊕

b∈l

fbVp.

¤

Remark 74 The bimodules Ml,C induce exact adjoint functors between derived

categories of Cubist algebras Vl, VC . In the representation theory of symmetric

groups, analogous functors are induction and restriction between blocks of different

weights.

Let S denote the set of strips in C. If we wish to think algebraically, by Lemma

10, we can identify a strip s with its parallel direction ǫl, and the minimal value of

ql(s), an integer. We thus have a natural bijection,

S ∼=
∐

l∈r

(ql(X )\ql(X )sup)

where S is identified with a collection of r intervals in Z. Here, Msup denotes the

singleton set containing the supremum of M , if such exists, and denotes the empty

set otherwise.

Proposition 75. The Cubist algebra VC has a natural S-parameter deformation

VC,S .

Proof. In a Koszul algebra A, deformations are a natural consequence of the exis-

tence of quadratic central elements in the Koszul dual algebra [24]. Indeed, given

such an element z ∈ A!, the algebra (A! ⊗ k[τ ]/(1 ⊗ τ2 − z ⊗ 1))! is a deformation

of A. Here, ⊗ denotes the graded tensor product, over k.

After choosing a strip

S = S(l, z) = {x ∈ X |n ≤ xi ≤ n + 1}

inside X , we define a quadratic element of UC by zS =
∑

s∈S esαiβi. We should be

a little careful, since Cubist sets are infinite. Strictly speaking, the element zS does

not lie in UC . However, it acts on the left and right of UC , and the left and right

actions agree. This is sufficient to define a deformation.

Every such element gives rise to a deformation of VC . Assembling them together,

we obtain a deformation VC,S , with parameters indexed by S. ¤

Remark 76 Since Cubist sets are infinite, we should say precisely what we mean

by an I-parameter deformation of A. We mean an algebra Â, such that ZI =

k[zi|i ∈ I] acts on the left, and right of Â, such that the left and right actions

agree, and such that Â ⊗ZI
k ∼= A.
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Remark 77 If g is a simple Lie algebra, and W its Weyl group, we have corre-

spondences

{Nodes of the Dynkin diagram of W} //

²²

{ Deformation parameters for HW },

{Maximal Levi subalgebras of g}

where HW denotes the rational Cherednik algebra associated to W [14]. Analo-

gously, we have correspondences,

S oo // {Deformation parameters for VC,S}

{Maximal Levi subquotients of VC}
²²

OO

The collection S of strips is therefore a Cubist analogue of the collection of nodes

of a Dynkin diagram.

Remark 78 W. Gan, V. Ginzburg, E. Opdam and R. Rouquier have defined a

category O for rational Cherednik algebras, and studied its properties [14]. We

expect to be able to do something similar for the deformations VC,S . Let F be

a field containing k. Let f : S → F . There is a natural algebra homomorphism

from ZS to F , taking zs to f(s). We should define a category OC,f of modules for

VC,S ⊗ZS
F , which in case F = k, f = 0, realises the corresponding highest weight

category of VC-modules. The category OC,f should be a highest weight category.

In case F is the field of fractions of ZS , OC,f should be semisimple.

Example 79 Let r = w = 1. Thus C = Z1. Then VC is isomorphic to the

preprojective algebra on an infinite line. Applying the above proposition, we obtain

a deformation VC,S of VC , with parameters indexed by the integers. The algebra

VC,S can be given by quiver and relations, as follows.

The quiver has vertices vi, i ∈ Z, arrows ai from vi to vi+1, arrows bi from vi+1

to vi, and arrows tij , from vi to vi, for i, j ∈ Z. The relations are

aibi − bi−1ai−1 + t2ii − t2ii−1 = 0,

aiti+1j − tijai = 0,

bitij − ti+1jbi = 0,

tijtik − tiktij = 0,

for i, j, k ∈ Z.

The k[tj |j ∈ Z] acts on the left and right of VC , with tj acting as
∑

i tij . Special-

ising the deformation parameters tj to elements of the field k, for j ∈ Z, we recover

the deformed preprojective algebras of W. Crawley-Boevey and M. Holland, in type

A∞
∞ [10].
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Remark 80 The term noncommutative geometry is somewhat ambiguous. Roughly

speaking, it is the study of geometries whose rings of functions are noncommuta-

tive. But what does this mean ? According to one interpretation, which we have

assumed in this paper, the geometric object is taken to be the derived category of

the noncommutative ring. Let us call this triangulated noncommutative geometry.

Geometric aspects of a chimerical noncommutative variety are to be interpreted

via homological aspects of the corresponding ring. For example, a smooth non-

commutative variety of dimension d corresponds to an associative algebra of finite

homological dimension d.

A different interpretation of noncommutative geometry, attributed to M. Kont-

sevich, has been advocated, in which the geometric object corresponding to a non-

commutative algebra is not a triangulated category, but a genuine space, namely

the space of representations of the algebra. Let us call this noncommutative ge-

ometry of moduli. Here, a noncommutative variety is thought to be a complete

intersection, if the associated variety of representations is a complete intersection.

A noncommutative variety is thought to be symplectic, if the corresponding variety

of representations is symplectic.

There is by now an extensive body of writing, including work of W. Crawley-

Boevey, M. Kontsevich, P. Etingof, V. Ginzburg, which explores the noncommuta-

tive symplectic geometry of moduli [9]. Our paper can be thought of as an excursion

into triangulated noncommutative symplectic geometry (cf. [25]).

We wish to emphasise here that, from a naive perspective, the two approaches

are genuinely different. For example, the cotangent space to the representations

of a quiver can be formed by taking representations of the corresponding double

quiver. So, in the geometry of moduli, the algebra associated to the cotangent space

of the space associated to a quiver algebra is the path algebra of the corresponding

double quiver. Performing Hamiltonian reduction on the representation variety,

one obtains representations of the preprojective algebra, which if the quiver is not

Dynkin, has homological dimension 2 [9].

However, both the path algebra of the quiver, and the path algebra of its double

are hereditary, and therefore correspond to algebras of homological dimension 1. In

triangulated noncommutative geometry, the cotangent space of the quiver algebra

ought to give an algebra of homological dimension 2. Performing Hamiltonian

reduction with respect to the action of a one dimensional group on a variety of

dimension 2, in this setting, we obtain an algebra of homological dimension 0.

That is not so interesting ! In triangulated noncommutative geometry, for non-

Dynkin quivers, one rather thinks of the preprojective algebra as corresponding to

the cotangent bundle of the path algebra of the quiver.

In the noncommutative geometry of moduli, the deformed preprojective algebra

is the algebra obtained, after performing quantum Hamiltonian reduction on the

cotangent space. In triangulated noncommutative geometry, the deformed prepro-

jective algebra is the algebra obtained by performing deformation quantization on
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the cotangent space, and then specialising the deformation parameters. This is

illustrated in example 79.

Let us note that a third interpretation of noncomutative geometry is thrust

forward by the ideas of this paper, which we might call discrete noncommutative

geometry. Here the geometry is a classical manifold. One forms a discrete model

of that space, which is in our case a tiling by parallelohedra. One then associates a

noncommutative algebra to that discrete model, and studies that noncommutative

algebra (cf. chapter 12).

12. Riemannian manifolds

We now associate Cubist algebras, by quiver and relations, which makes sense

for tilings of Riemannian manifolds. For an overview of Riemannian geometry, we

refer to the book of Berger [4].

Definition 81. Let M be a Riemannian manifold of dimension w. A rhombo-

hedron in M is a homeomorphism φ from a [0, 1]w to a subset of M , such that

geodesics in [0, 1]w map to geodesics in M , and the geodesics c1× ...×ci−1× [0, 1]×

ci+1 × ... × cw map to geodesics of length 1, for 1 ≤ i ≤ w, and cj ∈ {0, 1}.

Definition 82. A Cubist manifold T is a Riemannian manifold M , a cell complex

C, and a homeomorphism φ from C to M , such that

(i) The image under φ of every i-cell in C is a rhombohedron of dimension i.

(ii) If two cells C1, C2 of C have a non-empty intersection, then the image φ(C1)∩

φ(C2) of that intersection, is a face of the rhombohedron φ(Ci), for i = 1, 2.

Example 83 We can tile the hyperbolic plane with rhombi, by taking a tiling by

equilateral triangles, and then deleting some edges. We thus obtain a hyperbolic

Cubist manifold.

Projecting the surface of a cube in R
3 centred at the origin onto a 2-sphere cen-

tred at the origin, we obtain a rhombic tiling of the 2-sphere. A more complicated

rhombic tiling of the 2-sphere is obtained by projecting a triacontahedron onto it.

Let T = (M, C, φ) be a Cubist manifold.

Let T̄ denote the quiver, whose vertices are in one-one correspondence with

vertices of T , and whose arrows are in two-one correspondence with vertices of T ,

with each edge of T corresponding to two opposing arrows, directed between the

two vertices lying at the ends of the edge.

If x is a vertex of T , and e an edge of T with x as an endpoint, let ax,e denote

the arrow in T̄ along e away from x, and let bx,e denote the arrow along e into x.

Let ξe,x denote the vector of length one in the tangent space TxM , which points in

direction e.

If a is an arrow in T̄ , let s(a) denote the source of an arrow a, and t(a) the tail

of a.
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Let X denote the set of vertices of T , and E the set of edges of T . Let Ex denote

the set of edges with vertex x ∈ X . Let Gx denote the holonomy group at x, the

subgroup of the linear isometry group of the tangent space to M at x, generated

by the operators obtained by performing parallel transport around loops based at

x.

Definition 84. The Cubist algebra VT associated to T is the R-algebra given by

generators:

(G1) g, for g ∈ Gx, and x ∈ X ;

(G2) arrows a in the quiver T̄ ;

modulo Group relations:

(R1) h.g − (hg) = 0, for h, g ∈ Gx, and x ∈ X ;

(R2) h.g = 0, for h ∈ Gx, g ∈ Gy, and x 6= y ∈ X ;

Quiver relations:

(R3) 1Gs(α)
.α − α = 0, α.1Gt(α)

− α = 0, for all arrows α in T̄ ;

(R4) g.α = 0, for all arrows α in T̄ , and g ∈ Gx, such that x 6= s(α) ∈ X ;

(R4)’ α.g = 0, for all arrows α in T̄ , and g ∈ Gx, such that x 6= t(α) ∈ X ;

(R5) h.α − α.g = 0, for all arrows α in T̄ , and all operators h ∈ Gs(α), g ∈

Gt(α) such that the linear map from Ts(α)M to Tt(α)M given by multiplication by

h followed by parallel transport along α, is equal to the linear map given by parallel

transport along α followed by multiplication by g;

Quadrilateral relations:

(R6) p1−g.p2 = 0, if p1 and p2 are two paths of length two between opposing ver-

tices of a quadrilateral face in T , and g is the element of G obtained by performing

parallel transport along the loop p1p
−1
2 in M ;

and Vertex relations:

(R7)
∑

e∈Ex
λeae,xbe,x = 0, for all (λe) ∈ R

Ex , such that
∑

e∈Ex
λeξe,x = 0 in

TxM , x ∈ X .

p1

g

p2

Figure 21. Quadrilateral and Vertex relations.

Example 85 Suppose C is a Cubist set, and T ′ is the corresponding parallelohe-

dral tiling of Euclidean space. Rescaling the 1-cells to have length 1, we obtain a
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rhombohedral tiling T of Euclidean space H. The holonomy group of H is trivial,

and the algebra VT is the path algebra of T̄ , modulo relations

• p1−p2 = 0, if p1 and p2 are two paths of length two between opposing vertices

of a quadrilateral in T .

•
∑

e∈Ev
λeae,vbe,v = 0, for all (λe) ∈ kEv , such that

∑
e∈Ev

λexe,v = 0 in TvM .

We thus have a representation of the quadratic algebra VT , given by the path

algebra of T̄ , modulo these relations. We have isomorphisms of Cubist algebras

VC
∼= VT ′

∼= VT (cf. Remark 50).

Remark 86 We can define Cubist manifolds with boundaries as well. If T1, T2 ⊂ T

are Cubist submanifolds with boundary, then the space

V T
T1,T2

=
⊕

x1∈T1∩X ,x2∈T2X

1Gx1
VT 1Gx2

is naturally a VT1
-VT2

-bimodule. We thus have naturally defined functors between

the module categories of VT1
and VT2

.

Remark 87 Working with tilings of Euclidean space which admit a Z
w-action, one

can compactify. Indeed, passing to the completed algebra which contains elements
∑

x,y∈X vxy of bounded degree, and taking fixed points of the Z
w-action, we obtain

an algebra VC/Zw corresponding to a parallelohedral tiling of a w-dimensional torus

R
w/Z

w. Such an algebra has one obvious difference from VC : it has a larger centre.

Whilst the natural action of S(Hk/ker(pk)) on VC generates the centre of this

algebra, the algebra VC/Zw often has extra central elements, which arise as paths in

the quiver of VC/Zw representing non-trivial elements of the fundamental group of

the torus. Is VC/Zw finite over its centre, in general ?

Another homological difference caused by working on a torus is that the collec-

tions of modules of the algebras VC/Zw no longer form highest weight categories.

It would be interesting to obtain information about representations of Cubist

algebras corresponding to tilings of curved space.

Remark 88 Let M be a Riemannian manifold. We can think of the collection of

categories

CubM = {Db(VT ), T a Cubist tiling of M}

as a 2-category, whose arrows are exact functors, and whose 2-arrows are natural

transformations between exact functors. The 2-category CubM is an invariant of

M .

13. Blocks of symmetric groups

Let k be a field of characteristic l > 0. Describing the representations of a finite

group over such a field is notoriously difficult, even for elementary groups, such as
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symmetric groups [6]. We conjecture that the Cubist algebras are of relevance here,

as we have already proven in case w = 2 [8]:

Conjecture 89. Let bl be a block of a symmetric group over k, of weight w. Then

bl -mod ∼
1

2ww!
UC -mod,

as l → ∞, for some Cubist subset C of R
w(w+1)

2 of dimension w.

This conjecture is a slogan, rather than a precise mathematical statement. There-

fore, let us be more precise.

If A is a locally finite dimensional algebra and R ⊂ Irr(A) a set of irreducible

modules, let AR denote the basic algebra
∑

r,s∈R erAes, where er ∈ A is an idem-

potent, such that Aer is a projective cover of r.

Let b be a block of a symmetric group of weight w. We conjecture that b = bl−1

is one of a sequence b1, b2, b3,..., of blocks of Hecke algebras of symmetric groups

defined over k, that there exists a Cubist complex C whose vertices X lie on the

lattice Z
w, that there exists a commutative diagram of embeddings

Irr(b1)
Â Ä // Irr(b2)

Â Ä // Irr(b3)
Â Ä // ...

R1

?Â

OO

Ä _

²²

Â Ä // R2

?Â

OO

Ä _

²²

Â Ä // R3

?Â

OO

Ä _

²²

Â Ä // ...

X1
Â Ä // X2

Â Ä // X3
Â Ä // ...

where Xn ⊂ X is the intersection of C with the subset [−n, n]w of Z
w, where

bRn
n -mod ∼= URn

C -mod,

for all n, and where
|Irr(bn)|

|Rn|
→ 1,

|Xn/C2 ≀ Sw|

|Rn|
as n tends to ∞.

Here, the group C2 ≀ Sw acts on Z
w in the natural way, as a linear reflection

group. This action restricts to an action on [−n, n]w.

The conjecture is true in case w ≤ 2 [8].

Remark 90 There is more to be said about the combinatorics of this conjecture.

We shall limit ourselves to defining the projection, relative to which we expect the

Cubist set to be defined. Further details can be found in a paper of J. Chuang and

K.M. Tan [7].

Let L denote the natural permutation representation RΩ of Σw of dimension w.

Let
∧2

(L) be the second exterior power of L, a vector space of dimension w(w+1)
2 .

Let E = S2(L)∗. Let O denote the orbit sum
∑

ω∈Ω ω under the Σw-action, an

element of L. Then L embeds linearly in L ⊕
∧2

(L) via multiplication by 1 ⊕ O.

Let E = (L⊕
∧2

(L))∗, and H = L∗, and let p denote the corresponding projection

of E onto H.
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It is this projection p, with respect to which we expect the Cubist set C of

conjecture 89 to be defined.

Let us record here the existence of deformations of UC . Indeed, by definition, VC

has a natural w-dimensional central quadratic subspace, namely Hk. We therefore

have (by [24]):

Proposition 91. The Cubist algebra UC has a natural w-parameter deformation

ÛC.

Facetious modules can be defined over any specialisation of ÛC , via their con-

struction as standard objects. At a generic value of deformation parameter, they

should become simple, so that the algebra UC becomes semisimple.

At particular specialisations, we expect to obtain algebras which model blocks of

symmetric groups over the l-adic integers. Indeed, working over Zl, and specialising

a suitable deformation Zl[z] ⊗ UX at z = l, we obtain algebras which we expect

to model symmetric group blocks over Zl. This is analogous to the conjectural

structure theorem for l-adic blocks of symmetric groups, up to derived equivalence

given in our paper ”Tilting equivalences etc.” [26].
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