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THEORY.
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Abstract. We discuss the roles 2-categories play in representation theory,
with reference to examples rooted in classical mathematics.

1. Intro

Suppose that G is a group, and k a commutative ring. The collection kG -mod
of representations of G over k possesses a number of pleasing homological features.
Firstly, kG -mod is an abelian category. Secondly, so long as k is a field, kG -mod is a
Calabi-Yau category of dimension zero, meaning that Hom(P, M) ∼= Hom(M, P )∗

naturally in representaions M , and projective representations P . Thirdly, kG -mod
is a symmetric monoidal category. Here, the monoidal structure is provided by
the tensor product operator, taking a pair of representations V,W to their tensor
product V ⊗k W .

Symmetric monoidal categories also naturally appear in geometry and topology.
For example, for a natural number n, the cobordism category n -Cob, whose objects
are n − 1-dimensional closed topological manifolds and whose morphisms are n-
dimensional cobordisms between n−1-dimensional closed manifolds, is a symmetric
monoidal category. The monoidal structure is provided by disjoint union operator,
taking a pair of closed manifolds M, N to their disjoint union M qN .

An n-dimensional topological quantum field theory was defined by M. Atiyah
to be a symmetric monoidal functor from n -Cob to the category of vector spaces
[2]. It was observed that 2-dimensional topological quantum field theories could be
identified with commutative symmetric algebras [23]. Subsequently, Turaev identi-
fied 3-dimensional topological quantum field theories with certain braided monoidal
categories, known as modular categories [29]. Examples of modular categories are
provided by certain representation categories of quantum groups.

So monoidal categories are of some importance in algebra and topology. In
this paper, we increase the categorical dimension by one, and look at monoidal
2-categories.

Why should we study these ? A first answer is: because we can. According
to category theoretic dogma, whenever we see a mathematical equality, we should
look to replace it with an isomorphism. Such a philosophy suggests that we work
with categories of higher valency if possible, since they carry more information.
Rather than working with sets and functions we should look to consider categories
and functors, since between functors we have natural transformations which carry
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extra information. Rather than working with categories, functors, and natural
transformations, we should look to consider 2-categories, 2-functors, and 2-natural
transformations, since between 2-natural transformations we have further transfor-
mations carrying yet more information. And so on. The world we enter is known as
higher category theory, or homotopical algebra [24], [10]. Upon entering the world
of homotopical algebra, previously simple notions become complicated or appar-
ently absurd: 2 times 2 does not necessarily make 4. Our head begins to spin as we
climb the categorical ladder. But surely we can at least step up a couple of rungs,
without becoming too dizzy.

A discourse has taken place between M. Kapranov & V. Voevodsky, B. Day & R.
Street, J. Baez & Neuchl, and S. Crans , over the definition of a braided monoidal
2-category [19], [14], [6], [13]. Crans’ paper also contains definitions of sylleptic
monoidal 2-categories, and symmetric monoidal 2-categories.

Baez and Langford have proved that certain 2-tangle 2-categories admit braided
monoidal structures in the sense of Crans, and possess duals in a sense which
they define [5]. This is promising, because some of the work on 2-categories has a
topological motivation: to construct four dimensional topological invariants, anal-
ogous to the three dimensional invariants of Turaev & Reshetikhin, and Turaev &
Viro [29]. The 2-tangle 2-categories have a four dimensional flavour, just as tangle
monoidal categories have a three dimensional flavour.

There are intriguing connections between this project of overturning four di-
mensional invariants and classical representation theory, suggested by the categori-
fication program of I. Frenkel [12], [17]. To categorify a mathematical structure
is to interpret of it in the world of homotopical algebra. In the Frenkel program,
certain classical categories (such as categories of infinite dimensional representa-
tions for semisimple Lie algebras, or categories of representations of affine Hecke
algebras, or categories of sheaves on algebraic varieties) are acted on by certain
classical functors. Upon taking their complexified Grothendieck groups, the cate-
gories become vector spaces, and the functors become linear maps. The resulting
vector space thus defines a representation of some algebra, which happens to be the
universal enveloping algebra of a semisimple Lie algebra, or a quantization of such
an enveloping algebra.

A second approach to categorification has been advocated by J. Baez [3]. Here,
the relation to classical mathematics is quite different. To obtain strict categorifi-
cations, one considers categories internal to a classical category. Here, an internal
category is an object X0 (resembling the collection of objects in a category), and an
object X1 (resembling the morphisms in a category), along with various structures
on the pair (X0, X1), and conditions on those structures (resembling the axioms
for a category). In this setting, a strict 2-vector space is defined to be a category
internal to the category of vector spaces; a strict 2-group is defined to be a category
internal to the category of groups; a strict 2-Lie algebra is defined to be a category
internal to the category of Lie algebras. And so on.
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The internalisation approach has the appeal of an elegant principle, which can
be applied generally as a guide to incorporating homotopical ideas into classical
mathematics. On the other hand, categorifications arising around the Frenkel pro-
gram, such as Khovanov’s categorification of the Jones polynomial [20], or Chuang
and Rouquier’s categorification of the representation theory of sl2 [11], can appear
somewhat miraculous, and have a streak of mystery running through them.

An important difference between the various approaches to categorification is
their homological complexity. Categories appearing in the Frenkel program are
usually far from semisimple, and thus carry homological intricacies as well as ho-
motopical ones. In other approaches, subtle homological features are often sup-
pressed. For example, a 2-vector space in the sense of Kapranov and Voevodsky is
a semisimple category, and therefore homologically bland. A 2-vector space in the
sense of Baez and A. Crans is merely a 2-term chain complex; here, homological
information is being encoded in a homotopical manner.

In this paper we explore the 2-categorical landscape, making excursions from
classical mathematics. Let us give a brief summary of the material which is in-
cluded, with numerical references to the sections in which that material can be
found: we introduce a variety of monoidal 2-categories whose origins lie in algebra
and topology; we give examples of monoidal 2-categories associated to collections
of algebras (4), to collections of groups (4), to collections of categories (5), to topo-
logical quantum field theories (6), and to rings (8); in this article we only describe
data for these 2-categories; in a separate article, we will address coherence laws and
thus provide proofs of a number of theorems which are only stated here; we discuss
the representation theory of 2-categories (7); we describe a homotopical setting for
algebraic structures on the set of natural numbers (8,9); we discuss motivation for
studying 2-categories lying in topological quantum field theory (6), and modular
representation theory (10).

Although its concerns are superficially quite different, this paper arose from
my attempts to understand the paper of Joe Chuang and Raphaël Rouquier on
categorification of sl2 [11]. I am grateful to both Joe and Raphaël, for discussion
and insight.

2. Data for Monoidal 2-categories.

Here we record the basic data required for the definition of various types of 2-
categories. The definitions are due to Kapranov and Voevodsky, Day and Street,
Baez and Neuchl, and Crans. We do not write down the all relevant coherence laws
here. Instead, we give references to where the coherence laws can be found in the
literature.

Here is the data required for the definition of a strict 2-category T :
• A collection of objects O ∈ T ;
• For every pair of objects O, O′ ∈ T , a category T (O, O′).
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• For every triple of objects O, O′, O′′ ∈ T , a functor

T (O, O′)× T (O′, O′′) → T (O, O′′).

• For every object O an arrow iO, called the identity arrow.
The objects in T (O, O′) are the arrows in T :

O // O′

The morphisms in T (O, O′) are the 2-arrows in T :

O O′
½½
DD®¶

A semistrict monoidal 2-category is a strict 2-category with extra structure. Here
is the additional data for the definition of a semistrict monoidal 2-category T :
• An object I ∈ T .
• For any two objects O,O′ ∈ T an object O ¦O′ ∈ T .
• For any arrow a : O → O′ and any object N ∈ T an arrow a ¦ N : O ¦ N →

O′ ¦N .
• For any object O ∈ T and any arrow b : N → N ′ an arrow O¦b : O¦N → O¦N ′.
• For any 2-arrow α : a ⇒ a′ and any object N ∈ T a 2-arrow α ¦N : a ¦N ⇒

a′ ¦N .
• For any object O ∈ T and any 2-arrow β : b → b′ a 2-arrow O¦β : O¦b ⇒ O¦b′.
• For any two arrows a : O → O′ and b : N → N ′ a 2-isomorphism ¦a,b, called

the tensorator, where

O ¦N
O¦b //

a¦N

²²

O ¦N ′

a¦N ′

²²

⇓ ¦a,b

O′ ¦N
O′¦b

// O′ ¦N ′

We define a ¦ b to be the composite arrow (a ¦N)(O′ ¦ b), from O ¦N to O′ ¦N ′.

A braided monoidal 2-category is a monoidal 2-category with extra structure.
Here is the additional data for the definition of a braided monoidal 2-category:
• For any two objects O,N ∈ T an arrow σO,N : O ¦ N → N ¦ O, called the

braiding.
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• For any two arrows a : O → O′ and b : N → N ′, a 2-isomorphism σa,b, where

O ¦N
a¦b //

σO,N

²²

O′ ¦N ′

σO′,N′

²²

⇓ σa,b

N ¦O
b¦a

// N ′ ¦O′

• For any three objects O, N, M ∈ T , a 2-isomorphism σO|M,N , where

O ¦N ¦M
σO,N¦M //

σO,N¦M

ÂÂ?
??

??
??

??
??

??
??

??
??

N ¦M ¦O

⇓ σO|M,N

N ¦O ¦M

N¦σO,M

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

• For any three objects O, N, M ∈ T , a 2-isomorphism σO,N |M , where

O ¦N ¦M
σO¦N,M //

O¦σN,M

ÂÂ?
??

??
??

??
??

??
??

??
??

M ¦O ¦N

⇓ σO,N |M

N ¦O ¦M

σO,M¦N

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

A sylleptic monoidal 2-category is a braided monoidal 2-category with extra
structure. Here is the additional data for the definition of a semistrict sylleptic
monoidal 2-category T :
• For any objects O, N ∈ T , a 2-isomorphism vO,N , called the syllepsis, where

O ¦N

σO,N

¾¾7
77

77
77

77
77

77
77

7 O ¦N

⇓ vO,N

N ¦O

σN,O

CC̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨

A semistrict symmetric monoidal 2-category is a sylleptic monoidal category
satisfying additional coherence laws. No extra data is required.

A monoidal 2-category with duals is a monoidal 2-category with extra structure.
Here is the additional data for a monoidal 2-category with duals:
• For every 2-arrow α : a ⇒ b there is a 2-arrow α∗ : b ⇒ a called the dual of α.
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• For every arrow a : O → N there is an arrow a∗ : N ⇒ O called the dual of a,
a 2-arrow ia : 1O ⇒ aa∗ called the unit of a, and a 2-arrow ea : a∗a ⇒ 1N called
the counit of a.
• For every object O ∈ T there is an object O∗ called the dual of O, an arrow

iO : I → O ¦ O∗ called the unit of O, an arrow eO : O∗O → I called the counit of
O, and a 2-arrow TO : (iO ¦O)(O ¦ eO) ⇒ 1O called the triangulator of O.

3. Coherence laws

The coherence laws for our higher categorical structures will be considered in
detail in the sequel to this paper. For now, we satisfy ourselves with a few mutter-
ings and references. The coherence laws for a strict 2-category are classical. They
are as follows:
◦ If a : O → O′ is an arrow in T , then a = iO.a = a.iO′ .
◦ If a, a′, a′′ are arrows in T , then (a.a′).a′′ = a.(a′.a′′)

The coherence laws for a monoidal 2-category are due to Kapranov and Voevod-
sky [19]. Coherence laws for braided, sylleptic, and symmetric monoidal 2-categories
can be found in Crans’ paper [13].

Braided monoidal 2-categories with duals are braided monoidal 2-categories,
which are also monoidal categories with duals, satisfying additional coherence laws,
due to Baez and Langford [5]. Sylleptic monoidal 2-categories with duals are syllep-
tic monoidal 2-categories which are also braided monoidal categories with duals,
satisfying an additional coherence law. Symmetric monoidal 2-categories with du-
als are symetric monoidal 2-categories which are also sylleptic monoidal categories
with duals.

4. Algebras and groups.

Let k be a commutative ring. There is a well-known example of a symmetric
monoidal 2-category, whose objects are associative algebras over k. We call this
Talg. Here we go through the data which defines Talg in detail.

Here is data for the 2-category Talg:
• Objects of Talg are k-algebras.
• Given two algebras A,A′, the category Talg(A,A′) is the category of A-A′-

bimodules. Up to equivalence, this category is independent of the isomorphism
type of A and A′.
• Given three algebras A,A′, A′′, the functor

Talg(A,A′)× Talg(A′, A′′) → Talg(A,A′′)

takes a pair of bimodules (M,M ′) to the bimodule M⊗A′ M
′, and pair of bimodule

homomorphisms (f, f ′) to the bimodule homomorphism f ⊗ f ′. Up to natural
isomorphism, this functor is independent of the isomorphism type of A,A′ and A′′.
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Remark 1 Since we work with usual tensor product of bimodules, the 2-category
defined above is a weak 2-category. We define a strict 2-category Talg by taking
the strictification of the weak 2-category described above. This is an annoying
technicality, but we are bound by the fact that the definitions of braided monoidal
2-categories in the literature are semistrict, rather than weak.

Here is the extra data for the monoidal structure on Talg:
• The object I is given by the ring k, thought of as a k-algebra.
• For any two algebras A,A′, the object A¦A′ is defined to be the tensor product

A⊗k A′.
• For an A-A′-bimodule M and an algebra B, we define M ¦ B = M ⊗k B, an

A⊗k B-A′ ⊗k B-bimodule.
• For an algebra A and a B-B′-bimodule N , we define A ¦ N = A ⊗k N , an

A⊗k B-A⊗k B′-bimodule.
• For a bimodule homomorphism f , and an algebra B, we define f ¦B to be the

bimodule homomorphism f ⊗k 1B .
• For an algebra A and a bimodule homomorphism g, we define A ¦ g to be the

bimodule homomorphism 1A ⊗k g.
• For bimodules AMA′ and BNB′ , we define the tensorator to be the bimodule

isomorphism which is the composition of the natural isomorphisms

(A⊗k N)⊗A⊗kB′ (M ⊗k B′) → (A⊗A M)⊗k (N ⊗B′ B′) → (M ⊗k N) →

(M ⊗A′ A′)⊗k (B ⊗B N) → (M ⊗k B)⊗A′⊗kB (A′ ⊗k N).

Remark 2 Again, to obtain a semistrict monoidal structure on Talg, we strictify
the product ¦.

To avoid unnecessary complication in the rest of the paper, we will omit quali-
fications about strictification. Throughout, for all the 2-categories considered, we
take it to be understood we have strictified the product on our arrows, and our
product ¦.

Here is the extra data for a braiding on Talg:
• Given two algebras A and B, the braiding is defined to be the bimodule A⊗k

BσA,B

, on which A⊗B acts freely on the left, and on which B ⊗k A acts freely on
the right via the isomorphism σA,B : A⊗k B ∼= B ⊗k A.
• Given two bimodules M and N , the braiding is defined to be the isomorphism

M ⊗k N ∼= N ⊗k M which takes m⊗ n to n⊗m.
• Given three algebras A, B, and C, we have an equality between the isomor-

phism σA,B⊗kC and (σA,B⊗k1C)(1B⊗kσA,C). This lifts to an isomorphism between
the bimodule (A⊗k B ⊗k C)σA,B⊗kC

and the bimodule

(A⊗k B ⊗k C)σA,B⊗1C ⊗(B⊗kA⊗kC) (B ⊗k A⊗k C)1B⊗kσA,C

.
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• Given three algebras A, B, and C, we have an equality between the isomor-
phism σA⊗kB,C and (1A⊗kσB,C)(σA,C⊗k1B). This lifts to an isomorphism between
the bimodule (A⊗k B ⊗k C)σA⊗kB,C

and the bimodule

(A⊗k B ⊗k C)1A⊗kσB,C ⊗(A⊗kC⊗kB) (A⊗k C ⊗k B)σA,C⊗k1B .

Here is the extra data for a sylleptic structure on Talg:
• Given two algebras A and B, the syllepsis vA,B is defined to be the bimodule

isomorphism, given by the composition of natural isomorphisms

A⊗B → (A⊗B)⊗A⊗B (A⊗B) → (A⊗B)σA,B ⊗B⊗A (B ⊗A)σB,A

.

Theorem 3. Talg is a symmetric monoidal 2-category.

Let us now assume k to be a field. The monoidal category Talg does not have
duals. The problem is that adjoints to M⊗B− are not necessarily given by tensoring
with a bimodule. What is worse, although a right adjoint to M ⊗B − does exist,
namely HomB(M,−), the right adjoint of this functor HomB(M,−) may not exist,
and even if it does, it may not be naturally isomorphic to M ⊗B −.

There are situations in which it is possible to resolve these difficulties, in which
we assume a Calabi-Yau property for the algebras involved. For example, suppose
G denotes a collection of finite groups, which is closed under taking direct products.
Then for suitable choice of bimodules M over group algebras, adjoints to M ⊗kG−
are given by tensoring with a bimodule. Pursuing this, we can make an analogous
construction, which does define a neat example of a symmetric monoidal 2-category
with duals. We call this symmetric monoidal 2-category TG .

Here is the data for the 2-category TG :
• The objects of TG are groups in G.
• Given two groups G,G′ ∈ G, the category TG(G,G′) is defined to be the

category of exact finite dimensional kG-kG′-bimodules with a nondegenerate G ×
G′op-invariant bilinear form. Objects in this category are kG-kG′-bimodules M ,
projective as a left kG-module and as a right kG′-module, with a nondegenerate
bilinear form 〈, 〉, such that

〈gmg′, n〉 = 〈m, g−1ng′−1〉,
for g ∈ G, g′ ∈ G′, and m, n ∈ M . Morphisms in this category are bimodule
homomorphisms.
• Given three groups G,G′, G′′ ∈ G, the functor

TG(G,G′)× TG(G′, G′′) → TG(G,G′′)

takes a pair of bimodules (M, M ′) to the bimodule M ⊗kG′ M ′, and a pair of
bimodule homomorphisms (f, f ′) to the bimodule homomorphism f ⊗ f ′.
• The bimodule kGkGkG defines the identity arrow from G to G. The bilinear

form takes an element g ⊗ g′ of kG ⊗k kG to 1 if gg′ is the identity, and to zero
otherwise, for g, g′ ∈ G.
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Remark 4 Having a nondegenerate G × G′op-invariant bilinear form on a finite
dimensional kG-kG′-bimodule M is equivalent to having a bimodule isomorphism
between M and Hom(M, k). Indeed, if 〈−,−〉 is such a bilinear form, then the
corresponding bimodule isomorphism is given by m 7→ 〈m,−〉. Conversely, if φ :
M → Hom(M,k) is a bimodule isomorphism, then 〈x, y〉 = φ(x)(y) defines an
invariant nondegenerate bilinear form.

Let us check that the composition of two arrows in TG is an arrow in TG . In-
deed, suppose kGMkG′ and kG′M

′
kG′′ are two bimodules in TG . We have bimodule

isomorphisms

M ∼= Homk(M, k)op, M ′ ∼= Homk(M ′, k)op.

We thus have canonical isomorphisms

Hom(M ⊗kG′ M ′, k) ∼= HomkG′(M,Hom(M ′, k)) ∼= HomkG′(M,M ′op).

Since M is exact, and group algebras are symmetric algebras, HomkG′(M,−) is iso-
morphic to the functor Homk(M, k)⊗kG′ − (see [26], 2.2.4), and we have canonical
isomorphisms

HomkG′(M,M ′op) ∼= Hom(M, k)⊗kG′ M ′op ∼= Mop ⊗kG′ M ′op.

Thus, we have a bimodule isomorphism between M ⊗kG′ M ′ and the opposite of
its dual, so M ⊗kG′ M ′ can be thought of as an arrow in TG .

The extra data on TG which gives it the structure of a symmetric monoidal 2-
category is defined just like the analogous structure on Talg. The product G ¦H of
two groups is defined to be the direct product G×H in G. Since the group algebra
of G×H is canonically isomorphic to kG⊗k kH, all previous definitions go through
as for Talg.

Here is the data to give TG the structure of a symmetric monoidal 2-category
with duals:
• If we have a 2-arrow which is given by a bimodule homomorphism f : M → N ,

we define its dual f∗ to be the composition bimodule homomorphism

N // Hom(N, k)
Hom(f,k)// Hom(M, k) // M

• Given an arrow which corresponds to a bimodule kGMkG′ , we define its dual to
be M∗ = Mop. We have a natural map from kG to HomkG′(M∗, M∗). We have a
canonical isomorphism from HomkG′(M∗,M∗) to M∗∗ ⊗kG′ M

∗. Since M∗∗ ∼= M ,
composing these maps gives us a map from kG to M ⊗kG′ M∗ which we define to
be the unit of M . We define the counit dually.
• Let G be a group. We define the dual of G to be Gop, which is isomorphic to G

via the map which takes an element to its inverse. We have a group homomorphism
∆l : G → G×Gop, which takes a group element g to the pair (g, g−1). The module
k∆l(G)\G×Gop is a k-kG×Gop bimodule, which is the unit of G. Since the unit is
a permutation module, it is naturally self-dual, and therefore admits an invariant
nondegenerate bilinear form.
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We have a group homomorphism ∆r : G → Gop×G, which takes a group element
g to the pair (g−1, g). The permutation module kGop ×G/∆r(G) is a kGop × kG-
k-bimodule, which is the counit of G. Since the counit is a permutation module,
it is naturally self-dual, and therefore admits an invariant nondegenerate bilinear
form.

Consider ∆l(G)\G × Gop × G/∆r(G). A set of representatives for this double
coset space is the collection of elements {(g, 1, 1), g ∈ G}. Furthermore, the elements
(g, 1, 1), (1, g, 1) and (1, g, g) all represent the same double coset space. The map

kG → k∆l(G)\G×Gop ×G/∆r(G)

which takes g to (g, 1, 1) is thus a bimodule isomorphism. The composition of this
map with the canonical isomorphism between k∆l(G)\G×Gop ×G/∆r(G) and

((k∆l(G)\G×Gop)⊗k kG)⊗
kG×Gop×G

(kG⊗k (kGop ×G/∆r(G)))

is a bimodule isomorphism, which we define to be the triangulator of G.

Theorem 5. TG is a symmetric monoidal 2-category with duals.

5. Dual numbers.

The dual numbers Λ = C[d]/d2 form a super Hopf algebra, whose coproduct
sends d to d⊗ 1 + 1⊗ d. Their category of representations Λ -mod is a symmetric
monoidal category. In this section, we will use topological arguments to define a
natural lift of Λ to a symmetric monoidal 2-category TΛ. This will be a model case
for a more subtle construction given in the following section of the paper.

The dual numbers can be thought of as the universal enveloping algebra of the
one dimensional fermionic Lie algebra C0|1. We wish to describe a categorification
of the dual numbers, à la Frenkel.

One reason for trying this is that, as such a small example, it is quite elementary.
Furthermore, there are many modules over Λ with topological realisations, as the
simplicial or singular chain complex associated to an oriented simplicial complex,
or topological space. Thinking of it this way, we should try to lift the symmetric
monoidal category Λ -mod to a symmetric monoidal 2-category Λ -cat, and define
a 2-functor C from the 2-category Cat of all categories to Λ -cat, such that the
following diagram commutes

Cat
C //

N
²²

Λ -cat

K

²²
Simp+ C // Λ -mod

Here, N is the nerve construction, which associates an oriented simplicial complex
to a category, whilst C is the augmented chain complex associated to a simplicial
complex, defined over C.

We thus have many geometric realisations of representations of the dual numbers,
which we wish to lift to functorial representations in a uniform way. For example,
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the n− 1-simplex ∆n−1 can be realised as the nerve of the free category on a linear
quiver with n vertices. Its augmented chain complex is the n-fold super-tensor
product of the regular Λ-representation.

In this section we demonstrate a natural way to achieve this lift. A drawback
is that the categories appearing in our construction are homologically trivial. This
is a shame: in previous approaches to categorifying Lie algebra representations, it
has been found that nontrivial categories appearing in Lie theory provide a further
reaching theory. In the following section we show how our construction can be
de-trivialised, by incorporating the data of a topological quantum field theory.

We could work with derived categories, and exact functors between these, as
conventional wisdom has it that the natural lift of a representation is usually a
triangulated category. However in this instance, no triangulated categories throw
themselves forward. Instead, we work with the category Z≤. The objects of Z≤
are integers, whilst there is a single morphism from z to z′ whenever z ≤ z′. The
category Z≤ is an object very well suited for study of simplicial topology, and we
therefore consider this to be the atomic object in our theory. We have a natural
shift functor S on the Z≤, given by addition of 1. There is a unique natural
transformation q : 1 ⇒ S.

Before giving details, let us provide a sketch of our construction. Roughly speak-
ing, we define

C(C) = Fun(Z≤, C)
to be the collection of paths through the category C, and identify the action of a
monoidal category Λ on C(C), for every C. We define

C(C) ¦ C(D) = C(C ?D),

where C ?D is the category whose collection of objects is the disjoint union of the
collections of objects in C and D, and whose collection of arrows is the disjoint
union of the arrows in C and D, along with the collection of pairs (c, d), where c is
an object in C, and d is an object in D. We think of (c, d) as defining a morphism
from c to d.

If C and D are categories, we can thus define both C(C)¦C(D) and C(D)¦C(C).
We have a natural correspondence between paths across C ? D and paths across
D ? C, which sends an arrow of the form (c, d) to (d, c), and preserves paths across
C and D. We thus recover an equivalence of Λ-categories,

C(C) ¦ C(D) ∼= C(D) ¦ C(C).
It is this product, and these equivalences, which define a braiding on the collection
of Λ-categories.

Let us be more precise. Let Qn denote the linearly ordered quiver with n vertices.
Any full subcategory of Z≤ with n objects is equivalent to the free category 〈Qn〉
on Qn. Consider the collection of functorial embeddings of 〈Qi〉 in 〈Qn〉, for i ≤ n.
We depict some of these embeddings in Figure 1.
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2 31

31 2 321

1 2 3

Figure 1. Subcategories of 〈Q3〉.

There is an obvious similarity between this diagram and the augmented chain
complex of an oriented n− 1-simplex ∆n−1, as in Figure 2.

1 2 3

123

12 13 23

+ − +

+

− + −
+

−

+++

Figure 2. The augmented chain complex C(∆2) associated to a triangle.

It is this similarity which underlies the construction of the nerve N of a category.
The associated chain complex C(∆n−1) has a canonical basis given by faces of the
simplex; the differential d takes a face to a signed sum of the faces on its boundary.
We have d2 = 0.

Let us interpret this chain complex in a functorial way. Let k be a field. We
think of each functorial embedding of 〈Qi〉 as corresponding to a copy of the abelian
category Z≤ -mod of functors from Z≤ to the category of k-vector spaces. We take
the direct sum of these module categories, over all functorial embeddings of 〈Qi〉 in
〈Qn〉. There is a natural endofunctor D of this category, lifting the differential d.
How do we categorically interpret the signs appearing in this chain complex ? We
interpret each negative sign as corresponding to a shift S, which we now interpret
as an exact endofunctor of Z≤ -mod, or equivalently as a Z≤-Z≤-bimodule. If we
think of S, and the identity functor 1 as bimodules, we can think of q as a bimodule
homomorphism q : 1 ⇒ S.

The equation D2 = 0 is not satisfied here. Rather, we have a natural transforma-
tion T : D2 ⇒ D2.S, such that T 2.1s2 = 1D2 .q2, as natural transformations from
D2 to D2S2. The functor D2 can be thought of as a sum of components move from
one corner of a square to its opposite in an n−1-dimensional cube; each component
can then be written Si⊕Si+1. The transformation T takes a component Si⊕Si+1
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2 31

31 2 321

1 2 3

S1 S.S

1 1 1

1
1 S

1
S S

Figure 3. Shifts defining D.

to Si+1 ⊕ Si+2; it is represented by the matrix



0 1

q2 0




The square of such a matrix is obviously q2. The natural transformation T plays
the role of the equation d2 = 0.

T

21

1 2

1 1

1
S

Figure 4. The transformation T .

What relations hold between the functors T ? We have the braid relations:

T12T23T12 = T23T12T23 : D3 ⇒ D3S3.

These can be pictured as follows:

Figure 5. Braid relations.

We define Λ to be the free monoidal category on an object D, a central invertible
object S, an arrow

T : D2 ⇒ D2S
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and a central arrow q : 1 ⇒ S, modulo the braid relations, and the relation

T 2 = q2.

We define an Λ-category to be a 2-functor from Λ in the category of categories.

Let us associate a Λ-category C(C) to every category C.
Consider the collection of compactly supported functors Func(Z≥, C), namely

those functors from the free category on Z≤ to C, which take every integer much
less than zero to the same object i ∈ C, which every arrow between integers much
less than zero to 1o, which take every integer much greater than zero to t ∈ C, and
every arrow between integers much greater than zero to 1t. We identify functors in
Func(Z≤, C), if they are identical, up to a shift Si in Z≤ for some i ∈ Z. We define

C(C) = (Z≤ -mod)⊕Func(Z≤,C)

to be a direct sum of copies of Z≤ -mod, one for every compactly supported functor
from that category to C. So we have one copy of Z≤ -mod corresponding to the
empty set, one copy of Z≤ for every object in C, one copy for every arrow in C, and
so on.

We can identify a compactly supported functor from Z≤ to C as a copy of Qf
n

in C, for some n. Therefore, by what we have already said, C(C) is naturally a
Λ-category.

How do we form the product of two such Λ-categories, C(C) and C(D) ? We
define C ? D to be the category whose collection of objects is the disjoint union of
the collections of objects in C and D, and whose collection of arrows is the disjoint
union of the arrows in C and D, along with the collection of pairs (c, d), where c is
an object in C, and d is an object in D. We think of (c, d) as defining a morphism
from c to d. Composition of arrows in C and arrows in D within C ? D descends
from composition within C and D themselves. The composition of (c, d) with any
arrow from d to d′ is equal to (c, d′); the composition of any arrow from c′ to c with
(c, d) is equal to (c′, d), for c, c′ ∈ C, d, d′ ∈ D.

c

C

d

D

Figure 6. The ? product of two categories.

We define

C(C) ¦ C(D) = C(C ?D).
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Let us define K(Z≤ -mod) to be C, and K(Si) to be multiplication by (−1)i.
We obtain a chain complex K(C(C)) by extending K additively across C(C).

Lemma 6. The vector space K(C(C)) is a chain complex with differential K(D).
We have K(C(C)) = C(NC) as Λ-modules. We have

K(C(C) ¦ C(D)) = K(C(C))⊗K(C(D))

as Λ-modules.

We define TΛ to be the collection of Λ-categories of the form C(D).

Theorem 7. (TΛ, ¦) is a symmetric monoidal 2-category.

The ? product is reminiscent of Feynman calculus. It has other interesting
features. For example, if we define Q≤ to be the category whose objects are rational
numbers, and with a single morphism from q to q′ whenever q ≤ q′, then we have
the following lemma:

Lemma 8. The set of real numbers R can be identified with the set of decomposi-
tions

Q≤ = Ql ?Qr

of Q≤ as a product of two nonempty subcategories Ql,Qr ⊂ Q≤ where Q≤ contains
no initial object.

Proof. Decompositions of Q≤ of this form can be identified with Dedekind cuts of
Q. ¤

The ? product is associative:

Lemma 9. Given three categories C, D, and E, we have an equivalence between
(C ?D) ? E and C ? (D ? E).

Forming the product C ? D of two categories is analogous to gluing manifolds
along a boundary. Anon we present a lemma to justify this claim.

Suppose X ⊂ RN × [0, 1] is a manifold. We define X∼ to be the category whose
objects are elements of X, with a single morphism from x to x′ if there is a path
γ : [0, 1] → X such that γ(0) = x, γ(1) = x′, and π(γ(y)) ≤ π(γ(y′)) whenever
y ≤ y′ ∈ [0, 1]. Here π denotes projection onto the N +1th component of RN×[0, 1].

Let Xl = X ∩ (RN × [0, 1
2 ]) and Xr = X ∩ (RN × [ 12 , 1]). We thus obtain X by

gluing Xl and Xr along X∂ = X ∩ (RN × 1
2 ).

Lemma 10. Suppose X∂ is path connected. Then X∼ and X∼
l ?X∼

r are equivalent.

This analogy between the product ? and gluing of manifolds suggests the ?

product may be compatible with topological quantum field theory. This happens
to be the case, as we shall observe in the next section.
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6. Topological quantum field theories.

A n-dimensional topological quantum field theory (TQFT) is defined to be a
symmetric monoidal functor from the cobordism category (n -Cob,q) to the cate-
gory of finite dimensional vector spaces (V ect,⊗).

According to this definition, a two dimensional topological quantum field theory
Z can be identified with a commutative symmetric algebra, which is the vector space
ZS1 corresponding to the circle; the product on ZS1 is given by the linear map from
ZS1qS1 to ZS1 corresponding to the cobordism defined by a pair of troosers. Three
and four-dimensional TQFTs are more serpentine beasts.

Consider the following diagram:

Groups // Braided monoidal categories with duals // 3d TQFTs

Groups // Braided monoidal 2-categories with duals // 4d TQFTs

The first row describes the passage from a group to a three dimensional topolog-
ical quantum field theory via braided monoidal categories. To obtain a braided
monoidal category from a finite group G, we take the module category of the Drin-
feld double kGnkG∗ of the group algebra of G. A more functorial way to describe
this category is as the Drinfeld centre of the category of finite dimensional represen-
tations of G. A similar construction works when G is a semisimple Lie group; one
obtains the braided monoidal category of representations of the quantum group
associated to G. To obtain a 3d TQFT from this category, we apply a surgical
procedure devised by Turaev and Reshetikhin.

The second row describes a conjectural passage from a group G to a four di-
mensional topological quantum field theory via braided monoidal 2-categories. The
second row was conjectured by Crane and Frenkel to be obtained from the first
row, via a mythical process called categorification.

In general, Baez and Dolan hypothesise that n dimensional TQFTs can be de-
fined in an n-categorical framework, via n-categories with duals [4].

There is special interest in the four dimensional case due to its relations with
classical representation theory. Papers of Khovanov, of Bernstein, Frenkel and
Khovanov, and Stroppel, have established links between categories of infinite di-
mensional representations of semisimple Lie algebras, and knot invariants such as
the Jones polynomial [8], [28]. In their work, the enveloping algebra U of the Lie
algebra g of the group G lifts to a 2-category U . They construct representations

U © V

of U on abelian categories V of classical representations, such as categories O for
semisimple Lie algebras, or representation categories of Hecke algebras. Taking the
complexified Grothendieck group of such an abelian category, we obtain a complex
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vector space V = CK0(V ), with the action of various linear maps. Miraculously,
these maps define an action of U on V .

U © V.

The interpretation here in terms of 2-categories is due to Chuang and Rouquier [11],
and is more explicitly drawn out in Rouquier’s recent article [25]. In Chuang and
Rouquier’s paper on categorification of sl2, deep results concerning symmetric group
representations are proved in this idiom. An sl2-categorification is a representation
of a certain 2-category U(sl2). Symmetric group algebras show up as 2-arrows in
this 2-category. And what is the relation with four dimensional topology ? The
collection U(g) -cat of all representations of U(g), or some close relation, is hoped
to form a braided monoidal 2-category.

In this section we adopt a different approach to categorification, which does not
refer directly to representation theory. By topological techniques, we associate a
braided monoidal 2-category with duals TZ to any classical topological quantum
field theory Z. In particular, by applying our construction to the three dimensional
TQFTs devised by Turaev et al, we obtain a braided monoidal 2-category from any
finite group, or any complex semisimple Lie algebra.

How does our construction work ? As is suggested by the construction of the
previous section, in which we categorified chain complexes, we work with the cat-
egory of categories, with monoidal structure given by ?. We exploit the data of
Z to obtain a rich 2-categorical structure. In case Z is the 2-dimensional TQFT
corresponding to the commutative symmetric algebra Λ, we obtain an object which
contains Khovanov’s algebra H, and is therefore closely related to the theory of
sl2-categorifications [8], [9].

Let Z : (n -Cob,q) → (V ectk,⊗k) be an n-dimensional topological quantum
field theory. To every closed n − 1-manifold X, we associate a vector space ZX ,
and to every n-dimensional cobordism Y from X to X ′, we associate a linear map
ZY : ZX → ZX′ .

Let C be a category. We define a new category CZ , whose objects O are open
simplicial manifolds of dimension n− 1 in the nerve of C. In other words, an object
O of CZ is a simplicial subcomplex of the nerve of C, whose geometric realisation is
a manifold of dimension n− 1, with boundary. The d− 1-cells of O correspond to
functors from 〈Qd〉 to C, so that inclusion of cells ∆d1−1 ⊂ ∆d2−1 corresponds to
inclusion of categories 〈Qd1〉 ⊂ 〈Qd2〉.

We insist that every connected component of O has at least one n− 1-simplex.
We identify two objects O in CZ if they correspond to the same combinatorial data
in C.

To define morphisms in CZ , note that when two objects O and O′ have the same
boundary ∂, we have a simplicial complex of dimension n−1, given by XO,O′ = O∪∂

O′. Note that XO,O′ is a closed simplicial n−1-manifold, that is to say a simplicial
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1 2

1

2

3 1

2

3

4

d=0 d=1 d=2 d=3

Figure 7. Simplexes in the nerve of C.

d=0
d=1

d=2

Figure 8. Open simplicial manifolds in the nerve of C.

complex whose geometric realisation is an n − 1-manifold without boundary. We
define HomCZ

(O, O′) to be ZXO,O′ when O and O′ have the same smooth boundary,
and to be {0} otherwise.

d=1 d=2d=0

Figure 9. Closed simplicial manifolds in the nerve of C.

When three objects O, O′ and O′′ have the same boundary ∂, we have a cobor-
dism YO,O′,O′′ between XO,O′ q XO′,O′′ and XO,O′′ , which can be thought of as
the process of gluing the two manifolds along O′ at a given time. This cobordism
defines a linear map

ZYO,O′,O′′ : ZXO,O′ ⊗ ZXO′,O′′ → ZXO,O′′ ,

which we take to define composition

Hom(O, O′)⊗Hom(O′, O′′) → Hom(O, O′′)

in CZ . Otherwise, we define the composition be zero.
The axioms of a topological quantum field theory ensure the associativity of

composition in CZ .
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Figure 10. Cobordism ZYO,O′,O′′ .

Lemma 11. The blocks of CZ correspond to closed n − 2-dimensional simplicial
manifolds in the nerve of C.

For any finite set I of objects with smooth boundary in CZ , the ring

RC,Z = ⊕i,j∈IHomCZ (Oi, Oj)

is a finite dimensional symmetric algebra. The endomorphism ring of a single object
in CZ is a commutative symmetric algebra.

Example 12 Let Z be the 2-dimensional TQFT associated to the commutative
symmetric algebra k[x]/x2. Let C be the free category 〈Q2d〉.

Then RC,Z contains a copy of Khovanov’s algebra H [21]. Thus objects of CZ

correspond to idempotents in H.

+

−

−

+ +

−

Figure 11. An idempotent in Khovanov’s algebra H.

The collection of categories CZ looks like a promising candidate for a monoidal
2-category with duals. In fact, associated to Z we construct a braided monoidal
2-category with duals named TZ , whose objects are categories, and whose 2-arrows
resemble objects of CZ . We exploit the 2-category of 2-tangles of Baez and Langford.

Before proceeding to define this gadget, let us make some remarks on the ?

product.
Let S denote a collection of categories with finitely many objects, no two of which

are equivalent, such that S is closed under taking opposites, closed under taking
full subcategories and closed under the ? product. For example, we could take S
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to be the collection of free categories 〈Q〉 on finite quivers Q, with an initial and
terminal vertex. The product 〈Q〉 ? 〈Q′〉 is then 〈Q ? Q′〉, where Q ? Q′ is defined
to be the quiver QqQ′, with a single additional arrow from the terminal vertex of
Q to the initial vertex of Q′

Since no two categories in S are equivalent, the ? product C1 ? C2 ? ... ? Cn of n

categories C1, ..., Cn in S is uniquely defined.

Definition 13. We call a category C in S indecomposable if it is nonempty, and
in any decomposition C = Cl ? Cr, either Cl or Cr is the empty category.

Lemma 14. Any category C in S has a unique decomposition

C = C1 ? C2 ? ... ? Cn,

with Ci indecomposable.

Proof. Given a second decomposition

C = C′1 ? C′2 ? ... ? C′o
of this kind, we have a decomposition

Cn = (Cn\C′o) ? (Cn ∩ C′o),
which implies Cn = Cn ∩ C′o by the indecomposability of Cn. Similarly, we find
C′o = Cn ∩ C′o, and thus Cn = C′o. Inductively, we find that our two decompositions
of C as a ? product are identical. ¤

Lemma 15. Given any two categories C and D, we can identify the objects of
(C ?D)Z with the objects of (D ? C)Z .

Proof. We identify the objects of (C ? D)Z with the objects of (D ? C)Z via a
correspondence σ defined by the following recipe:

Take a simplicial n−1-manifold M in (C?D)Z ; write it as a union M = (M∩C)∪θ

Mi∪θ′ (M ∩D) where Mi is the union of n−1-simplices in M which lie in neither C
nor D and where θ = Mi∩C, φ = Mi∩D; form a new complex σ(Mi) in D?C which is
obtained by reversing all arrows from C to D in Mi whilst preserving the directions
of all arrows within θ and φ; form the union σ(M) = (M ∩D) ∪φ σ(Mi) ∩ (M ∩ C)
which is an object of (D ? C)Z . ¤

To define the 2-category TZ , we exploit the monoidal category of tangles, and
the monoidal 2-category of 2-tangles. The idea behind higher dimensional tangles
is simple: the collection of numbers forms a monoid under addition; a number can
be represented as a collection of points in R2; a tangle represents the evolution of
such a collection of points through time; the collection of tangles forms a monoidal
category, whose arrows point with the arrow of time; a tangle can be represented as
a collection of strings in R3; a 2-tangle represents the evolution of such a collection
of strings through time; the collection of 2-tangles forms a monoidal 2-category
whose 2-arrows point with the arrow of time; and so on. For details, consult the
paper of Baez and Langford [5].
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Given a natural number n, we let n denote the set {1, ..., n}. Here is data for
the 2-categorical structure on TZ :
• Objects of TZ are categories in S with finitely many objects and morphisms.
• Let C,D be objects of TZ , with decompositions

C = C1 ? C2 ? ... ? Cm,

D = D1 ?D2 ? ... ?Dn

into indecomposable pieces, such that m + n = 2l. An arrow v = (t, O) from C to
D is a tangle t : m → n such that Ci = Dj when i ∈ m is connected to j ∈ n by
t, Ci = Cop

j when i ∈ m is connected to j ∈ m by t, and Di = Dop
j when i ∈ m is

connected to j ∈ n by t; and a sequence O = (O1, ..., Od) of objects of

(Cω1 ? Cω2 ? ... ? Cωl
)Z ⊂ CZ ,

where ω1 < ω2 < ... < ωl is an increasing sequence of elements of the m connected
to n by t.

By Lemma 15, an object in the sequence O can be identified with an object of

(Dω′1 ?Dω′2 ? ... ?Dω′l)Z ⊂ DZ ,

where ω′1 < ω′2 < ... < ω′l is an increasing sequence of elements of n connected to
m by t.
• Let v = (t, O) and v′ = (t′, O′) be arrows from C to D whose sequences O

and O′ have lengths d and d′ respectively. A 2-arrow θ = (τ, s, α) from v to v′ is
a 2-tangle τ from t to t′; also a tangle s : d → d′ such that Oi,O′j intersect the
same components Cω of C and have the same boundary ∂ij when i ∈ d is connected
to j ∈ d′ by s, such that Oi, Oj intersect the same components Cω of C and have
the same boundary ∂ij when i ∈ d is connected to j ∈ d by s, and such that O′

i,
O′j intersect the same components Dω of D and have the same boundary ∂′ij when
i ∈ d is connected to j ∈ d′ by s; also elements αij ∈ ZOi∪∂ij

O′j for i ∈ d connected
to j ∈ d′ by s, elements αij ∈ ZOi∪∂ij

Oj for i ∈ d connected to j ∈ d by s, and
elements αij ∈ ZO′i∪∂ij

O′j for i ∈ d′ connected to j ∈ d′ by s.
We think of the element αij as lying on the braid from i to j.

We next describe how to multiply arrows in TZ . Suppose (t, O) : C → D and
(u, P ) : D → E are arrows, where C, D and E have m, n and o indecomposable
factors. We define their product (t, O)(u, P ) to be the pair (tu, (OP )), where tu

denotes the composition of tangles t and u; and where (OP ) consists of the sequence
obtained by placing the sequence P after the sequence O before removing all those
objects which do not lie in

(Cω1 ? Cω2 ? ... ? Cωl
)Z ⊂ CZ ,

where ω1 < ω2 < ... < ωl is an increasing sequence of elements of the m connected
to o by tu, as well as those objects which do not lie in

(Eω′1 ? Eω′2 ? ... ? Eω′l)Z ⊂ EZ ,
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where ω′1 < ω′2 < ... < ω′l is an increasing sequence of elements of the m connected
to o by tu.

We next describe how to define horizontal composition of 2-arrows in TZ . Sup-
pose we have a 2-arrow (τ, s, α) from (t, O) to (u, P ) and a 2-arrow (τ ′, s′, α′) from
(t′, O′) to (u′, P ′). The horizontal composition of (τ, s, α) and (τ ′, s′, α′) is defined
to be the 2-arrow ((ττ ′), (ss′), (α, α′)), where (ττ ′) is the 2-tangle obtained com-
posing the 2-tangles τ and τ ′ horizontally; where (s, s′) is the tangle obtained by
placing the tangle s′ next to the tangle s; and where (α, α′) is the collection of
elements αij , α

′
ij which correspond to pairs of objects lying in the sequences (OO′)

and (PP ′).
To define vertical composition of 2-arrows, we use cobordisms. Suppose we have a

2-arrow (τ, s, α) from (t, O) to (u, P ) and a 2-arrow (τ ′, s′, α′) from (u, P ) to (v, Q).
The vertical composition of (τ, s, α) and (τ ′, s′, α′) is defined to be (ττ ′, ss′, αα′),
where ττ ′ is the vertical product of the 2-tangles τ and τ ′; where ss′ is the compo-
sition of the tangles; and where αα′ is defined by composing 2-arrows along on the
same braid of ss′ in CZ .

The identity arrow of C in TZ is given by the pair (1C , ∅) consisting of the
identity tangle 1C whose strings are in one-one correspondence with indecomposable
components of C, and the empty sequence ∅.

Here is additional data for the definition of a monoidal structure on TZ :
• The object I is given by the category ∅ with no objects.
• For two objects C, C′ of TZ , we define their product to be the category C ? C′.
• Given an arrow (t, O) and a category D in TZ , we define the arrow (t, O) ? D

to be the pair ((t1D), O), where (t1D) is the tensor product in the 2-tangle 2-
category of the identity tangle, whose strings are in one-one correspondence with
indecomposable components of D, and t.
• For a category C and an arrow (u, P ) in TZ , we define C?(u, P ) to be ((1Cu), P )

in a similar way.
•Given a 2-arrow (τ, s, α) and a category D in TZ , we define the 2-arrow (τ, s, α)?

D to be the triple ((τ1, (s1), α).
• Given a 2-arrow (τ, s, α) and a category C in TZ , we define the 2-arrow C ?

(τ, s, α) to be the triple ((1τ), (1s), α).
• Given any two arrows (t, O) : C → C′ and (u, P ) : D → D′, we should define

the corresponding tensorator. Let us first identify the composition of (t, O)?D and
C′?(u, P ). It can be identified with ((ut), OqP ) via a suitable 2-arrow (τ, 1, ∅). The
composition of C ?(u, P ) and (t, O)?D′ can likewise be identified with ((ut), OqP ).
We define the tensorator to be the composition of these identifications.

Here is the data for a braiding on TZ :
• Given any two categories C and D, we define σC,D to be the arrow (σC,D, ∅),

where σC,D is the braid which associates indecomposable components of C and D
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with themselves, so that in projection onto the plane, all braids from C to C cross
over the top of all braids from D to D, whilst braids from C to C and braids from D
to D do not cross. Thus σC,D defines the braiding on the 2-category of 2-tangles.
• Given two arrows a = (t, O) and b = (u, P ), we define the σa,b to be the triple

(σt,u, 1, 1), where σt,u comes from the braiding on the 2-category of 2-tangles, and
the 1s correspond to identity elements.
• Given three categories C, D, E , we define σC|D,E to be (σC|D,E , 1, 1), where

σC|D,E comes from the braiding on the 2-category of 2-tangles, and the 1s corre-
spond to identity elements.
• Given three categories C, D, E , we define σC,D|E to be (σC,D|E , 1, 1), where

σC,D|E comes from the braiding on the 2-category of 2-tangles, and the 1s corre-
spond to identity elements.

Here is the additional data for duals on TZ :
• The dual of a 2-arrow (τ, s, α) is defined to be (τ∗, s∗, α∗), where τ∗ is the dual

of τ in the tangle 2-category, where s∗ is the dual of s in the tangle category, and
where α∗ is obtained from α by identifying ZOi∪∂ij

O′j with ZO′j∪∂ij
Oi

for various
objects Oi, O

′
j .

• The dual of an arrow (t, O) is defined to be (t∗, O), where t∗ is the dual of t in
the 2-tangle 2-category.
• For a category C ∈ TZ , we define the dual C∗ of C to be its opposite category

Cop.
The unit iC : ∅ → Cop?C is defined to be the pair (iC , ∅), where iC is the counit in

the 2-tangle 2-category which connects a point corresponding to the indecomposable
factor Ci of C to a point corresponding to the indecomposable factor Cop

i of Cop.
The counit eC : Cop ? C → ∅ is defined to be the pair (eC , ∅), where eC is

the counit in the 2-tangle 2-category which connects a point corresponding to the
indecomposable factor Ci of C to a point corresponding to the indecomposable factor
Cop

i of Cop.
The composition (iC ? C)(C ? eC) can be identified with the pair (iC ⊗ 1C)(1C ⊗

eC), ∅). We define the triangulator of C to be the triple (τ, 1, 1), where τ is the
triangulator in the tangle 2-category.

Theorem 16. TZ is a braided monoidal 2-category with duals.

7. Shades of representation theory

If a is a thing, then a representation of a is an image of a within some other
thing b. Let us be more specific. Suppose C is a category. Given a category A,
a representation of A with values in C is nothing but a functor from A to C. For
example, a linear representation of a group G is a functor from the one object
category whose morphisms are elements of G to the category of vector spaces. A
sheaf on a topological space X is a functor from the category whose morphisms
are containments of open sets in X to the category of vector spaces, satisfying
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certain properties. A topological quantum field theory is a functor from a cobordism
category to the category of vector spaces, satisfying certain properties.

The category of vector spaces is a good choice for the target of a representation
for a number of reasons: its simplicity; its modest geometric behaviour; its structure
as an abelian category; its structure as a tensor category; its notion of duality; the
notion of an inner product; its physical resonance. These features are all good, but
the category of vector spaces is by no means the only possible choice of representing
category C. For example, the theory of group representations which take values in
the category of sets is the theory of permutation groups. Integral representations
of groups take values in the category of abelian groups.

When we consider representations of 2-categories, it is clear that a representation
should be defined to be a 2-functor, taking values in some 2-category, perhaps satis-
fying some extra conditions. Where should such representations take their values?
One choice is in the 2-category Talg, or in variants such as TG , or the 2-category of
abelian categories, or the 2-category of triangulated categories. These 2-categories
have many properties which are desirable for good representation theory: they are
fairly well understood; there are stratification properties given by recollement [7];
there are various notions of dimension, such as homological dimension, or Brauer’s
defect of a block, or Rouquier’s dimension of a triangulated category [27]; we of-
ten have monoidal structures given by tensor product; we can define a Calabi-Yau
property [18]; there is some physical resonance [15]. These 2-categories also have
one obvious deficiency: whilst they carry a great deal of geometrical information,
they are not intuitively geometric objects in themselves.

In any case, 2-categories like Talg seem to provide an adequate setting for rep-
resentation theory of 2-categories. When we define representations of double cate-
gories like N in the following section, they will take values in 2-categories such as
Talg.

8. Rings.

Double categories are variants of strict 2-categories in which there are both
vertical and horizontal arrows, whilst 2 arrows are squares

◦ //

²²

◦

²²

⇓

◦ // ◦
In a double category, we can compose horizontal arrows with horizontal arrows,
vertical arrows with vertical arrows, and we can compose 2-arrows either vertically
or horizontally [16].

Let R be a ring, and V an R-module. We have a natural double category
V associated to V , with one object ◦, whose horizontal arrows correspond with
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elements v ∈ V , and whose vertical arrows correspond with elements r ∈ R. The
horizontal product is given by addition in V , and the vertical product is given by
multiplication in R. We define the 2-arrows in V to be squares of the form

◦ v //

s

²²

◦

s

²²

⇓ αv,s

◦
sv

// ◦

The distributivity of multiplication is encoded in the horizontal product of two
2-arrows:

αv,sαv′,s = αv+v′,s,

which only makes sense because s(v + v′) = sv + sv′ for s ∈ R, v ∈ V . Vertical
multiplication of 2-arrows is defined in the obvious way:

αv,s
αsv,t

= αv,st.

We denote by R the double category associated to the regular R-module. The nerve
of R is a topological invariant of R.

Double categories live one step up the categorical ladder from categories. There-
fore, rings naturally live one categorical step down the categorical ladder from
groups. As the representations of a group form a symmetric monoidal category,
so we would like the representations of a ring to form a symmetric monoidal 2-
category. To create such an effect, we define a representation of R to be a 2-functor
from R to a 2-category T . Such a 2-functor corresponds to the following data:
• An object t ∈ T .
• An arrow hr ∈ T for every r ∈ R.
• An arrow vs for every s ∈ R.
• A 2-arrow αr,s from hrvs to vshrs.
This data is required to be compatible with the various relations in R. Since

double categories are strict in nature, their representations are also considered in a
strict sense. So compatibility merely means that hrhr′ is equal to hr+r′ ; that vsvs′

is equal to vss′ ; and that the relations between 2-arrows in R also hold between the
corresponding homomorphisms αr,s ∈ T .

If G is a group, then the category of representations of G forms a symmetric
monoidal category. The following theorem gives a two-dimensional analogue of this
statement.

Theorem 17. The collection R -cat of representations of R in a 2-category T forms
a 2-category.

If T is a symmetric monoidal 2-category, then R -cat is a symmetric monoidal
2-category.
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This theorem looks well enough, but has little content if we cannot give examples
of representations of double categories R. In the remainder of this section, we give
a handful of examples. In fact, when R is a ring, defining horizontal arrows which
correspond to the arrow −1 in R raises some technical difficulties. It is simpler
to work with slightly weaker structures than rings, such as the natural numbers
N. We can define a double category N according to the recipe above. This double
category has many natural representations.

To begin with, let us describe some representations of N which take values in the
2-category of categories. Let A be an algebra, and M an A-module. The following
data defines a representation of N in the 2-category of categories:

• The object is A -mod.
• The horizontal arrows are endofunctors hr = −⊕k M⊕r of A -mod, for r ∈ N;

the vertical arrows are −⊗k k⊕s, for s ∈ N.
• The functors hrvs and vshrs are both naturally isomorphic to − ⊗k k⊕s ⊕

M⊕rs. The 2-arrow αr,s describes the resulting natural isomorphism between these
functors.

Let G be a finite group, and M a kG-module. We have further representations
of N in the 2-category of categories and given as follows:
• The object is kG -mod.
• The horizontal arrows are endofunctors hr = −⊗k M⊗r of kG -mod, for r ∈ N;

the vertical arrows are the non-additive endofunctors −⊗s, for s ∈ N.
• The functors hrvs and vshrs are both naturally isomorphic to −⊗s ⊗k M⊗rs.

The 2-arrow αr,s describes the resulting natural isomorphism between these func-
tors.

What about more complicated objects, such as N[
√

2] ? These too can have
many representations. For example, if A is an algebra, and M is an A-module,
then we obtain representations of N[

√
2] as follows:

• The object is A1 ⊕A√2 -mod.
• The horizontal arrows are endofunctors of A1 ⊕A√2 -mod given by

hr+r′
√

2 = −⊕




M⊕r

M⊕r′


 ;

The vertical arrows are endofunctors of A1 ⊕A√2 -mod given by

vs+s′
√

2 =




k⊕s k⊕2s′

k⊕s′ k⊕s


⊗k −
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• The functors hr+r′
√

2vs+s′
√

2 and vs+s′
√

2h(r+r′
√

2)(s+s′
√

2) are both naturally
isomorphic to







k⊕s k⊕2s′

k⊕s′ k⊕s


⊗k −


⊕




M⊕r1s1+2r2s2

M⊕r2s1+r1s2




The 2-arrow αr+r′
√

2,s+s′
√

2 describes the resulting natural isomorphism between
these functors.

The representations above do not take values in a symmetric monoidal 2-category.
They take values in the 2-category of categories which, unlike the 2-category of al-
gebras and bimodules, does not have any obvious monoidal structure. Ideally, we
would like to define representations which take values in a symmetric monoidal
2-category with duals, so that the representation 2-categories themselves are sym-
metric monoidal 2-categories with duals, given the topological rigidity which is
implied by such extra structure.

Here, we go so far as to define representations which take values in a symmetric
monoidal category. Indeed, we define representations of N with values in Talg as
follows:

Whenever we have a k-vector space X with a map k → X, we define the infinite
tensor product X⊗N to be the injective limit of the sequence

k → X → X⊗2 → ...

which is obtained by tensoring up the map k → X.
Let G be a group, and let M be a kG-module, and k → M a map of kG-modules.
Let G∞ = G ⊕G ⊕G ⊕ ... be a direct sum of N copies of G. Let F = kG∞ be

the group algebra of kG∞, thought of as a kG∞-kG∞ bimodule. We have a map
k → kG which takes 1 to the identity, and an isomorphism F ∼= kG⊗N.

For s ∈ N, we have a group embedding φs of G∞ in itself, which takes a group
element (g1, g2, g3, ...) to (g1, ..., g1, g2, ..., g2, g3, ..., g3, ...), where there are s copies
of g1 appearing in this list, s copies of g2, and so on. Note that φsφs′ = φss′ .

We have a representation of N in the symmetric monoidal category Talg defined
by the following data:

• The object is kG∞.
• The horizontal arrows are kG∞-kG∞-bimodules hr = (kG ⊗k M⊗r)⊗N, for

r ∈ N, where g = (gj)j∈N acts where it acts on the left of the ith factor as

g(x⊗m1 ⊗ ...⊗mr) = (gix⊗ gim1 ⊗ ...⊗ gimr),

and on the right of the ith factor as

(x⊗m1 ⊗ ...⊗mr)g = (xgi ⊗m1 ⊗ ...⊗mr);

the vertical arrows are the bimodules vs = φsF , for s ∈ N.
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• The bimodules hrvs and vshrs are both isomorphic to (kG⊗s ⊗k M⊗rs)⊗N, on
which g acts on the left of the ith factor as

g(x1 ⊗ ...⊗ xs ⊗m1 ⊗ ...⊗mrs) = (gix1 ⊗ ...⊗ gixs ⊗ gim1 ⊗ ...⊗ gimrs),

and on which g acts on the right of the ith factor as

(x1 ⊗ ...⊗ xs ⊗m1 ⊗ ...⊗mrs)g = (x1gsi+1 ⊗ ...⊗ xsgsi+s ⊗m1 ⊗ ...⊗mrs).

The 2-arrow αr,s describes the resulting natural isomorphism between these bimod-
ules.

Remark 18 Since the group G∞ is infinite for G nontrivial, the above representa-
tions do not take values in a symmetric monoidal category with duals TG . For the
representations to take value in a monoidal 2-category with duals we would have
to define a suitable extension of TG in which infinite groups were included.

9. More structure on N

In the last section, we observed that rings live a rung up the categorical ladder
from groups, and defined representation 2-categories associated to rings. The col-
lection of natural numbers is somewhat special, and can be interpreted as living
yet further up the categorical ladder, as we demonstrate in this section.

In N, we consider multiplication to be a feature independent of addition, although
it is of course related to addition. The relation between addition and multiplication
is then described by distributivity, which finds a homotopical interpretation in N.
However N has an additional feature: we can take powers. Whilst the taking of
powers is related to multiplication, the taking of powers can be considered to an
algebraic feature which is independent of multiplication.

Can we interpret the power operation, and its relations to multiplication and
addition, in a homotopical manner? The answer is yes. We can define a triple
category N which encodes the operations of addition, multiplication, and powers
independently as follows:

In our triple category N, we have a single object ◦. We have arrows in three
independent directions, which we call x-arrows, y-arrows, and z-arrows. The x-
arrows are given by elements xr, for r ∈ N, with product given by xrxr′ = xr+r′ .
The y-arrows are given by elements ys, for s ∈ N, with product given by ysys′ = yss′ .
The z-arrows are given by elements zt, for t ∈ N, with product given by ztzt′ = ztt′ .

We have 2-arrows in three planes, labelled xy, yz, and xz. The xy 2-arrows

◦ xr //

ys

²²

◦

ys

²²

⇓ xyn(r, s)

◦
xr

// ◦
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are squares xyn(r, s), for r, s, n ∈ N, whose x-arrows are identically xr, and whose
y-arrows are identically ys. The product in the x-direction is

xyn(r, s)xyn′(r′, s) = xynn′(r + r′, s).

The product in the y-direction is

xyn(r, s)xyn′(r, s′) = xynn′(r, ss′).

The xz 2-arrows

◦ xr //

zt

²²

◦

zt

²²

⇓ xz(r, t)

◦
xrt

// ◦

are squares xz(r, t), for r, t ∈ N, whose z-arrows are identically zt, and whose
x-arrows are xr and xrt. The product in the x-direction is

xz(r, t)xz(r′, t) = yz(r + r′, t).

The product in the z-direction is

xz(r, t)xz(r, t′) = yz(r, tt′).

The yz 2-arrows

◦ ys //

zt

²²

◦

zt

²²

⇓ yz(s, t)

◦
ys

// ◦

are squares yz(s, t), for s, t ∈ N, whose y-arrows are identically ys, and whose
z-arrows are identically zt. The product in the y-direction is

yz(s, t)yz(s′, t) = yz(ss′, t).

The product in the z-direction is

yz(s, t)yz(s, t′) = yz(s, tt′).
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Finally, we have 3-arrows xyz(r, s, t), for r, s, t ∈ N,

◦ xr //

zt

²²

ys

ºº.
..

..
..

..
..

..
..

◦

zt

²²

ys

ºº.
..

..
..

..
..

..
..

⇓ xysr (r, s)

◦ xr //

zt

²²

◦

zt

²²

◦

ys

ºº.
..

..
..

..
..

..
..

xrt // ◦

ys

ºº.
..

..
..

..
..

..
..

⇓ xysrt(rt, s)

◦ xrt // ◦
whose xz 2-arrows are identically xz(r, t), whose yz 2-arrows are identically yz(s, t),
and whose xy 2-arrows are xysr (r, s) and xysrt(rt, s). The product in the x-direction
is

xyz(r, s, t)xyz(r′, s, t) = xyz(r + r′, s, t).

The product in the y-direction is

xyz(r, s, t)xyz(r, s′, t) = xyz(r, ss′, t).

The product in the z-direction is

xyz(r, s, t)xyz(rt, s, t′) = xyz(r, s, tt′).

The nerve of N is a topological invariant of N, which encodes some of its algebraic
structure. If we wish to rear a more complicated beast, we can use higher products
×i, which are defined on N recursively by x×0 y = x+y and x×i y = x×i−1 x×i−1

...×i−1 x, where x appears y times in the formula. In particular, for i ≤ 2 we have
x×0 y = x + y, x×1 y = xy, x×2 y = xy.

10. Alperin’s weight conjecture.

In our introduction, we emphasised topological motivation for studying 2-categories.
This is standard. However, there are algebraic reasons to take higher categories se-
riously lying in classical representation theory, which we wish to emphasise in our
conclusion. Chuang and Rouquier’s categorification of sl2 gives us an example,
since it provides solutions to deep problems in modular representation theory. To
approach from a different angle, let us consider a great conjecture in modular rep-
resentation theory. The conjecture is one of an ensemble of conjectures, due to a
number of authors (Alperin & McKay, Alperin, Knörr & Robinson, Dade, Isaacs-
Navarro, Uno). We state here Alperin’s weight conjecture, which has character-
theoretic reformulations due to Knörr and Robinson [22]:
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Conjecture 19. (Alperin, [1]) Let p be a prime number, and let k be an alge-
braically closed field of characteristic p. The number of isomorphism classes of
irreducible representations over k of a finite group G, is equal to the sum over all
conjugacy classes of p-subgroups P of G of the numbers of isomorphism classes of
projective irreducible representations over k of NG(P )/P .

Note that this is a statement about collections of collections of irreducible mod-
ules, since there is a sum taken over all p-subgoups.

There is an important special case: when the Sylow p-subgroups of G are abelian.
Suppose P is such a Sylow subgroup of G. Then Alperin’s conjecture is equivalent
to the statement that the number of isomorphism classes of irreducible modules of
G is equal to the number of irreducible representations of NG(P ). A conjecture of
Broué predicts a much stronger statement holds: the bounded derived categories
of kG and kNG(P ) are equivalent. We could say that this conjecture of Broué is
a categorification of Alperin’s weight conjecture, since by passing to complexified
Grothendieck groups, and taking dimensions, we find that the truth of Broué’s con-
jecture would imply the truth of Alperin’s, for groups whose Sylow p-subgroups are
abelian. However, putting aside the desire to fling a piece of ugly jargon at every-
thing to which it might apply, the word categorification seems a bit inappropriate
in this context, since to state Broué’s conjecture, we do not ascend the categorical
ladder. A group can be thought of as a category with one object. The collection
of representations of a group reflects this, being a category itself. General state-
ments about group representations are therefore intrinsically categorical, and the
conjecture of Broué gives a beautiful expression of this fact.

What about the general form of Alperin’s weight conjecture, concerning groups
whose Sylow p-subgroups are possibly nonabelian ? Is there a strong categorical
statement which would imply this ? Here is where the canker gnaws: not yet.
Since the weight conjecture concerns collections of collections of representations,
we should expect that any homological strengthening of it will concern categories
of categories, or more properly, 2-categories of categories. This is a suggestion
from modular group representation theory that we should look to understand the
2-categorical landscape better. The Alperin weight conjecture is so simple to state,
and so general, it suggests there is some vital homological principle lurking beneath
its surface. There are approaches to prove it via the classification of finite simple
groups, but these seem to defy the existence of such a principle.

The results described in this paper are concerned with classical mathematical
objects, such as groups and rings. However, our efforts do little to reach towards
the weight conjecture. Our reason for mentioning the conjecture here is that it is a
bright star in the firmament, which belongs the galaxy of 2-categories.
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et Géom. Diff. (Sém. C. Ehresmann), Vol. 5, Institut H. Poincaré, Paris, 1963, p. 21.
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22. Reinhard Knörr and Geoffrey R. Robinson, Some remarks on a conjecture of Alperin, J.
London Math. Soc. (2) 39 (1989), no. 1, 48–60. MR MR989918 (90k:20020)

23. Joachim Kock, Frobenius algebras and 2D topological quantum field theories, London Math-
ematical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004.
MR MR2037238 (2005a:57028)

24. Tom Leinster, Higher operads, higher categories, London Mathematical Society Lecture
Note Series, vol. 298, Cambridge University Press, Cambridge, 2004. MR MR2094071
(2005h:18030)

25. R. Rouquier, 2-kac-moody algebras, arXiv:0812.5023v1.
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