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Abstract. Let Ã be a deformation of a k-algebra A0 over an integral
domain R, such that A = Ã⊗R K is a separable algebra for K = QF(R).
When there is a lifting of a tilting complex T for A to a tilting complex
T̃ for Ã, it defines a separable deformation B̃ of B = EndDb(Ã)(T ), i.e.,

B = B̃ ⊗R K is also separable. Then the decomposition matrix DB̃ of

B̃ is obtained from the decomposition matrix DÃ of Ã by operations on

the columns determined by the summands of T̃ and multiplication of
certain rows by (-1). We use this method on the Broué conjecture for
the principal block of A6, giving an explicit one-step tilting complex of
length 3.

1 Introduction

Let A be a finite dimensional k algebra, where k is a field sufficiently large
that A/ RadA is separable. For simplicity one might assume k algebraically closed
and A basic, but we do not so in order to allow applications to the theory of
representations of groups. The various A-modules will be finitely-generated.

Let R be an integral domain with a distinguished maximal ideal m such that
R/m

∼→ k, and a quotient field K.

Definition A deformation Ã of A over (R, m) is a flat R-module Ã together
with an isomorphism

A
∼→ Ã⊗R R/m.

The deformation is called separable if

Ā = Ã⊗R K

is a separable algebra. We note that Ã itself will generally not be separable.
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There are various examples in the literature of k-algebras with a separable
deformation. Brauer tree algebras have a separable deformation over k[t], as to
various algebras for which the Donald-Flanigan problem has been solved. Group
blocks have a separable deformation over a complete discrete valuation ring with
residue field of characteristic p and quotient field of characteristic 0.

The examples given so far have been symmetric, but this is not necessary. The
algebra A of dimension four whose quiver consists of two vertices and two arrows
in opposite directions deforms to a matrix algebra. The algebra A is self injective
but not symmetric. The join of two copies of A by identifying one vertex of each
and adding a loop is not self injective but deforms to two matrix algebras.

2 Decomposition Matrices

In the sequel we consider identity idempotents e′ of matrix algebras Md(k),
and define deg e′ = d. This will be called “the degree of the idempotent”. When
we refer to a position in a complex of modules, we will write “the degree in the
complex”.

Assume for this section that R is either a ring with the idempotent lifting
property, e.g.,a complete discrete valuation ring, or is the coordinate ring of an affine
curve, e.g., k[t]. Let Ã be an R-algebra which is a deformation of a finite-dimensional
k-algebra A over (R, m), with R/m

∼→ k. We assume that k is sufficiently large to
ensure that

A/ Rad(A) ∼→
⊕̀

i=1

Mni(k).

We know that A/ Rad(A) can be embedded noncanonically in A. We choose such an
embedding with image S, and let e1, . . . , e` be the images of the identity elements
of the matrix blocks. The {ei} form a set of orthogonal idempotents, which is
complete, i.e., which sum to the identity of A. They are not all primitive unless
all ni = 1. Then, taking an etale cover of R if necessary when R is the coordinate
ring of a curve, we may assume that the idempotents lift to ẽ1, . . . , ẽn in Ã, an
orthogonal set of idempotents (generally not primitive even if all ni = 1). This set
is still complete because the lifting of the identity element of A to Ã is unique.

A vector space basis of an algebra is called “well behaved” with respect to a set
of idempotents if it is a union of bases for the different summands in a two-sided
Peirce decomposition. We note that by various “straightening out theorems”, a k-
vector space basis well behaved w.r.t. {ei} lifts to a basis of Ã well behaved w.r.t.
{ẽi}. This leads in the affine case to the main theorem of [10] that a degeneration
of algebras corresponds to a degeneration of basis graphs. In particular, we can

choose an algebra SR
∼→ ⊕̀

i=1

Mni(R) of Ã, such that ẽi is the identity element of

Mni(R). We write deg ẽi = deg ei = ni.

Definition If A is an algebra with separable deformation Ã over (R,m),
ẽ1, . . . , ẽ` are liftings of the identities of subalgebras Si, and f1, . . . , fm are the
block idempotents of the blocks Ã⊗R K, then we define the decomposition matrix

DÃ = [dij ]m×`

where
dij =

deg fiẽj

deg ẽj
.
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Note The fi are canonical. Since we can refine {ei} to a complete orthogonal
set of primitive idempotents, and such a set is determined up to conjugation by a
unit in the algebra, this definition is independent of the choice of the ei and of the
choice of the lifting ẽi. It is not difficult to see that for group blocks this coincides
with standard definitions of the decomposition matrix, i.e., dij is the multiplicity of
the Brauer character corresponding to ei as a constituent in the ordinary character
corresponding to fi.

3 Tilting and Decomposition Matrices

We now assume our algebra A can be tilted to an algebra B. We recall the
relationship between tilting and deformation for any deformation, not only for a
separable deformation. First assume that T is a classical tilting module, and Ã a
deformation of k-algebras. It was proven in [2] that over an etale cover of an affine

1

3

1

3

2

2"

2’

1 2

3

1

3

2

A

A

B

B
~

~

Figure 1



4 Mary Schaps

curve there is a deformed tilting module T̃ of Ã, lifting T , such that if we define
B̃ = EndÃ(T̃ ), then B̃ is a flat deformation of B = EndA(T ).

Example [2] We give an example of an algebra A with a tilting to B and a
deformation to Ã. The diagrams in Figure 1 give the algebras A, Ã,B, B̃ in terms of
the “basis graph” which is a directed graph, with a vertex for every idempotent in a
complete orthogonal set of primitive idempotents and arrows for every basis element
in Rad(A), according to the Peirce decomposition. The number of arrowheads
indicate the depth in the radical series. In all four of the examples above, the
basis graph determines the isomorphism class of the algebra. The basis graph
behaves well under flat deformation (which preserves dimension) whereas the quiver
behaves badly. The algebra Ã is a copy of the Dynkin quiver algebra A3 with linear
orientation. In B̃ the arrows with solid arrowheads represent matrix units, and thus
B̃ is Morita equivalent to the Dynkin quiver algebra A3 with the middle vertex a
source.

Jeremy Rickard [6] generalized the theorem in [2] in two directions: he allowed a
tilting complex instead of just a tilting module, and he also allowed a wider range of
parameter rings. We assume henceforward that T is a tilting complex of projective
modules as defined in [5] and that Ã is a separable deformation. Although Rickard’s
Theorem 4.1 [6] treats the case where R is a ring of an affine curve, we will give
only the local case treated in Theorem 3.3 for simplicity of presentation.

Theorem Let R be a complete commutative Noetherian local ring, and m the
maximal ideal such that R/m

∼→ k. Let A be a k-algebra with separable deformation
Ã and projective indecomposable modules P1, . . . , P`. Let T = ⊕T ∗j be a tilting
complex for A with pairwise non-isomorphic summands. For each degree d in the
complex T for which T has a non-zero term, set

T ∗dj =
td⊕

t=1

Qd
t,j ,

where each Qd
t,j is isomorphic to an indecomposable projective module Pσ(j,t,d). Let

T̃ be a tilting complex for Ã which specializes to T. Let B̃ = EndDb(Ã)(T̃ ). Then B̃

is also a separable deformation and for a suitable renumbering of the simples of B
and of B = B̃ ⊗R K,

DB̃ = S ·DÃM,

where S is a diagonal matrix with entries ±1, and M is an invertible square matrix
of integers with entries

mij =
∑

d

(−1)d
td∑
t

δiσ(j,t,d).

Proof By Rickard’s Theorem 3.3 in [6], there is a unique tilting complex T̃ for
Ã such that T̃ ⊗R k

∼→ T. Set T = T̃ ⊗R K. Scalar extension preserves projectives,
so T is still a bounded complex of finitely-generated projectives. Any chain map in
Hom(T , T [v]) determines a map in Hom(T̃ , T̃ [v]) up to division by an element of R,
so T satisfies the first condition for a tilting complex, and is thus a partial tilting
complex. A partial tilting complex for a separable algebra must be homotopic to a
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complex T̂ in which each simple module appears in a unique degree, since otherwise
the condition

Hom(T , T [v]) = 0, v 6= 0

would not hold. Since the summands of T̃ generate the triangulated category
Db(Ã), and thus each projective module as a stalk complex, every simple of A
can be generated, so T is a tilting complex for A. Let di be the degree in the
complex T in which Ni occurs in the complex T̂ homotopic to T . The degree of the
corresponding simple module in B̃ ⊗K will be the total number of copies of Ni in
degree di, after we have cancelled out the copies in other degrees via homotopy. We
have taken only one copy of each summand in forming T, so this total multiplicity
is the sum of the multiplicities for each summand T ∗j , i.e.,

d′i =
∑

d′ij .

Since maps in a complex of modules for a separable algebra are the sum of zero
maps and isomorphisms and since the isomorphisms cancel out under homotopy,
the maps are irrelevant.

Let us fix Ni and T ∗j , and try to calculate d′ij . Let d be a degree in the complex,
and let Qd

t,j be one of the summands in T ∗dj , in degree d, isomorphic to Pσ(j,t,d)

for some index s = σ(j, t, d) in {1, . . . , `}. The number of copies of Ni in Ps is dis,
where DÃ = [dis]. Thus we get

d′ij
d =

td∑
t=1

∑̀
s=1

(−1)d−didisδsσ(j,t,d), (1)

d′ij = (−1)di

∑

d

td∑
t=1

∑̀
s=1

(−1)ddisδsσ(j,t,d). (2)

We now claim that d′ij is in fact the (ij)-th entry in DB̃ . The idempotents corre-
sponding to the simple modules are ΠT∗j , the projections onto the j-th summand.
Because we have taken a single copy of each summand, the degree of the idempo-
tent ΠT∗j is one. We choose a complex homotopic to T in which all maps are zero.
The endomorphism of T corresponding to N ′

i is the projection on the sum of copies
of Ni, which we denote Π

∗
i . The composition of the two idempotents Πi ◦ ΠT∗j is

the projection on the sum of the copies of Ni in T ∗j
′. The degree of the idempotent

Πi ◦ ΠT∗j is the number of copies of Ni in this complex, i.e., d′ij . This is then the
(ij)-th entry in DB̃ . Let si = (−1)d′i and let S be the diagonal matrix with entries
si. Formula (2) for the entry d′ij of DB̃ shows that

DB̃ = S ·DÃ ·M
where the (u, j) entry of M is

∑
d

∑
t

(−1)dδuσ(j,t,d).

4 Factorizations into Elementary Tiltings for Symmetric Algebras

The matrix M does not actually determine the tilting complex. There are
different possible “foldings” of the tilting complex, and different foldings correspond
to different images of the simple modules under the induced stable equivalence. We
will, in particular, be interested in factoring M into steps corresponding to tilting
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complexes of the following type, based on [7] and [4], where the “folding” is indicated
by the partition I ′ ∪ I ′′ of I − I0, [8], [11], [12].

Definition Let I be the set of simples and consider a partition λ = (I0, I
′, I ′′),

I = I0 ∪ I ′ ∪ I ′′. If Pi, i ∈ I, are the indecomposable projectives, we define

P ∗i : 0 → Pi → 0 i ∈ I0

P ∗i : 0 →Pi
gi→ Qi → 0 i ∈ I ′

P ∗i : 0 → Ri
fj→ Pi → 0 i ∈ I ′′

where Qi is the injective hull of the quotient of Pi by the largest submodule not
containing elements from I0, and Ri is the projective cover of the submodule of Pi

whose cokernel is the largest quotient which does not contain simples from I0.

Definition A map is tight if it does not have a nontrivial factorization through
any sum of Pt with t ∈ I0. Note that the maps in the P ∗i are tight.

If both I ′ and I ′ are nonempty, we require the following three conditions:
Condition 1: If i ∈ I ′, j ∈ I ′′, and the composition Pi → Qi → Rj → Pj is zero,
then one of the two compositions of length two is zero.
Condition 2: If t, s ∈ I0, i ∈ I ′, j ∈ I ′′, and if fj : Rj → Pj and gi : Pi → Qi are
tight maps with a commutative square

Rj
fj→Pj

↓ ↓
Pi

gi→Qi

then it is homotopic to zero, i.e., the diagonal map factors through a map from Pj

to Pi.
Condition 3: If i ∈ I ′, there are no Sj with j ∈ I ′′ in ker(mi), and if j ∈ I ′′, there
are no simples Si with i ∈ I ′ in coker(mj).

Note In the example below we will see that in the cyclic defect case, Condition
3 implies Conditions 1 and 2.

Remark It is clear from the proof below that Condition 3 could be replaced
by a weaker Condition 3′ which for each i, j would require either no Sj in ker(mi)
or no Si in coker(mj). However, since the algebra is symmetric, Conditions 3 and
3′ are equivalent.

Proposition 1 If the partition λ satisfies Conditions 1–3, then T (λ) = ⊕P ∗i
is a tilting complex.

Proof Since Qi and Ri are sums of copies of projectives Pi with i ∈ I0, we
easily construct mapping cones for the other Pj , i.e., j ∈ I ′∪I ′′, which will generate
these Pj . Thus the summands of P ∗ generate Db(A) as a triangulated category.

Thus we need only to show that Hom(T (λ), T (λ)[m]) = 0 for m 6= 0.
We begin with summands

Pj

↓
Ri

fi→Pi
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Since Pj is projective and there is no map from Pj into coker fi then any map must
factor through Ri and thus is homotopic to zero. Dually, if there is a map

Pj

↓
Pi

gi→Qi

it can only be well defined if the composition is zero but then Pi maps into the
kernel of gi, and the map must be zero. Since each projective is also injective, we
have no maps in the opposite direction either, by a dual argument.

The same arguments used above show that

Ri → Pi

↓
Rj

fi→Pj

is homotopic to zero, because the fact that coker(fj) contains no simples from I0

means that we can factor on the left. In the case of the opposite side

Ri →Pi

↓ `

Rj → Pj

if it is well defined, both compositions with ` are zero. However, we have already
shown above that if ` ◦ fi = 0, then ` = 0. The case on this opposite side is dual.

We are left with the “mixed” conditions. We begin with a well-defined chain
map

Pi
gi→Qi

`1↓ ↓`2

Rj
fj→Pj

We need to prove that there is a homotopy h : Qi → Rj which gives `1 = h ◦ gi

and `2 = fj ◦h. We first note that since coker fj contains no copies of simples from
I0, there is an h2 such that `2 = fj ◦ h2. If `1 = h2 ◦ gi, then we are finished. If
not, we can replace `2 by 0 and `1 by `′1 = `1 − h2 ◦ gi. Since ker gi contains no
simples from I0, there exists a factorization `′1 = h1 ◦ gi. Since fj ◦ h1 ◦ gi = 0 and
h1 ◦gi 6= 0, we conclude by Condition 1 that fj ◦h1 = 0, and thus h1 is a homotopy
for the new chain map `′1. Thus h = h1 + h2 is a homotopy for the original chain
map.

We must now consider the opposite direction

Rj →Pj

↓ ↓
Pi →Qi

By Condition 2, the composition factors through a homomorphism Pj → Pi and
thus the map is homotopic to zero, as desired.
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Finally, we have the double shifts. First consider

Pi
gi→ Qi

` ↓
Rj

fj→Pj

By Condition 3, the simple Si is not in the cokernel of fj , and thus ` factors through
Rj . Dually, the simple Sj is not in ker(gi) and thus ` factors through Qi. In either
case the chain map is holomorphic to zero.

In the opposite direction

Rj
fj→Pj

` ↓
Pi

gi→ Qi

If Sj is not in ker(gi), then gi ◦ ` is non-zero, and if Si is not in coker(fj), then `◦fj

is non-zero. In either case the chain map is not well-defined.

Example If λ is a partition for the indices of a Brauer star algebra with
indices {1, . . . , e}, then a partition satisfying the three conditions will be one in
which intervals of I ′, I0, I

′′ alternate cyclically. Suppose e = 12, I0 = {2, 4, 5, 11},
I ′ = {1, 9, 10}, I ′′ = {3, 6, 7, 8, 12}. The resulting Brauer tree algebra has the form

11 5 4 2

12 10 9 8 7 6 13

Figure 2

where the edges u at the exceptional vertex correspond to elements of I0, the edges
connected to u and less than u correspond to elements of I ′, and those numbered
greater than u belong to I ′′. In [9], we show that the Green correspondents of the
simple modules are determined by the I ′ and I ′′.

5 The Broué Conjecture

Let us consider the application of our main theorem to an example for the
Broué conjecture. In the case of blocks of group algebras, our main theorem is a
consequence of Theorem 3.1 in [1]. The principal blocks for a number of simple
groups have been handled by Okuyama, so we consider one of them, namely that
of A6, for p = 3. The conjecture has already been settled for the block by Okuyama
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[4] using different methods, but here we will give the tilting complex explicitly. The
normalizer of the defect group is C4 acting on C3×C3. The quiver of the principal
block is

1 2

34

Figure 3

Let αi be the clockwise arrow starting at i, and βi the counterclockwise arrow
starting at i. We have relations α3 = 0, β3 = 0, αβ = βα, for

α =
∑

αi

β =
∑

βi.

The decomposition matrix is

Db̃ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1
1 1 1 1




The decomposition matrix of the block of A6 is given, after a permutation of
rows to bring the exceptional character to the bottom, by

DB̃ =




1 0 0 0
1 1 0 1
0 1 1 1
1 0 1 1
1 0 0 1
1 0 0 1




There is a stable equivalence (induced by Green correspondence), given by
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2 3 4
X1 = 1 X2 = 3 X3 = 4 2 X4 = 3

4 3 2

Using Okayama’s strategy of choosing I0 with large Green correspondent, we
take I0 = {3}, I ′ = ∅, I ′′ = {1, 2} and get the tilting complex

P ∗1 : 0 → P3 ⊕ P3 → P1

P ∗2 : 0 → P3 → P2

P ∗3 : 0 → P3 → 0

P ∗4 : 0 → P3 → P4

The effect on the decomposition matrix is as follows:


1 0 0 0
0 1 0 0
2 1 1 1
0 0 0 1
1 0 1 0
1 0 1 0




We now choose I0 = {2, 4}, I ′ = ∅, I ′′ = {1, 3}. The map from P ∗2 and P ∗4 to
P ∗1 are isomorphisms on P3, and similarly with the maps from P ∗2 and P ∗4 to P ∗3 .
So when we take mapping cones we get

P ′1
∗ : P2 ⊕ P4 → P1

P ′2
∗ : P3 →P2

P ′3
∗ : P3 →P2 ⊕ P4

P ′4
∗ : P3 →P4

The new matrix is 


1 0 0 0
1 1 1 0
0 1 1 1
1 0 1 1
1 0 1 0
1 0 1 0




It differs from DB̃ only by a permutation of the columns.
Okuyama [4] proves, using his Lemma 2.1, that this sequence of elementary

tiltings produces the desired tilting. We comment that, given a candidate tilting
complex such as P ′∗, one can check directly whether or not it sends each of the Xi

to the corresponding simple Si. Let X∗
i be a projective resolution of Xi. For each

Xi, there is a unique degree ni such that Hom(P ′∗, X∗
i [ni]) 6= 0, modulo homotopy.

In this example, the degrees are n1 = 0, n2 = 1, n3 = 2, n4 = 1. By Okuyama’s
Lemma 1.3 (2), it then suffices to check that Ωni(Hom(P ′∗, X∗

i [ni])) is the simple
module corresponding to P ′i

∗, plus projectives.
We hope to turn this into a general method.
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