Deformations, Tiltings, and Decomposition Matrices

Mary Schaps
Department of Mathematics
Bar-Ilan University, 52900 Ramat Gan, Israel
mschaps@macs.biu.ac.il
Dedicated to Professor Vlastimil Dlab

Abstract

Let \tilde{A} be a deformation of a k-algebra A_{0} over an integral domain R, such that $\bar{A}=\tilde{A} \otimes_{R} K$ is a separable algebra for $K=\operatorname{QF}(R)$. When there is a lifting of a tilting complex T for A to a tilting complex \tilde{T} for \tilde{A}, it defines a separable deformation \tilde{B} of $B=\operatorname{End}_{D^{b}(\tilde{A})}(T)$, i.e., $\bar{B}=\tilde{B} \otimes_{R} K$ is also separable. Then the decomposition matrix $D_{\tilde{B}}$ of \tilde{B} is obtained from the decomposition matrix $D_{\tilde{\tilde{A}}}$ of \tilde{A} by operations on the columns determined by the summands of \tilde{T} and multiplication of certain rows by (-1). We use this method on the Broué conjecture for the principal block of A_{6}, giving an explicit one-step tilting complex of length 3.

1 Introduction

Let A be a finite dimensional k algebra, where k is a field sufficiently large that $A / \operatorname{Rad} A$ is separable. For simplicity one might assume k algebraically closed and A basic, but we do not so in order to allow applications to the theory of representations of groups. The various A-modules will be finitely-generated.

Let R be an integral domain with a distinguished maximal ideal m such that $R / m \xrightarrow{\sim} k$, and a quotient field K.

Definition A deformation \tilde{A} of A over (R, m) is a flat R-module \tilde{A} together with an isomorphism

$$
A \xrightarrow{\sim} \tilde{A} \otimes_{R} R / m
$$

The deformation is called separable if

$$
\bar{A}=\tilde{A} \otimes_{R} K
$$

is a separable algebra. We note that \tilde{A} itself will generally not be separable.

2000 Mathematics Subject Classification. 16G10, 20C05, 16S80.
Work is partially supported by a grant from the Bar-Ilan University Research Authority.

There are various examples in the literature of k-algebras with a separable deformation. Brauer tree algebras have a separable deformation over $k[t]$, as to various algebras for which the Donald-Flanigan problem has been solved. Group blocks have a separable deformation over a complete discrete valuation ring with residue field of characteristic p and quotient field of characteristic 0 .

The examples given so far have been symmetric, but this is not necessary. The algebra A of dimension four whose quiver consists of two vertices and two arrows in opposite directions deforms to a matrix algebra. The algebra A is self injective but not symmetric. The join of two copies of A by identifying one vertex of each and adding a loop is not self injective but deforms to two matrix algebras.

2 Decomposition Matrices

In the sequel we consider identity idempotents e^{\prime} of matrix algebras $M_{d}(k)$, and define $\operatorname{deg} e^{\prime}=d$. This will be called "the degree of the idempotent". When we refer to a position in a complex of modules, we will write "the degree in the complex".

Assume for this section that R is either a ring with the idempotent lifting property, e.g., a complete discrete valuation ring, or is the coordinate ring of an affine curve, e.g., $k[t]$. Let \tilde{A} be an R-algebra which is a deformation of a finite-dimensional k-algebra A over (R, m), with $R / m \xrightarrow{\sim} k$. We assume that k is sufficiently large to ensure that

$$
A / \operatorname{Rad}(A) \stackrel{\sim}{\rightarrow} \bigoplus_{i=1}^{\ell} M_{n_{i}}(k) .
$$

We know that $A / \operatorname{Rad}(A)$ can be embedded noncanonically in A. We choose such an embedding with image S, and let e_{1}, \ldots, e_{ℓ} be the images of the identity elements of the matrix blocks. The $\left\{e_{i}\right\}$ form a set of orthogonal idempotents, which is complete, i.e., which sum to the identity of A. They are not all primitive unless all $n_{i}=1$. Then, taking an etale cover of R if necessary when R is the coordinate ring of a curve, we may assume that the idempotents lift to $\tilde{e}_{1}, \ldots, \tilde{e}_{n}$ in \tilde{A}, an orthogonal set of idempotents (generally not primitive even if all $n_{i}=1$). This set is still complete because the lifting of the identity element of A to \tilde{A} is unique.

A vector space basis of an algebra is called "well behaved" with respect to a set of idempotents if it is a union of bases for the different summands in a two-sided Peirce decomposition. We note that by various "straightening out theorems", a k vector space basis well behaved w.r.t. $\left\{e_{i}\right\}$ lifts to a basis of \tilde{A} well behaved w.r.t. $\left\{\tilde{e}_{i}\right\}$. This leads in the affine case to the main theorem of [10] that a degeneration of algebras corresponds to a degeneration of basis graphs. In particular, we can choose an algebra $S_{R} \xrightarrow{\sim} \bigoplus_{i=1}^{\ell} M_{n_{i}}(R)$ of \tilde{A}, such that \tilde{e}_{i} is the identity element of $M_{n_{i}}(R)$. We write $\operatorname{deg} \tilde{e}_{i}=\operatorname{deg} e_{i}=n_{i}$.

Definition If A is an algebra with separable deformation \tilde{A} over (R, m), $\tilde{e}_{1}, \ldots, \tilde{e}_{\ell}$ are liftings of the identities of subalgebras S_{i}, and f_{1}, \ldots, f_{m} are the block idempotents of the blocks $\tilde{A} \otimes_{R} K$, then we define the decomposition matrix

$$
D_{\tilde{A}}=\left[d_{i j}\right]^{m \times \ell}
$$

where

$$
d_{i j}=\frac{\operatorname{deg} f_{i} \tilde{e}_{j}}{\operatorname{deg} \tilde{e}_{j}}
$$

Note The f_{i} are canonical. Since we can refine $\left\{e_{i}\right\}$ to a complete orthogonal set of primitive idempotents, and such a set is determined up to conjugation by a unit in the algebra, this definition is independent of the choice of the e_{i} and of the choice of the lifting \tilde{e}_{i}. It is not difficult to see that for group blocks this coincides with standard definitions of the decomposition matrix, i.e., $d_{i j}$ is the multiplicity of the Brauer character corresponding to e_{i} as a constituent in the ordinary character corresponding to f_{i}.

3 Tilting and Decomposition Matrices

We now assume our algebra A can be tilted to an algebra B. We recall the relationship between tilting and deformation for any deformation, not only for a separable deformation. First assume that T is a classical tilting module, and \tilde{A} a deformation of k-algebras. It was proven in [2] that over an etale cover of an affine

Figure 1
curve there is a deformed tilting module \tilde{T} of \tilde{A}, lifting T, such that if we define $\tilde{B}=\operatorname{End}_{\tilde{A}}(\tilde{T})$, then \tilde{B} is a flat deformation of $B=\operatorname{End}_{A}(T)$.

Example [2] We give an example of an algebra A with a tilting to B and a deformation to \tilde{A}. The diagrams in Figure 1 give the algebras $A, \tilde{A}, B, \tilde{B}$ in terms of the "basis graph" which is a directed graph, with a vertex for every idempotent in a complete orthogonal set of primitive idempotents and arrows for every basis element in $\operatorname{Rad}(A)$, according to the Peirce decomposition. The number of arrowheads indicate the depth in the radical series. In all four of the examples above, the basis graph determines the isomorphism class of the algebra. The basis graph behaves well under flat deformation (which preserves dimension) whereas the quiver behaves badly. The algebra \tilde{A} is a copy of the Dynkin quiver algebra A_{3} with linear orientation. In \tilde{B} the arrows with solid arrowheads represent matrix units, and thus \tilde{B} is Morita equivalent to the Dynkin quiver algebra A_{3} with the middle vertex a source.

Jeremy Rickard [6] generalized the theorem in [2] in two directions: he allowed a tilting complex instead of just a tilting module, and he also allowed a wider range of parameter rings. We assume henceforward that T is a tilting complex of projective modules as defined in [5] and that \tilde{A} is a separable deformation. Although Rickard's Theorem $4.1[6]$ treats the case where R is a ring of an affine curve, we will give only the local case treated in Theorem 3.3 for simplicity of presentation.

Theorem Let R be a complete commutative Noetherian local ring, and m the maximal ideal such that $R / m \xrightarrow{\sim} k$. Let A be a k-algebra with separable deformation \tilde{A} and projective indecomposable modules P_{1}, \ldots, P_{ℓ}. Let $T=\oplus T_{j}^{*}$ be a tilting complex for A with pairwise non-isomorphic summands. For each degree d in the complex T for which T has a non-zero term, set

$$
T_{j}^{* d}=\bigoplus_{t=1}^{t_{d}} Q_{t, j}^{d}
$$

where each $Q_{t, j}^{d}$ is isomorphic to an indecomposable projective module $P_{\sigma(j, t, d)}$. Let \tilde{T} be a tilting complex for \tilde{A} which specializes to T. Let $\tilde{B}=\operatorname{End}_{D^{b}(\tilde{A})}(\tilde{T})$. Then \tilde{B} is also a separable deformation and for a suitable renumbering of the simples of B and of $\bar{B}=\tilde{B} \otimes_{R} K$,

$$
D_{\tilde{B}}=S \cdot D_{\tilde{A}} M,
$$

where S is a diagonal matrix with entries ± 1, and M is an invertible square matrix of integers with entries

$$
m_{i j}=\sum_{d}(-1)^{d} \sum_{t}^{t_{d}} \delta_{i \sigma(j, t, d)}
$$

Proof By Rickard's Theorem 3.3 in [6], there is a unique tilting complex \tilde{T} for \tilde{A} such that $\tilde{T} \otimes_{R} k \xrightarrow{\sim} T$. Set $\bar{T}=\tilde{T} \otimes_{R} K$. Scalar extension preserves projectives, so \bar{T} is still a bounded complex of finitely-generated projectives. Any chain map in $\operatorname{Hom}(\bar{T}, \bar{T}[v])$ determines a map in $\operatorname{Hom}(\tilde{T}, \tilde{T}[v])$ up to division by an element of R, so \bar{T} satisfies the first condition for a tilting complex, and is thus a partial tilting complex. A partial tilting complex for a separable algebra must be homotopic to a
complex \hat{T} in which each simple module appears in a unique degree, since otherwise the condition

$$
\operatorname{Hom}(\bar{T}, \bar{T}[v])=0, \quad v \neq 0
$$

would not hold. Since the summands of \tilde{T} generate the triangulated category $D^{b}(\tilde{A})$, and thus each projective module as a stalk complex, every simple of \bar{A} can be generated, so \bar{T} is a tilting complex for \bar{A}. Let d_{i} be the degree in the complex T in which N_{i} occurs in the complex \hat{T} homotopic to \bar{T}. The degree of the corresponding simple module in $\tilde{B} \otimes K$ will be the total number of copies of N_{i} in degree d_{i}, after we have cancelled out the copies in other degrees via homotopy. We have taken only one copy of each summand in forming T, so this total multiplicity is the sum of the multiplicities for each summand T_{j}^{*}, i.e.,

$$
d_{i}^{\prime}=\sum d_{i j}^{\prime}
$$

Since maps in a complex of modules for a separable algebra are the sum of zero maps and isomorphisms and since the isomorphisms cancel out under homotopy, the maps are irrelevant.

Let us fix N_{i} and T_{j}^{*}, and try to calculate $d_{i j}^{\prime}$. Let d be a degree in the complex, and let $Q_{t, j}^{d}$ be one of the summands in $T_{j}^{* d}$, in degree d, isomorphic to $P_{\sigma(j, t, d)}$ for some index $s=\sigma(j, t, d)$ in $\{1, \ldots, \ell\}$. The number of copies of N_{i} in P_{s} is $d_{i s}$, where $D_{\tilde{A}}=\left[d_{i s}\right]$. Thus we get

$$
\begin{gather*}
d_{i j}^{\prime}=\sum_{t=1}^{t_{d}} \sum_{s=1}^{\ell}(-1)^{d-d_{i}} d_{i s} \delta_{s \sigma(j, t, d)}, \tag{1}\\
d_{i j}^{\prime}=(-1)^{d_{i}} \sum_{d} \sum_{t=1}^{t_{d}} \sum_{s=1}^{\ell}(-1)^{d} d_{i s} \delta_{s \sigma(j, t, d)} . \tag{2}
\end{gather*}
$$

We now claim that $d_{i j}^{\prime}$ is in fact the $(i j)$-th entry in $D_{\tilde{B}}$. The idempotents corresponding to the simple modules are $\Pi_{T_{j}^{*}}$, the projections onto the j-th summand. Because we have taken a single copy of each summand, the degree of the idempotent $\Pi_{T_{j}^{*}}$ is one. We choose a complex homotopic to \bar{T} in which all maps are zero. The endomorphism of \bar{T} corresponding to N_{i}^{\prime} is the projection on the sum of copies of N_{i}, which we denote $\bar{\Pi}_{i}^{*}$. The composition of the two idempotents $\bar{\Pi}_{i} \circ \Pi_{T_{j}^{*}}$ is the projection on the sum of the copies of N_{i} in $T_{j}^{* \prime}$. The degree of the idempotent $\bar{\Pi}_{i} \circ \Pi_{T_{j}^{*}}$ is the number of copies of N_{i} in this complex, i.e., $d_{i j}^{\prime}$. This is then the ($i j$)-th entry in $D_{\tilde{B}}$. Let $s_{i}=(-1)^{d_{i}^{\prime}}$ and let S be the diagonal matrix with entries s_{i}. Formula (2) for the entry $d_{i j}^{\prime}$ of $D_{\tilde{B}}$ shows that

$$
D_{\tilde{B}}=S \cdot D_{\tilde{A}} \cdot M
$$

where the (u, j) entry of M is $\sum_{d} \sum_{t}(-1)^{d} \delta_{u \sigma(j, t, d)}$.

4 Factorizations into Elementary Tiltings for Symmetric Algebras

The matrix M does not actually determine the tilting complex. There are different possible "foldings" of the tilting complex, and different foldings correspond to different images of the simple modules under the induced stable equivalence. We will, in particular, be interested in factoring M into steps corresponding to tilting
complexes of the following type, based on [7] and [4], where the "folding" is indicated by the partition $I^{\prime} \cup I^{\prime \prime}$ of $I-I_{0},[8],[11],[12]$.

Definition Let I be the set of simples and consider a partition $\lambda=\left(I_{0}, I^{\prime}, I^{\prime \prime}\right)$, $I=I_{0} \cup I^{\prime} \cup I^{\prime \prime}$. If $P_{i}, i \in I$, are the indecomposable projectives, we define

$$
\begin{array}{lcl}
P_{i}^{*}: & 0 \rightarrow P_{i} \rightarrow 0 & i \in I_{0} \\
P_{i}^{*}: & 0 \rightarrow P_{i} \xrightarrow{g_{i}} Q_{i} \rightarrow 0 & i \in I^{\prime} \\
P_{i}^{*}: & 0 \rightarrow R_{i} \xrightarrow{f_{j}} P_{i} \rightarrow 0 & i \in I^{\prime \prime}
\end{array}
$$

where Q_{i} is the injective hull of the quotient of P_{i} by the largest submodule not containing elements from I_{0}, and R_{i} is the projective cover of the submodule of P_{i} whose cokernel is the largest quotient which does not contain simples from I_{0}.

Definition A map is tight if it does not have a nontrivial factorization through any sum of P_{t} with $t \in I_{0}$. Note that the maps in the P_{i}^{*} are tight.

If both I^{\prime} and I^{\prime} are nonempty, we require the following three conditions:
Condition 1: If $i \in I^{\prime}, j \in I^{\prime \prime}$, and the composition $P_{i} \rightarrow Q_{i} \rightarrow R_{j} \rightarrow P_{j}$ is zero, then one of the two compositions of length two is zero.
Condition 2: If $t, s \in I_{0}, i \in I^{\prime}, j \in I^{\prime \prime}$, and if $f_{j}: R_{j} \rightarrow P_{j}$ and $g_{i}: P_{i} \rightarrow Q_{i}$ are tight maps with a commutative square

$$
\begin{array}{cc}
R_{j} \xrightarrow{f_{j}} P_{j} \\
\downarrow & \downarrow \\
P_{i} \xrightarrow{g_{i}} Q_{i}
\end{array}
$$

then it is homotopic to zero, i.e., the diagonal map factors through a map from P_{j} to P_{i}.
Condition 3: If $i \in I^{\prime}$, there are no S_{j} with $j \in I^{\prime \prime}$ in $\operatorname{ker}\left(m_{i}\right)$, and if $j \in I^{\prime \prime}$, there are no simples S_{i} with $i \in I^{\prime}$ in $\operatorname{coker}\left(m_{j}\right)$.

Note In the example below we will see that in the cyclic defect case, Condition 3 implies Conditions 1 and 2.

Remark It is clear from the proof below that Condition 3 could be replaced by a weaker Condition 3^{\prime} which for each i, j would require either no S_{j} in $\operatorname{ker}\left(m_{i}\right)$ or no S_{i} in $\operatorname{coker}\left(m_{j}\right)$. However, since the algebra is symmetric, Conditions 3 and 3^{\prime} are equivalent.

Proposition 1 If the partition λ satisfies Conditions 1-3, then $T(\lambda)=\oplus P_{i}^{*}$ is a tilting complex.

Proof Since Q_{i} and R_{i} are sums of copies of projectives P_{i} with $i \in I_{0}$, we easily construct mapping cones for the other P_{j}, i.e., $j \in I^{\prime} \cup I^{\prime \prime}$, which will generate these P_{j}. Thus the summands of P^{*} generate $D^{b}(A)$ as a triangulated category.

Thus we need only to show that $\operatorname{Hom}(T(\lambda), T(\lambda)[m])=0$ for $m \neq 0$.
We begin with summands

$$
\begin{gathered}
P_{j} \\
\downarrow \\
R_{i} \stackrel{f_{i}}{\downarrow} P_{i}
\end{gathered}
$$

Since P_{j} is projective and there is no map from P_{j} into coker f_{i} then any map must factor through R_{i} and thus is homotopic to zero. Dually, if there is a map

$$
\begin{aligned}
& P_{j} \\
& \downarrow \\
& P_{i} \xrightarrow{g_{i}} Q_{i}
\end{aligned}
$$

it can only be well defined if the composition is zero but then P_{i} maps into the kernel of g_{i}, and the map must be zero. Since each projective is also injective, we have no maps in the opposite direction either, by a dual argument.

The same arguments used above show that

$$
\begin{gathered}
R_{i} \rightarrow P_{i} \\
\downarrow \\
R_{j} \xrightarrow{f_{i}} P_{j}
\end{gathered}
$$

is homotopic to zero, because the fact that $\operatorname{coker}\left(f_{j}\right)$ contains no simples from I_{0} means that we can factor on the left. In the case of the opposite side

$$
\begin{aligned}
R_{i} \rightarrow & P_{i} \\
& \\
& \downarrow \\
& R_{j} \rightarrow P_{j}
\end{aligned}
$$

if it is well defined, both compositions with ℓ are zero. However, we have already shown above that if $\ell \circ f_{i}=0$, then $\ell=0$. The case on this opposite side is dual.

We are left with the "mixed" conditions. We begin with a well-defined chain map

$$
\begin{array}{r}
P_{i} \xrightarrow{g_{i}} Q_{i} \\
{ }^{\ell_{1}} \downarrow \quad \begin{array}{l}
\ell_{2} \\
R_{j} \xrightarrow{f_{j}} P_{j}
\end{array}
\end{array}
$$

We need to prove that there is a homotopy $h: Q_{i} \rightarrow R_{j}$ which gives $\ell_{1}=h \circ g_{i}$ and $\ell_{2}=f_{j} \circ h$. We first note that since coker f_{j} contains no copies of simples from I_{0}, there is an h_{2} such that $\ell_{2}=f_{j} \circ h_{2}$. If $\ell_{1}=h_{2} \circ g_{i}$, then we are finished. If not, we can replace ℓ_{2} by 0 and ℓ_{1} by $\ell_{1}^{\prime}=\ell_{1}-h_{2} \circ g_{i}$. Since ker g_{i} contains no simples from I_{0}, there exists a factorization $\ell_{1}^{\prime}=h_{1} \circ g_{i}$. Since $f_{j} \circ h_{1} \circ g_{i}=0$ and $h_{1} \circ g_{i} \neq 0$, we conclude by Condition 1 that $f_{j} \circ h_{1}=0$, and thus h_{1} is a homotopy for the new chain map ℓ_{1}^{\prime}. Thus $h=h_{1}+h_{2}$ is a homotopy for the original chain map.

We must now consider the opposite direction

$$
\begin{array}{cc}
R_{j} & \rightarrow P_{j} \\
\downarrow & \downarrow \\
P_{i} & \rightarrow Q_{i}
\end{array}
$$

By Condition 2, the composition factors through a homomorphism $P_{j} \rightarrow P_{i}$ and thus the map is homotopic to zero, as desired.

Finally, we have the double shifts. First consider

$$
\begin{aligned}
P_{i} \xrightarrow{g_{i}} Q_{i} \\
{ }^{\ell} \downarrow \\
R_{j} \xrightarrow{f_{j}} P_{j}
\end{aligned}
$$

By Condition 3, the simple S_{i} is not in the cokernel of f_{j}, and thus ℓ factors through R_{j}. Dually, the simple S_{j} is not in $\operatorname{ker}\left(g_{i}\right)$ and thus ℓ factors through Q_{i}. In either case the chain map is holomorphic to zero.

In the opposite direction

$$
\begin{aligned}
R_{j} \xrightarrow{f_{j}} & P_{j} \\
\quad & \\
& \downarrow \\
& P_{i} \xrightarrow{g_{i}} Q_{i}
\end{aligned}
$$

If S_{j} is not in $\operatorname{ker}\left(g_{i}\right)$, then $g_{i} \circ \ell$ is non-zero, and if S_{i} is not in $\operatorname{coker}\left(f_{j}\right)$, then $\ell \circ f_{j}$ is non-zero. In either case the chain map is not well-defined.

Example If λ is a partition for the indices of a Brauer star algebra with indices $\{1, \ldots, e\}$, then a partition satisfying the three conditions will be one in which intervals of $I^{\prime}, I_{0}, I^{\prime \prime}$ alternate cyclically. Suppose $e=12, I_{0}=\{2,4,5,11\}$, $I^{\prime}=\{1,9,10\}, I^{\prime \prime}=\{3,6,7,8,12\}$. The resulting Brauer tree algebra has the form

Figure 2
where the edges u at the exceptional vertex correspond to elements of I_{0}, the edges connected to u and less than u correspond to elements of I^{\prime}, and those numbered greater than u belong to $I^{\prime \prime}$. In [9], we show that the Green correspondents of the simple modules are determined by the I^{\prime} and $I^{\prime \prime}$.

5 The Broué Conjecture

Let us consider the application of our main theorem to an example for the Broué conjecture. In the case of blocks of group algebras, our main theorem is a consequence of Theorem 3.1 in [1]. The principal blocks for a number of simple groups have been handled by Okuyama, so we consider one of them, namely that of A_{6}, for $p=3$. The conjecture has already been settled for the block by Okuyama
[4] using different methods, but here we will give the tilting complex explicitly. The normalizer of the defect group is C_{4} acting on $C_{3} \times C_{3}$. The quiver of the principal block is

Figure 3

Let α_{i} be the clockwise arrow starting at i, and β_{i} the counterclockwise arrow starting at i. We have relations $\alpha^{3}=0, \beta^{3}=0, \alpha \beta=\beta \alpha$, for

$$
\begin{aligned}
& \alpha=\sum \alpha_{i} \\
& \beta=\sum \beta_{i} .
\end{aligned}
$$

The decomposition matrix is

$$
D_{\tilde{b}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

The decomposition matrix of the block of A_{6} is given, after a permutation of rows to bring the exceptional character to the bottom, by

$$
D_{\tilde{B}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

There is a stable equivalence (induced by Green correspondence), given by

$$
X_{1}=1 \quad X_{2}=\begin{gathered}
2 \\
4
\end{gathered} \quad X_{3}=\begin{gathered}
3 \\
4
\end{gathered} \quad X_{4}={ }^{4} 3
$$

Using Okayama's strategy of choosing I_{0} with large Green correspondent, we take $I_{0}=\{3\}, I^{\prime}=\emptyset, I^{\prime \prime}=\{1,2\}$ and get the tilting complex

$$
\begin{array}{llll}
P_{1}^{*}: & 0 \rightarrow P_{3} \oplus P_{3} & \rightarrow P_{1} \\
P_{2}^{*}: & 0 \rightarrow & P_{3} & \rightarrow P_{2} \\
P_{3}^{*}: & 0 \rightarrow & P_{3} & \rightarrow 0 \\
P_{4}^{*}: & 0 \rightarrow & P_{3} & \rightarrow P_{4}
\end{array}
$$

The effect on the decomposition matrix is as follows:
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]$

We now choose $I_{0}=\{2,4\}, I^{\prime}=\emptyset, I^{\prime \prime}=\{1,3\}$. The map from P_{2}^{*} and P_{4}^{*} to P_{1}^{*} are isomorphisms on P_{3}, and similarly with the maps from P_{2}^{*} and P_{4}^{*} to P_{3}^{*}. So when we take mapping cones we get

$$
\begin{array}{ll}
P_{1}^{\prime *}: & \quad P_{2} \oplus P_{4} \rightarrow P_{1} \\
P_{2}^{\prime *}: & P_{3} \rightarrow P_{2} \\
P_{3}^{\prime *}: & P_{3} \rightarrow P_{2} \oplus P_{4} \\
P_{4}^{\prime *}: & P_{3} \rightarrow P_{4}
\end{array}
$$

The new matrix is
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]$

It differs from $D_{\tilde{B}}$ only by a permutation of the columns.
Okuyama [4] proves, using his Lemma 2.1, that this sequence of elementary tiltings produces the desired tilting. We comment that, given a candidate tilting complex such as $P^{\prime *}$, one can check directly whether or not it sends each of the X_{i} to the corresponding simple S_{i}. Let X_{i}^{*} be a projective resolution of X_{i}. For each X_{i}, there is a unique degree n_{i} such that $\operatorname{Hom}\left(P^{\prime *}, X_{i}^{*}\left[n_{i}\right]\right) \neq 0$, modulo homotopy. In this example, the degrees are $n_{1}=0, n_{2}=1, n_{3}=2, n_{4}=1$. By Okuyama's Lemma 1.3 (2), it then suffices to check that $\Omega^{n_{i}}\left(\operatorname{Hom}\left(P^{* *}, X_{i}^{*}\left[n_{i}\right]\right)\right)$ is the simple module corresponding to $P_{i}^{\prime *}$, plus projectives.

We hope to turn this into a general method.

References

[1] Broué, M., Equivalences of blocks of group algebras, Finite Dimensional Algebras and Related Topics, Kluwer (1992), 1-26.
[2] Happel, D. and Schaps, M., Deformations of tilting modules, Perspectives in Ring Theory, NATO Series, Kluwer Acad. Pub. (1988), 41-58.
[3] Holloway, M., Derived Equivalences for Group Algebras, Thesis. Univ. of Bristol (2001).
[4] Okuyama, T., Some examples of derived equivalent blocks of finite groups, (Japanese) Proceedings of Conference on Group Theory, 1996: (English translation available as preprint).
[5] Rickard, J., Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436456.
[6] Rickard, J., Lifting theorems for tilting complexes, J. of Algebra 142 (1991), 383-393.
[7] Rickard, J., Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. 72 (3) (1996), 331-358.
[8] Rickard, J. and Schaps, M., Folded tilting complexes for Brauer tree algebras, Advances in Math. 171 (2002), 167-182.
[9] Rickard, J. and Schaps, M., Combinatorial two-sided tilting complexes, preprint.
[10] Schaps, M., Deformations of finite dimensional algebras and their idempotents, Trans. Amer. Math. Soc. 307 No. (2) (1988), 843-856.
[11] Schaps, M., Zakay-Illouz E., Pointed Brauer trees, Journal of Algebra 246 (2001), 647672.
[12] Schaps, M., Zakay-Illouz E., Braid group action on the refolded tilting complexes of the Brauer algebra, Proceedings ICRA IX, Beijing, vol. II, 2002, 434-449.

