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Abstract. It was shown in earlier work that every Brauer tree algebra of type (e, m)
can be reached from the Brauer star algebra of type (e, m) by a two-restricted tilting
complex, i.e., a complex which is a direct sum of indecomposable complexes involving
no more than two projectives. It was further shown that the different two-restricted
tilting complexes correspond to an additional structure on the Brauer star, called a
“pointing” which controls the “folding” of the complex. If we go out by one pointing
and return by a different pointing, we get a self-equivalence of the Brauer star which
we will call a “refolded” complex. In this paper, we show that the subgroup of the
derived Picard group generated by the refolded complexes is in fact generated by
certain elementary refolded complexes which satisfy the braid group relations for
the braid group on the affine diagram Ãe−1. The question of whether this action is
faithful and whether the refolded complexes generate the entire derived Picard group
remains open.

§1. Introduction.

If A is an algebra over a commutative noetherian ring k, the Picard group Pic(A)

is the group of isomorphism classes of invertible A⊗ A◦-modules. Lately, as more

attention has been paid to the bounded derived category Db(A), this has aroused

interest in a corresponding concept in the derived category.

Let X be a bounded complex of left A⊗Acirc-modules which are projective both

as A and as A◦ modules. We use the symbol “⊗” to denote “⊗k”. The bounded

complex X is called invertible if there is a bounded complex Y of A⊗A◦-modules

(projective as A and A◦ modules) satisfying

X ⊗A Y
∼→ A in Db(A⊗A◦)

Y ⊗A X
∼→ A in Db(A⊗A◦).
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Here A is identified with the stalk complex concentrated in degree zero.

The isomorphism classes of the invertible complexes X form a group under the

operator ⊗A. This group has been called the derived Picard group and denoted

by TrPic(A). A general discussion can be found in [RoZ] or in [Ye]. We embed

Pic(A) into TrPic(A) by sending an invertible A⊗A◦-module M to a stalk complex

concentrated in degree 0.

If M is an invertible A ⊗ A◦ module, i.e., a representative of an element of

Pic(A), then taking the tensor product over A with M gives a self-equivalence of

the category Mod(A) of left A-modules with itself:

M ⊗A − : Mod(A) → Mod(A)

N 7→ M ⊗A N.

Similarly, if X is a representative of an element of TrPic(A), then the tensor product

over A with X gives a functor defining a self-equivalence of Db(A) with itself

X ⊗A − : Db(A) → Db(A).

Such a self-equivalence is called a standard self-equivalence. Thus in studying

TrPic(A), we are also studying certain self-equivalences of the derived category.

In this paper, we will be studying TrPic(A) by considering a much larger class

of complexes:

Definition. Let A and B be k-algebras. A two-sided tilting complex X from A

to B is a bounded complex of A ⊗k B◦-modules, projective both as A and as B◦-

modules, for which there exists a bounded complex Y of B⊗A◦-modules, projective

as B and as A◦-modules, such that

X ⊗B Y
∼→ A in Db(A⊗A◦),

and

Y ⊗A X
∼→ B in Db(B ⊗B◦).
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The functors Y ⊗A − and X ⊗B − give equivalences of categories, (quasi) inverse

to each other, between Db(A) and Db(B). Such equivalences are called standard,

and it is not known if every equivalence between Db(A) and Db(B) is of this form.

We see from the definitions that the invertible complexes are simply the two-sided

tilting complexes for which A = B. If X and X ′ are two-sided tilting complexes

from A to B, and Y is the inverse of X, then X ′ ⊗B Y is the representative of an

element of TrPic(A). For any [Z] ∈ TrPic(A), we can generate [Z] as [X ′ ⊗ Y ] by

setting X ′ = Z ⊗A X.

In this paper, we intend to study TrPic(A) for a specific but very important

algebra called the Brauer star algebra. The approach we will take is to study the

subgroupR of TrPic(A) generated by shifts, by Pic(A), and by isomorphism classes

[X ′ ⊗ Y ], where X ′ and Y have a very specific combinatorial relationship to each

other. We manage to construct a large semigroup R⊥ inside R, thus demonstrating

that both R and TrPic(A) are quite large. We also give an action of an affine braid

group on R.

The definition of R is based on previous work [Z], [SZ1], [SZ2], [SZ3] on clas-

sification of tilting complexes of the Brauer star algebra, and was inspired by a

conversation with Zimmermann. The introduction of the braid group action is an

extension of earlier work of Rouquier and Zimmermann [RoZ].

Before quoting the results of Rouquier and Zimmermann, we would like to review

some notation about the bounded derived category Db(A). For any complex T of

left A-modules, the shift functor [n] shifts each component n places to the left, and

multiplies the differential by (−1)n. If X and Y are two complexes in Db(A), with

differentials dX and dY and f : X → Y is a chain map of complex, the mapping

cone

Cone(X
f→ Y )

is a complex whose component in degree i is Xi+1 ⊕ Yi, and whose differential is
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given by

di : Xi+1 ⊕ Yi

"−di+1
X f i+1

0 di
Y

#
−→ Xi+2 ⊕ Yi+1.

The category Db(A) is a triangulated category in which the distinguished triangles

are

X → Y → Cone(X → Y ) → X[1];

for the full definition, see [Ha]. What concerns us here is that any triangulated

subcategory must be closed under taking shifts and mapping cones.

For actual calculations, we usually use not the two-sided tilting complex X, but

rather a bounded complex of projective left A-modules T, which is isomorphic in

Db(A) to X regarded only as a left A-module. The complex T is called either a

one-sided tilting complex, to distinguish it from X, or simply a tilting complex. We

give the definition in its usual form, going back to Rickard [R1].

Definition. Let A be a k-algebra. Let T be a bounded complex of finitely gener-

ated projective, left A-modules. T is called a tilting complex for A if

(1) HomDb(A)(T, T [n]) = 0 for n 6= 0

(2) The homotopy category Kb(A) of bounded complexes of projectives is gen-

erated as a triangulated category by the direct summands of direct sums
⊕
j

T, for all finite j.

Given a tilting complex T, let B = EndA(T ). Let a two-sided complex of A⊗B◦-

modules, viewed as a complex of left A-modules, be represented by X. There exists

a two-sided tilting complex X from A to B such that AX is isomorphic to T in

Db(A). If X ′ is another two-sided tilting complex restricting to the same T, then

there is an automorphism α ∈ Aut(A) such that X ′ =α A1 ⊗A X, where αA1 is

the A ⊗ A◦-module which is isomorphic to A except that the action of elements

a from A is via multiplication by α(a). The module αA1 is invertible with inverse

1Aα, since αA1 ⊗A 1Aα
∼→ A. Thus if Y is the inverse of X, [X ′ ⊗B Y ] ∈ Pic(A).
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For group algebras, the most basic case is that of blocks of cyclic defect group.

Each such block corresponds to a tree, called the Brauer tree, with e edges, an

exceptional vertex u0 of multiplicity m, and a cyclic ordering on the edges at each

vertex. The particular case where the tree is a star and the exceptional vertex is

in the center is called the Brauer tree. The derived equivalence class depends on

the numbers e and m. Rouquier and Zimmerman [RoZ] take as representative of a

derived equivalence class the algebra with structure similar to that of SL(2, p), with

a linear tree and the exceptional vertex at the end. This provides a satisfactory

theory when the multiplicity m = 1 [KS]. For e = 2, TrPic(A) is generated, modulo

shifts and Pic(A), by certain elementary self-equivalences which satisfy the relations

of the braid group.

In this paper, in order to deal with the case m ≥ 1, we present a different

approach, taking as representative of the derived equivalence class the Brauer star

algebra, to be defined in the next section. As in the case of m = 1, certain group

elements satisfying braid relations arise in a natural way. Since we will be using

results from earlier papers in which the ground ring is a field, we will restrict to

that case, though the result is presumably true more generally.

§2. The Brauer star algebra and its tilting complexes.

Let e > 1 and m ≥ 1 be integers. Let K be a field containing a primitive e-th

root of unity. Let

S = K[x]/(xem+1)

be the truncated polynomial ring. The Brauer star algebra of type (e,m) is the

skew group ring

A = S[Ce]

where Ce = 〈d〉 is a cyclic group of order e, and the automorphism of R is given by

d−1xd = ξx.
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A has e uniserial indecomposable projectives Q1, . . . , Qe, each generated by one of

the primitive idempotents of KCe. We number the indecomposables so that Qi is

the projective cover of the radical of Qi+1, and designate the corresponding map

by

hii+1 : Qi → Qi+1.

More generally, we denote by hij the A-homomorphism of maximal rank

hij : Qi → Qj .

We denote by εi the non-identity map of maximal rank

εi : Qi → Qi.

The map εm
i from Qi to its socle will be denoted by si. In what follows we will

drop the indices on h, s and ε, since it will always be clear from the context which

projectives are involved.

Definition. [SZ1] A two-restricted tilting complex for A is a tilting complex whose

irreducible direct summands are all shifts of the following complexes, with initial

nonzero term in degree zero

Si : 0 → Qi → 0

Tk` : 0 → Qk
h→ Q` → 0.

These complexes and their shifts will be called elementary.

Let G be any Brauer tree of type (e, m), i.e., a tree with e edges and e + 1

vertices, such that one vertex u0 has been designated as exceptional vertex and

assigned multiplicity m, and there is given a designated cyclic ordering of the edges

at each vertex, which we will indicate by embedding the tree G in the plane so

that a counterclockwise circuit of the vertex determines the cyclic ordering on the
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edges. A pointing of the tree is the designation of a pair of adjacent vertices at

each non-exceptional vertex, which we will indicate by marking the corresponding

sector with a point.

Let us now choose one particular branch at the exceptional vertex, which we

will designate by placing a point before that edge at the exceptional vertex. This

point will be called the enhancement point. Let B′ be the set of Brauer trees with

enhancement points. A pointing together with an enhancement point will be called

an enhanced pointing. Let B′′ be the set of Brauer trees with enhanced pointings.

We then get a standard numbering of the vertices determined by the enhanced

pointing. Starting at the point at the exceptional vertex we take a Green’s walk

around the tree, keeping the tree on our left [G]. We assign the numbers 1, . . . , e

to the non-exceptional vertices as we reach their points, and then assign the same

number to the unique edge leading to that point.

The tilting complex T = ⊕Ri corresponding to this enhanced pointing is built

up recursively, starting at the exceptional vertex. For each edge from 0 to i, we set

Ri = Si. For any edge between i and j, with 0 < i < j, assume we have defined Ri

for every edge on a minimal path to the exceptional vertex. Then either Ri or Rj

has been defined. If Ri has been defined, let Rj be that shift of Tij for which Qi is

in the same degree in both Ri and Rj . If Rj has been defined, let Rj be that shift

of Tij for which Qj is in the same degree in both Ri and Rj (see Example 1). All

maps are the corresponding hij .
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Example 1.

Fig. 1

R6 : Q6

R1 : Q1 → Q6

R5 : Q1 → Q5

R3 : Q3 → Q5(1)

R2 : Q2 →Q3

R4 : Q4 → Q5

R7 : Q6 → Q7

R8 : Q8

R9 : Q8 → Q9

The endomorphism ring of this tilting complex T is the Brauer tree algebra of

the Brauer tree G∗. Considerable research has been done lately on the Brauer tree

algebras and their self-equivalences [L], [M], [Ro1], [Ro2] [RoZ], [Z]. Definitions of

this algebra appear in various forms in the literatures [A], [L], [M], but since we are

concerned only with self-equivalences of the Brauer star we will not repeat them

here. For Ri and Rj , i 6= j, adjacent at a non-exceptional vertex there is a unique

map in each direction, with the composition mapping the top of Ri to its socle.

At the exceptional vertex the dimension of the vector space Hom(Ri, Ri) is m for

i 6= j and m + 1 for i = j.
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We now give a construction of the B-module tilting complex T̂ which gives a

functor inverse to the functor defined by T.

Definition. [R1], [R2], [RS] The folded tree-to-star tilting complex T̂ determined

by a given enhanced pointing associates to each i = 1, . . . , e a complex Q′i deter-

mined by the path from the vertex i to the exceptional vertex, folded so that all

indices are in ascending order. The complex can be determined recursively as fol-

lows: If j1, . . . , jn is a path from the exceptional vertex to jn, n > 1 then Q′
j1

= Rj1 ,

and Q′jn
is obtained from Q′jn−1

by adding a copy of Rjn at a displacement of one

degree from Rjn−1 . If jn > jn−1, the copy of Rjn is summed to the component of

Qj′n−1
one degree to the left, and a map φ : Rjn → Rjn−1 is added to the differ-

ential, where φ is the unique morphism between Rjn and Rjn−1 in the direction of

descending indices. If jn−1 > jn, then Rjn is summed to the component of Q′jn−1

one degree to the right, and the differential is adjusted by φ : Rjn−1 → Rjn . The

endomorphism ring of ⊕Q′
i is then isomorphic to the Brauer star algebra, as was

proven in [RS].

Example 2. We use the same Brauer tree as appeared in Example 1.

Q′
1 : R6 → R1

Q′
2 : R6 → R1

R5
↗→ R3 → R2

Q′
3 : R6 → R1(2)

R5
↗→ R3
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Q′
4 : R6 → R1

R5
↗→ R4

Q′
5 : R6 → R1

R5
↗

Q′
6 : R6

Q′
7 : R7 → R6

Q′
8 : R8

Q′
9 : R9 → R8

Any enhanced pointing of the tree determines an element σ of the symmetric

group Se given by σ(i) = ai, where a1, . . . , ae are the edges encountered in a Green’s

walk around the tree [G]. In the example above, the permutation will be

(3)
(

1 2 3 4 5 6 7 8 9
6 1 5 3 2 4 7 8 9

)

By a theorem of Rickard, [R3], given a tilting complex T and an isomorphism

f : B
∼→ EndA(T ), there is a unique two-sided tilting complex X from A to B such

that T
∼→A X in Db(A), and such that, in the induced isomorphism θ : EndA(T ) →

EndA(AX), the image of f(b) for any b ∈ B is the endomorphism of AX induced

by multiplication by b. Keller has proven that this X is unique up to isomorphism

in Db(A ⊗k B◦) [Ke]. For any one-sided tilting complex T, we use this uniquely

determined X to define a functor

FT : Db(A) → Db(B).

Now, given a Brauer tree with an enhanced pointing, determining a permuta-

tion σ, our algorithm determines a tilting complex T. Let X be the corresponding
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uniquely defined two-sided complex, and let

Fσ : Db(A) → Db(B)

be the corresponding functor. We call Fσ a tilting functor. Since A is a symmetric

algebra, Y := Homk(X, k) defines the inverse F̂σ to Fσ.

Remark. Even if we had not chosen the particular unique X, the composition of

the functors Fσ and F̂σ would still have been an element of Pic(A), by Proposition

2.3 of [RoZ].

Let FG
σ be the corresponding functor from Db(A) to Db(B) and let F̂G

σ be the

inverse functor given by the algorithm above.

Definition. A basic refolded tilting functor is a tilting functor giving a self-equivalence

of the Brauer star algebra, corresponding to a functor F̂G
τ FG

σ , for two permutations

σ, τ which correspond to different pointings of some Brauer tree G with a given

enhancement point. A refolded tilting complex is a two-sided tilting complex corre-

sponding to a composition of basic refolded tilting complexes. Note that F̂G
σ FG

τ is

inverse to F̂G
τ FG

σ . Let R denote the subgroup TrP ic(A) of generated by the shifts,

Pic(A), and the refolded tilting complexes.

It is immediately clear that the set

{F̂G
τ FG

id

∣∣ G ∈ B′, τ is determined by a pointing of G}

of functors determine a generating set since F̂G
τ FG

σ = (F̂G
τ FG

id)(F̂G
σ FG

id)−1.

As our first result, we will construct a tilting complex corresponding to a functor

F̂τFid.

Proposition 1. For any σ ∈ Se determined by a pointing of a tree G ∈ B′, the

self-equivalence of the Brauer tree algebra A corresponding to the functor F̂G
σ FG

id is

given by ⊕Q′i, where

F̂GFG
id(Qi) = Q′

i = (Qai

h→ Qaj`−1

s→ Qaj`−1

h→ . . . Qaj1

s→
deg 0

Q aj1
),
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where i = j` > j`−1 > · · · > j1 is a maximal descending sequence for which

ai < aj`−1 < . . . aj1 .

Proof. By induction on the distance of i from the exceptional vertex. Note that

the jk are precisely the vertices at which the point is on the left as one goes out to

i along a minimal path.

d = 1: In this case the edge i is adjacent to the exceptional vertex. We get

Qi
F G

id7→ Ri = R′ai

F̂ G
σ7→

deg 0

Q ai .

d > 1: Suppose that the proposition has already been proven for distance d − 1,

and that we have already shown that the sequence i = j` > · · · > j1, is the maximal

subsequence of the minimal path i = in > in−1 > · · · > i1 for which the ai are

ascending. By the definition of the Green’s walk for the pointing inducing the

identity permutation, there is some s such that the minimal path for i + 1 is

i + 1 > is > is−1 · · · > i1.

Case 1. ai+1 < ai. This can occur only in the case s = n, since if s < n,

i is on a later branch, and, by the numbering algorithm for the pointing inducing

σ, must have a larger number than that of i. In the case s = n, by the assumption

on i = j` > · · · > j1, and the adjacency of i + 1, we find that i + 1 > j` > · · · > j1

is the maximal descending sequence such that ai+1 < ai < · · · < aj .

Qi+1
F G

id7→ Ri+1 → Rin → · · · →
deg 0

R i1

By induction (Rin → · · · → Ri1)
F̂ G

τ7→ Q′
i.

Thus

Qi+1 7→ Cone(Ri+1 → (Rin → · · · → Ri1)) 7→ Cone((Qai+1

h→ Qai)
s→ Q′

i)

7→ (Qai+1

h→ Qai

s→ Q′
i) = Q′i+1.
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Case 2. ai+1 > ai. Find the smallest t such that at < ai+1. If t > 1, then at <

ai+1 < at−1. Thus the maximal sequence for i + 1 is

i + 1 > jt−1 > · · · > j1.

Since i + 1 follows immediately after i, the edge i + 1 must be attached to one of

the vertices ip in the minimal path

in > in−1 > · · · > i1.

It must be further from u0 than jt−1 by the previous argument. Wherever it is

attached, it establishes a new chain

i + 1 > jt−1 > · · · > j1,

since all the other aiq , iq > jt−1 are smaller, all being less than or equal to at < ai+1

Qi+1
F G

id7→ (Ri+1
φ→ Rip → · · · → Ri1).

By the induction hypothesis, (Rip → · · · → Ri1)
F̂ G

σ7→ Q′
ip

. There are now two

subcases.

Case 2a. ip = jt−1, so ai+1 < aip . Then Ri+1
F̂ G

σ7→ (Qai+1 → Qaip
). F̂G

σ FG
id(Qi+1) is

the mapping cone of

Qai+1

h−−−−→ Qajt−1

s

y
Q′jt−1

so

Q′
i+1 = Qai+1

h→ Qajt−1

s→ Qajt−1

h→ . . .
deg 0

Q aj1
,

as desired.
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Case 2b. If ip > jt−1, then we have F̂G
σ (Ri+1) = Qaip

→ Qai+1 . The relevant

morphism F̂G
σ (φ) : F̂G

σ (Ri+1) → F̂G
σ (Rip

→ · · · → Ri1) = Q′
ip is given by

Qaip
−−−−→ Qai+1

id

y
yh

Qaip

h−−−−→ Qajt−1

s−−−−→ Qajt−1
−−−−→ . . . −−−−→ Qaj1

Taking the mapping cone and removing the factor Qaip

id→ Qaip
, we get

Q′
i+1 = Qai+1

h→ Qajt−1

s→ Qajt−1
→ · · · → Qaj1

,

as desired.

Corollary. Hσ = F̂G
σ FG

id is independent of the choice of G.

Remark. If σ is the permutation corresponding to a Brauer tree G ∈ B′ with a

given enhanced pointing, and if σ′ corresponds to G′ ∈ B′ with the same tree and

the same pointing but a different enhancement point, then F̂G
σ FG

id and F̂G′
σ′ FG′

id

determine the same element of TrPic(A), subject to a cyclic renumbering of the

indices of the Qi.

Example 4. We carry out this procedure for the permutation σ given above (3).

In (3) and (4) we omit the maps, which are alternately h and s.

Q6

Q1 → Q6 → Q6

Q5 → Q6 → Q6

Q3 → Q5 → Q5 → Q6 → Q6(4)

Q2 → Q3 → Q3 → Q5 → Q5 → Q6 → Q6

Q4 → Q5 → Q5 → Q6 → Q6

Q7

Q8

Q9
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Remark. Not every permutation σ is induced by a pointing. For example, if e = 3,

(2 3 1) is not induced by any enhanced pointing.

Lemma 1. For any permutation σ representing an enhanced pointing, there is a

tree corresponding to σ with all points on the left as one goes out along any minimal

path.

Proof. Let G be a tree such that Hσ = F̂G
σ FG

id and such that the total distances

of all vertices from the exceptional vertex is minimal. Now suppose that at some

vertex the point is not on the left. All those branches to the left of the point

can be moved down to the next vertex closer to the exceptional vertex, yet the

numbering will not be affected because the points will be encountered in the same

order. Contradiction to the minimality.

Definition. The length `(σ) of a permutation σ is the minimal number of adjacent

transpositions (j j + 1) required to generate σ.

Lemma 2. If σ is a non-trivial corresponding to an enhanced pointing of a Brauer

tree, there exists a transposition τ = (i i+1), such that ai > ai+1 in σ and σ = σ′◦τ,
where σ′ is a permutation corresponding to a Brauer tree, such that `(σ′) = `(σ)−1.

Proof. We associate to σ the normalized tree G given in Lemma 1. If G is a

star, σ is trivial. Therefore, G contains at least one non-exceptional, non-terminal

vertex. Let i be a non-exceptional, non-terminal vertex at maximal distance from

the exceptional vertex. Then i + 1 is a terminal vertex, and, by the normalization

of G, we have ai > ai+1. We can move all the other branches at i to i + 1, without

changing the permutation, as in the change from (a) to (b) in Fig. 2. Now the

point at i is on the left and the point at i + 1 is on the right. If we now reverse the

points as in (c) of Fig. 2, so that the point at i is on the right and the point at
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i + 1 is on the left, we get a new permutation σ′, σ′(j) = bj , where

bj = aj j 6= i, i + 1

bi = ai+1

bi+1 = ai

so that bi < bi+1.

We have defined σ′ by giving a pointing of G′, so it is defined by a pointing of a

Brauer tree. We now verify that σ = σ′ ◦ τ :

σ′ ◦ τ(j) = σ′(j) = aj j 6= i, i + 1

σ′ ◦ τ(i) = σ′(i + 1) = bi+1 = ai

σ′ ◦ τ(i + 1) = σ′(i) = bi = ai+1

By standard results in the theory of symmetric groups, exchanging adjacent num-

bers ai and ai+1 in σ which are out of order produces a permutation of length

`(σ)− 1.

(a) (b) (c)

Fig. 2

Proposition 2. The subgroup R of refolded tilting complexes is generated by shifts,

by Pic(A) and by Hτ = F̂Gi
τ FGi

id for τ adjacent transpositions (i i + 1). We may

take Gi to be the Brauer tree with valency e− 1 at the exceptional vertex, and one

edge attached to the i-th edge after the enhancement point.
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Proof. Let σ be a permutation given by a pointing. Since the Hσ are independent

of the choice of tree, we take the tree given in Lemma 2 which has a pointing

giving σ. It is standard theory of permutations [H] that any permutation σ can

be written as a product of transpositions σ = τ1 . . . τn in such a way that τi is

always switching the indices of two adjacent elements which are in numerical order

in σi−1 = τ1 ◦ · · · ◦ τi−1. Here n = `(σ). Note the reversal in the order of the indices.

We want to show that

Hσ = Hτn ◦ · · · ◦Hτ1 .

We can work by induction on n. It obviously suffices to prove that if σ = σ′ ◦ τ as

in Lemma 2, then

Hσ = Hτ ◦Hσ′ .

Since Hτ leaves everything fixed except Q′i and Q′i+1, we need consider only those.

We have

σ′(i) = bi

σ′(i + 1) = bi+1

with b < bi+1.

The effect of Hτi is

Q′i
Hτi7→ Q′′

i = Q′i+1

Q′i+1

Hτi7→ Q′′i+1 = Cone(Cone(Q′
i → Q′i+1) → Q′i+1)

We must show that these are the complexes determined by σ in Proposition 1.

Here σ(i) = ai = bi+1 and σ(i + 1) = ai+1 = bi.

Q′′i : Let i+1 > j`−1 > · · · > j1 be the sequence of indices in Q′i+1. Since bi+1 > bi

in τσ′ , we have j`−1 < i. Now consider σ. Corresponding to

i > j`−1 · · · > j1,
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we have

bi+1 < bj`−1 · · · < bj1

which is again a maximal order-reversing subsequence. Thus Q′′
i = Q′i+1.

Q′′i+1: We have ai+1 < ai, and edge i+1 is attached to vertex i, so we are in Case

1 of Proposition 1.

For i + 1 the new sequence is

i + 1 > i > jt−1 > · · · > j1

bi < bi+1 < bjt−1 < · · · < bj1 .

We get the new Q′′i+1 as the cone of

Qbi

h−−−−→ Qbi+1ys

Qbi+1

h−−−−→ Qjt−1 −−−−→ . . . −−−−→ Qj−1

This completes the proof that R is generated by the Hτi . ¤

We now demonstrate that these generators satisfy the braid relations for the

braid group on the Weyl diagram consisting of e points in a circle. For a general

reference to the braid group determined by a Weyl diagram, see [H].

Remark. LetR⊥ be the semigroup ofR generated by the Hτ . It is clear from Propo-

sition 1 that these elements have representative tilting complexes whose components

are all in non-positive degrees, and that multiplying by an Hτ only increases total

dimension. Thus no monomial is zero.

Proposition 3. The subgroup R of refolded complexes has an action by B̃e, the

braid group on the Euclidean diagram Ãe−1 obtained by completing Ae−1 to a cycle.

Proof. We define a homomorphism of B̃e into R by sending a half-twist switching

i and i + 1 to Hτ , where τ = (i i + 1). In order to show that this is a well-defined

homomorphism, it will suffice to show that the Hτ satisfy the braid relations
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Case 1. τ, τ ′ are disjoint transpositions τ = (i i+1). τ ′ = (j j+1) (where e+1 = 1),

then both Hτ ′Hτ and HτHτ ′ give

Qi+1

Qi
h→ Qi+1

s→ Qi+1

Qi+2

...

Qj+1

Qj
h→ Qj+1

s→ Qj+1

Qj+2

Case 2. Let τ, τ ′ be adjacent transpositions, i.e., τ = (i − 1 i) τ ′ = (i i + 1) then

we calculate

Hτ ′ ◦Hτ =

Qi

Qi+1

Qi−1 → Qi → Qi → Qi+1 → Qi+1

and

Hτ ◦Hτ ′ ◦Hτ =

Qi+1

Qi → Qi+1 → Qi+1

Qi−1 → Qi → Qi → Qi+1 → Qi+1

On the other hand,
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Hτ ◦Hτ ′ =

Qi+1

Qi−1 → Qi+1 → Qi+1

Qi → Qi+1 → Qi+1

and finally, as desired

Hτ ′ ◦Hτ ◦Hτ ′ = Hτ ◦Hτ ′ ◦Hτ .

This homomorphism then determines a braid group action by left multiplication.

We are left with the question of whether when m 6= 1 these braid generators,

together with shifts and Pic(A), generate the entire derived Picard group, and

whether the homomorphism is one-to-one. If we omit one of the generators of R,

the corresponding subgroup Rτ has an action by an ordinary braid group. Since

the word problem has been solved for the ordinary braid group, it may be more

accessible to try to show that this action is faithful; Zimmerman suggested in

private correspondence that it may be possible to achieve this with an extension

of the methods in [KS] A question also arises as to the relationship between the

refolded tilting complexes for the Brauer star algebra and those of the linear algebra

used in [RoZ].
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