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Let H be a Hopf algebra over a field K and R a commutative K-algebra with an H-module
structure. Let I � R be an ideal. Then I is called invariant if

H(I) � I.

Assume that I has a (possibly infinite) primary decomposition

I = q1 ∩ q2 ∩ q3 ∩ · · · .

In this paper we study when an invariant ideal with a primary decomposition has an invari-
ant primary decomposition, i.e.,

I = q
′
1 ∩ q

′
2 ∩ q

′
3 ∩ · · · ,

where the q ′i ’s and Rad (q′i)’s are invariant ideals for all i.

In the special case where H= P is the mod-p-Steenrod algebra and R is an unstable noetherian
K-algebra over P the existence of invariant primary decompositions was established in [6].
This was extended to unstable noetherian R�P -modules in [4] (see also [2]). This was further
generalized to nonnoetherian unstable R � P -modules (R still noetherian) in the sense that
if an unstable module admits a finite primary decomposition then it admits an invariant (still
finite) primary decomposition, see [5].

In [10] arbitrary pointed Hopf algebras are considered. It is shown that in the categories
of commutative noetherian K-algebras R and noetherian (H, R)-modules invariant primary
decompositions exist.

Finally, [11] deals with pointed Hopf algebras over a field K of characteristic zero and non-
commutative noetherian rings R over it. It is shown that the nilradical of R as well as all
minimal primes are invariant.

In this paper we come back to the study of commutative rings R and modules M , but we
drop any finiteness assumption. In particular, neither R nor M need to be noetherian. We
assume that H is a Hopf algebra of Dixmier type. We determine when an invariant ideal
(or a module) that admits a (possibly infinite) primary decomposition, admits an invariant
primary decomposition. In Section 1 we define Hopf algebras of Dixmier type, and prove the
existence of Dixmier bases in important cases, like, e.g., for the Steenrod algebra of reduced
powers. In Section 2 we introduce the JD-functor that turns arbitrary ideals (or modules)
into invariant ones and show that the minimal prime ideals containing an invariant ideal are
invariant, see Corollary 2.4. We proceed with the verification of several properties of J D in
Section 3. We prove that the minimal primary ideals belonging to minimal prime ideals over
an invariant ideal are invariant, see Proposition 4.1. In Section 4 we obtain the existence of
invariant primary decompositions if JD commutes with taking radicals, see Theorem 4.5. This
property is satisfied by, e.g., unstable actions of the Steenrod algebra as shown in Proposition
4.6. Finally in Section 5 we translate these results into the context of modules.

§1. Dixmier Bases for Hopf Algebras

In [11] it is shown that every connected Hopf algebra over a field of characteristic zero is a
quotient of a Hopf algebra with Dixmier basis. In this section we extend this result to positive
characteristic for several important cases.

We recall the definition of Dixmier basis, see [11].
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DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: Let H be a Hopf algebra over a field K. Denote by ∆ the comultiplication. We
say that the subset D � H is a Dixmier basis for H, if

(1) D is a K-linear basis for H.
(2) D is well ordered by some ordering “<”.
(3) There exists a multiplication

D × D �� D, (d, t) �� d� t

such that

(✣ ) ∆ (d � t) = �d ⊗ t +
�
d′<d

�d′,t′′ d′ ⊗ t′′ +
�
t′<t

�d′′,t′ d′′ ⊗ t′

for some � ∈ K× and �d′,t′′ , �d′′,t′ ∈ K.

We call the property (✣ ) the Dixmier Property.

The following example is taken from [11], Example 4.

EXAMPLE 1.1EXAMPLE 1.1EXAMPLE 1.1EXAMPLE 1.1EXAMPLE 1.1 : Let H = K[t] the algebra of polynomial in one variable t over a field K. The
comultiplication is given by

∆ (t) = t ⊗ 1 + 1 ⊗ t.

If the field K has characteristic zero, then we can choose

D = { 1, t, t2, ...}

as a Dixmier basis with multiplication

t i � t j = t i+j .

The set D is ordered in the obvious way: t i < t j if and only if i < j. If the characteristic of K
is p > 0, then K[t] admits no Dixmier basis as we see next. Since D is a linear basis it must
contain �i t i + Mi, �i ∈ K \ 0 and some Mi ∈ K[t], for all i ∈ N0. Thus

t i � tp−i =
n�

k=1

�k tmk

for some mk ∈ N0 and �k ∈ K. Then

∆ (t i � tp−i) = ∆ (
n�

k=1

�k tmk ) =
n�

k=1

�k

mk�
j=0

�
mk

j

�
t j ⊗ tmk−j .

Since t i ⊗ tp−i must be a nontrivial summand in the sum on the right, we have that m k = p
for certain k. However this gives

∆ (t i � tp−i) = ∆ (tp +
n�

k=1,xk�=p

�k tmk ) = 1 ⊗ tp + tp ⊗ 1 + ∆ (
n�

k=1,mk�=p

�k tmk ).

Thus t i ⊗ tp−i does not occur as a nontrivial summand in ∆ (t i ⊗ tp−i), and hence in positive
characteristic K[t] does not admit a Dixmier basis.

We can see this also in the following way: Consider the truncated polynomial algebra

R = K1 + Kx + Kx2 + · · · + Kxp−1

2
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over a field of characteristic p. Then the Hopf algebra H = K[t] acts on R via

t(x) = 1.

The nil radical of R is
Nil (R) = (x).

If H had a Dixmier basis then the nil radical of R would be invariant under the action of H,
see Theorem 4.3 in [11]. However 1 �∈ Nil (R), cf. Examples 3 and 4 in [11].

More generally we cite the following result.

THEOREM 1.2THEOREM 1.2THEOREM 1.2THEOREM 1.2THEOREM 1.2: If H is a connected Hopf algebra over a field of characteristic zero, then H
is a quotient of a Hopf algebra with Dixmier basis.

PROOFPROOFPROOFPROOFPROOF: See Theorem 12 in [11]. ☯

We need a similar result for Hopf algebras over fields of positive characteristic. For this we
start with the following construction which is taken from [8].

Let K be a field of any characteristic. Denote by

H� = K < h1, h2, h3, ... >

the free Hopf algebra on the hi ’s over K with comultiplication given by

∆ (hk) =
k�

i=0

hi ⊗ hk−i,

where h0 = 1. Note that this is a cocommutative Hopf algebra. We want to show that the set
D consisting of all monomials in the hi ’s is a Dixmier basis for H�. Obviously D is a K-linear
basis for H. Next we need to define an order on D.

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: Let
d = hi1 · · · hik ∈ D

be a monomial. The special degree of d is defined by

spdeg(d) = i1 + · · · + ik.

We denote the length of d by
l(d) = k.

With the help of these two degrees associated to a monomial d ∈ D we define a well order on
D as follows.

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: Let d and d ′ be elements in D. We say that d < d ′ if one of the following
statements is true:

(1) spdeg(d) < spdeg(d′) or
(2) spdeg(d) = spdeg(d′) and l(d) < l(d′) or
(3) spdeg(d) = spdeg(d′) and l(d) = l(d′) and 1 d <lex d′.

LEMMA 1.3LEMMA 1.3LEMMA 1.3LEMMA 1.3LEMMA 1.3 ([8]): The set D of all monomials is well ordered by “<”.

1 “<lex” denotes the lexicographic order.

3
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PROOFPROOFPROOFPROOFPROOF: It is obvious that any two elements in D are comparable. To show that any
nonempty subset has a least element, pick a chain

d0 > d1 > d2 > · · ·

with di ∈ D for all i. Since the special degree spdeg(d0) is finite there are only finitely many
di ’s in the chain of smaller special degree. Thus without loss of generality we can assume
that

spdeg(di) = spdeg(dj) ∀ i, j.

Similary, the length of d0 is finite, and so without loss of generality we assume that

l(di) = l(dj) ∀ i, j.

Thus
di >lex di+1 ∀ i.

Since the lexicographic order turns the set of monomials into a well ordered set, we are done.
☯

Next we need to define a multiplication on the set D.

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: Let d and t be elements in D with l(d) ≤ l(t). We assume without loss of
generality that

d = hi1 · · · hik

and
t = hm1 · · · hmp hj1 · · · hjk .

We define a multiplication as follows

d � t = hm1 · · · hmp hi1+j1 · · · hik+jk .

If l(d) > l(t) then we define
d� t = t � d.

Note that d� t ∈ D.

PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4 ([8]): With the preceding notation D is a Dixmier basis for H�.

PROOFPROOFPROOFPROOFPROOF: By definition D is a K-linear basis for H�. By Lemma 1.3 we know that “<” defines
a well ordering on D. Thus we need to show that the Dixmier property (✣ ) holds.

CASECASECASECASECASE l(d) ≤ l(t) : We find

∆ (d� t) =
m1�
�1=0

· · ·
mp�
�p=0

i1+j1�
�p+1=0

· · ·
ik+jk�
�p+k=0

h�1
· · · h�p+k

⊗ h�1 · · · h�p+k ,

where �r = mr −�r for r ≤ p and �p+r = ir + jr −�r. Let

a ⊗ b = h�1
· · · h�p+k

⊗ h�1 · · · h�p+k

be a summand of ∆ (d � t). We note that

(∗ ) spdeg(d� t) = spdeg(d) + spdeg(t) = spdeg(a) + spdeg(b).

Furthermore, we observe

(★ ) l(d � t) = l(t) ≥ l(b).

4



DIXMIER BASES AND PRIMARY DECOMPOSITION

We need to show that a ≥ d, b ≥ t implies that a = d and b = t.

Let a ≥ d and b ≥ t. Thus by (∗ ) and (★ ) we obtain that spdeg(a) ≥ spdeg(d), spdeg(b) ≥ spdeg(t),
and l(b) = l(t). Moreover, since b ≥ t we obtain that

b = h�1 · · · h�p+k ≥lex t = hm1 · · · hmp hj1 · · · hjk .

Hence
�r ≥ mr ∀ r = 1 , . . . , p.

Therefore, �r = mr for r = 1 , . . . , p, and thus �r = 0 for r = 1 , . . . , p. Therefore d and a have
the same length.

We proceed by proof by contradiction. To this end assume that b > t. Then there exists an
index x such that

�p+x > jx and �y = jy

for y = 1 , . . . , x − 1. Hence �y = iy and �x < ix , and thus a < d. This is a contradicts since
a ≥ d. Therefore t = b, and hence d = a.

Finally observe that the case t = b occur exactly once in the above sum.

CASECASECASECASECASE l(d) > l(t) : This follows immediately from the first case, because H� is cocommu-
tative.☯

We summarize these results in the following proposition.

PROPOSITION 1.5PROPOSITION 1.5PROPOSITION 1.5PROPOSITION 1.5PROPOSITION 1.5 ([8]): Let H� be the free K-algebra on countably many generators h0 =
1, h1, h2, ... with an Hopf algebra structure given by

∆ (hk) =
k�

i=0

hi ⊗ hk−i.

Let D be the linear basis containing all monomials in the h i ’s. Then D is a Dixmier basis for
H�.

PROOFPROOFPROOFPROOFPROOF: ☯

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: We call an Hopf algebra H that is a quotient of a Hopf algebra H D with
Dixmier basis a Hopf algebra of Dixmier type.

EXAMPLE 1.6EXAMPLE 1.6EXAMPLE 1.6EXAMPLE 1.6EXAMPLE 1.6 : By the preceding Proposition 1.5 any Hopf algebra H that is a quotient of
H� is a Hopf algebra of Dixmier type.

PROPOSITION 1.7PROPOSITION 1.7PROPOSITION 1.7PROPOSITION 1.7PROPOSITION 1.7 (Dixmier Basis of P ): The mod p-Steenrod algebra of reduced powers is
a Hopf algebra of Dixmier type.

PROOFPROOFPROOFPROOFPROOF: Denote by P the Steenrod algebra of reduced powers over a finite field F q of order
q. It is the free associative Fq-algebra generated by the reduced powers P 0 = id, P1, P2, ...
modulo the Adem-Wu relations

P
i
P

j =
[i/q]�
k=0

(1)i+qk
�

(q − 1)(j − k) − 1
i − qk

�
P

i+j−k
P

k, whenever i, j > 0 and i < qj.

The Steenrod algebra has an Fq-linear basis D consisting of admissible monomials

P
I def= P

i1 · · ·P ik with is ≥ qis+1 ∀ s = 1 , . . . , k,

5
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see, e.g., Proposition 2.1 in [9]. We define an order on D as we did in the case of H� by
replacing the special degree by the moment m(P I):

m(P I) =
k�

s=1

sis.

We define a multiplication� on D in the following way:

P
I � P

J = P i1+j1 · · ·P ik+jkP
jk+1 · · ·P jl ,

where P J = P j1 · · ·P jl and l ≥ k. If k ≥ l we set

P
I � P

J = PJ � P
I .

We find

∆ (P I � P
J ) = ∆ (P i1+j1 · · ·P ik+jkP

jk+1 · · ·P jl )

=
i1+j1�
�1=0

· · ·
jl�

�l=0

P
�1 · · ·P�l ⊗ P i1+j1−�1 · · ·P jl−�l

= P I ⊗ PJ +
i1+j1�
�1=0

· · ·
ik+jk�
�k=0

jk+1�
�k+1=1

· · ·
jl�

�l=1

P
�1 · · ·P�l ⊗ P i1+j1−�1 · · ·P jl−�l ,

where (�1 , . . . , �l) �= (i1 , . . . , ik, 0 , . . . , 0). If the first component of one of the summands has
moment

m(P�1 · · ·P�l ) =
l�

s=1

s�s ≤
k�

s=1

sis = m(P I)

then it can be written as a sum of admissible monomials of smaller moment, see, e.g., Propo-
sition 2.1 in [9]. If its moment is larger than the moment of P I , then the moment of the second
component

m(P i1+j1−�1 · · ·P jl−�l ) =
l�

s=1

s(is + js −�s) ≤
l�

s=1

sjs = m(PJ ).

Thus in this case the second component can be written as a sum of admissible monomials of
smaller moment. Therefore, our product on D satisfies the Dixmier Property. ☯

§2. Primary Decomposition: Reduction Arguments and Prime Ideals

Let H be a Hopf algebra of Dixmier type. Let R be a commutative (K, H)-module algebra. An
ideal I � R is called invariant if

H(I) � I.

Assume that I has a (possibly infinite) primary decomposition

I = q1 ∩ q2 ∩ q3 ∩ .....

Our goal is to determine when I has an invariant primary decomposition

I = q
′
1 ∩ q

′
2 ∩ q

′
3 ∩ ....,

i.e., all the primary components q ′i as well as their prime radicals p ′i are invariant.

6



DIXMIER BASES AND PRIMARY DECOMPOSITION

We start with two reduction arguments.

First, we can assume without loss of generality that the Hopf algebra H is a Hopf algebra
with Dixmier basis, HD. This follows from the fact that the (K, H)-module algebra R can be
considered as a (K, HD)-module algebra via the canonical projection

� : HD ��H.

Before we come to the second reduction argument we need a the functor J D that turns arbi-
trary ideals into invariant ideals. It is defined as follows, cf. Chapter 9 in [7] and Section 4 in
[11].

DEFINITIONDEFINITIONDEFINITIONDEFINITIONDEFINITION: Let I � R be an ideal. Denote by

J�(I) � I

the maximal invariant subideal of I. We define

JD(I) = { r ∈ I∋d(r) ∈ I ∀ d ∈ D} ,

where D forms a Dixmier basis for H.

PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1: With the above notation

JD(I) = J�(I),

for any ideal I � R.

PROOFPROOFPROOFPROOFPROOF: Let r ∈ J�(I). Then
d(r) ∈ J�(I) � I

for all d ∈ D. Hence r ∈ JD(I).

Conversely, since D is a linear basis for H, the set JD(I) is invariant. Thus

JD(I) � J�(I)

by maximality of J�(I). ☯

REMARKREMARKREMARKREMARKREMARK: Note that the preceding result means in particular that J D(I) is an ideal.

The following result has been proven in Lemma 1.1 in [5] in the context of modules over the
Steenrod algebra.

LEMMA 2.2LEMMA 2.2LEMMA 2.2LEMMA 2.2LEMMA 2.2: The functor JD commutes with arbitrary intersections:

JD(
�

i

Ii) =
�

i

JD(Ii)

PROOFPROOFPROOFPROOFPROOF: By definition
JD(
�

i

Ii) �
�

i

Ii

is the largest invariant subideal. Since
�

i JD(Ii) �
�

i Ii is also invariant we find that�
i

JD(Ii) � JD(
�

i

Ii).

To prove the reverse inclusion let r ∈ JD(
�

i Ii). Then

d(r) ∈ Ii

7
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for all i and d ∈ D. Thus
r ∈

�
i

JD(Ii)

as claimed. ☯

This result leads to the second reduction argument: If

I = q1 ∩ q2 ∩ q3 ∩ · · ·

is a primary decomposition of an invariant ideal I � R, then

I = JD(q1) ∩ JD(q2) ∩ JD(q3) ∩ · · · .

Thus it is enough to show that JD(q) is has an invariant primary decomposition for every
primary ideal q.

We prove the case where q = p is a prime ideal and some technical corollaries, in the remainder
of the section postponing the general case to the next section. In particular, we show that the
prime ideals p 	 I minimal over an invariant ideal I are invariant.

The following three results were proven in [11] in the case of Hopf algebras over a field of
characteristic zero, and in [6], resp. [5] in the case of unstable actions of the Steenrod algebra.

PROPOSITION 2.3PROPOSITION 2.3PROPOSITION 2.3PROPOSITION 2.3PROPOSITION 2.3: Let H be a Hopf algebra of Dixmier type, and let R be a commutative
K-algebra over H. Let p � R be a prime ideal. Then JD(p) � R is a prime ideal also.

PROOFPROOFPROOFPROOFPROOF: Let r, s ∈ R \ JD(p). Choose minimal elements d, t ∈ D such that

d(r) �∈ p t(s) �∈ p.

Then, for some � ∈ K× and �d′,t′′ , �d′′,t′ ∈ K we have

(d� t)(rs) = �d(r)t(s) +
�
d′<d

�d′,t′′ d′(r)t′′(s) +
�
t′<t

�d′′,t′ d′′(r)t′(s).

By minimality of d and t the two sums on the right hand side of this equation are in p. Since
p is prime, the first summand d(r)t(s) �∈ p. Therefore

(d � t)(rs) �∈ p

and hence rs �∈ JD(p) as desired. ☯

COROLLARY 2.4COROLLARY 2.4COROLLARY 2.4COROLLARY 2.4COROLLARY 2.4: Let I�R be an invariant ideal. Then all minimal prime ideals I� p�R
containing I are invariant.

PROOFPROOFPROOFPROOFPROOF: Consider the canonical projection

� : R �� R/I.

The minimal prime ideals I � p� R project down to the minimal prime ideals (0)� p� R/I.
They are invariant by the preceding Proposition 2.3. Thus the ideals p are also invariant. ☯

COROLLARY 2.5COROLLARY 2.5COROLLARY 2.5COROLLARY 2.5COROLLARY 2.5: If I � R is an invariant ideal, then so is its radical.

PROOFPROOFPROOFPROOFPROOF: This is true, because the radical of any ideal is the intersection of the prime ideals
containing it. ☯

PROPOSITION 2.6PROPOSITION 2.6PROPOSITION 2.6PROPOSITION 2.6PROPOSITION 2.6: Let I � R be a radical ideal. Then

JD(I) = Rad (JD(I)).

8
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PROOFPROOFPROOFPROOFPROOF: The inclusion “⊂” is obvious. In order to show the reverse inclusion take an ele-
ment

a ∈ Rad (JD(I)).

Then there exists some power n ∈ N such that

an ∈ JD(I).

Hence d(an)∈ JD(I) for all elements in the Dixmier basis d ∈D. Assume that a �∈ JD(I). Then
there exists a minimal element d ∈ D such that

d(a) �∈ I.

We observe that
d�n(an) = �d(a)n +

�
�i1 ,..., in di1(a) · · · din (a),

for some i1 , . . . , in ∈ N0, � ∈ K×, and �i1 ,..., in ∈ K. Note that for every summand of the sum
on the right we have that

dij < d

for at least one index ij . Thus �
di1(a) · · · din (a) ∈ I

by minimality of d. Since a n ∈ JD(I) we have that

d�n(an) ∈ JD(I) � I.

Therefore d(a)n ∈ I and thus d(a) ∈ I, because I is radical. This contradicts our assumption,
and concludes the proof. ☯

REMARKREMARKREMARKREMARKREMARK: It follows from the preceding result that

Rad (JD(I)) � JD(Rad (I))

for any ideal I � R. The reverse inclusion is not true in general. We illustrate this with the
next example.

EXAMPLE 2.7EXAMPLE 2.7EXAMPLE 2.7EXAMPLE 2.7EXAMPLE 2.7 ([8]): Let K be a field of characteristic zero. Let R = K[x1, x2, · · ·] the poly-
nomial ring in infinitely (but countably) many variables over K. Let H be the Hopf algebra
over K generated by derivations t1, t2, · · · acting on R via

ti(xj) =
�

xi for j = 1
0 for j > 1.

We note that H has a Dixmier basis D consisting of t0 = 1H, t1, t2, · · · with multiplication given
by

ti � tj = ti+j

and order ti ≤ tj if and only if i ≤ j. Let I = (x1, x2
2 , x3

3 , · · ·)� R. Then

JD(I) = (x2
2 , x3

3 , · · ·)

so that
Rad (JD(I)) = (x2, x3, · · ·).

On the other hand
JD(Rad (I)) = JD(x1, x2, x3, · · ·) = (x1, x2, x3, · · ·).

9
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§3. Primary Decomposition: More Technical Results

Let I � R be an ideal. Let P � R be a prime ideal. Then

SP(I) = Ker(R �� RP)

denotes the saturation of I with respect to P.

PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1: If I�R is an invariant ideal then so is SP(I) for any prime ideal P�R.

PROOFPROOFPROOFPROOFPROOF: Let r ∈ SP(I). Then there exists an element s ∈ R \ P such that rs ∈ I. Assume
that d′(r) ∈ SP(I) for all d′ < d. Then

(★ ) d(r)s = �
�
d(rs) −

�
d′<d

�d′,d′′ d′(r)d′′(s)
�

where � ∈ K× and �d′,d′′ ∈ K. By assumption we have that

d′(r)s′d′ ∈ I

for some s′d′ ∈ R \ P. Set S =
�

s′d′ ∈ R \ P where the product runs over all d ′ such that
�d′ t �= 0. Then

d(r)sS = �
�
d(rs)S −

�
d′<d

�d′,d′′(d′(r)S)d′′(s)
�
∈ I

and thus d(r) ∈ SP(I). ☯

Let I�R be an invariant ideal. Denote by�(R, I) the set of all prime ideals P in R containing
I with the following property: There exists an r∈R such that P is a minimal prime containing
(I : r).

LEMMA 3.2LEMMA 3.2LEMMA 3.2LEMMA 3.2LEMMA 3.2: Let I�R be an ideal. Then the maximal ideals in�(R, I) have the form (I : r)
for some r ∈ R. Furthermore, if I is invariant, then so are the maximal ideals in �(R, I).

PROOFPROOFPROOFPROOFPROOF: Consider the set of colon ideals (I : r) for some r ∈ R \ I. Let (I : r) be maximal
in this set. Assume we have

st ∈ (I : r) and s �∈ (I : r).

Then
t ∈ (I : rs) = (I : r)

by maximality of (I : r). Thus the maximal colon ideals are prime ideals. Hence the maximal
elements in �(R, I) are colon ideals.

We come to the second statement: Let s ∈ p = (I : r). Then

d(s)r = �
	

d(sr) −
�

�d′,d′′ d′(s)d′′(r)



,

where � ∈ K× and �d′,d′′ ∈ K. By induction the sum on the right hand side is in p. Since I is
invariant, we have d(sr) ∈ I � p. Therefore

d(s) ∈ (I : r) = p.

☯

LEMMA 3.3LEMMA 3.3LEMMA 3.3LEMMA 3.3LEMMA 3.3: The set of minimal prime ideals in �(R, I) is exactly the set of isolated prime
ideals of I. Moreover, they are invariant if I is invariant.

10
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PROOFPROOFPROOFPROOFPROOF: The second statement follows from the first by Corollary 2.4.

Let I � Pi be an isolated prime ideal of I. Then for any r �∈ Pi we have

I � (I : r) � (Pi : r) = Pi.

Therefore Pi ∈ �(R, I) is minimal. Conversely, if P ∈ �(R, I) is a minimal prime ideal, then
there exists an element s ∈ R such that P is minimal over (I : s). If P is not minimal over I
then it contains an isolated prime ideal Pi � P. However, then P ∈ �(R, I) is not minimal.
☯

§4. Primary Decomposion: Main Results

PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1: Let I � R be an invariant ideal such that the set �(R, I) consists of
minimal prime ideals. Then

I =
�

P∈� (R,I),P min

SP(I)

is an invariant primary decomposition of I.

PROOFPROOFPROOFPROOFPROOF: By Exercise 10 (iv), Page 55 in [1] we have

(∗ ) I =
�

P∈� (R,I)

SP(I),

We write this intersection as

I =
�

P∈� (R,I),P min

SP(I) ∩
�

Q∈� (R,I),Q emb

SQ(I),

where the first intersection runs over all minimal prime ideals P ∈ �(R, I), and the second
over the embedded ones. Since the minimal prime ideals in �(R, I) are the minimal prime
ideals of R/I, we obtain that P � R is invariant by Corollary 2.4. By Exercise 11, Page 56 in
[1] the ideals SP(I) are the minimal P-primary ideals in R containing I. Therefore,

�
P∈� (R,I),P min

SP(I)

is an intersection of invariant primary ideals with invariant radicals.☯

We append an immediate corollary.

COROLLARY 4.2COROLLARY 4.2COROLLARY 4.2COROLLARY 4.2COROLLARY 4.2: If I is an invariant ideal, then the minimal primary ideals q	 I belonging
to minimal prime ideals over I are invariant.☯

The following lemma was proven in [6] in the context of unstable actions of the Steenrod
algebra.

LEMMA 4.3LEMMA 4.3LEMMA 4.3LEMMA 4.3LEMMA 4.3: Let I� R be an invariant ideal. Let r ∈R such that (I : r)�R is an invariant
ideal. Then

(I : r)� (I : d(r))

for all d ∈ D.

11
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PROOFPROOFPROOFPROOFPROOF: Let s ∈ (I : r). Thus

sd0(r) = sr ∈ I.

We consider the case d > d0. We find

sd(r) = �d(sr) −
�
d′<d

�d′′,d′ d′′(s)d′(r).

Next, d(sr) ∈ I because I is invariant by assumption. Since (I : r) is invariant we have that

d′′(s) ∈ (I : r)� (I : d′(r)),

where the inclusion is true by induction. Thus sd(r) ∈ I as desired.☯

THEOREM 4.4THEOREM 4.4THEOREM 4.4THEOREM 4.4THEOREM 4.4: Let q be a p-primary ideal. If JD commutes with taking radicals. then Jd(q)
is a JD(p)-primary ideal.

PROOFPROOFPROOFPROOFPROOF: We assume that Rad (JD(q)) = JD(p). By the preceding result a maximal element
P in �(R, JD(q)) is an invariant prime ideal of the form

P = (JD(q) : r)� (q : r)� p.

Thus JD(p) � P. Since

JD(p) = Rad (JD(q)) =
�

P∈� (R,JD(q))

P � P � JD(p)

we obtain equality and therefore�(R, JD(q)) consists of one element. Thus by Proposition 4.1
JD(q) is JD(p)-primary.☯

THEOREM 4.5THEOREM 4.5THEOREM 4.5THEOREM 4.5THEOREM 4.5: Let H be a Hopf algebra of Dixmier type over a field K, let R be a commu-
tative K-algebra with an H-module structure. Let I � R be an invariant ideal with a primary
decomposition

I =
�

q.

If the functor JD commutes with taking radicals then I has an invariant primary decomposi-
tion.

PROOFPROOFPROOFPROOFPROOF: If JD commutes with taking radicals then we obtain an invariant primary decom-
position

I =
�

JD(q)

by Theorem 4.4.☯

REMARKREMARKREMARKREMARKREMARK: We can refine the preceding result by applying Proposition 4.1: If �(R, J d(q))
consists of isolated prime ideal for every primary ideal q � R, then every invariant ideal I
with a primary decomposition has an invariant primary decomposition.

REMARKREMARKREMARKREMARKREMARK: We note that the property of JD commuting with taking radicals seems not to
be a property of the Hopf algebra but rather of its action.

PROPOSITION 4.6PROPOSITION 4.6PROPOSITION 4.6PROPOSITION 4.6PROPOSITION 4.6 (Steenrod Algebra): Let R be a graded connected commutative algebra
over a finite field F. Let R be an unstable algebra over the Steenrod algebra. Then every ideal
invariant under the Steenrod algebra action which has a primary decomposition admits an
invariant primary decomposition

12
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PROOFPROOFPROOFPROOFPROOF: By the preceding result we need to show that JD commutes with taking radicals.

By construction we have that Rad (JD(I)) � JD(Rad (I)).

For the reverse inclusion, take an element r ∈ J D(Rad (I)). Then

P
i(r) ∈ Rad (I)

for all i ∈ N0, where the P i ’s are the reduced powers. Thus for every i there exists a k i ∈ N0
such that

(P i(r))ki ∈ I.

Since the action is unstable P i(r) = 0 for all i > deg(r). Let

ps ≥ max{ k0 , . . . , kdeg(r)} .

Then

P
j(rps

) =
�
P

j/ps
(r)ps

∈ I if ps  j
0 ∈ I otherwise.

Thus rps
∈ JD(I) and hence r ∈ Rad (JD(I)) as claimed.☯

REMARKREMARKREMARKREMARKREMARK: Note that the preceding proof shows that JD commutes with taking radicals for
unstable actions of the Steenrod algebra, i.e., JD(q) is JD(p)-primary whenever q is p-primary.

§5. Primary Decomposition of Modules

In this section we translate the preceding results to R-modules M , where R as well as M
admit an action of an Hopf algebra H of Dixmier type, and the two actions are compatible.

Let N � M be an R-submodule of M . Assume that N admits a (possibly infinite) primary
decomposition

N = Q1 ∩ Q2 ∩ Q3 ∩ ....

We define the functor JD on the category of modules exactly as we did for ideals, see Section
2. By Lemma 2.2 we obtain

(★ ) JD(N) = JD(Q1) ∩ JD(Q2) ∩ JD(Q3) ∩ ....

By definition JD(N)�M is an invariant H-module. We claim that the JD(Qi)’s admit invariant
primary decompositions.

Since Qi � M is a primary module, the ideal

qi = (Qi : M)� R

is primary. Assume that
JD(qi) = JD(Qi : M)

admits an invariant primary decomposition

JD(qi) = ∩ j qi j.

We note that
JD(Qi : M) = (JD(Qi) : M)

by Lemma 1.4. in [4].2

2 Since this reference deals with the special case of unstable modules over the Steenrod algebra we add the proof:

13
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We have that
JD(Qi) = ∩ j qi j M

by definition of qi j. By construction, the submodules q i j M � M are primary. Since qi j � R is
an invariant ideal, we have that q i j M � M is an invariant submodule. Thus we have proven
the following result:

THEOREM 5.1THEOREM 5.1THEOREM 5.1THEOREM 5.1THEOREM 5.1: Let H be a Hopf algebra of Dixmier type over a field K, let R be a commu-
tative K-algebra and M be an R-module. Assume that R admits an action of H, and M is an
(H, R)-module. Let N � M be an (H, R)-submodule of M . Assume that N admits a (possibly
infinite) primary decomposition

N = Q1 ∩ Q2 ∩ Q3 ∩ ....

Then N admits an invariant primary decomposition if JD(Qi : M) does.

PROOFPROOFPROOFPROOFPROOF: ☯

EXAMPLE 5.2EXAMPLE 5.2EXAMPLE 5.2EXAMPLE 5.2EXAMPLE 5.2 : Let P be the mod-p-Steenrod algebra and M an unstable P�R-module. If
N is an invariant submodule with a primary decomposition, then N has an invariant primary
decomposition with invariant associated prime ideals.
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Since JD(Q) � Q we have that
(JD(Q) : M) � (Q : M).

Next we show that the ideal (JD(Q) : M) � R is invariant. To this end let r ∈ (JD(Q) : M). Then

d(rM)� JD(Q) ∀ d ∈ D.

We obtain by the Dixmier property
d(r)M = �

�
(d � 1)(rM) −

�

d′<d

�d′,d′′ d′(r)d′′(M)
�
,

for � ∈ K× and �d′,d′′ ∈ K. By induction we have that the right hand side of this equation is in J D(Q), hence so is the left hand
side, i.e.,

d(r) ∈ (JD(Q) : M) ∀ d ∈ D.

Thus it follows that
(JD(Q) : M) � JD(Q : M).

To show the reverse inclusion, take an element r ∈ JD(Q : M). Then by the Dixmier property

d(rM) = �d(r)M +
�

d′<d

�d′,d′′ d′(r)d′′(M),
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for � ∈ K× and �d′,d′′ ∈ K. By induction we can assume that the right hand side is in Q, thus so is the left hand side, and we are
done.
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