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SUMMARY :SUMMARY :SUMMARY :SUMMARY :SUMMARY : Let ρ : G�GL(n, F) be a faithful representation of a finite
group G. In this paper we proceed with the study of the image of the
associated Noether map

�G
G : F[V (G)]G �� F[V ]G.

In [8] it has been shown that the Noether map is surjective if V is a
projective FG-module. This paper deals with the converse. The converse
is in general not true: we illustrate this with an example. However, for
p-groups (where p is the characteristic of the ground field F) as well as for
permutation representations of any group the surjectivity of the Noether
map implies the projectivity of V .



Let ρ : G � GL(n, F) be a faithful representation of a finite group G of
order d over a field F . The representation ρ induces naturally an action
of G on the vector space V = Fn of dimension n and hence on the ring
of polynomial functions F[V ] = F[x1 , . . . , xn]. Our interest is focused
on the subring of invariants

F[V ]G = { f ∈ F[V ]G∋gf = f ∀ g ∈ G} ,

which is a graded connected Noetherian commutative algebra. Denote
by FG the group algebra. Let

V (G) = FG ⊗ V

be the induced module. The group G acts on V (G) by left multiplication
on the first component. We obtain a G-equivariant surjection

(★ ) V (G) �� V, (g, v) �� gv.

Let us choose a basis e1 , . . . , en for V . Let x1 , . . . , xn be the standard
dual basis for V ∗ , and set G = {g1 , . . . , gd} . Then V (G) can be written as

V (G) = spanF { eij  i = 1 , . . . , n, j = 1 , . . . , d} ,

and the map (★ ) translates into

V (G) �� V, eij �� gjei .

Similarly, we have

V (G) ∗ = spanF {xij  i = 1 , . . . , n, j = 1 , . . . , d}

with
V (G) ∗ �� V ∗ , xij �� gjxi .

We obtain a surjective G-equivariant map between the rings of polynomial
functions

�G : F[V (G)] �� F[V ].
The group G acts on F[V (G)] by permuting the basis elements xij .
By restriction to the induced ring of invariants, we obtain the classical
Noether map, cf. Section 4.2 in [9],

�G
G : F[V (G)]G �� F[V ]G .

We note that V (G) is the n-fold regular representation of G. Thus
F[V (G)]G are the n-fold vector invariants of the regular representation
of G.

In the classical nonmodular case, where p � d, the map �G
G is surjective,

see Proposition 4.2.2 in [9]. This has been generalized in the sense that the
Noether map is surjective if V is a projective FG-module, see Proposition
3.1 in [8]. The converse may fail as we illustrate with the next example.
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EXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLE: Let GL(2, F3) be the general linear group of 2 ×2 matrices
with entries from the field with three elements. By Corollary 9.14 in [4]
the top Dickson class d2,0 is in the image of the transfer. Hence it is in the
image of the Noether map. In order to see that also the other Dickson
class d2,1 is in the image of the Noether map, we note that GL(2, F3)
contains a supgroup H of order 6 generated by�

1 1
0 1

�
and

�
� 0
0 �

�
,

where � ∈ F×. Denote these six elements by h1 , . . . , h6. Then the stabi-
lizer subgroup of the monomial

(h1 ⊗ x1) · · · (h6 ⊗ x1) ∈ F[V (G)]

is H. Direct computation yields

�G
G (o((h1 ⊗ x1) · · · (h6 ⊗ x1))) = −d2,1.

In the next section we prove that whenever G is a p-group or ρ is a
permutation representation the Noether map is surjective if and only if
V is a projective FG-module.

Before we proceed we present a general characterization:

PROPOSITIONPROPOSITIONPROPOSITIONPROPOSITIONPROPOSITION: V is projective if and only if

�G
G : F[End(V )(G)]G �� F[End(V )]G

is surjective.

PROOFPROOFPROOFPROOFPROOF: V is projective if and only if End(V ) is projective by [2].
Thus the Noether map on that vector space is surjective by Proposition
3.1 in [8]. Conversely, if �G

G is surjective, then it is surjective in degree
one. Hence the transfer map is surjective in degree one by Corollary 1.2
below. In particular, the identity on V is in the image of the transfer.
Thus V is projective by the Higman criterion, see, e.g., Proposition 3.6.4
in [3]. �

§1. p-Groups and Permutation Representations

In this section we want to show that the converse Proposition 3.1 in
[8] is true in the case of p-groups P and in the case of permutation
representations.

LEMMA 1.1LEMMA 1.1LEMMA 1.1LEMMA 1.1LEMMA 1.1: Let P be a cyclic p-group, and let F have characteristic
p. Then

Im(TrP)(1) = F[V ]P(1)

2
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if and only if V is the k-fold regular representation of P for some k ∈N .

PROOFPROOFPROOFPROOFPROOF: Since the transfer is additive it suffices to consider indecom-
posable modules only.

Let the order of the group be ps . Then up to isomorphism there are
exactly ps indecomposable FP-modules V1 , . . . , Vps with dimF Vi = i. The
action of P on Vi is afforded by the matrix consisting of one Jordan block
with 1’s on the diagonal and superdiagonal. Note that VP

i = V1 for all i.

Set ∆ = g − 1 where g ∈ P is a generator. Then

∆ (V ∗
i ) =

�
V ∗

i−1 for i = 2 , . . . , ps

0 for i = 1.

Since, TrP = ∆ps−1, we obtain

TrP(V ∗
i ) = ∆ps−1(V ∗

i ) =
�

0 for i = 1 , . . . , ps − 1
V ∗

1 for i = ps

as desired. �

We obtain the following corollary that we note here for later reference.

COROLLARY 1.2COROLLARY 1.2COROLLARY 1.2COROLLARY 1.2COROLLARY 1.2: Let ρ : G � GL(n, F) be a faithful representation
of a finite group. Let i ∈ F×. Then

Im(�G
G  (i) ) = Im(TrG  (i) ).

PROOFPROOFPROOFPROOFPROOF: By construction we obtain a commutative diagram as follows

F[V (G)]G  (i)

�G
G  (i)�� F[V ]G  (i)	



TrG  (i)

	


TrG  (i)

F[V (G)] (i)

�G  (i)�� F[V ] (i) .

By Theorem 3.2 [7] and the remark following it the transfer map on the
left

TrG  (i) : F[V (G)] (i) �� F[V (G)]G  (i)

is surjective. By construction the lower map �G  (i) is surjective. Thus
the result follows. �

THEOREM 1.3THEOREM 1.3THEOREM 1.3THEOREM 1.3THEOREM 1.3: Let ρ :P�GL(n, F) be a representation of a p-group
over a field F of characteristic p. Then the following are equivalent:

(1) The Noether map is surjective.
(2) The Noether map is surjective in degree one.
(3) V is a projective FP-module.

3
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PROOFPROOFPROOFPROOFPROOF: The implication (1) ⇒ (2) is trivial. The implication (3) ⇒
(1) was proven in Proposition 3.1 in [8]. Thus we need to show that V is
projective if �P

P  (1) is surjective.

Consider the short exact sequence of FP-modules

(∗ ) 0 �� K ∗ �� V (P) ∗ �P  (1)�� V ∗ �� 0.

The module V (P) is free and therefore cohomologically trivial. Thus the
long exact cohomology sequence breaks up into

0 �� (K ∗ )P �� (V (P) ∗ )P
�P

P  (1)�� (V ∗ )P ��H1(P, K ∗ ) �� 0

and
Hi(P, V ∗ ) ≅ Hi+1(P, K ∗ ) ∀ i ≥ 1.

Since �P
P  (1) is surjective by assumption, we obtain

H1(P, K ∗ ) = 0.

Thus K ∗ is a projective FP-module (see, e.g., Proposition 4.4.11 in [10].
Since P is finite and K ∗ finitely generated, this implies that K ∗ is injective,
see Corollary 2.7 in [5]. Thus the sequence (∗ ) splits and V ∗ is projective
as desired. �

We illustrate this result with an example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let F be the field with q elements of characteristic p. Let
P ≤ GL(n, F) be a p-Sylow subgroup of the general linear group. With
assume without loss of generality that P consists of all upper triangular
matrices with 1’s on the diagonal. Then

F[V (P)]P(1) = spanF {o(xi1) =
 P�
j=1

xij∋i = 1 , . . . , n} .

Thus

�P
P (o(xi1)) =

 P�
j=1

gjxi

=
�

(ai+1 ,..., an )∈Fn−i

(xi + ai+1xi+1 + · · · + anxn)

= q
n(n−1)

2 −(n−i) (qn−ixi + qn−i−1

�
� �

ai+1∈F

ai+1xi+1 + · · · +
�
an∈F

anxn

�
� ).

4
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= q
n(n−1)

2 xi + q
n(n−1)

2 −1

�
� �

ai+1∈F

ai+1xi+1 + · · · +
�
an∈F

anxn

�
� ).

If n ≤ 1 then P is the trivial group. Therefore V is FP-projective and the
Noether map is surjective.

If n ≥ 2 then the factor q
n(n−1)

2 vanishes. The factor q
n(n−1)

2 −1 is nonzero
if and only if n = 2. Thus we proceed by having a closer look at the
two-dimensional case: We have by the above calculations

�P
P (o(x11)) =

 P�
j=1

gjx1 =
�
a2∈F

(x1 + a2x2) = (
�
a2∈F

a2)x2,

�P
P (o(x21)) =

 P�
j=1

gjx2 = 0

If p is odd then for every nonzero a2 ∈ F there exists a negative −a2 �= a2.
Therefore �

a2∈F

a2 = 0.

If p = 2 then

(
�
a2∈F

a2)x2 =
�

x2 if q = 2
0 if q > 2.

Thus we have that the Noether map is surjective if and only if n =2=p =q.
Explicitely we find

�P
P (o(x11)) = x2 and �P

P (o(x11x12)) = x2
1 + x1x2.

Note that in this case

Syl2(GL(2, F2)) ≅ Z/2

and our representation is projective.

Before proceeding to permutation representations, we want to mention
two corollaries.

COROLLARY 1.4COROLLARY 1.4COROLLARY 1.4COROLLARY 1.4COROLLARY 1.4: Let ρ : G � GL(n, F) be a faithful representation
of a finite group. Assume that the rings of invariants of G and its p-Sylow
subgroup coincide in degree one. Then the Noether map is surjective if
and only if V is FG-projective.

PROOFPROOFPROOFPROOFPROOF: If �G
G is surjective, then it is surjective in degree one. Hence

�P
G is surjective in degree one by assumption. Therefore �P

P is surjective
in degree one by Proposition 2.1 in [8]. Thus V is projective by Theorem

5
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1.3. The converse was shown in Proposition 3.1 in [8]. �

COROLLARY 1.5COROLLARY 1.5COROLLARY 1.5COROLLARY 1.5COROLLARY 1.5: Let G = H × P be a direct product a p-group P and
a p′-group H. Assume that P is a cyclic p-group. Consider a faithful
representation ρ of G over a field F of characteristic p such that V is
indecomposable as an FP-module. Then the Noether map is surjective if
and only if V is FG-projective.

PROOFPROOFPROOFPROOFPROOF: If V is FG-projective then the Noether map �G
G is surjective

by Proposition 3.1 in [8].

To prove the converse, let �G
G be surjective. By Proposition 2.1 in [8] it

is enough to show that the relative Noether map �P
G is surjective. We

proceed by contradiction and assume that �P
G is not surjective. Then, by

Proposition 2.1 in [8], the map �P
P is not surjective. Hence V is not a

projective FP-module by Theorem 1.3.

Let � be a generator for P. The isomorphism type of a P-module is
determined by the Jordan canonical form of �. Up to isomorphism
there are  P indecomposable P modules V1, V2, . . . V P , where dimVi = i
and � acts on Vi by a i × i matrix consisting of a single Jordan block
with ones on the diagonal and superdiagonal. Moreover V P is the only
indecomposable module which is projective. Thus by assumption we have
that V = Vn for 1 ≤ n <  P .

Let x1, x2, . . . , xn be the basis of V such that

�xi =
�

x1 if i = 1
xi−1 + xi otherwise.

Since the action of P commutes with the action of H and the action
of H is nonmodular, it follows that V = Vn is a direct sum of copies of
isomorphic eigen spaces for H, and the variables x1, x2, . . . , xn may be
taken as eigen vectors. Let N =

�
g∈P g(xn) be the norm of xn . Since p

and  H are relatively prime, there exists positive integer m such that
m P ≡ − 1MODMODMODMODMOD H . Consider the polynomial x1Nm . This polynomial is
P-invariant since both x1 and N are. Let h ∈ H. Then

h(x1Nm) = �hx1�
m P
h Nm = x1Nm.

It follows that x1Nm is G-invariant.

Next we want to see that x1Nm is not in the image of TrP . Since V is not
projective, the fixed point x1 is not in the image of TrP . The degree-one-
component F[V ](1) is a direct summand in F[V ]m P +1 by multiplication
by N, [6]. Thus the invariant x1Nm is not in the image of TrP either.
However, if a G-invariant polynomial is not in the image of TrP then it

6
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is not in the image of TrG .

Since the degree of the polynomial x1Nm is relatively prime to p, we have
that it is not in the image of �G

G by Corollary 1.2. This is a contradiction.
�

COROLLARY 1.6COROLLARY 1.6COROLLARY 1.6COROLLARY 1.6COROLLARY 1.6: Let P ≅ Z/p and let V be an indecomposable P-
module. Then the Noether map �P

P is surjective in degrees divisible by
p.

PROOFPROOFPROOFPROOFPROOF: As above denote by V = Vn the indecomposable FZ/p-
modules and x1, x2, . . . , xn be the basis for V on which Z/p acts through
a single Jordan block of dimension n. We note that

F[V ] = B ⊕ NF[V ]

as FP-modules, where B consists of the polynomials of xn -degree less than
p, [6].

We proceed by induction on the degree. The decomposition

F[V ]P(p) = BP
(p)

	
NF[V ]P

yields that any invariant in degree p is a direct summand of a fixed point
of a free module and the polynomial N. Since fixed points of free modules
and N are in the image of �P

P , the result follows for degree p.

Using the decomposition for degree kp we have that

F[V ]P(kp) = BP
(kp)

	
NF[V ]P((k−1)p) .

Since �P
P is an algebra map, and F[V ]P((k−1)p) is in the image of �P

P by
induction, the result follows. �

We turn to permutation representations.

THEOREM 1.7THEOREM 1.7THEOREM 1.7THEOREM 1.7THEOREM 1.7: Let ρ : G � GL(n, F) be a permutation representa-
tion of a finite group of order d. Then the Noether map �G

G is surjective
if and only if V = Fn is projective.

PROOFPROOFPROOFPROOFPROOF: By Proposition 3.1 in [8] we know that �G
G is surjective if V

is projective as FG-module.

We show that the converse is also true as follows:

Let �G
G be surjective, then its restriction to degree one, �G

G∋(1) , is also
surjective:

�G
G∋(1) : (V (G) ∗ )G �� (V ∗ )G.

7
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We note that (V (G) ∗ )G has an F -basis consisting of

o(xij) =
d�

j=1

xij for i = 1 , . . . , n.

Therefore, the image under the Noether map is spanned by

�G
G

�
� d�

j=1

xij

�
� = kio(xi) =  StabG(xi) TrG(xi) for i = 1 , . . . , n,

where
ki =  StabG(xi)

is the order of the stabilizer of xi in G. Since ρ is a permutation represen-
tation, (V ∗ )G is spanned by the orbit sums of x1 , . . . , xn . It follows that
ki ’s are not zero, since the Noether map is surjective. Hence

 StabG(xi) �≡ 0 mod p.

In other words, no element in a p-Sylow subgroup P of G fixes xi , i =
1 , . . . , n. Therefore

(✠ ) oP(xi) = TrP(xi) = �P
P∋(1)(xi1),

where oP( ) denotes the orbit sum under the action of P, and g1 is the
identity element. Since (V ∗ )P is also spanned by the orbit sums of the
xi ’s, we found in (✠ ) that �P

P∋(1) is surjective. Therefore, �P
P is surjective

by Proposition 1.3. Hence V ∗ is a projective FP-module, by the same
Propositon 1.3. Since P is a p-Sylow subgroup of G, the module V ∗ is
projective as a FG-module, see Corollary 3 on Page 66 of [1]. �
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