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SUMMARY :SUMMARY :SUMMARY :SUMMARY :SUMMARY : Let ρ : G�GL(n, F) be a faithful representation of a finite
group G. In this paper we study the image of the associated Noether map

�G
G : F[V (G)]G �� F[V ]G.

It turns out that the image of the Noether map characterizes the ring
of invariants in the sense that its integral closure Im(�G

G ) = F[V ]G . This
is true without any restrictions on the group, representation, or ground
field. Moreover, we show that the extension Im(�G

G )�F[V ]G is a finite p-
root extension. Furthermore, we show that the Noether map is surjective,
i.e., its image integrally closed, if V = Fn is a projective FG-module. We
apply these results and obtain upper bounds on the degrees of a minimal
generating set of F[V ]G and the Cohen-Macaulay defect of F[V ]G . We
illustrate our results with several examples.



Let ρ : G�GL(n, F) be a faithful representation of a finite group G over
a field F . The representation ρ induces naturally an action of G on the
vector space V =Fn of dimension n and hence on the ring of polynomial
functions F[V ] = F[x1 , . . . , xn]. Our interest is focused on the subring
of invariants

F[V ]G = { f ∈ F[V ]G∋gf = f ∀ g ∈ G} ,
which is a graded connected Noetherian commutative algebra. In the
first section of this paper we introduce the Noether map and show that
the integral closure of its image is the ring of invariants. In Section 2 we
show that Im(�G

G ) � F[V ]G is a finite p-root extension. In Section 3 we
prove that the Noether map is surjective if V is a projective FG-module.
In Section 4 we derive some results about degree bounds and the Cohen-
Macaulay defect of F[V ]G . Furthermore we present some examples.

§1. The Noether Map

Let ρ : G � GL(n, F) be a representation of a group G of order d. Let
F[V ] be the symmetric algebra on V ∗ . Denote by FG the group algebra.
Let

V (G) = FG ⊗ V

be the induced module coindG
1 (V ). The group G acts on V (G) by left

multiplication on the first component. We obtain a G-equivariant surjec-
tion

(★ ) V (G) �� V, (g, v) �� gv.

Let us choose a basis e1 , . . . , en for V . Let x1 , . . . , xn be the standard
dual basis for V ∗ , and set G = {g1 , . . . , gd} . Then V (G) can be written as

V (G) = spanF { eij  i = 1 , . . . , n, j = 1 , . . . , d} ,

and the map (★ ) translates into

V (G) �� V, eij �� gjei .

Similarly, we have

V (G) ∗ = spanF {xij  i = 1 , . . . , n, j = 1 , . . . , d}

with
V (G) ∗ �� V ∗ , xij �� gjxi .

We obtain a surjective G-equivariant map between the rings of polynomial
functions

�G : F[V (G)] �� F[V ].
The group G acts on F[V (G)] by permuting the basis elements xij .
By restriction to the induced ring of invariants, we obtain the classical
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Noether map, cf. Section 4.2 in [11],

�G
G : F[V (G)]G �� F[V ]G .

We note that V (G) is the n-fold regular representation of G. Thus
F[V (G)]G are the n-fold vector invariants of the regular representation
of G.

In the classical nonmodular case, where p � d, the map �G
G is surjective,

see Proposition 4.2.2 in [11]. This does not remain true in the modular
case as we illustrate in the next example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let ρ : Z/2� GL(3, F2) be the 3-dimensional represen-
tation of Z/2 over the field with two elements afforded by the matrix

ρ(g) =

�
� 0 1 0

1 0 0
0 0 1

�
� .

Then
F[x1, x2, x3]Z/2 = F[x1 + x2, x1x2, x3]

and

F[x11, x12, x21, x22, x31, x32]
Z/2

= F[xi1 + xi2, xi1xi2, xi1xi+1,2 + xi2xi+1,1, x11x21x31 + x12x22x32],

where i ∈Z/3, cf. Example 2 in Section 2.3, [11] or Example 1 in Section
3.2, loc.cit. We obtain

Im(�Z/2
Z/2) = F[x1 + x2, x1x2, x

2
3 , (x1 + x2)x3].

Thus the Noether map is no longer surjective, because the invariant x3 is
not in its image. However, note that the integral closure of the image of
the Noether map is the ring of invariants F[V ]G . This is always true as
we see in this section.

Recall the transfer map

TrG : F[V ] �� F[V ]G ; f ��
�
g∈G

gf ,

see, e.g., Section 2.2. in [11]. By construction the transfer is an F[V ]G -
module homomorphism. We denote by

F[Im(TrG)] � F[V ]G

the subalgeba generated by the image of the transfer.

We observe that any element f1
f2
∈ F(V ) can be written as the quotient of

2
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some polynomial by an invariant polynomial in the following way

f1
f2

=
f1

N(f2)
f2

N(f2)
,

where N(f ) =
�

g∈G
gf denotes the Norm of f . This allows us to extend

the transfer to a map of F(V )G -modules between the respective fields of
fractions

TrG : F(V ) �� F(V )G ;
f1
f2
��

�
g∈G

gf1

f2
,

where we assume that f2 ∈ F[V ]G .

PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1: We have that

F(TrG(F(V ))) = IFIF(F[Im(TrG)]) = F(V )G,

where IFIF( ) denotes the field of fractions functor.

PROOFPROOFPROOFPROOFPROOF: Let TrG (f1)
TrG (f2)

∈ IFIF(F[Im(TrG)]). Then

TrG(f1)

TrG(f2)
= TrG

�
f1

TrG(f2)

�
∈ TrG(F(V )).

To prove the reverse inclusion take an element

TrG(
f1
f2

) ∈ TrG(F(V )),

where f2 ∈ F[V ]G . Choose a polynomial f ∈ F[V ] such that TrG(f ) 	= 0.
(Recall that the transfer map is never zero by Propositon 2.2.4 in [11].)
Then we have

TrG(
f1
f2

) =
TrG(f1)

f2
=

TrG(f1)TrG(f )

f2TrG(f )
=

TrG(f1)TrG(f )

TrG(f f2)
∈ IFIF(F[Im(TrG)]).

We come to the second equality. Since F[Im(TrG)] � F[V ]G we have
that

IFIF(F[Im(TrG)]) � F(V )G.

To prove the reverse inclusion, let f1
f2
∈ F(V )G where without loss of gen-

erality f1, f2 ∈ F[V ]G . Let TrG(f ) 	= 0 for some suitable f ∈ F[V ]. Thus

f1
f2

=
TrG(f )f1
TrG(f )f2

=
TrG(f f1)

TrG(f f2)
∈ IFIF(F[Im(TrG)])

as desired. 


3
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PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2: The integral closure of the image of the Noether
map is the ring of invariants 1

Im(�G
G ) = F[V ]G.

PROOFPROOFPROOFPROOFPROOF: By Proposition 1.1 and Lemma 4.2.1 in [11] we have the
following commutative diagram:

F[Im(TrG)] � Im(�G
G ) � F[V ]G � F[V ]

� � � �
IFIF(F[Im(TrG)]) = IFIF(Im(�G

G )) = F(V )G � F(V ).
Let x1 , . . . , xn ∈ V ∗ be a basis. Then the coefficients of the polynomials

Fi(X) =
	
g∈G

(X − gxi),

are the orbit chern classes of xi counted with multiplicities

�1(xi) = TrG(xi), · · · , �d(xi) = N(xi).

Thus they are in the image of �G
G . Denote by A the F -algebra gener-

ated by these coefficients. By construction A is finitely generated, thus
noetherian. Furthermore F[V ] is finitely generated as an A-module, thus
as an Im(�G

G )-module since A � Im(�G
G ). Therefore the extension

Im(�G
G ) � F[V ]

is finite, and Im(�G
G ) = F[V ]G as desired. 


We close this section with an immediate corollary of the preceding result:

COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3: The Krull dimension of the image of the Noether
map coincides with the Krull dimension of the ring of invariants, which
in turn is equal to n = dimF V . 


ADDENDUM:ADDENDUM:ADDENDUM:ADDENDUM:ADDENDUM: Define a map E : F[V ] �� F[V (G)]G, xi ��
d�

j=1
xij . Then we obtain a

commutative triangle as follows:

F[V (G)]G
�G

G�� F[V ]G���
E

� TrG

F[V ]

If p �∣d, then the preceding diagram proves that the Noether map is surjective, since the
transfer is surjective, see Lemma 4.2.1 in [11]. We want to add the following observation:

1 This result has an obvious generalization: Let G be a finite group acting by automorphisms on
normal domains A and B. Let � : A �� B be an G-equivariant homomorphism. Then the integral
closure of �(AG ) is equal to BG . The proof remains up to notation the same.

4
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PROPOSITION1.4PROPOSITION1.4PROPOSITION1.4PROPOSITION1.4PROPOSITION1.4: The algebra generated by the image of the transfer map is equal
to the image of the Noether map if and only if V is a nonmodular FG-module.

PROOFPROOFPROOFPROOFPROOF: By Lemma 4.2.1 in [11] the image of the transfer is always contained in the
image of the Noether map. Thus if p �∣ G , then the transfer is surjective, and hence
the Noether map. If p G , then the transfer is no longer surjective. Indeed, the height
of the image of the transfer is at most n − 1, see Theorem 6.4.7 in [11]. Thus the Krull
dimension of F[Im(TrG)] is strictly less than n. On the other hand the Krull dimension
of the image of the Noether map is n by Proposition 1.2. Thus they cannot be equal.
�

§2. p-root Extensions

In this section we prove that the extension Im(�G
G ) � F[V ]G is a p-root

extension, i.e., for any f ∈ F[V ]G there exists an integer l ∈ N such that

f pl ∈ Im(�G
G ),

cf. Section 3 in [4]. We need a relative version of the Noether map, which
we obtain in the following way. Let H ≤G be an arbitrary subgroup. Then
we have a commutative diagram as follows:

V (G) ∗ �G�� V ∗

� 
V (H) ∗ �H�� V ∗

Since V (G) ∗ = ⊕  G:H V (H) ∗ the vertical map admits a splitting as FH-
modules. This induces the following diagram:

F[V (G)]G
�G

G�� F[V ]G

� �
F[V (G)]H

�H
G�� F[V ]H

� 

F[V (H)]H
�H

H�� F[V ]H

PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1: Denot by P a p-Sylow subgroup of G. Let H be a
subgroup in G containing P.

(1) The map �P
G is surjective if and only if �P

P is surjective.
(2) If �H

G  (d) is surjective, then so is �G
G  (d) , where � (d) denotes the

restriction of the map � to degree d.

PROOFPROOFPROOFPROOFPROOF: We have that

�P
P = �P

G  F[V (P)]P .

Thus if �P
P is surjective, so is �P

G . Conversely, let �P
G be surjective. By

5
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Theorem 1.3 in [10] it is enough to show that �P
P  (1) is surjective. By

assumption �P
G  (1) is surjective. Therefore2 F[V ]P(1) is generated as a vec-

tor space by images �P
G(oP(gj ⊗ xi)) for some basis elements gj ⊗ xi of

V (G) ∗ . Note that the stabilizer of gj ⊗ xi in P is trivial, so it follows that

�P
G(oP(gj ⊗ xi) = TrP(gjxi).

Hence, F[V ]P(1) is generated as a vector space by invariants of the form

TrP(gjxi). Set

gjxi =
n�

k=1

�kxk

for suitable ak ∈ F . We obtain

TrP(gjxi) =TrP (
n�

k=1

�kxk) =
n�

k=1

�kTrP(xk) =
n�

k=1

�k�
P
P (o(g1 ⊗ xk ))∈Im(�P

P ),

where g1 ∈ P is the identity.

We come to the second statement. Consider the following diagram

F[V (G)]G
�G

G�� F[V ]G

� �
F[V (G)]H

�H
G�� F[V ]H

Let f ∈ F[V ]G � F[V ]H . Since �H
G is surjective, there exists an element

F ∈ F[V (G)]H such that
�H

G (F) = f .
Then

�G
G



TrGH(

1
 G : H

F)
�

= �G
G



1

 G : H
TrGH(F)

�

=
1

 G : H

�
gH

g�H
G (F)

=
1

 G : H
 G : H f = f .

Since TrGH (F) ∈ F[V (G)]G we have that �G
G is surjective. 


REMARKREMARKREMARKREMARKREMARK: We note that the proof of the first statement actually shows
more: If �P

P  (d) is surjective then so is �P
G  (d) . If �P

G  (1) is surjective then
so is �P

P  (1) .

2 For a graded object A we denote the homogeneous degree i-part by A(i) .

6



THE NOETHER MAP

PROPOSITION 2.2PROPOSITION 2.2PROPOSITION 2.2PROPOSITION 2.2PROPOSITION 2.2: The extension

Im(�G
G ) � F[V ]G

is a p-root extension.

PROOFPROOFPROOFPROOFPROOF: First we consider the case of p-groups, G = P. Consider the
commutative diagram

F[V (P)]P
�P

P�� F[V ]P

� �
F[V (P)]

�P�� F[V ]

,

and note that the lower map �P is by construction surjective. Therefore,
for any invariant polynomial f ∈F[V ]P ⊂F[V ] there exists a polynomial
F ∈ F[V (P)] such that �P(F) = f . The norm of this polynomial

NP(F) =
	
g∈P

gF ∈ F[V (P)]P

is invariant under the P-action. Moreover,

f  P =
	
g∈P

g�P(F) =
	
g∈P

�P(gF) = �P
P (NP(F)) ∈ Im(�P

P ) � F[V ]P .

Since P is a p-group, its order  P is a pth power, and we are done.

Next we turn to arbitrary groups G, and we denote a p-Sylow subgroup
by P. We obtain a commutative diagram as follows.

F[V (G)]G
�G

G�� Im(�G
G ) � F[V ]G

� � �
F[V (G)]P

�P
G�� Im(�P

G) � F[V ]P

� � 

F[V (P)]P
�P

P�� Im(�P
P ) � F[V ]P .

If f ∈ F[V ]P , then f pl ∈ Im(�P
P ) � Im(�P

G) for some l ∈ N0. Hence

Im(�P
G) � F[V ]P

is a p-root extension. Since the index  G : P is coprime to the character-
istic, the relative transfer homomorphism splits the two outer inclusions

7
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of the above diagram:

F[V (G)]G
�G

G�� Im(�G
G ) � F[V ]G���TrGP ✣

���TrGP �
���TrGP

F[V (G)]P
�P

G�� Im(�P
G) � F[V ]P ,

where the restriction

TrGP � : Im(�P
G) �� Im(�G

G )

is surjective, since the first square ✣ in the diagram commutes. Since the
transfer commutes with taking pth powers, we obtain that

Im(�G
G ) � F[V ]G

is a p-root extension as claimed. 


REMARKREMARKREMARKREMARKREMARK: We note that in the case of finite ground fields F , rings of
invariants are unstable algebras over the Steenrod algebra. In this category
the above result means that the P∗ -inseparable closure of the image of
the Noether map is the ring of invariants

P∗
�
�G

G = F[V ]G,

see [7] Chapter 4 for detailed information on inseparable closures.

§3. Projective Modules

In this section we want to study the question of when the Noether map
is surjective.

We note that the FG module V is projective if and only if its dual vector
space V ∗ is injective which in turn is equivalent to projective because G
is a finite group. We will make frequently use of this fact in what follows.

PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1PROPOSITION 3.1: If V is a projective FG-module, then the Noether
map is surjective.

PROOFPROOFPROOFPROOFPROOF: By construction we have a short exact sequence of FG-
modules as follows

0 ��W ∗ �� V (G) ∗ �� V ∗ �� 0.

Since V ∗ is projective, this sequence splits and

V (G) ∗ �≅ V ∗ ⊕ W ∗ pr�� V ∗

8
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as FG-modules. Taking invariants we obtain a commutative diagram

F[V (G)]G
�∗

�� F[V ⊕ W ]G

��G
G

���pr∗

F[V ]G

Thus �G
G is surjective because � ∗ as well as pr∗ are. 


REMARKREMARKREMARKREMARKREMARK: Since nonmodular FG-modules are always projective we
recover the classical result that �G

G is surjective for every nonmodular
representation of G.

COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2: Let ρ : G � GL(p, F) be a permutation represen-
tation of the finite group G over a field F of characteristic p. Then �G

G
is surjective.

PROOFPROOFPROOFPROOFPROOF: Let � : Σp �GL(p, F) be the defining representation of the
symmetric group in p letters. Since ρ is a permutation representation we
have that

ρ(G) ≤ �(Σp) ≤ GL(p, F).
Since V = Fp is a projective FSylp(Σp )-module it is projective as a FΣp -
module (see, e.g., Corollary 3 on page 66 in [1]). Thus it is projective as
a FG-module by Theorem 6 on page 33 loc.cit. Thus by Proposition 3.1
the Noether map �G

G is surjective. 


EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: If � : Σn � GL(n, F) is the defining representation of
the symmetric group in n letter over a field of characteristic p, where
p < n, then V is not projective as a module over Σn nor is �Σn

Σn
surjective.

The latter is true because in degree one we have

F[V (Σn )]Σn
(1) = spanF {

n!�
j=1

xij∋i = 1 , . . . , n}

and thus

�Σn
Σn

(
n!�
j=1

xij) = (n − 1)!
n�

i=1

xi ≡ 0 mod p.

Therefore the first elementary symmetric function e1 = x1 + · · · + xn ∈
F[V ]Σn is not hit. Therefore, V is not FΣn -projective. This is not a new
result: For the defining representation � : Σn � GL(n, F), V = Fn is a
projective FΣn -module if and only if p ≥ n. This follows from Corollary
7 on Page 33 of [1].

9
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EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2: Let � : An � GL(n, F) be the defining representation
of the alternating group in n letters over a field of characteristic p. By
Corollary 3.2 the Noether map �An

An
is surjective if n ≤ p. We want to

check what happens if n > p.

We start by considering the Noether map

�An
An

: F[V (An)]An �� F[V ]An

in degree one. We have

F[V (An )]An  (1) = spanF {
 An �
j=1

xij∋i = 1 , . . . , n}

and
F[V ]An∋(1) = spanF { e1 = x1 + · · · + xn } .

Thus we have

�An
An

(
 An �
j=1

xij) =  StabAn (xi) e1 =  An−1 e1 =
(n − 1)!

2
e1.

Thus the elementary symmetric function e1 is in the image of the Noether
map if and only if

(n − 1)!
2

∈ F×.

This in turn happens exactly when
(1) p is odd and p ≥ n,
(2) p = 2 and n ≤ 4.

We know already that the Noether map is surjective in the first case. If p
is even and n ≤ 3 we are in the nonmodular case, so the Noether map is
again surjective. Thus the only case that we have to check by hand is the
defining representation of A4 over a field of characteristic 2.

We note that the 2-Sylow subgroup of A4 is the Klein-Four-Group Z/2 ×
Z/2. When we restrict �∋Z/2×Z/2 we obtain the regular representation
of Z/2 ×Z/2. Thus V is F(Z/2 ×Z/2)-projective. Therefore, V is FA4-
projective. Hence the Noether map is surjective. Indeed, a short calcula-
tion shows that

�A4
A4

(o(x11)) = 3e1 = e1,

�A4
A4

(o(x11x12)) = e2,

�A4
A4

(o(x11x21x31)) = 3e3 = e3,

�A4
A4

(o(x11x12x13x14)) = 3e4 = e4,

10
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�A4
A4

(o(x3
11x

2
21x31)) = o(x3

1x
2
2x3),

where o( ) denotes the orbit sum of , and g1 = (1), g2 = (12)(34), g3 =
(13)(24), and g4 = (14)(23).

§4. Applications and Examples

Let ρ : G � GL(n, F) be a faithful representation of a finite group of
order d. Set V = Fn . Recall that �(F[V ]G) is the maximal degree of an
F -algebra generator of F[V ]G in a minimal generating set.

PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1: If V is a projective FG-module then

�(F[V ]G) ≤ max{d, n



d
2

�
} .

PROOFPROOFPROOFPROOFPROOF: If V is FG-projective then the Noether map �G
G is surjective

by Proposition 3.1. Thus, since �G
G is an F -algebra map, a set of generators

of F[V (G)]G is mapped onto a set of generators of F[V ]G . Since V (G)
is a permutation module with n transitive components each of which has
degree d, it is generated by elements of degree at most max{d, n(d2)} , by
Corollary 3.10.9 in [3] and the result follows. 


REMARKREMARKREMARKREMARKREMARK: Let ρ : G�GL(n, F) be a representation of a finite group
G of order d. Assume that the characteristic of F is zero or strictly larger
than d. (This is the strongly nonmodular case.) Then

�(F[V ]G) ≤ �(F[W ]G)

where W is the regular FG-module, see Theorem 4.1.4 in [11]. Thus our
Proposition 4.1 is a characteristic-free generalization: for projective FG-
modules V of dimension n, the upper bound for �(F[V ]G) is given by
�(F[W ]G) where W is ⊕ nFG.

The degree bound given above is sharp as we illustrate with the following
example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let A3 be the alternating group in three letters. Let F be
a field containing a primitive 3rd root of unity � ∈ F . Then we obtain a
faithful representation

ρ : A3 � GL(1, F), (123) �� �.

We have

F[x]A3 = F[x3], and F[x11, x12, x13]
A3 = F[e1, e2, e3, o(x2

11x12)],

11
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where the ei ’s are the elementary symmetric functions in the x1j ’s. Thus

�(F[x]A3) = 3 = �(F[x11, x12, x13]
A3) = max{3,



3
2

�
} .

Before we proceed we want to compare the degree bound given in Propo-
sition 4.1 with the known general bounds, see [9] for an overview of this
topic.

(1) In the nonmodular case, we have that �(F[V ]G) ≤  G by The-
orem 2.3.3 in [11]. This bound is better since

 G ≤ max{n G , n



 G
2

�
} .

(2) The general degree bound given in Theorem 3.8.11 in [3] is

�(F[V ]G) ≤ n( G − 1) +  G n2n−1
n2n−1+1.

A short calculation shows that

max{n G , n



 G
2

�
} ≤ n( G − 1) +  G n2n−1

n2n−1+1.

Thus the bound given in Proposition 4.1 is always better whenever
it applies.

(3) If the ground field F is finite of order q, we have another general
degree bound given by:

�(F[V ]G) ≤


qn−1
q−1 (nq − n − 1) if n ≥ 3,
2q2 − q − 2 if n = 2,

see Theorem 16.4 in [5]. This bound behaves worse than the one
of Proposition 4.1 if q >  G (again, whenever it applies).

(4) Finally in [2] a bound of a completely different flavor is proven.
In particular it depends on a choice of a homogeneous system
of parameters. In our Example 1 we found that the bound of
Proposition 4.1 is sharp. If we apply Theorem 2.3 in [2] to this
example we obtain

�(F[x]A3) ≤ degree(f ),

where f ∈ F[x]A3 is a system of parameters. If we make the
unlucky choice of f = x9 the bound given in [2] is no longer
sharp. Of course, in this case it is easy to find a system of param-
eters, namely x3, that improves the bound given in [2]. However,
even though it is often not hard to construct a system of param-
eters for any given ring of invariants, in general it is not obvious
how to find a “better” system of parameters, i.e., one consisting

12



THE NOETHER MAP

of polynomials of smaller degree. This in particular applies when
the ring of invariants itself is not known.

We denote by CMdefect( ) the Cohen-Macaulay defect. The following
result tells us that the Cohen-Macaulay defect of the ring of invariants
of n copies of the regular representation of a finite group G is an upper
bound for the Cohen-Macaulay defect of the ring of invariants F[V ]G in
the case where V is projective of dimension n.

PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2: If V is FG-projective then

CMdefect(F[V ]G) ≤ CMdefect(F[V (G)]G).

PROOFPROOFPROOFPROOFPROOF: Since V is FG-projective, we have the FG-module decompo-
sition

V (G) = V ⊕ K.
Thus the result follows from [8]. 


The inequality in the preceding result is sharp since the Cohen-Macaulay
defect of any nonmodular representation is zero. However, we want to
illustrate this with a modular example.

EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2: Let ρ :Z/2�GL(2, F) be the regular representation of
the cyclic group of order 2 over a field of characteristic 2 afforded by the
matrix �

0 1
1 0

�
.

Its ring of invariants is polynomial

F[x, y]Z/2 = F[x + y, xy]

so a fortiori Cohen-Macaulay. The vector space V (Z/2) is the two-fold
regular representation of Z/2. Thus its ring of invariants F[V (Z/2)]Z/2

is a complete intersection (see, e.g., [6]). Thus

CMdefect(F[V ]Z/2) = 0 = CMdefect(F[V (Z/2)]Z/2).

References
[1] J. L. Alperin, Local Representation Theory, Cambridge Studies in Advanced Math-

ematics 11, Cambridge University Press, Cambridge 1986.

[2] Jianjun Chuai, A new Degree Bound for Invariant Rings, Proceedings of the AMS
133 (2005), 1325-1333.

[3] Harm Derksen and Gregor Kemper, Computational Invariant Theory, Encylopae-
dia of Mathematical Sciences, Springer-Verlag, Heidelberg 2002.

13



MARA D. NEUSEL MÜFIT SEZER
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Department of Mathematics and Statistics Department of Mathematics
Mail Stop 1042 Boğazici Üniversitesi
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