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Abstract

For each geometrically finite non-Euclidean crystallographic group (NEC group), we compute the
cohomology groups. In the case where the group is a Fuchsian group, we also determine the ring
structure of the cohomology. Finally, we compute the L2-Betti numbers of the NEC groups.

1 Introduction

Let Γ be a geometrically finite non-Euclidean crystallographic group (NEC group), i.e. a discrete subgroup
of PGL2(R) with a finite sided fundamental domain for the action of Γ on the hyperbolic plane H2.
Throughout we let Λ(Γ) denote the limit set of Γ. In this paper, we will calculate the cohomology of
Γ. In the case where Γ is a Fuchsian group, i.e. Γ is contained in PSL2(R), we will also calculate the
cohomology ring. Our proof will involve finding a suitable fundamental domain for the action of the group
in H2 ∪ Λ(Γ) and then applying the following Γ equivariant spectral sequence.

Theorem 1.1. [Bro94, Chapter VII (7.10)] Let X be a Γ-complex and let Ω(p) be a set of representatives
of Γ-orbits of p-cells in X. Let Γσ be the stabiliser of σ. For each p-cell σ we have a Γσ module Zσ which
Γσ acts on via χσ : Γσ → {±1}. Then,

E1
pq =

⊕
σ∈Ω(p)

Hq(Γσ;Zσ)⇒ HΓ
p+q(X;Z).

Moreover, a description of d1 : E1
p,∗ → E1

p−1,∗ is given in [Bro94, Chapter VII.8].

Since X = H2∪Λ(Γ) is contractible, this sequence converges to the cohomology of Γ. Using knowledge
of the abelianization of Γ, it is easy to compute with the spectral sequence. We will now set the convention
that an omission of coefficients in the (co)homology functors should be assumed to be Z coefficients.

Theorem 1.2. Let Γ be an NEC group of signature

(g, s, ε, [m1, . . . ,mr], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk), (), . . . , ()}).

Where the number of empty cycles equals d. Let CE denote the number of even ni,l and let CO denote the
number of period cycles for which every ni,l is odd.
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(a) If ε = + and d = k = s = 0 (i.e. Γ is a cocompact Fuchsian group) then

Hq(Γ) =



Z for q = 0,

Z2g for q = 1,

Z⊕
(⊕r−1

j=1 Ztj
)

for q = 2,⊕r
j=1 Zmj for q = 2l, where l ≥ 2,

0 otherwise.

(b) If ε = + and d+ k + s > 0 then

Hq(Γ) =



Z q = 0,

Z2g+s+k+d−1 q = 1,

Z
1
2
qCE+CO+d

2 ⊕
(⊕r

j=1 Zmj

)
q ≡ 2 (mod 4),

Z
1
2

(q−1)CE+CO+d

2 q = 2p+ 1 where p ≥ 1,

Z
1
2
qCE+CO+d

2 ⊕
(⊕k

i=1

⊕si
l=1 Zni,l

)
⊕
(⊕r

j=1 Zmj

)
q > 0 and q ≡ 0 (mod 4).

(c) If ε = − then

Hq(Γ) =



Z q = 0,

Zg+s+k+d−1 q = 1,⊕r+d+k+
∑k

i=1 si
p=1 Zwp q = 2,

Z
1
2

(q−1)CE+CO+d

2 q = 2p+ 1 where p ≥ 1,

Z
1
2
qCE+CO+d

2 ⊕
(⊕k

i=1

⊕si
l=1 Zni,l

)
⊕
(⊕r

j=1 Zmj

)
q > 0 and q ≡ 0 (mod 4),

Z
1
2
qCE+CO+d

2 ⊕
(⊕r

j=1 Zmj

)
q > 2 and q ≡ 2 (mod 4).

Where the constants tj and wp can be deduced from the abelianization of Γ.

In fact, the following definition will give a precise description of the constants tj . In the case where Γ
is a Fuchsian group we also compute the ring structure (Theorem 1.4).

Definition 1.3. For j = 1, . . . , r − 1, let t̂j be the greatest common divisor of the set of products of
m1, . . . ,mr taken j at a time. Then, let t1 = t̂1 and for j = 2, . . . , r − 1 let tj = t̂j/t̂j−1. We will write⊕r

j=1 Zmj = (
⊕r−1

j=1 Ztj )⊕ (
⊕l

k=1 Zqk), where the
⊕l

k=1 Zqk term is decomposed via the classification of

finite abelian groups. Finally, define Rq to be the ring Z[x, y]/(x3 = y2, qx, qy) where |x| = 4 and |y| = 6.
Note that Rq is isomorphic to the subring of Z[z]/(qz) generated by z2 and z3.

Theorem 1.4. Let Γ be a Fuchsian group of signature [g, s;m1, . . . ,mr].

(a) If s = 0 then H∗(Γ) ∼= H∗(Σg)⊕
(⊕r−1

j=1 H
∗(Ztj )

)
⊕ (
⊕l

k=1Rqk).

(b) If s > 0 then H∗(Γ) ∼= Z[x1, . . . , x2g+s−1]/(xixj ∀i, j)⊕
(⊕r

j=1H
∗(Zmj )

)
where |xi| = 1.
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We remark that some of the results have appeared in the literature before. The case where Γ is a
cocompact Fuchsian group, so ε = + and d = k = s = 0, was considered by Majumdar [Maj70], however,
our computation of the ring structure is new. The case ε = + and d = k = 0 is a corollary of a result of
Huebschmann [Hue79] and the case ε = − and d = k = s = 0 was considered by Akhter and Majumdar
[AM16]. Each of these previous results used different methods to the ideas here.

Other interpretations of the cohomology of Fuchsian groups have appeared in the literature. These
have primarily dealt with lifting phenomena [Pat75], with Eichler cohomology [Eic57, Cur70] or with
K-theory in relation to the Baum-Connes conjecture [LS00, BJPP02].

The paper is structured as follows. In Section 2 we define the signature of an NEC group. In Section 3
we prove Theorem 1.2 and Theorem 1.4. Finally, in Section 4 we compute the L2-Betti numbers of each
NEC group (Corollary 4.3) using a relation to the rational Euler characteristic χQ of a group.
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2 Non-Euclidean crystallographic groups

We will first describe Wilkie and Macbeath’s NEC signatures [Wil66, Mac67], then the associated fun-
damental domain in H2 ∪ Λ(Γ), and finally we will give a presentation for an NEC group in terms of its
signature.

An NEC signature consists of a sign ε = ±, and several sequences of integers grouped in the following
manner:

1. Two integers g, s ≥ 0.

2. An ordered set of integer periods [m1, . . . ,mr].

3. An ordered set of k period cycles {Ci := (ni,1, . . . , ni,si) : 1 ≤ i ≤ k}.

4. A further d empty period cycles (), . . . , ().

The sequences and sign are then combined into the NEC signature, which is written as

(g, s, ε, [m1, . . . ,mr], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk), (), . . . , ()}).

We let CE denote the number of even ni,l and we let CO denote the number of Ci for which every ni,l
is odd.

Associated to each NEC signature is a surface symbol describing a fundamental domain for the associ-
ated NEC group. The surface symbol is a list of edges travelling around the polygon anticlockwise. Two
edges paired orientably will be indicated by the same letter and a prime. Two edges paired non-orientably
will be indicated by the same letter and an asterisk. When ε = +, we have the surface symbol

ξ1ξ
′
1 . . . ξrξ

′
rε1γ1,0 . . . , γ1,s1ε

′
1ε2 . . . εkγk,0 . . . , γk,skε

′
kα1β

′
1α
′
1β
′
1 . . . αgβ

′
gα
′
gβ
′
g.

When ε = −, we have the surface symbol

ξ1ξ
′
1 . . . ξr+sξ

′
r+sε1γ1,0 . . . , γ1,s1ε

′
1ε2 . . . εkγk,0 . . . , γk,skε

′
kα1α

∗
1 . . . αgα

∗
g.
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For j = 1, . . . , r, the period mj is attached to the vertex vj common to the edges ξj and ξ′j . The
cycle period ni,l is associated with the vertex wi,l common to the edges γi,l−1 and γi,l. The vertices vj for
j = r + 1, . . . , r + s lie on the boundary ∂H2.

Under the action of the associated NEC group, the stabiliser of the vertex vj is a cyclic group of order
mj for 1 ≤ j ≤ r, or Z if vj lies on ∂H2. The stabiliser of the vertex wi,l is a dihedral group D2ni,l

of
order 2ni,l. The stabiliser of the edge γi,l is a reflection group Z2. No other points of the polygon are
fixed points of the NEC group.

If ε = +, and 2g − 2 + s + r + d + k + 1
2

∑k
i=1 si −

∑r
j=1

1
mi
− 1

2

∑k
i=1

∑si
j=1

1
ni,j

> 0 or if ε = − and

g − 2 + s + r + d + k + 1
2

∑k
i=1 si −

∑r
j=1

1
mi
− 1

2

∑k
i=1

∑si
j=1

1
ni,j

> 0, then there exists an NEC group

with the corresponding signature. We can now give a presentation for an NEC group. Due to the large
number of generators and relations, we detail this in Table 1.

Signature element Generator(s) Relation(s)

Period mj xj x
mj

j = 1

Cycle (ni,1, . . . , ni,si) ei ci,si = e−1
i ci,0ei

ci,0 . . . ci,si c2
i,l−l = c2

i,l = (ci,l−1ci,l)
ni,l = 1

s xr, . . . , xr+s See g ±
g + a1, b1, . . . , ag, bg

∏r+s
j=1 xj

∏k
i=1 ei

∏g
t=1[at, bt] = 1

g − a1, . . . , ag
∏r+s
j=1 xj

∏k
i=1 ei

∏g
t=1 a

2
t = 1

Table 1: Generators and relations for an NEC group.

If d = k = 0 and ε = +, then we write the signature of Γ as [g, s;m1, . . . ,mr] and we refer to Γ a
Fuchsian group (i.e. a discrete subgroup of PSL2(R). If s = 0, we say that Γ is cocompact.

3 Cohomology

3.1 The cocompact Fuchsian case

First, we will deal with the computation of the ring structure. Recall that Rq is the ring Z[x, y]/(x3 =
y2, qx, qy) where |x| = 4 and |y| = 6.

Proof of Theorem 1.4. The general strategy here is to look at induced maps from quotients of Γ. In
the case s = 0, the map from Γ → π1(Σg), given by setting each dj = 1, induces an inclusion of
cohomology rings H∗(Σg) ↪→ H∗(Γ). The map π : Γ → T (Γab) induces an inclusion of cohomology rings⊕r−1

j=1 H
∗(Ztj ) ↪→ H∗(Γ).

Now, let
⊕r

j=1 Zmj = (
⊕r−1

j=1 Ztj ) ⊕ (
⊕l

k=1 Zqk) be the decomposition given in Definition 1.3. Each
inclusion of Zqk into Γ induces a map H∗(Γ)→ H∗(Zqk) which is surjective in every dimension except 2
where it is 0. In particular, it is surjective onto a ring isomorphic to Rqk . By considering preimages of
elements, we see the map restricts to an isomorphism and we conclude H∗(Γ) has a summand isomorphic
to Rqk . This completes the proof of the first case.

In the case where s > 0, the map Γ→ T (Γab) induces an inclusion of rings
⊕r

j=1H
∗(Zmj ) ↪→ H∗(Γ).

The proof is then finished by a simple calculation to determine that any two (not necessarily distinct)
infinite additive order classes in H1(Γ) cup to give 0.

4



Next, we will calculate the cohomology of cocompact Fuchsian groups. We note that the proof here is
new, except for we calculate the abelianization using Smith normal form in the same way as Majumdar
[Maj70].

Proof of Theorem 1.2(a). We will use Theorem 1.1 and then apply the universal coefficient theorem. In
this case X = H2 endowed with the induced cell structure from the Wilkie-Macbeath polygon. To set up
the spectral sequence we observe for each mj there is a Γ-orbit of 0-cells, where each cell has stabiliser
Zmj . Now, by Theorem 1.1 the E1-page of the spectral sequence has the form given by Figure 1.

3
⊕r

j=1 Zmj 0 0 0

2 0 0 0 0

1
⊕r

j=1 Zmj 0 0 0

0 Zr+1 Z2g+r Z 0

0 1 2 3

Figure 1: The E1-page of the spectral sequence.

The only non-trivial differentials are along the bottom row. Fixing a basis for the chain groups we
have a sequence

0 〈α0, . . . , αr〉 〈β1, . . . , β2g+r〉 〈γ〉 0.
d11,0 d12,0

We have d1
1,0(βi) = αi − α0 for 1 ≤ i ≤ r and d1

1,0(βi) = α0 for r + 1 ≤ i ≤ 2g + r and, d1
2,0 = 0. In

particular, Im(d1
1,0) ∼= Zr, Ker(d1

1,0) ∼= Z2g, Im(d1
2,0) = 0 and Ker(d1

2,0) ∼= Z. From this calculation we

deduce the E2 page is as in Figure 2.

3
⊕r

j=1 Zmj 0 0 0

2 0 0 0 0

1
⊕r

j=1 Zmj 0 0 0

0 Z Z2g Z 0

0 1 2 3

Figure 2: The E2-page of the spectral sequence.

The only non-trivial differential is the map drawn in Figure 2. Moreover, the spectral sequence clearly
collapses after the computation of this differential. We can easily deduce what this differential is using the
knowledge of H1(Γ). We will compute the abelianization using the same method as Majumdar [Maj70].

To compute the abelianization we write out the presentation matrix M of Γ and then compute the

Smith normal form. We find H1(Γ) = Z2g ⊕
(⊕r−1

j=1 Ztj
)

. The constants tj (defined above) come from
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Theorem 6 in Ferrar’s book ‘Finite Matrices’ [Fer51]. In particular,
∏p
j=1 tj is equal to the greatest

common divisor of the p-rowed minors of M .
The map is a surjection onto the factor

⊕l
k=1 Zqk from the decomposition

⊕r
j=1 Zmj = (

⊕r−1
j=1 Ztj )⊕

(
⊕l

k=1 Zqk). To complete the proof, we apply the universal coefficient theorem to H0(Γ) = Z, H1(Γ) =

Z2g ⊕
(⊕r−1

j=1 Ztj
)

, H2(Γ) = Z, H2l−1(Γ) =
⊕m

j=1 Zmj and H2l(Γ) = 0 for l ≥ 2.

3.2 Orientable NEC groups with at least one cusp or boundary component

The remaining proofs will use the homology of finite dihedral groups. We record them here for the
convenience of the reader.

Theorem 3.1. [Han93] Let D2n denote a dihedral group of order 2n. In the case n is odd we have

Hq(D2n;Z) =


Z if q = 0,

Z2 if q ≡ 1 (mod 4),

Z2n if q ≡ 3 (mod 4),

0 otherwise.

Hq(D2n;Z2) = Z2 for q ≥ 0.

In the case n is even we have

Hq(D2n;Z) =



Z if q = 0,

Z
1
2

(q+3)

2 if q ≡ 1 (mod 4),

Z
1
2
q

2 if q > 0 is even,

Z
1
2

(q+1)

2 ⊕ Zn if q ≡ 3 (mod 4).

Hq(D2n;Z2) = Zq+1
2 for q ≥ 0.

We will now compute the cohomology of an NEC group with orientable quotient space with at least
one boundary component or cusp.

Proof of Theorem 1.2(b). Let k, d, s ≥ 0 such that k+ d+ s > 0 and let ε = +. We will use Theorem 1.1;
here our space X is H2∪Λ(Γ) endowed with the induced cell structure from the Wilkie-Macbeath polygon.
To set up the sequence, observe that the stabiliser of a marked point vj in the interior of the quotient
space is a cyclic group Zmj . If the vertex vj lies on ∂H2 then the stabiliser is Z. The stabiliser of a
marked point wi,l on the boundary of the quotient space is a dihedral group D2ni,l

, and edges along the
boundary are stabilised by reflection groups isomorphic to Z2. It follows that the E1-page has the form
given in Figure 3.

We will first deal with the differentials d1
∗,0. We have a sequence

0

〈
vj , wi,l

∣∣∣∣
0 ≤ j ≤ r + s

1 ≤ i ≤ k + d

0 ≤ l ≤ si

〉 〈
αt, βt, ξj , γi,l, εi

∣∣∣∣ 1 ≤ t ≤ 2g, 1 ≤ j ≤ r + s

1 ≤ i ≤ k + d, 0 ≤ l ≤ si

〉

〈f〉 0.

d11,0

d12,0
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5 Zk+d
2 ⊕

(⊕r
j=1 Zmj

)
⊕
(⊕k

i=1

⊕si
l=1H5(D2ni,l

)
)

Zk+d+
∑k

i=1 si
2 0 0

4
⊕k

i=1

⊕si
l=1H4(D2ni,l

) 0 0 0

3 Zk+d
2 ⊕

(⊕r
j=1 Zmj

)
⊕
(⊕k

i=1

⊕si
l=1H3(D2ni,l

)
)

Zk+d+
∑k

i=1 si
2 0 0

2
⊕k

i=1

⊕si
l=1H2(D2ni,l

) 0 0 0

1 Zs ⊕ Zk+d
2 ⊕

(⊕r
j=1 Zmj

)
⊕
(⊕k

i=1

⊕si
l=1H1(D2ni,l

)
)

Zk+d+
∑k

i=1 si
2 0 0

0 Z1+r+s+k+d+
∑k

i=1 si Z2g+r+s+2k+2d+
∑k

i=1 si Z 0

0 1 2 3

Figure 3: The E1-page of the spectral sequence.

Computing the image of the differential d1
2,0 on the Z-basis element f , we obtain that up to sign

f 7→
k∑
i=1

si∑
l=0

γi,l.

So, we find Im(d1
2,0) = Z and E2

2,0 = 0. For d1
1,0 we have the following

αt 7→ v0 − v0 = 0 for 1 ≤ t ≤ 2g;

βt 7→ v0 − v0 = 0 for 1 ≤ t ≤ 2g;

ξj 7→ vj − v0 for 1 ≤ j ≤ r + s;

γi,l 7→ wi,(l+1 mod si) − wi,l for 1 ≤ i ≤ k, and 0 ≤ l ≤ si;
γi,0 7→ wi,0 − wi,0 = 0 for k + 1 ≤ i ≤ k + d;

εi 7→ wi,0 − v0 for 1 ≤ i ≤ k + d.

In particular, we have Im(d1
1,0) = Zr+s+k+

∑k
i=1 si and Ker(d1

1,0) = Z2g+k+d. It then follows that E2
1,0 =

Z2g+k+d−1 and E2
0,0 = Z. At this point, it is easy to see that the spectral sequence will collapse trivially

once we have computed the differentials d1
1,∗.

We will begin with the differential d1
1,q where q ≡ 1 (mod 4). Since the edges connected to the

vertices corresponding to the Zmj summands have trivial stabilisers, the Zmj summands will survive to
the E2-page. In the case q = 1, the Z summands also survive by the same reasoning.

We now draw our focus to the other summands. Let each D2ni,l
be generated by a reflection ri,l and

a rotation ti,l of order ni,l. We have that H1(D2ni,l
) is generated by r1

i,l, t
1
i,l, the images of ti,l and ri,l

under the abelianization map. For q > 1 there will be extra generators whenever an ni,l is even; we will
suppress this from the notation. Note that t1i,l = 0 if n is odd. For each q ≡ 1 (mod 4) we now have a
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sequence (modulo the extra classes arising from dihedral groups where ni,l is even and when q > 1)

0

〈
wqi,0, w

q
p,0, r

q
i,l, t

q
i,l

∣∣∣∣∣
1 ≤ i ≤ k
1 ≤ l ≤ si
1 ≤ p ≤ d

〉 〈
γqi,l, γ

q
p,0

∣∣∣∣∣
1 ≤ i ≤ k
0 ≤ l ≤ si
1 ≤ p ≤ d

〉
0.

d11,q

We will break the map d1
1,q into several cases depending on the adjacent edges in the fundamental

domain and the cycle type of the boundary component. First, we will consider each ‘end’ of a boundary
component with non-empty period of cycles. We have that γqi,0 7→ wqi,0 + tqi,1 and γqi,si 7→ wqi,0 + tqi,si + rqi,si
(plus potentially some extra classes from the even dihedral groups). For the intermediary edges we have
γqi,l 7→ tqi,l+ tqi,l+1 +rqi,l (plus potentially some extra classes from the even dihedral groups). To justify this,
note that we are looking at the maps induced by the inclusions 〈ri,lti,l〉 ↪→ D2ni,l

and 〈ri,l+1〉 ↪→ D2ni,l+1
.

The reader may be wondering why we are suppressing the extra order 2 classes arising from the even
dihedral groups from the notation. The key point is that the generator of a Z2 reflection group either
maps to exactly one generator, or it maps to a sum of generators (and we only need to know it maps to
more than 1). Thus, the two maps are linearly independent and we can safely omit the classes.

If the boundary component only contains odd cycles, then γqi,si =
∑si−1

l=0 γqi,l, so we have an order 2

element in the kernel of d1
1,q. If the boundary component has an empty period of cycles, then we have

exactly one edge γi,0 with vertex wi,0 at each end. In particular γqi,0 7→ wqi,0 − wqi,0 = 0. From this

analysis we deduce that Ker(d1
1,q) = ZCO+d

2 and Im(d1
1,q)
∼= Zk+

∑k
i=1 si−CO

2 . It then follows from a simple

calculation that E2
1,q = ZCO+d

2 and E1
0,q
∼= Z

1
2

(q+1)CE+CO+d

2 ⊕
(⊕r

j=1 Zmj

)
for q ≡ 1 (mod 4), q > 1.

When s > 0 we have an additional Zs summand in E2
0,1.

An alternative way of considering these maps is as follows. Let CEi denote the number of even periods
in the ith period cycle. Observe that each period cycle contributes 1

2(q + 1)CEi − 1 summands of Z2 to
E2

0,q. The CO summands of Z2 contained in Ker(d1
1,q) cause an additional CO summands of Z2 to survive

to E2
0,q. From, above we then have that

k +
k∑
i=1

(
1

2
(q + 1)CEi − 1

)
+ CO = k +

1

2
(q + 1)CE − k + CO =

1

2
(q + 1)CE + CO.

We now need to compute the maps d1
1,q for q ≡ 3 (mod 4). We have essentially the same cases and

proof as when q ≡ 1 (mod 4) except that Coker(d1
1,q) contains a summand Zni,l for each ni,l. When ni,l

is odd this is immediate, we will now prove this when ni,l is even.
Let n := ni,l be even and consider Hq+1(D2n;Z) where q ≡ 3 (mod 4). There is an element of

order n in Hq+1(D2n;Z) that corresponds to a power of the second Chern class of a 2-dimensional linear
representation ρ of D2n = 〈r, t〉. Restricting ρ to the subgroup 〈rt〉 gives the regular representation
of Z2

∼= 〈rt〉. Now, the total Chern class of Z2 is equal to 0 in degree 4. It follows that the map
Hq+1(D2n;Z) → Hq+1(〈rt〉) has kernel containing a Zn summand. In particular, the map Hq(〈rt〉) →
Hq(D2n) has cokernel containing a Zn summand.

We conclude the description of E2 as follows. First, when q ≡ 3 (mod 4) we have Ker(d1
1,q)
∼= ZCO+d

2

and Im(d1
1,q)
∼= Zk+

∑k
i=1 si−CO

2 . It follows E2
1,q
∼= ZCO+d and E2

0,q
∼= Z

1
2

(q−1)CE+CO+d

2 ⊕
(⊕k

i=1

⊕si
l=1 Zni,l

)
⊕(⊕k

j=1 Zmj

)
. Every other entry on the E2-page is 0 trivially.
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The theorem follows from resolving the extension problems 0 → E2
1,q−1 → Hq(Γ) → E2

0,q → 0, where
q > 0 is even. Then, applying the universal coefficient theorem. To resolve the extension problems, we
will compute the homology of Γ with Z2 coefficients and then compare the Z2-rank of Hq(Γ;Z2) with the
Z2-rank of (E2

1,q−1 ⊕E2
0,q)⊗Z2 ⊕Tor(E2

0,q−1,Z2). Note that the latter is equal to (q + 1)CE + 2CO + 2d.
If the ranks are equal, then the extension will split.

Recall that Hn(Z2;Z2) = Z2 for n ≥ 0. Combining this with the Z2-homology groups of the Dihedral
groups (Theorem 3.1) and the Γ-equivariant spectral sequence (Theorem 1.1), we can set up a spectral
sequence calculation. To simplify things, note we are only interested in the maps d1

1,q for q > 0.

Let q > 0 and let CT denote the number of odd cycles, so CT + CE =
∑k

i=1 si. We then have a
sequence

0 Z(q+1)CE+CT +d+k
2 ZCE+CT +d+k

2 0.
d11,q

By essentially using the same calculations as above we have that Im(d1
1,q)
∼= ZCE+CT +k−CO

2 . From this we

conclude that E2
0,q = Z(q+1)CE+CO+d

2 and that E2
1,q = ZCO+d

2 . This gives a Z2-rank of (q+1)CE+2CO+2d.
Thus, the extension splits.

The theorem now follows from applying the universal coefficient theorem to

Hq(Γ) =



Z q = 0,

Z2g+s+k+d−1 ⊕ ZCE+CO+d
2 ⊕

(⊕r
j=1 Zmj

)
q = 1,

Z
1
2
qCE+CO+d

2 q = 2p > 0,

Z
1
2

(q−1)CE+CO+d

2 ⊕
(⊕k

i=1

⊕si
l=1 Zni,l

)
⊕
(⊕r

j=1 Zmj

)
q ≡ 3 (mod 4),

Z
1
2

(q+1)CE+CO+d

2 ⊕
(⊕r

j=1 Zmj

)
q > 1 and q ≡ 1 (mod 4).

3.3 Non-orientable NEC groups

We will now compute the cohomology of an NEC group with non-orientable quotient space. The proof
is almost exactly the same as the proof of Theorem 1.2(b) so we will only provide a brief sketch and
highlight the differences. A description of the numbers wp is detailed in the proof below.

Proof of Theorem 1.2(c) (sketch). The key differences between the orientable and non-orientable cases is
the E1

1,0 term and the map d1
2,0. The E1

1,0 now contains a Zg summand instead of a Z2g summand. The

map d1
2,0 now sends the generator to the sum of boundary components plus 2 times each generator of the

aforementioned Zg summand. In particular, if s+ d+ k > 0 then E2
1,0 = Zg+k+d−1 and E2

1,0 = Zg−1 ⊕ Z2

otherwise.
The proof goes through identically from here, except that now we have an additional splitting problem

in H1(Γ) (note the other splitting problems are easily resolved by computing homology with Z2-coefficients
as before). To resolve this splitting problem, we instead turn to the Smith normal form of the presentation
matrix M for Γ.

Indeed, we easily deduce there is a Zg+s+k+d−1 summand in H1(Γ). The remaining finite cyclic
summands can be determined by Theorem 6 of [Fer51]. We denote these by Zwp where

∏p
a=1wa is equal

to the greatest common divisor of the p-rowed minors of M .
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The theorem now follows from applying the universal coefficient theorem to

Hq(Γ) =



Z q = 0,

Zg+s+k+d−1 ⊕
(⊕r+d+k+

∑k
i=1 si

p=1 Zwp

)
q = 1,

Z
1
2
qCE+CO+d

2 q = 2p > 0,

Z
1
2

(q−1)CE+CO+d

2 ⊕
(⊕k

i=1

⊕si
l=1 Zni,l

)
⊕
(⊕r

j=1 Zmj

)
q ≡ 3 (mod 4),

Z
1
2

(q+1)CE+CO+d

2 ⊕
(⊕r

j=1 Zmj

)
q > 1 and q ≡ 1 (mod 4).

4 Rational Euler characteristics and L2-Betti numbers

Let Γ be a group of finite homological type (or less generally of type V F ). Let Γ′ E Γ be a finite-index
torsion-free normal subgroup and let d = |Γ : Γ′|. The rational Euler characteristic of Γ is defined to be

χQ(Γ) :=
1

d
χ(Γ′) =

1

d

∑
p≥0

(−1)pβp(Γ),

where βp(Γ) = dimQ(Hp(Γ;Q)) is the pth Betti-number of G. We note that if Λ is a finite index subgroup
of Γ then χQ(Λ) = |Γ : Λ|χQ(Γ).

A complete introduction to and survey of L2-Betti numbers can be found in [L0̈2]. We will denote the

pth L2-Betti number of a topological spaceX by β
(2)
p (X) and for a group Γ we take β

(2)
p (Γ) = β

(2)
p (K(Γ, 1)).

We note two important facts about L2-Betti numbers. Firstly, χ(X) =
∑

p≥0(−1)pβ
(2)
p (X) and secondly,

if X̃ → X is a finite cover of degree d, then β
(2)
p (X̃) = dβ

(2)
p (X).

Rather than give the technical definition in terms of chain complexes, we will consider L2-Betti
numbers as an asymptotic invariant of towers of finite-index normal subgroups. To view L2-Betti numbers
this way, we use Lück’s Approximation Theorem.

Theorem 4.1. [L9̈4] Let Γ be a finitely presented group and let Γ = Γ1 > Γ2 > . . . be a sequence of
finite-index normal subgroups of G that intersect in the identity. The pth L2-Betti number of Γ is then
given by

β(2)
p (G) = lim

k→∞

βp(Γk)

|Γ : Γk|
.

The following elementary proposition extends the remark about Euler characteristics of spaces to
rational Euler characteristics of groups.

Proposition 4.2. Let Γ be a finitely presented residually finite group of finite homological type. Then

χQ(Γ) =
∑
p≥0

(−1)pβ(2)
p (Γ).

Applying this proposition to the rational Euler characteristic of a NEC group Γ (see for instance

[Con03]), we obtain that β
(2)
1 = −χQ(Γ). More precisely we have:
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Corollary 4.3. Let Γ be a NEC group of signature

(g, s, ε, [m1, . . . ,mr], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk), (), . . . , ()}),

where the number of empty period cycles is equal to d.

(a) If ε = + then

β(2)
p (Γ) =

{
2g − 2 + s+ r + d+ k + 1

2

∑k
i=1 si −

∑r
j=1

1
mi
− 1

2

∑k
i=1

∑si
j=1

1
ni,j

if p = 1,

0 otherwise.

(b) If ε = − then

β(2)
p (Γ) =

{
g − 2 + s+ r + d+ k + 1

2

∑k
i=1 si −

∑r
j=1

1
mi
− 1

2

∑k
i=1

∑si
j=1

1
ni,j

if p = 1,

0 otherwise.

In the case where Γ is a Fuchsian group, the first L2-Betti number was calculated in [BCR16] by
directly using Lück’s Approximation Theorem.

Corollary 4.4. Let Γ be a Fuchsian group of signature [g, s;m1, . . . ,mr]. Then,

β(2)
p (Γ) =

{
2g − 2 + s+ r −

∑r
i=1

1
mi

if p = 1,

0 otherwise.

We finish with a couple of remarks. Firstly, by a result of D. Osin [Osi15], this provides another
(admittedly indirect) proof that NEC groups are acylindrically hyperbolic (of course this also follows
from the fact a NEC group is word hyperbolic). As a consequence, for V = `p(Γ), where p ∈ [1,∞)
or V = R, the 2nd bounded cohomology group H2

b (Γ;V ) is infinite-dimensional. We also note that the
methods here should be adaptable to computing the cohomology of various families of generalised triangle
groups [EW05] and more generally, geometrically finite Kleinian groups.
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