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1. Introduction

Let k be a field and A an algebra of fipnite dimension
over k . The category of finitely generated left A-modules is

denoted mod A , and if X,Y ¢ mod A, the k-space Hom, (%,Y)

A
is denoted (X,Y) . Let
£ g
E:0 » N > E > 8 » 0
bhe a short exact sequence in mod A . Auslander and Reiten

{4, p.443] say that € 1is almost split if it satisfies the three

conditions

Al € 1is not split,

AZ § and N are both indecowposable, and



A3 if Xemod A, h e (¥, and h 1is not split epi, then
h factors through g .

(Recall that h ¢ (¥X,5) 1is split epl, or is a splitable epimorph-

ism, or is a retraction, if there exists h' ¢ (5,X) with

M. Auslander and I. Reiten proved in [3, 84] the following
theorem, which has initiated an avalanche of new research in the

representation theory of algebras.

(1.1} Theorem Given any non—projective, indecomposahle

S € mod A, there is an almost split sequence € ending with S.
Moreover E 1is determined by S , uniquely up to isomorphism of
short exact sequences.

In [1] and [2]}, Auslander and Reiten develop a theory of
finitely presented functors on suitably symmetric ('self-dualizing')
categories. In this theory is a computational process which can
be regarded as an algorithm for calculating a projective resolution
for a Functor which is presented in a certain way (see {2.17),
below); almost split sequences can be calculated from a special
case. The purpose of this paper is to describe a new 'trace
formula', which, T believe, makes one step of the Auslander-—

Reiten process more calculable. Section 2 is an account of the
orocess itself - there is little new here, and I have much use of
P. Gabriel's ilmportant exposition [9]. The trace formula is

proved in section 3, and applied to almost split sequences in



section 4. The resulting 'recipe' seems to be easier than that of
M.C.R. Butler ([5, p.84]; see also [9, p.17]); it has been used
by A.J. Chanter to célculate some components of Auslander-Reiten
quivers ([6]). Section 5 is an appendix, on the case where A 1is
symmetric.

Let X € mod A . We have two left—exact, k-linear functors
{X, ) and ( ,X) from mod A - mod k ; these are co- and
contra— variant respectively. (X, ) takes M ¢ mod A to (X,M),
and it takes a map w:M*M' in mod A to the k-map (X,u):(X,M) ~» (X,M")
given by (X,uw)(s) = us, for s ¢ (X,M) . ( ,X) takes M to
M,Xy , and u to {(u,X):(M',X) » {M,X) given by (u,X)(t) = tu,
for t e (M',X) . 1If we apply (X, ) to a short exact sequence

£ 1in mod A , we get the sequence, exact in mod k ,

(1.2) 0+ (0 D) o xogy a8) gy

clearly Im(X,g) 1is the set of h ¢ (¥X,S8) which factor through
g . Write H(X,S) [for the set of all h ¢ (X,8) which are not
split epi. Then £ satisfies condition A3 if and only if
H(X,S) < m(X,g) , for all X ¢ mod A . 1t is elementary to
check that E 1is non-split if and only if Im(X,g) < H(X,S) ,
for all X . Hence E satisfies both Al and A3, if and only if

it satisfies the condition
{(1.3) Im(X,g) = H(X,S) , for all X € mod A .

For any X, S e mod A , we make the



(1.4) Definition
R(X,8) = {f ¢ (X,8)|fg € rad End(S), for all g ¢ ($,X)}.

This is a subspace of (X,8) , whose importance to us is that if

S 1is indecomposable, then R(X,8) = H(X,5) , for all X e mod A.

The proof is an easy application of Fitting's lemma. So by (1.3),
if 8 1is indecomposable, then E satisfies Al and A3 if and only

if it satisfies the condition

(1.5) Im(X,g) = R(X,8) , for all X ¢ mod A .

We shall often use the functor category Fun A (this is
Gabriel's term, Auslander and Reiten call it Mod(mod A)) ,
although mainly as a source of convenient notation. We recall
some definitions here, for details see [8, chapter 5] and [1, §27.
The objects of Fun A are all k-linear, contravariant functors
F,G,... from mod A » mod k . Morphisms are natural transform-
ations, 1i.e. a morphism o:F > G 1is the same as a family of
k-maps a(X):F(X) ~» G(X) , X ¢ mod A , which is natural in X .
If F ¢ Fun A , and if for each X ¢ mod A there is given a
subspace G{X) < F(X) , 1in such a way that for each h:X > Y 1in
mod A, the map F(h):F(Y) » F(X) takes G(Y) into G(X) ,
then we define G(h):G(Y) » G(X) to be the restriction of F(h),
and we now have an object G ¢ Fun A , called a subfunctor of
F (notation G £ F) . One wmay then define the quotient functor
F/G . Fun A 1is an abelian category. For example, ( ,E) is

an object of Fun A, for every E e mod A . TIf g:E~+ S 1is a
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map in mod A , then the family of k-maps (X,g):(X,E) -~ (X,8) is

natural in X , and so defines a morphism ( ,g):{ ,E) >~ ( ,5) in
Fun A . The statement that (1.2) is exact, for all X ¢ mod A ,

can be expressed by saying that the sequence

0~ (,NM L.0 ( ,E) (o8, ( ,8) is exact in Fun A .

Definition (1.4) provides an important subfunctor R( ,8) of

( ,8), called the radical of ( ,8) , [2, p.3197, [9, p.2]. We

have a subfunctor Im( ,g) of ( ,S) , which takes each

X e mod A to Im(X,g) . Condition (1.5) becomes simply the

condition Tm{ ,g) = R( ,5) . We summarize our functorial re-

formulation of the definition of an almost split sequence as

follows.

(1.6) Proposition Let E:0 + N £ E 85> 0 be ashort exact
sequence in mod A , with § indecomposabie. Then E satisfies
conditions él_and A3 if and only if Im( ,g) = R( ,S) . Hence

E is almost split, if and only if Im( ,g) = BR( ,8) and N 1is

indecomposable.

Notation If X emod A, then End(X) = (¥,X) 1is the endo-

morphism algebra of X ; 1 is the identity map on X ; rX 1is

X
the radical of X . Finitely generated right A-modules are

considered as objects of mod A°P (see [1, p.2781). Two k-
linear, contravariant functors D , d:mod A - mod A%® are in

constant use. (1) DX = Homk(X,k) , with A acting on the

right by (9a){x) = ¢(ax) , ¢ ¢ DX , a ¢ A,x « X . See [7, p.410]



where DX 1is denoted X* . (2) d¥X = HomAﬁX,AA) = (X,A) , with
A acting on the right by (fa)(x) = f(x)a , f e dX , a € A,

x ¢ X . See [7, p.394], [3, p.247] and [9, p.5], where dX is
denoted X' , X* and x* , Ytespectively.

D 1is exact, and turns projectives into injectives and vice versa;
d 1is only left exact, and turns projectives into projectives. It
is useful to notice that d{Ae) ¥ eA , for any idempotent e of

A,

N =Dd : mod A > mod A is the Nakayama functor [9, p.10]. It

is k-linear, covariant and right exact, and turns projectives in-—

to injectives.

2, The Auslander—Reiten—Gabriel diagram

In this section we sketch a general procedure, by which one
can construct short exact sequences O - N £ E&M >0 in mod A s
in a way which gives an explicit formula for the functor Im( ,g) .
All the essentials of this method go back to Auslander and Reiten
{see [2, §7] in particular); the version given here is based on
Gabriel's exposition ([9, pp.5,61).

Let M ¢ mod A be given, and also a 2-step projective'

resolution of M in mod A ,

Py Py
(2.1 P > P >M >0 .

It is always possible to choose a resolution (2.1) which is

minimal, i.e. for which Ker p; < rP. , 1 =0,1 . However we
————— = 1



do not assume this in genervral.

We apply the right exact functor N to (2.1) and get the
. Np, 3p,
exact sequence §?1 _— NPO

> MM + 0 in mod A , hence the

exXact sequence

. Np Np
inc §P1 1 > NP 0

(2.2) 0 + AM > W >0,

where AM = Ker §p1 . Gabriel calles AM the Auslander-Reiten

translate of M ; Auslander and Reiten denote it DTxM

(2.3) Remark AM depends on the resolution (2.1), but is
uniquely determined by M up to an injective summand. In fact
there is a category equivalence DTr = A:mod A -~ mod A , where
mod A [mod A] denotes the category mod A , taken 'modulo
projectives' [injectivesl; -see [3, pp.246-2527 or [9, §21.

If (2.1) is minimal then AM has no non-zero injective
direct summands. If also M is indecomposable and not projective,
then AM is indecomposable and not injective ([3, p.2651,

9, p.61).

We are going to describe, for each X € mod A, the comm-
utative 'ARG diagram' below. 1Its rows are exact, and all its
maps are natural in X . The reader who prefers to see this as
a diagram in Fun A , has only to erase the symbol X throughout.

From (2.1) we get the exact sequence 0 ~ (M,X) —— (PO,X)

(Pl,X) .
> (PI’X) , and then apply D to get the exact sequence

(2.5). There is a k-map uY(X):D(Y,X) -+ (X,NY) , natural for



X,Y in mod A , whose definition we shall recall in section 3
(or see [ 9, p.5J]). This is bijective when Y 1is projective,
hence all the verticals joining (2.5) to (2.6) are isomorphisms.

We define bBL({X) by

(2.4) b(X) = D(pO,X)mP (X)_l H
0 .

it is then clear that the upper half of the diagram commutes. We
can now see that (2.6) is exact: it is exact at (X,AM) and

(X,NP.) because (2.2) is exact at AM and §P1 ., and it is

1

exact at (X,ﬁ?o) and D(M,X) because (2.5) is exact.

ARG DTAGRAM
D{p,,X) D(py,X¥)
(2.5) D(P|,X)———> D(P,X)———> DOL,X) *+ O
| 1
a, (X) a, (X) id
Pl l ' }O |
(2.6) ) (X, Np ¥
0 + (X,AM) (X,inc) (X, NP )——=> (X,NP) B pu,x) + 0
id (X, 1) /( (X,0) id
(2.7
e a,_ (X)
0+ xan BB men X8y (x5 — 5 por,w)

To construct the sequence (2.7), we introduce a module
S ¢ mod A and a map 60 ¢ (S’EPO) . From these we maké an exact
" sequence E(8) by the standard 'pullback over Np, and o'
Thus E(8) = {(u,s) ¢ ﬁPlli S | (EPI)(U) = 08(s)} , a submodule
of EflLi S . The maps £f,g are given by f{u) = (u,0), g(u,s) =

= s . It is easy to check



(2.8) The sequence E(8):0 + AM £ E(8) 8 5 is exact.

The map g 1is surjective if and only if Im 6 < Im Np, = Ker Np,.

Now let L:E(8) ~ §?l be the projection (u,s) -~ u , and

define ae(x) by

ag(X) = b(X) (X,8)

All the maps in the ARG diagram are now defined. It is easy to
check that (2.7) is exact and that the lower half of the diagram

commutes. In particular we have
{(2.9) Im(X,g) = Ker ae(X) , for all X € mod A .

Since ae(X):(X,S) + D(M,X) 1s natural in X , it is completely
determined by the element Te = ae(S)(ls) ¢ D(M,S) ; this is an
application of 'Yoneda's lemma' (see [11, p.61] and [8, p.1127).

In fact for any f ¢ (X,8) one has by naturality the commutative

diagram
ae(X)
(X,8) ——> D(M,X)
(M)] ] DM, £)
(S,S) —_— D(M’S) >
ae(S)

from which a (X)(F) = a (X)(£,M) (1) = DM, E)a (3)(1,) =
= D(M,f)(Te) . This means that ae(X)(f) is the element of

DM,X) given by

(2.10) ae(X)(f):g - Te(fg), for all g ¢ (M,X)



We are interested in the kernel of ae(X) , énd (2;10) shéws
that it consists of those f ¢ (X,S) such that.the space f{M,X)=
{fglg ¢ (M,X)} 1lies in Ker Te . Now Te is:a'linear fofm on
M,S8) , and (M,S) has natural structure as right EndﬁM)-module.
Let us, for any T ¢ D(M,S) , define the righfghofe '£gﬂT) of

T to be the unique maximal right End(M)—suBmodule of (M?S)
which lies in Ker T . Since f(M,X) , for giVen'f-e (X,S) y 1is
clearly a right End(M) submodule of (M,S) , it 1ies.iﬁ Ker Te
if and only if it lies in EE(TG) . We have then, for all

X € mod A ,
(2.11) Rer ag(X) = {f ¢ (X,8)[fg e re(T,) for all g ¢ Q,X)}.

This equation prompts the following definition: if M, S ¢ mod A

and if V 1is any right End (M)-submodule of (M,S) , we define
(2.12) 2y (X,8) = {f ¢ (X,8)|fg ¢ V for all g ¢ (M,X)} .
Then it is elementary to prove the next proposition.

(2.13) Proposition (i) (2.12) defines a subfunctor EV( ,S9)
of ( ,8) . This means, EV(X’S) is a subspace of (X,8) , for
all X emod A, and if h:X > Y 1is any map in mo& A, then
(h,S) maps EV(Y’S) into EV(X’S)

(ii) z,(M,8) =V . Hence -if V,V' are
right End(M)-submodules of (M,S) , then the functors z,( ,8)

._..v
and gv,( ,3) are equal, if and only if V = Vf

- 10 =



Combining (2.9), (2.11) and (2.12) we have the main result

from the ARG diagram, as follows.

(2.14) Theorem Let M,S ¢ mod A, and let (2.1) be any 2-step
projective resolution of M . Let © be any element of (S,gPO).

Define the exact sequence E(8):0 » AM £ E(0) %3 by pull-
back, as in {2.8). Define Te = ae(S)(ls) e D(M,S8) .

Then we have the formula

(2.15)  TIn( ,8) = z,( ,8) , where V = rc(T,) .

The ARG diagram displays an algorithm to solve the follow~
ing problem: given a subfunctor of ( ,8) of the form EV( »38)

where M ¢ mod A , and V = rc(T) for some T ¢ D{(M,S) , to
find an exact sequence [:0 ~ N'£ E & S in mod A such that

Im( ,g8) = EV( ,3) . TFor by (2.15) we get a solution to this

problem by taking & = E(6) , where & 1is any element of

(S’E?O) such that Te =T . Such a 6 always exists, since we
have
(2.16) T, = ae(S)(ls) = b(8)S,0)(1g) = b(8)(8) ,

and the map b(S):(S,EPO) + D(M,S8) is surjective (put X = §
in (2.6)). In section 3 we shall give a formula for Te which
is more explicit than (2.16). And in section 4 we shall see that

the problem of finding an almost split sequence ending with §

is a special case of the problem just described. We end the

e~ 11 -



present section with some general comments.

Finitely presented functors. To say that the sequence E above

has the property TIm( ,g) = zv( ,3) , 1s the same as to say that

the following sequence in Fun A 1is exact

(2.17) 0+ (2B ogy e o gy mat oo,

bl

where F = ( ’S)/ZV( »S) . This implies that the object

F ¢ Fun A is finitely presented and that (2.17) 1s a projective

resolution of F (see [1, §41). Conversely, Auslander and
Reiten have shown that for any finitely presented F € Fun A,
there exist S,M ¢mod A and a morphism a:( ,S8) - DM, ) in
Fun A such that Im a =F (see [2, p.319]. The fact that

mod A is a 'dualizing k-variety' is proved in [2, Props. 2.5,
2.61.) The "ARG algorithm' gives a résolution (2.17)Afor any F
defined in this way. Namely let T = a(S)(ls) , and choose |

6 € (S’EPO) such that Te =T ., Then a = ag (see (2.10)),

so if E =E(9) , (2.17) is a resolution of the kind required.

Surjectivity of the map g . We take E

E(6) and go back to

(2.8): g 1is surjective if and only if 1m 6 < Im.Ep1 . In that
case we may regard 8 as an element of (5,Im Epl) , and
identify £(6) with the short exact sequence obtained by pull-
back from the short exact sequence (2.18) below. Notice that

(2.18) is an injective presentation of AM .



Np

(2.18) 0 —> M 2% NP ~Ll I Np, 0
idT Q.T GT
E(s):0 > AM > E(8) > 0 .

£ g 7 s

(2.19) Proposition The map g 1is surjective if and only 1if
either (i) .EV(A,S) = (A,S5) , where V = EEﬂTe) , and A
stands for thé left regular A-module AA y OT

(i1) Te(P(M,S))= 0 , where P(M,S) 1is the space of all

maps h ¢ (M,S) which factor through some projective module in

mod A .

Proof (i) By (2.15) and the (elementary) fact that a map
g:E > 85 in mod A 1is surjective if and only if
(A,2):(A,E) -~ (A,S) 1is surjective.

(ii) EV(A’S) = (A,5) holds if and only if
f(M,A) < EE(TG) for all £ ¢ (A,8) , i.e. if and only if
Te((A,S)(M,A)) = 0 . But it is easy to prove that

(A,8) (M,A) = P(M,S) (sée (3, p.245]).

From this we may deduce the following remarkable identity
of Auslander and Reiten ([ 2, Props, 7.2, 7.3]; see also [9,

p.131).

(2.20) Theorem  There is a k-isomorphism, mnatural in

1 .
S,M € mod A , ExtA(S,éM) -+ DM,S) . Here (M,8) = (M,8)/P(M,S) .
Proof From (2.18), we can identify Exti(s,éﬂ) with the quotient

_13_



space (S,Im EPl)/Im(S’EPI) .  The map b(S):(S,ﬁ?O) +~ D(M,S)
has kernel Im(S,gpl)’. By (2.16), (2.19,ii) the counter-image
under b(S) of the space D(M,S) (which we identify with the
set of those T ¢ D(M,S) which vanish on P(M,S)) , is the set
of those @ € (S,§?O) such that the map g in E(8) 1is sur~
jective, i.e. ((2.8)), 1it is (S,Im Epl) . Therefore bH(8)

induces the required isomorphism.

3. A 'trace formula' for T

8

Keeping the notation of the last section, we have for each

6 € (S’EPO) that T_ = b{(8)(8) , hence by (2.4)

6
-1
(3.1) T, = D(py»S)ap () “(&)
0
The part of this which is difficult to calculate is ap (S)_l(e).

0

So we begin by giving a procedure for calculating the map

P

o (X)—l:(X,ﬁPO) -> D(PO,X) , for an arbitrary X € mod A . It
0 .

is worth noticing that we never require a map uY(X) , either
in setting up the ARG diagram, or in calculations of the type
we have in mind, unless Y is projective.

Since PO is projective, we can find a (left) A-isomorphism

T

K:I ! Aev - PO , where el,..,en are idempotents of A , not
\):

necessarily distinct. For example, we could write PO. as

direct sum of indecomposable submodules PO v’ and then use
3

v i .
the fact that each PO v - Aev » Tor some primitive idempotent
3
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e of A . But, in general, we do not assume that the e, are
v

primitive - for example, if PO were a free A-module, it might

be more convenient to take all the e, = 1 . 1In any case, we have

Fo

Ay1 ® ... @ Ayn , where for each v =1,...,n we define

y

N K(O,...,O,ev,O,...,O) € P

It is clear that =
1s clea a evyv Yoo,

0o v

for each v .

There is a right A-isomorphism K':LlevA > dPO = (PO,A) R
v
most easily described by saying that we define the elements

= ] - 1 .
ZU K (O,...,O,ep,O,...,O) € dPO in such a way that Zu(yv)

= - = ea . . ici +. ..+ =
Suveu, for u,v 1, ,D Explicitly, zp(aly1 anyn)

=ae , for any ajse-sa € A . We have then

dPO = zlA ... 8 znA , and zpe]J = ZU , for each u . The

sets {yv} ’.{Zv} are 'dual bases' of P dP_. 1n the sense

o’ 0
described, for example, in [10, p.1527.

Now take any X € mod A . To each o ¢ (PO,X) we assign

its vector VX(G) = (51""’Sﬁ) , where s, = o(yv) , for each
v . Evidently s, € eVX , and we find easily that
(3.2) VX:(PO,X) 4-%levX

is a k-isomorphism.

In a similar way, we assign to each p ¢ (X’EPO) its
vector Vé(p) = (rl,...,rn) » where for each v, ro is the
element of DX given by rv(x) = p(x)(zv) , Xx € X . (Notice
that E?O = D(dPO) , so that p(x) 1is a linear map dP0 +>k )

We check that r, ¢ (DX)ev - DX being a right A-module as



usual - and that
(3.3) Ve (GNRG) > %L(Dx)ev
is a k-isomorphism.
It is useful to record the inverses of Ve o v& .
= ' = Y
<S1""’Sn) and vX(p) (rl,...,rn) , then o ¢ (PO,X, and

1f VX(O)

p € (X’EPO) are given by

(3.4) O(Zavyv) = Zavsv , for all agseesd € A , and
(3.5) For each x ¢ X , p(x)(szav) = er(avx), for all
ayse-esa € A .

Definition Let < , > : (X,EPO) x (PO,X) - k be the k—bilinéar
form given by the formula
(3.6) <ps0> =L r (s ,
v
where (rl,...,rn) and (Sl""’sn) are the vectors of
p € (X,§P0) ﬁand g« (PO,X) , respectively.

The space (DX)ev may and shall be identified with
D(evX) (each £ ¢ (DX)ev vanishes on (l-eV)X , and 1is
identified with its restriction to evX) . Therefore < , >
is non~singular, for the right side of (3.6) is just the direct
sum of the natural pairings D(evX) X eUX + k . Notice that

(X’EPO) and (PO,X) have the same dimension, as is clear by

comparing (3.2) and (3.3).

_16_



We may use < , > to define a k-isomorphism

7. (X):(X,NP ) ~ D(P.,X) by the rule
PO -0 0

(3.7) tp () (p)(0) = <p,0>, for all pe (LN, o ¢ (By.X).
0

This discussion culminates in the following proposition.

(3.8) Proposition For all X cmod A , I, () = a, L.

0 0

Proof It is time to define p (X):D(PO,X) - (X,ﬁ?o) . If
0

f ¢ dPO , x¢e¢ X, let Bf,x € (PO,X) be given by

Bf x(Y) = f(y)x for all vy ¢ Py - Let @ be an element of
D(PO,X) . Then we define the element o, (X)(%) = p of (X,NPO)
e —_
0
by
(3.9) p(x)(H) = ¢(Bf,x) , for all xe¢ X, f ¢ dPO .

(See [9, p.5]. TFor the purposes of this paper we may take (3.9)

as definition of op (X) . To construct the ARG diagram, we
0

need to know that it is matural in both PO and X , which is

easy, That it is an isomorphism for any projective PO , can

be deduced from the proof of the present proposition.)

Qur ambition is to prove that (X)uP (X) 1is the identity

s
o " o

map on D(PO,X) - this will prove (3.8), since o (X) is an
0

isomorphism between finite-dimensional k-spaces. Let

® e D(PO,X) , and let (rl,...,rn) be the vector of

...17_



p = dPO(X)(é) . Using (3.9) we find rv(x) = p(x)(zv) = @(BZ ,x%

for all v, and all x € X . Now take any 0O ¢ (PO,X) and let

(Sl""’sn) be its vector. We have s, = O(Yv) for all v ;

so by (3.6), (3.7), Lp (X)(OLP (X)(®)) takes o to
0 0

cPO(X) (p) (o) = <p,0o> = Zr\)(c(y\))) = m(ez

But IR

Loty )T P )

g
Z» (yv)

g , because it takes each y e¢. P to

Z\),U(Y\)) B 0

sz(y)g(yv) = G(sz(y)yv) = g(y) - the last equality from the
fact that {y } , {2z } are dual bases of P_. , dP_. . This
v ARV 0 0
proves that CP (X)(uP (X)(®)) = & , which proves (3.8).
0 0

(3.10) Corollary The form < , > giveﬁ in (3.6) is independ-
ent of the choice of bases {y }, {z } of P_,dP. . For
v v 070

a.. (X) 1is independent of this choice; now use (3.8), (3.7).

PO A

Formula With the notation above, we have for all 8 « (S,§Po)

k]

the following formula for the element Te e D(M,S)

(3.11) Te(h) = <6,hp0> =

o~ g

t (h(e )) , all h e (M,S) ,
v v

v=1

where vé(e) = (tl""’tn) ellﬁDS)ev is the vector of 6 , and

c sC € M are given by c, = po(yv) sy v =1,...,0 .

17"

Proof of (3.11) By (3.1) and (3.9), Te = D(pO,S)(;P (s)(8) .
0
Hence for all h ¢ (M,S8) , Te(h) = Lp (S)(e)(hpo) , which
0 .

equals <8,hp0> by (3.7). Since hpo € (PO,S) has vector

vg(hp) = (BpG(yq)s-+oshp (YD) = (B(ep),.nsh(e)) ,  the
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second equality in (3.11) follows from (3.6).

(3.12) Remarks (i) (3.11) may be called a 'tface formula’,
from its similarity to the formula Tr(h) = Ztv(h(cv)) for the
ordinary trace of an endomorphism h of a k-space U ({Cv} ,
{tv} being dual k-bases of U , DU respectively).

(i1) (3.5) shows that 8 1s expressed in terms of ¢t ,t

170ty

,a € A .

by 6(5)(szav) = Ztv(avs) », for s € S, aysee- n

(11ii) The following is sometimes useful:

(3.13) Ker 6 =
A\

o3

1g(t\)) >

where for any t ¢ DS , the 'core' c(t) of t 1is the largest
submodule of 8§ which is contained in Ker t . To prove (3.13),
notice that for each s ¢ S , 6(s) ¢ DAP is a linear form on

0

dPO = ZlA ... ® ZnA . Hence, and using (ii), 9(s) =0 if and
only if e(s)(sz) = tv(As) =0, i.e. if and only if

s € Eﬁtv) , for all v

4. Existence and construction of almost split sequences

(4.1) Proposition Take any indecomposable § ¢ mod A, put
M =8 , choose a resolution (2.1) of S , choose & e-(S,ﬁPO)
and make the ARG diagram as in section 2. Then the seguence
E(8):0 ~ AS £ E & s satisfies Im( ,g) = R( ,8) if and only if

the element Te =T ¢ D(8,5) satisfies

(4.2) T#0, T(rad End(S)) = 0 .

_19..



Proof By (2.15), Im{ ,g) = ( ,8) , where V = EE(TQ) .

zy
R

By definitions (1.4), (2.12), ( ,8) =z ( ,8) , where

J
J = rad End(S8) . Then (2.13,ii) shows that 1Im( ,g) = R( ,9)

if and only if EE(TQ) = J . But this is equivalent to Tq # 0,

TS(J) O, since J is the unique maximal right ideal of

(5,9) End(S)

(4.3) Corollary If 8 € mod A 1is indecomposable and not
projective, and if the resolution (2.1) is minimal, then E(8)
is an almost split sequence if and only if Te = T satisfies

(4.2).

Proof 1In the circumstances given, AS is indecomposable (see

(2.3)). Also Im( ,2) = R( ,S) implies Im(A,g) = R(4,8) ,
and R(A,S) = H(A,8) (see section 1), and H(A;8) = (A,S)
because there is no split epi h:A -+~ S . Therefore g 1is sur-

jective by (2.19,i). The corollary now follows from (1.6).

(4.4) Corollary (= 'Existence' part of Auslander-Reiten's
theorem (1.1).) Tf 8 ¢ mod A 1is indecomposable and non-
projective, then there is an almost split sequence ending with

S .

Proof It is clear that there is some T ¢ (8,8) satisfying
(4.2). By (2.16) there is some 8 ¢ (S,§PO) such that Te
equals this T . Then (4.3) finishes fhe procf of (4.4).

If we combine (4.3) with the trace formula (3.11), we get
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a 'recipe' for constructing almost split sequences. (Cf. the
recipe of Gabriel [9, p.17], which is based on Butler's [5, p.841l
I believe that (4.5) is easier and more flexible than this; it
can be regarded as a refinement of a method of Auslander which

is quoted in {5, p.85].)

(4.5) Recipe Given S and (2.1) as in (4.3), we choose

generators yl,...,yn of PO as in section 3. Clearly

S = Ac1 +...F Acn s, Where c, = po(yv) , v=1,...,n . Let

J = rad End(S) . Choose a A-submodule Y of S such that

JS €Y <8 ., This can surely be done, since JS is an A-sub-
module of § , and JS < S because J 1is nilpotent. We choose
the numbering of the y, » as we clearly may, so that c, ¢ Y .

1

Then ° ¢ elY , and so there is some t, 1in (DS)e1 such that

1
tl(Y) =0, tltcl) # 0. Now let 0 € (S,§PO) be defined by
requiring that its vector vé(e) be equal to (tl,o,...,O) .
By (3.11), Te(h) = tl(h(cl))~, for all h € End(S) . Imn
particular TS(IS) = tl(cl) #0 , and TS(J) = tl(Jcl) < tl(Y) =
=0, So T-= Te satisfies (4.2), hence E(8) 1is almost split
by (4.3).

This method has a useful bonus. By (3.13) we see that
Ker 6 = gﬁtl) =Y . So if we choose Y to be a méximal submodule
of § (and of course we may do this), then Ker 8 = Y . It is
some advantage to have Ker 6 maximal in §

, Since this makes

the pullback E(8) 'as near as possible' to a split sequence.
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(4.6) Remarks (1) If S 1is indecomposable and not projective,
and if 6 € (S,g?o) is such that Te = T satisfies (4.2), then
the proof of (4.3) shows that g 1is surjective, 1i.e.

Im 6 < Im gpl holds automatically.

(1ii) Auslander and Reiten give (at least) two proofs of the
'uniqueness' part of theorem (1.1): (a) using the case M = §
of their ideﬁtity (2.20), see [3, Prop. 4.3] or [9, §2.4], and
(b) using the fact that an almost split sequence E provides a
minimal projective resolution. (in Fun A) of the simple functor
( ,8)/R( ,8) . See [9, §1.4].

(iii) (Auslander-Reiten) An almost split sequence E auto-
matically satisfies the 'dual' condition to A3, namely A3' : if
X e mod A and if h e (N,X) 1is not split mono, them h factors

through £ . See [3, §4]. For a direct proof, see [9, Prop.1.5].

5. Appendix: case where A 1is symmetric

An algebra A 1is symmetric if there exists a linear function
j:A » k , such that the bilinear form { , }:A x A > k given by
{a,b} = j(ab) , for a,b ¢ A, 1is symmetric and non-singular
(see for example [7, p.4407). In this case we have for each
X ¢ mod A a map uX:dX -+ DX , given by uX(f) = jf , for all
f e d¥ . This is seen to be a natural isomorphism of right A-
modules. So we get a natural isomorphism WX:X + NX = DdX given
by

(5.1) WX(X)(f) = jf(x) , for all x e X , f e dX .
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Therefore we can eliminate the Nakayama functor from our
calculations, in case A 1s symmetric. Since this includes the
important case where A = kG is a finite group algebra, it may
be worth giving some details. Let (2.1) be a projective resol-
ution for M e mod A . It is usual to write OM = Ker Py >
QzM = Ker Py (these depend on (2.1), but are determined by ™

up to projective summands, cf. (2.3)). The exact sequence

inc p1> p Py
0

(5.2) 0—>§22M —_— P1

> M+ 0

is isomorphic to (2.2), as we see by applying the maps Vp s
' 1

W, » W , W, to the appropriate terms of (5.2). Take any
P1 PO M

8' ¢ (S,P,) , and define

(5.3) 6 = w, 0" ¢ (S,NP

Let F("):0 » QZM > F(8') —5:> S be the exact sequence
obtained from O - QZM > P1 -> PO by pullback over Py and

6" . Thus F(8") = {(v;s) € PlLl S}pl(v) =8'"(s)t , f£'(y) =
(v,0) , g'{v,s) =s , for y«¢ Ker ?1 = QZM and (v,s) ¢ F(8').
It is clear that F(&") = E(6) , and that Im( ,g) = Im( ,g")

By (2.15), Im( ,g') = EV( ,S) , where V = EEﬂTe) . Moreover
g' 1is surjective if and only if g 1is surjective, and in this
case we may regard 8' as element of (5,fM) and identify

F(8') with the short exact sequence obtained by pullback from

the short exact sequence (5.4) below.
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> M >~ O

gl

> QA > F(8'") —> S >0 .
ft g'

inc

. : . 2 . pl
(5.4) 00— M —> P1

F(6"):0

Ihparticular. F(®') is almost split if and only if E(®B) 1is.
The recipe (4.5) can be used to find almost split sequences

F@®') ; all we need is a formula to calculate 68' = W &}
: Q

directly from the vector vé(e)_= (tl,...,tn) of 8 . Using

(3.12,ii) and (5.1) we find the following: 6'(s) = ti(s)yl + ...

+ tx'l(s)yn for all s e S, where for each v , t&(s) is the

element of A defined by the equations
(5.5) {tl(s),a) =t (as) , for all ac4A.

Here { , } 1is the non—singular bilinear form defined above.
In the case A = kG s G 'a.finite group, one takes j to be the
linear form on A such tha£. i(g) = 1 or 0, according as
ge G is 1 or not. Ihen,(S.S) simplifies to give a direct

formula for tv(s) , Viz

: -1
(5.6) t'(s) = & t (g "s)g .
v v
geG
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