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Abstract. We examine the projective dimensions of Mackey func-
tors and cohomological Mackey functors. We show over a field of
characteristic p that cohomological Mackey functors are Goren-
stein if and only if Sylow p-subgroups are cyclic or dihedral, and
they have finite global dimension if and only if the group order is
invertible or Sylow subgroups are cyclic of order 2. By contrast, we
show that the only Mackey functors of finite projective dimension
over a field are projective. This allows us to give a new proof of a
theorem of Greenlees on the projective dimension of Mackey func-
tors over a Dedekind domain. We conclude by completing work of
Arnold on the global dimension of cohomological Mackey functors
over Z.

1. Introduction

We present several results on the projective dimension of Mackey
functors and of cohomological Mackey functors. We start off with the
result which began this investigation. It was surprising to us because
it describes a phenomenon which holds for some groups and not for
others.

Theorem 1.1. Let G be a finite group and k a field of characteristic
p. The following are equivalent:

(1) All injective cohomological Mackey functors have finite projec-
tive dimension.

(2) All projective cohomological Mackey functors have finite injec-
tive dimension.

(3) Sylow p-subgroups of G are either cyclic or dihedral (in case
p = 2).

Over a field of characteristic 0, Mackey functors and cohomological
Mackey functors are semisimple [15], so that the hypothesis on the
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characteristic of k is not necessary, provided we understand that 1 is a
Sylow 0-subgroup.

We call a finite dimensional algebra over a field Gorenstein if all
its projective modules have finite injective dimension and all its injec-
tive modules have finite projective dimension. Cohomological Mackey
functors may be regarded as modules for the cohomological Mackey
algebra (see [16]) which, by a theorem of Yoshida, may be identified as
the endomorphism ring of the direct sum of all transitive permutation
modules. Thus Theorem 1.1 tells us that the cohomological Mackey
algebra of G over a field is Gorenstein if and only if Sylow p-subgroups
of G are cyclic or dihedral.

It is quite useful to know that an algebra is Gorenstein. For instance,
the condition has a consequence for perfect complexes of modules for
the algebra, namely chain complexes of finitely generated projective
modules with only finitely many non-zero terms. An equivalent form of
the definition is that an algebra is Gorenstein if and only if every perfect
complex of modules for the algebra is isomorphic to a finite complex of
finitely generated injective modules in the bounded derived category,
and vice-versa. Work of Happel [11] shows that the bounded derived
category of perfect complexes has a Serre functor and has Auslander-
Reiten triangles if and only if the algebra is Gorenstein.

The fact that there are non-projective cohomological Mackey func-
tors which have finite projective dimension is quite interesting, and it
was studied by Tambara in his paper [14]. We recall that the finitistic
dimension of an algebra, when it is finite, is the largest projective di-
mension of any module of finite projective dimension. Tambara proved
that the finitistic dimension of cohomological Mackey functors over a
field of characteristic p is n + 1, where n the largest rank of an ele-
mentary abelian p-group which can appear as a subquotient of G. In
contrast, we have the following:

Theorem 1.2. Let k be a field. Then the finitistic dimension of the
category of Mackey functors Mackk(G) is 0.

This means that the only Mackey functors of finite projective dimen-
sion are projective, unlike the case of cohomological Mackey functors.
An equivalent statement is that every monomorphism between projec-
tive Mackey functors is split. We immediately obtain the following
consequence, which relies on the characterization of groups for which
the category of Mackey functors is self-injective in [16].

Corollary 1.3. Over a field k, the Mackey algebra for G is Gorenstein
if and only if it is self-injective, and this happens if and only if the
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characteristic of k is 0, or Sylow p-subgroups have order 1 or p in case
the characteristic of k is p.

The condition that Sylow p-subgroups have order 1 or p arises in
characterizing other properties of Mackey functors as well: it was shown
in [16] that the Mackey algebra is of finite representation type in pre-
cisely these circumstances, and also in [12, 16] that this is when the
Mackey algebra is symmetric. In fact, it is shown in [16] that when
Sylow p-subgroups have order 1 or p (each indecomposable summand
of) the Mackey algebra is a Brauer tree algebra.

We also deduce a result due (in the case of Mackey functors over
Z) to Greenlees [10]. It is an analogue of the result known as Rim’s
theorem in the case of group representations.

Corollary 1.4. Let R be a Dedekind domain and G a finite group.
Every Mackey functor for G over R which is a lattice (i.e. finitely
generated and projective as an R-module) and has finite projective di-
mension is projective. In general, finitely generated Mackey functors
over R have projective dimension 0, 1 or ∞.

Here is another deduction:

Corollary 1.5. Let

P = 0← Pm ← · · · ← Pn ← 0

be an indecomposable perfect chain complex of Mackey functors over a
field k. If the complex is not homotopic to zero then Hm(P) 6= 0 and
Hn(P) 6= 0.

This is an immediate consequence of Theorem 1.2 because if either
of the end homologies were zero, the map between the projectives at
that end would split.

We see from Theorem 1.2 that the category Mackk(G) of Mackey
functors over a field k has finite global dimension if and only if it is
semisimple. By results of [15] and [16], Mackk(G) is semisimple if and
only if |G| is invertible in k. The question of finite global dimension
for cohomological Mackey functors over a field is slightly different: we
record the following result, the most difficult part of which may be
deduced from calculations in Samy-Modeliar’s thesis [13].

Theorem 1.6. Let k be a field; then the category CoMackk(G) of co-
homological Mackey functors has finite global dimension if and only if
|G| is invertible in k or k has characteristic 2 and Sylow p-subgroups
are cyclic of order 2.



4 SERGE BOUC, RADU STANCU, AND PETER WEBB

We compare this with the global dimension of CoMackZ(G), the cat-
egory of cohomological Mackey functors over the integers, which turns
out to have finite global dimension more often than the corresponding
category over a field. Before stating this result we describe its history.
The result is mainly due to Arnold, who studied a closely related di-
mension in a series of papers [1]–[5] over about ten years. Arnold used
different language and formulated his definitions and results in terms
of modules, without mentioning Mackey functors. He was interested in
sequences of ZG-modules with the property that for all subgroups H of
G, the fixed point sequence under H is always exact, a property which
he called H0-exact, which Samy-Modeliar in [13] called superexact, and
which was highlighted also in [16, Cor. 16.7]. He developed a theory of
homological algebra using H0-exact resolutions by permutation mod-
ules. With the hindsight of Section 16 of [16] we can see that what he
was doing was exactly the same as considering projective resolutions in
the category of cohomological Mackey functors of fixed-point functors.
A number of his results, such as the uniqueness of his resolutions up
to chain homotopy, follow immediately from this point of view.

Because Arnold was only considering resolutions of fixed point func-
tors and his language was different he did not state any version of the
next result in the form in which we give it. There is, however, an im-
mediate connection with his work and the most substantial part of the
proof is due to him.

Theorem 1.7. Let G be a finite group. Over the integers Z the cat-
egory CoMackZ(G) of cohomological Mackey functors has finite global
dimension if and only for every prime p the Sylow p-subgroups of G
are cyclic when p is odd and cyclic or dihedral when p = 2.

In [1]–[5] Arnold established the finiteness of global dimension when
Sylow subgroups are cyclic or dihedral, appealing at one point to a
result of Endo and Miyata. He showed in some other cases that the
global dimension is infinite, but apparently did not finish this work.
From the account in [5] it seems he did not answer the question of
finite global dimension when there is a subgroup Cn

2 with n ≥ 3, and
he only makes a statement of infinite global dimension when there is a
subgroup C2 × C4, omitting the proof and writing that this would be
shown in a subsequent paper. The subsequent paper does not appear
to have been published. We are able to complete his work.

We will use the definitions, notation and basic properties of Mackey
functors that can be found in [16] or [17]. Thus, for instance, induction
and restriction of Mackey functors are exact, being both the left and
right adjoints of each other, and they send projectives to projectives,
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injectives to injectives. The projective (resp. injective) cohomological
Mackey functors are precisely the fixed point (resp. quotient) functors
associated to summands of permutation modules. We will also assume
basic facts about group representations, such as can be found in [6].

The rest of this paper is structured as follows. In the next section
we immediately prove Theorem 1.2 and its corollary. After that we
set about proving Theorems 1.1 and 1.6. In Section 3 we present the
induction-restriction arguments which are used in the proofs of both
these theorems. After that Theorem 1.6 is proved in Section 4, The-
orem 1.1 is proved in Sections 5 and 6 and Theorem 1.7 is proved in
Section 7.

We wish to thank the Mathematics Department of Bilkent Univer-
sity, and also the Center for Mathematical Sciences, UNAM, Morelia
for hospitality while much of this work was done. For financial sup-
port while visiting UNAM the first two authors thank ECOS project
M10M01 and CONACYT and the third author thanks the Simons
Foundation.

2. Proof of Theorem 1.2 and Corollary 1.4

In this short section we simply prove Theorem 1.2 and its corollary
since they are separate from the other proofs.

Proof of Theorem 1.2. We show that every monomorphism φ : X → Y
between projective Mackey functors X and Y is split. When the field
k has characteristic zero this is so because the category of Mackey
functors is semisimple [15]. Now suppose k has positive characteristic
p. Our first step is to apply the results of [16, Sect. 9 and 10] to
reduce to the case when X and Y lie in the category Mackk(G, 1)
consisting of Mackey functors which are projective relative to a Sylow
p-subgroup. The argument here is that the category Mackk(G) of all
Mackey functors is the direct sum of categories Mackk(G, J) where J =
Op(J) is a p-perfect subgroup of G, characterized in several ways in [16,
Sect. 9]. Furthermore Mackk(G, J) is equivalent to Mackk(NG(J), 1) by
[16, Theorem 10.1]. Since X and Y are projective it is equivalent by [16,
Theorem 12.7] to require that every summand of these functors is non-
zero on 1, and in fact we know by this result that X(1) and Y (1) are p-
permutation modules. The subfunctors of X and Y generated by their
values at 1 are isomorphic to FQX(1) and FQY (1) respectively, by [16,
Lemma 12.4], and so φ restricts to a morphism φ : FQX(1) → FQY (1),
which must also be a monomorphism. Now these fixed quotient Mackey
functors are cohomological and they are injective in CoMackk(G) by
[16, 16.12]. Thus the restriction of φ to FQX(1) is split. From this



6 SERGE BOUC, RADU STANCU, AND PETER WEBB

we deduce that the map of kG-modules φ(1) : X(1) → Y (1) is split
mono. We now quote Lemme 5.10 from [7]. This says that for each
p-subgroup H, the quotient

X(H) := X(H)/
∑
L<H

tHLX(L)

equals the Brauer quotient or residue of X(1) at H, defined as

X(1)[H] := X(1)H/
∑
L<H

TrH
L (X(1)L).

There is a similar identification for Y . It follows that for each p-
subgroup H the map X(H) → Y (H) induced by φ is split mono.
Finally we apply Lemme 6.3 from [7] which implies that the morphism
of Mackey functors φ is split mono. �

Proof of Corollary 1.4. Suppose that M is a Mackey functor which is
finitely generated and projective as an R-module. Suppose that

0←M ← P0 ← · · · ← Pn ← 0

is a finite projective resolution of M in MackR(G). Reducing the res-
olution modulo any maximal ideal I of R we get a finite projective
resolution of M/IM in MackR/I(G), and so by Theorem 1.2 M/IM is
projective in this category. By standard results on lifting of idempo-
tents it follows that the completion M∧

I is a projective Mackey functor
over R∧I . From this we deduce that M itself must be projective, by the
analogue of [9, Prop. 8.19] for the completion, instead of the localiza-
tion (the properties of localization used are that it is flat over R, and
R embeds into the product of the localizations, and the same is true
for completion).

As for the last sentence, if M is any finitely generated Mackey functor
and P → M is a surjective map from a projective P with kernel K,
then K is a lattice. If M has finite projective dimension, so does K,
so that K must be projective, and pdM ≤ 1. The result follows. �

3. Some reductions

In proving Theorems 1.1 and 1.6 we will reduce to questions about
subgroups.

Lemma 3.1. Let G be a finite group

(1) Let R be a commutative ring and H a subgroup of G. Then the
global dimensions of cohomological Mackey functors satisfy

gd CoMackR(H) ≤ gd CoMackR(G).
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Specifically, if M is a cohomological Mackey functor for H then
the projective dimension pdM computed in CoMackR(H) is at
most pdM ↑GH computed in CoMackR(G). In case R is a field
and M happens to be injective, then so is M ↑GH , so if injec-
tive cohomological Mackey functors for G have finite projective
dimension then the same is true for H.

(2) Suppose k is a field of characteristic p and let H be a Sylow
p-subgroup of G. Then

gd CoMackk(H) ≥ gd CoMackk(G).

Thus gd CoMackk(H) is finite if and only if gd CoMackk(G) is,
in which case the global dimensions are equal. If all injective
cohomological Mackey functors for H have finite projective di-
mension then the same is true for G.

Proof. (1) If M ∈ CoMackR(H) is such that

0←M ↑GH← P0 ← P1 ← · · · ← Pn ← 0

is a finite projective resolution of M ↑GH as a cohomological Mackey
functor for G then

0←M ↑GH↓GH← P0 ↓GH← P1 ↓GH← · · · ← Pn ↓GH← 0

is a projective resolution of M ↑GH↓GH . Now M ↑GH↓GH has M as a
summand, by the Mackey formula, so we deduce that M has a finite
projective resolution, of length at most pdM ↑GH . This establishes part
(1).

(2) The proof is similar to the proof of (1), using the fact that co-
homological Mackey functors are projective relative to H. Thus if
N ∈ CoMackk(G) then N is a direct summand of N ↓GH↑GH . If N ↓GH
has a projective resolution

0← N ↓GH← P0 ← · · · ← Pn ← 0

in CoMackk(H) then

0← N ↓GH↑GH← P0 ↑GH← · · · ← Pn ↑GH← 0

is a projective resolution of N ↓GH↑GH in CoMackk(G). Hence the direct
summand N has projective dimension at most that of N ↓GH . If N is
injective, so is N ↓GH . This completes the proof. �

Corollary 3.2. Over a field k of characteristic p, a group has the
property that its injective cohomological Mackey functors have finite
projective dimension if and only if the same is true for its Sylow p-
subgroup.
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Proof. This follows from the statements about injective functors in
Lemma 3.1. �

4. Proof of Theorem 1.6

We are now ready to prove Theorem 1.6.

Proof. The result is true when k has characteristic 0, since then coho-
mological Mackey functors are semisimple by [15], so they have finite
global dimension, and also |G| is invertible in k.

Suppose that k has characteristic p. It suffices to assume that G is
a p-group, by Lemma 3.1(2).

When G is a cyclic p-group, denoting the two simple Mackey functors
S1,k and SG,k by 1 and G (to make the notation easier), the projective
cohomological Mackey functors have the structure

PG,k = FPk = G
1

and P1,k = FPkG =

1
1... G
1

1

where Rad(P1,k)/ Soc(P1,k) is the direct sum of a uniserial functor with
p−2 copies of S1,k as composition factors, together with a copy of SG,k.
When p = 2, only SG,k appears. We see immediately when G = C2 that
both simples have finite projective resolutions and so CoMackk(C2) has
finite global dimension. In fact, it is a highest weight category. When
p > 2 the simple S1,k has an eventually periodic minimal resolution

0← S1,k ← P1,k ← P1,k ⊕ PG,k ← P1,k ⊕ PG,k ← · · ·

so that CoMackk(Cp) does not not have finite global dimension if p > 2.
By Lemma 3.1(1) it remains to show that CoMackk(G) has infinite

global dimension when G = C4 and G = C2 × C2 and k has charac-
teristic 2, since any p-group other than C2 has one of these groups or
Cp as a subgroup, and that will be sufficient to show infinite global
dimension for arbitrary G.

In the case of C4 the Mackey functors were described in [18] and the
projective cohomological Mackey functors have the structure

P1 =

1
1 2

4
21

1

P2 =

2
41 2

1

P4 =
4
2
1

with some non-split extensions between composition factors in the case
of P1 which are not shown in the diagram. From this we see in this
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case also that the simple S1,k = 1 has a minimal projective resolution
which is eventually periodic:

0← S1,k ← P1 ← P1 ⊕ P2 ← P1 ⊕ P2 ← · · ·

Finally in the case of C2×C2 we see from [8] that cohomological Mackey
functors over k do not have finite global dimension. �

5. Proof of Theorem 1.1 part 1: constructing resolutions

Most of the time in this section we will work over a field k of positive
characteristic p. We divide the proof of Theorem 1.1 into two parts.
In this section we show that groups with cyclic or dihedral Sylow p-
subgroups have Gorenstein cohomological Mackey functors. In the next
section we show that other groups do not.

We first establish the equivalence of conditions (1) and (2) of Theo-
rem 1.1.

Proposition 5.1. Let k be a field. For a finite group G the following
are equivalent:

(1) All injective cohomological Mackey functors for G over k have
finite projective dimension.

(2) All projective cohomological Mackey functors for G over k have
finite injective dimension.

Proof. This is a consequence of Mackey functor duality, which preserves
cohomological Mackey functors and interchanges projectives and injec-
tives. �

We now show that groups with cyclic or dihedral Sylow p-subgroups
have Gorenstein cohomological Mackey functors, over a field of char-
acteristic p. We have already seen in Corollary 3.2 that it suffices to
show that this is so for the cyclic and dihedral groups themselves. We
will produce finite projective resolutions of the injective cohomological
Mackey functors for these groups.

Our first result in this direction shows how we may always start a
projective resolution of a fixed quotient functor. Although we will ap-
ply it to Mackey functors defined over a field, it holds in general over
a commutative ring R. We consider a resolution of an RG-module M
which might not be minimal or uniquely determined. In this situa-
tion we use Ω2M to denote the kernel in the resolution at the second
stage. It might have non-trivial projective summands and might not
be uniquely defined.
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Proposition 5.2. Let M be an RG-module where R is a commutative
ring and let

0←M ← P0 ← P1 ← Ω2M ← 0

be the start of a projective resolution of M . Then

0← FQM ← FPP0 ← FPP1 ← FPΩ2M ← 0

is an acyclic complex which is the start of a projective resolution of
FQM . If R is a field and the resolution of M is minimal then the res-
olution of FQM is also minimal, so that Ω2

CoMack(G)FQM
∼= FPΩ2

RGM .

Proof. We apply the functors FQ and FP to the start of the resolution
to get a commutative diagram

0 ←− FQM ←− FQP0 ←− FQP1y∼= y∼=
FPP0 ←− FPP1 ←− FPΩ2M ←− 0

The middle isomorphisms arise because when U is a projective RG-
module, FPU and FQU are naturally isomorphic projective-injective
cohomological Mackey functors by [16]. The top row is exact because
FQ is right exact and the bottom row is exact because FP is left exact.

If R is a field and the resolution of M is minimal then so is the
resolution of FQM , because otherwise it would have a complex as a
direct summand, the only summands of the functors FPU are again
fixed point functors corresponding to summands of U , and this would
give a summand of the original resolution which was supposed to be
minimal. �

Theorem 5.3. Let k be a field of characteristic p. If G is a cyclic p-
group or p = 2 and G is a dihedral 2-group then injective cohomological
Mackey functors for G over k have finite projective dimension.

Proof. The injective cohomological Mackey functors have the form

FQk↑GH
∼= FQk ↑GH

where H ≤ G, since the permutation modules k ↑GH for a p-group are
indecomposable. If we can find a finite projective resolution of FQk

as a functor for H then its induction to G gives a finite projective
resolution of FQk↑GH

as a functor for G. This means that it suffices
to construct a finite projective resolution for FQk when G is cyclic or
dihedral, since subgroups of such groups have the same form.

When G is cyclic, take the start of a projective resolution of kG-
modules

0← k ← kG← kG← k ← 0
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and apply Proposition 5.2. We get a finite resolution by projective
cohomological Mackey functors:

0← FQk ← FPkG ← FPkG ← FPk ← 0.

Now suppose p = 2 and G is a dihedral 2-group. We construct a
resolution

0← FQk ← FPkG ← FPkG2 ← FPkX ← FPkY ← 0

where X and Y are G-sets and the map FPkG2 ← FPkX factors as
FPkG2 ← FPΩ2k ← FPkX . The regular representation kG is described
by a diagram

Each node of the diagram corresponds to a basis element of kG, and
if G = 〈s1, s2〉 where s1, s2 are elements of order 2 then application of
s1 − 1 to a basis element is indicated by going down a solid line, and
application of s2 − 1 to a basis element is indicated by going down a
dashed line. If there is no line to go down we get zero. We see by direct
calculation that Ω2(k) has diagram

Let H = 〈s1〉 and K = 〈s2〉 and let C be the cyclic subgroup of G of
index 2 (which, in the case of C2×C2, must be the one which is distinct
from H and K). We take X = G/H t G/C t G/K and we see that
there is a surjection Ω2(k)← kX which is surjective after taking fixed
points under any subgroup of G. The kernel of this map is the trivial
module k, so we take Y to be a single point. In case G = C2×C2 these
maps have been constructed in [13].

�

6. Proof of Theorem 1.1 part 2: groups whose
cohomological Mackey functors are not Gorenstein

In this section we show that if a group does not have Sylow p-
subgroups which are cyclic or dihedral then its cohomological Mackey
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functors are not Gorenstein. We have seen in Corollary 3.2 that it
suffices to consider p-groups to show this. We proceed by reducing
the question to the minimal p-groups which are not cyclic or dihedral.
These groups are identified in the next lemma.

Lemma 6.1. Let G be a finite 2-group without any subgroup isomorphic
to C2 × C4, Q8 or C2 × C2 × C2. Then G is either cyclic or dihedral.

Proof. Suppose first that G has no normal subgroup isomorphic to
C2 × C2. Then G is either cyclic, dihedral, generalized quaternion, or
semi-dihedral. In the latter two cases G admits a subgroup isomorphic
to Q8. So we can assume that there is a normal subgroup N of G
isomorphic to C2 × C2.

Let x be an element of the centralizer of N in G. Then the subgroup
A of G generated by x and N is an abelian 2-group without any sub-
group isomorphic to C2 × C4 or C2 × C2 × C2. Then A is either cyclic
or isomorphic to C2 ×C2, as can be seen from the decomposition of A
as a direct product of cyclic groups. It follows that A = N , hence that
CG(N) = N . Then the group G/N is a 2-subgroup of the automor-
phism group of N , which has order 6. Hence G has order at most 8,
and the assumption implies that G is either cyclic or dihedral. �

Corollary 6.2. If G is a p-group which is not cyclic (arbitrary p) or
dihedral (in case p = 2) then G has a subgroup isomorphic to Cp × Cp

in case p is odd, or C2 × C4, Q8 or C2 × C2 × C2 in case p = 2.

In the arguments which follow we will use more than once that fact
that the final non-zero term in a finite minimal projective resolution of
a non-projective object cannot have a summand which is injective (as
well as projective), because that summand can be split off to produce
a smaller resolution. This will be applied to the cohomological Mackey
functor FPkG

∼= FQkG, which is both projective and injective, by [16,
Prop. 13.1].

Proposition 6.3. Let G be one of the groups C4 × C2 or Q8 and let
k be a field of characteristic 2. Let H ≤ G be the subgroup C2 × C2 in
case G = C4 × C2, and let H be one of the cyclic subgroups of order 4
in case G = Q8.

(1) If X is a G-set for which kX ↓GH has a summand isomorphic to
kH then X contains a regular G-orbit.

(2) The fixed quotient functor FQk does not have finite projective
dimension.

Proof. (1) We need only consider G-sets X of the form G/K where K is
a subgroup of order 2 and show that k[G/K] ↓GH never has a summand
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isomorphic to kH. Since such a subgroup K is normal and contained
in H, the module k[G/K] ↓GH is induced from K and so cannot contain
a copy of kH.

(2) By Tambara’s theorem [14] we know in both cases that if FQk

has finite projective dimension then this dimension must be at most 3.
By Proposition 5.2 there will thus be an acyclic complex

0← FQk ← FPkG ← FPkG2 ← FPkX ← FPkY ← 0

for some G-sets X and Y , and where the map FPkG2 ← FPkX factors
through FPΩ2k. The module Ω2

Gk has dimension 9, and on restriction
to H it is Ω2

Hk ⊕ kH when G = C4 × C2 since Ω2
Hk has dimension

5, and it is Ω2
Hk ⊕ kH2 when G = Q8 since then Ω2

Hk has dimension
1. It follows that kH must be the image of a summand of kX after
restriction to H. Hence by part (1), X must have a regular G-orbit,
giving a summand kG of kX. This summand restricts to H as kH2

and since such modules do not appear at this stage in the minimal
resolution of FQk over H, one of the summands kH must lie as a
summand of kY ↓GH . It follows by part (1) that Y contains a regular
G-orbit. This gives a summand of Y isomorphic to FPkG

∼= FQkG,
which is injective. From this we see that no resolution of the form we
postulated can be minimal, which is absurd. �

Proposition 6.4. Let G = Cp × Cp and let k be a field of character-
istic p ≥ 3. Then the fixed quotient functor FQk does not have finite
projective dimension.

Proof. The regular representation kG is described by a diagram which,
in case p = 3, looks like

.

Each node of the diagram represents a basis vector of the vector space
kG. Writing G = 〈g, h〉, a southwest edge below a node indicates that
g − 1 times the node at the top of the edge is the node at the bottom
of the edge, and similarly h− 1 times a node is the node immediately
southeast of the starting node. The absence of an edge underneath a
given node means that the corresponding action of g − 1 or h − 1 is
zero.
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By direct calculation we may find the diagram for Ω2k, and when
p = 3 it is

.

When p > 3 the picture is similar, but the piece in the middle is
thicker. We see that the Loewy length of this module is 4 when p = 3,
and in general it is 2p − 2 and dim Ω2k = p2 + 1. Note that if H
is a non-identity subgroup of G then dim k ↑GH≤ p and so the Loewy
length of such a permutation module is at most p. It follows that Ω2k
cannot be a homomorphic image of permutation modules induced from
non-identity subgroups.

Suppose, now, that FQk has finite projective dimension, so that by
Tambara’s theorem there is a minimal acyclic complex

0← FQk ← FPkG ← FPkG2 ← FPkX ← FPkY ← 0

for some G-sets X and Y where the map FPkG2 ← FPkX factors
through FPΩ2k. By the previous remarks, kX must have a summand
kG which is induced from the identity. We also see that kX must have
summands k ↑GH where |H| = p in order to obtain surjectivity on the
fixed points under such subgroups from fixed points in kX. Since at
least one such subgroup H must be a stabilizer of an orbit in X, so
must all p + 1 subgroups of G, since the resolution is canonical and
so invariant under Aut(G), which acts transitively on subgroups of
order p. From this we see that kX ∼= kG ⊕

⊕
H≤G, |H|=p k ↑GH and so

has dimension 2p2 + p, because we have already seen that kX must
have at least these summands and there is indeed a homomorphism
Ω2k ← kX which is surjective on all fixed points. It follows that
|Y | = 2p2 + p− (p2 + 1) = p2 + p− 1.

Now kY cannot have a copy of kG as a summand because if it did,
FPkY would have an injective summand which would split off, contra-
dicting the minimality of the resolution. Also we see that kY does not
have the trivial action because there are distinct elements of kX which
map to the same element of Ω2k, not in the socle. It follows that kY
has a summand k ↑GH where |H| = p, and hence has summands of this
type for all p+ 1 subgroups H of order p since the resolution is canoni-
cal. This gives a dimension for kY at least p(p+1). This is larger than
the actual dimension of p2 + p− 1: a contradiction. �

We now consider the case of the group G = C2×C2×C2 over a field
k of characteristic 2.
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Proposition 6.5. Let G be the group C2 × C2 × C2 and k a field of
characteristic 2. The fixed quotient functor FQk does not have finite
projective dimension.

Proof. By Tambara’s theorem [14] and Proposition 5.2 if FQk has finite
projective dimension there is a minimal resolution of the form

0← FQk ← FPkG ← FPkG3 ← FPkX ← FPkY ← FPkZ ← 0

where some of the terms at the end might possibly be zero. We will
exploit the fact that this minimal resolution is canonical, so that if
a summand FPk[G/H] appears in one of the terms, then FPk[G/K] also
appears for every subgroup K conjugate to H under the automorphism
group of G, which in this case means every subgroup of the same size
as H. With this in mind we define G-sets

A = G/1, B =
⊔

H≤G, |H|=2

G/H, C =
⊔

H≤G, |H|=4

G/H, D = G/G.

Thus each of X, Y and Z is a disjoint union of copies of A,B,C and
D with some multiplicities.

Fix a subgroup H0 ≤ G of order 4, and let S be the H0-set

S = H0/J tH0/K tH0/L

where J,K, L are the three subgroups of H0 of order 2. We compute
the restrictions

A ↓GH0
= (H0/1)2

B ↓GH0
= (H0/1)4 t S2

C ↓GH0
= S2 t (H0/H0)2

D ↓GH0
= (H0/H0).

Notice that S only appears 0 or 2 times in these restrictions.
We now restrict the minimal resolution of FQk to H0, whereupon it

becomes a resolution of FQk as a functor for H0. The minimal such
resolution was described in Theorem 5.3, and so after restriction we
obtain this resolution

0← FQk ← FPkH0 ← FPkH2
0
← FPkS ← FPk ← 0

direct sum a contractible complex of fixed point functors for H0. We
see that kX restricts to have a summand kS, and so it must restrict to
have an even number of such summands. No kS summands can appear
earlier in the resolution (only free modules appear), so all except one of
the kS summands (an odd number) must pair up with such summands
in the restriction of kY . The restriction of kY has an even number of
summands, none of which appear in the minimal resolution over H0,
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so an odd number of them must pair up with such summands in the
restriction of kZ. This means that kZ restricts to have an odd number
of kS summands, which is not possible. This contradiction shows that
a finite projective resolution of FQk does not exist over G. �

Putting the results of this section together with Corollary 3.2 we
have now completed the proof of Theorem 1.1.

7. Cohomological Mackey functors over Z: the proof of
Theorem 1.7 and the integral Gorenstein property

In [1]–[5] Arnold defines a finitely generated ZG-module U to have
C1 (or permutation projective) dimension ≤ n if there is a complex of
ZG-modules

0← U ← P0 ← P1 ← · · ·
in which the Pi are direct summands of permutation modules, Pk = 0
for k > n and such that for every subgroup H ≤ G the fixed point com-
plex under the action of H is acyclic. A finite group G has C1 global
dimension ≤ n if every finitely generated ZG-module has C1 dimen-
sion ≤ n. We start by making clear the connection between Arnold’s
concept of C1 dimension and the global dimension of cohomological
Mackey functors.

Proposition 7.1. A finite group G has finite C1 global dimension if
and only if CoMackZ(G) has finite global dimension.

Proof. The condition on the complex in the definition of C1 dimension
is the same as requiring that

0← FPU ← FPP0 ← FPP1 ← · · ·

be a finite projective resolution of FPU in CoMackZ(G), by [16, Sec.16].
If CoMackZ(G) has finite global dimension then every FPU has finite
projective dimension, and so G has finite C1 dimension.

Conversely, if G has finite C1 dimension then every FPU has finite
projective dimension as a cohomological Mackey functor. If M is any
cohomological Mackey functor and

0←M ← FPU0 ← FPU1 ← · · ·

is the start of a projective resolution then the kernel of FPU0 ← FPU1

has the form FPK1 where K1 is the kernel of the homomorphism
U0 ← U1 which induces the map of fixed point functors, since FP
is left exact. Now finite C1 dimension implies that FPK1 has a finite
projective resolution, and hence so does M . �



ON THE PROJECTIVE DIMENSIONS OF MACKEY FUNCTORS 17

Proof of Theorem 1.7. Arnold observes in [5] that the determination of
finite global C1 dimension will be completed by considering the case of
elementary abelian 2-groups of rank ≥ 3. He also claims that C2 × C4

has infinite C1 dimension, but refers to a future paper which does not
seem to have appeared. We show that both C2×C2×C2 and C2×C4

have infinite C1-dimension, and this will fill the gaps left by Arnold in
proving the theorem, since once a group has a subgroup of infinite C1

dimension, the whole group also has infinite C1 dimension (part (1) of
Lemma 3.1).

We claim that for both of these groups the cohomological Mackey
functor FQZ has infinite projective dimension. To see this, let

0← FQZ ← FPU0 ← FPU1 ← FPU2 ← · · ·

be a projective resolution of FQZ in CoMackZ(G). Evaluating this
complex at any subgroup of G gives an acyclic complex of free abelian
groups, which must therefore be split everywhere (i.e. it is contractible)
as a complex of abelian groups. It follows that on applying F2⊗Z− the
complex remains acyclic. Furthermore F2 ⊗Z FPUi

∼= FPF2⊗ZUi
since

Ui is a summand of a permutation module, and hence F2 ⊗Z FPUi
is

a projective cohomological Mackey functor. We have shown that the
reduction modulo 2 is a projective resolution of F2 ⊗Z FQZ ∼= FQF2 .
We have seen in Propositions 6.3 and 6.5 that for both C2×C2×C2 and
C2×C4 the fixed quotient functor FQF2 does not have finite projective
dimension. It follows that the resolution of FQZ cannot be finite. �

Note that the above argument shows also that Q8 has infinite C1

dimension in view of Proposition 6.3(2), which allows us to deduce
that FQZ does not have a finite projective resolution in CoMackZ(Q8).
This was one of the main results of [5]. Similarly Cp × Cp has infinite
dimension when p is odd by the above argument and Proposition 6.4.
This was a main result of [2] in the case of C3×C3 and of [4] for Cp×Cp

for odd p in general.
We conclude with a discussion of the Gorenstein property of coho-

mological Mackey functors over Z. Such Mackey functors are modules
for the cohomological Mackey algebra µcoh

Z (G) over Z which, by [16],
is a Z-order in the cohomological Mackey algebra µcoh

Q (G) over Q, and

this is a semisimple algebra. We are interested in the µcoh
Z (G)-lattices,

namely the cohomological Mackey functors all of whose evaluations are
finitely generated free abelian groups. There is a duality on µcoh

Z (G)-
lattices given by M∗ := HomZ(M,Z) which interchanges fixed point
functors with fixed quotient functors and we consider the dualizing
module ω := (µcoh

Z (G))∗. According to [9, Sect. 37] we say that µcoh
Z (G)
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is a Gorenstein order if ω is projective. Now we know from [16, The-
orem 16.5] that the projective µcoh

Z (G)-modules are the FPU where U
is a summand of a permutation ZG-lattice and so, as a left µcoh

Z (G)-
module, µcoh

Z (G) is such a FPU . Thus ω is the corresponding FQU∗ . It
is a restrictive condition to require that FQU∗ be projective: it means
that each summand of FQU∗ must be a functor FPV for some sum-
mand V of a permutation ZG-lattice. In fact, the projective functor
FPZ is generated by a single element in its value at G and so is an
image, and hence a summand, of µcoh

Z (G). Thus FQZ is a summand
of ω. But direct calculation shows that FQZ has the form FPV only
when G = 1, and so µcoh

Z (G) is a Gorenstein order only when G = 1.
In view of this we consider in the next result a weaker property.

Corollary 7.2. Let G be a finite group. The following conditions are
equivalent.

(1) For each prime p the Sylow p-subgroups of G are cyclic or di-
hedral (if p = 2).

(2) CoMackZ(G) has finite global dimension.
(3) The dualizing module ω has finite projective dimension.

Proof. We have already seen in Theorem 1.7 the equivalence of (1) and
(2). It is immediate that (2) implies (3). To show that (3) implies (1),
we show the contrapositive. Suppose that G has a Sylow p-subgroup
which is not cyclic or dihedral; then G has a subgroup Cp×Cp in case p
is odd, or C2×C4, Q8 or C2×C2×C2 in case p = 2, by Corollary 6.2. We
have seen in the proof of Theorem 1.7 and in the comments afterwards
that in all these cases FQZ has infinite projective dimension. By our
discussion prior to this corollary, this lattice appears as a summand of
ω and so ω also has infinite projective dimension. �
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