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Chapter o Introduction

Cne of the most useful tools in Mathematics and

Theoretical Physics is the study of an objeet from the

point of view of its group of symmetries. Thus for

example Galois in the last century proVed the insolubility

ot the generaI quintie equation by radicals, by looking

at the symmetry groups of field extensions; and more

recentIy Lie Groups have played an enormous part in the

theory of. fundamental particles in Physics.

Groups can be broken down into basie building blocks

called simple groups (under some basic assumptions

satisfied by most intereBting groups including alI finite

groups and alI Lie groups) so that structure theory breaks

down naturally into two ~arts :

1) What are the simple groups ?

2) How are they glued together to make an arbitrary

group ?

There are many questions for which an answer to 1)

and Bome induction argument gives the full answer, but

2) is in generaI more intractabIe than 1).

For compact Lie groups, the answers to both 1) and

2) were fully worked aut earlier this century by Cartan,

Weyl, etc.

For finite groups the situation is more complicated.

Vork on the classification of finite simple groups is

stilI in urogress, and a generaI description of the

present state of the theory can be found in [1]. The

second question is only tractable in restricted situations.
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The currently known finite simple groups, which are

thought to comprise at least most, if not all, of the

possible ones, are :

(i) The Alternating Groupa c.4 n for n ~ 5

(ii) The Chevalley Groupa Chev(pn)

(iii) The twiated Chevalley Groups rChev(pn)

(iv) 26 Sporadic Groups, not fitting into classes (i) - (iii)

Classes (ii) and (iii) are the finite analogues

of the compact Lie groups.

Of the 26 Sporadic groups, at the beginning of

199o two had not been proven to exist, namely F1 the 'Monster'

(eo calIed because of its enormous aize - it has

46 20 9 6 2 3 )2 .3 .5.7 .11 .13 .17.19.23.29.31.41.47.59.71 elements

and Janko's fourth group J 4 • However, in January Robert

L. Griess announced that he had constructed the Monster

and that his construction had been carried aut entirely

by hand, and in February, S.Norton, R.Parker, J.Conway,

J.Thackray and I completed our proo! of the existence of

J 4 using a computer (see [4J). It ia the latter group

which I wish to discuss in this dissertation.

In the process of trying to classify finite simnle

groups with a 'large' extraspecial 2-subgroup (an

extraspecial p-subgroup E is large in G if E = 0p(CG(E'»

and CG(E) ~ E ), Janko [2] conjectured the

existence of a new sporadic group J4 • In particular,

he proved that given a finite simple group G aatiafying



Hypothesis A

The centralizer of some involution CG(z) = H

ie of shape 21+12.3M22.2 with 02(H) extraspecial

and containing its centralizer, and modulo <z)

H splits over 02(H), with as complement the triple

cover of M22 with the outer automorphism adjoined.

(a group is of SHAPE A.B or AB when it has a normal

eubgroup of shape A with quotient of shape B ; names

ot groups are shapes; an elementary abelian group of order

pn has shape pn ; a special group whose centre has order

pm and index pn has shape m+n etc.)p ,

then G satisfies a list of properties including

(i)

(ii) A Sylow 2-subgroup of G possesses exactly one

elementary abelian subgroup of order 211 and the

normalizer of such a subgroup is a split extension of

shape 211~4 where the action of ~4 on the elementary

abelian subgroup is the same as on the even portion of

the dual of the Golay Code.

(iii) G possesses exactly one conjugacy-class o~

self-centralizing elementary abelian subgroups of order

210 , and the normalizer of such a subgroup 1s a split

extension of shape 210L5 (2) where the action of L5 (2)

on the elementary abe11an subgroup is the same as the

action on the skew-square (i.e. exterior second power)

ot a natural 5-dimensional module.

(iv) G possesses a special 2-subgroupof shape 23+12

whose normalizer is of shape 23+12 (85 X L
3
(2». This

group does not split over its °2 , but does conta1n

subgroups 1somorphic to 85 and L3(2). It contains
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the Sylow 5-normalizer in G of ehape 5.4 X 23L3 (2)

(vith the 23L
3

(2) non-eplit) and the 7-normalizer of

shape 7.3 X S5 •

(v) For p = 23, 29, 31, 37 and 43, a Sylow p-eubgroup

le self-centralizing with normalizers of shape 23.22,

29.28 ,31.10 ,37.12 and 43.14 respectively (alI

Frobenius groups). Sylow 3- and 11-subgroups are

extraspecial with normalizers of shape 31+2.8.2

(semidihedral 2-subgroup of order 16) and 11 1+2 (5 X 2S )4
( 284 non-split ) respectively.

(vi) G possesses PGL2(23) as a subgroup.

(vii) The character table of G is known and was

determined in Cambridge in 1975 by J.Conway, S.Norton,

J.Thompson and D.Hunt (see Appendix A ).

In January 1980 , Thompson and Norton showed that

a eimple group satisfying these conditions is unique, using

character-theoretic methods (before the existence proof

vae completed) and BO I shall say that any group satisfying

the above conditions ia 'isomorphic to J4'.

In this dissertation, I shall develop notations for

working inside J4 , give the existence proof, and provide

a presentation for J4 by generators and relators. I shall

use [2] and the character table of J4 as my starting

point.

Complete familiarity with the Mathieu groups will

be assumed, although I have spent Chapter 1 developing
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Ourtis' MOG for M24 • The approach given is a recent

unpubliehed one due to Conway~

In Ohapters 2, 3, 4 and 5, I take an 'incidenti set

of representatives (in the sense of Smith and Ronan [11],

Bee the CODA after Chapter 5 ) H, M, P and L of the

four conjugacy classes of maximal 2-1ocal subgroups of

and develop notations for working with them, given

J 4 exists.

Chapter 2 gives a notation for working inside the

maximal 2-1ocal H = CJ (z) of shape 21+12.3M22.2
4

described in Hypothesis A above. The notation is mostly

due to Conway.

In Ohapter 3 a particular representative M is

choeen of the conjugacy class of maxim~l 2-1ocals of

shape 211 M24 described in (ii) above and the I dictionary I

le developed between the notations for elements of Mn H

ae elements of M and as elements of li • Some elementary

consequences of this dictionary are then investigated,

for use later ono Thie chapter is mostly my own work.

Ohapter 4 describes a particular representative P

of the claee of maximal 2-1ocals of shape 23+12 (S5 X L
3

(2»

described in (iv) above, and describea the notation due

to Conway for elemente of this. This notation ie not used

again but ie included for the sake of completenese.

In Chapter 5 a representative L ie choaen of the

claes of maximal 2-1ocals of shape 2'OL5 (2) described

in (iii) above, and a particularly good complement for

02(L) in L ia found. This chapter is my own work.
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Chapter 6 describes the construction by Norton,

Parker and Thackray of a pair of 112 X 112 matrices

over GF(2) generating J 4 ' some of the methods developed

by Parker and Thackray for dealing with 2-modular

representations on a computer, and the proof by Norton,

Parker, Conway, Thackray and myself that the group

generated by these matrices ia indeed isomorphic to J4 •

The main heavy computer work in thia proof is involved

in showing that the skew-square of the 112-dimensional

representation has an invariant subspace of dimension

4995.

In chapter 7 , further details of the geometry of

the 112-dimensional representation are investigated, anà

a presentation for J 4 by generators and relators is

proven. This presentation consists of adding two relators

to the amalgamated product of a copy of M with a copy

of H via their intersectton D = M n H • It is conceptually

easy to see what these relators are doing : one comes from

the subgroup P described in chapter 4, and the other

involves a subgroup PGL2 (23) intersecting M in a

Bubgroup L2 (23) (c.f. (vi) above). The work of this

chapter can easily be modified to give a proo! that the

112-dimensional matrices described in chapter 6 generate

a group isomorphic to J4 , independent of the finding of

the invariant subspace of the skew-square of the representation.

This chapter is my own work.



Chapter
7

The MOO for M24

8ince the notations we have developed for working inside J4
depend heavily on use of R.T.Curtis' MOO (Miracle Octad Generator)

for M24 (eee (3]), a few vords about this are in order.

Let GF(4) = {O, 1 ,Lv, z:j } v1th the usual mult1plication and

add1tion.

Def1nition The HEXACODE 1e the eelf-dual code in (GF(4»6

generated by the following code-vorde

(t.J W ",,;;J t.JW)

(w w iJw ww)

(z;)O tAJW QI,.)

and (ww ww c:..>t:»

9ince theee words add up to zero and clearly eatisfy no other

linear relatione, the code generated has dimens10n 3.

Definition An AUTOMORPHISM of the Hexacode 1s a sem11inear

transformation of the form :

(multiplicat1on of each co8rdinate by a non-zero element of

Gl(4» • (permutation of the s1x coerdinates) • (field

automorphism (poesibly trivial»

preserving the set af cadewords.
There ie a vieible automorphism group 3(S21S3) given by

multiplications by field elements followed by permutations

preeerving the given grouping of' the six co8rdinates into three

sete of two, followed by the field automorphie~ for odd coerdinate

permutations.

It 1e clear that every cDde-word 1e equivalent under the

act10n of this group to one of :

(00 00 00) word

(04 o-t ww) 36 worde

(00 ~1 1 i ) 9 worde

(""CI ,,",w ww) 12 vorde

(-1 i Uw wiJ) 6 vords

64 worde
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Adjolning another automorphlsm, e. g. :
{multlplication by (H 4 ~ iJw)) • (permutatlon by ( • _ ••• »
• (fleld automorphlsm)

ve bave a non-split group 3S6 actlng as the full automorphism

group of the code.

Nov ve use the Hexacode to bulld up a binary code in

(GF(2) )24 = { subsets of n.} where..!1. is a set of 24 objects arranged

in a 4 X 6 array :

• • • •.. ..· . . . . .· . . . . . Figure 1

la an 8-elementaubset.

A subset ls

posltlons, e. g.

deslgnated by a setof

"WlJ°"l<":oo• . * . . ' ... , ~ ::,: o
.' . li: . :l<'

stars ln the appropriate

Additlon of aubeets is glven by :

A + B = ( A U B ) \ ( A n B )

!he a1% coardinates of the hexacode are put into correspondence

with the slx columns of thls array, and elements of GF(4) are given

'interpretatlona' as subeets of a column ae follavs :

Definition The EVEN and ODD interpretations of elements of GF(4)

ae aubsets of a column are as in the table below :

o

even

odd

o li 8 ill
,..
'"

rn B B m Table

Nov let ~be the code in {subsets o~~} given as follovs

{ hexacode vords given the EVEN interpretation in each column

PLUS alI elements from an even number of columns } U { hexacode

words given the ODD interpretation in each column PLUS alI elements

from an odd number of columns }

( PLUS in the sense of vector space addition as given above )
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J, J. .J,

e. g. ·". ITfl1 ~·..
... 11 and •• $ '" -..: • ~• •

• IO . ... • •••• ff.

I... ... .... ., ... li"

o f 01 "'w 00 l I I I

Then (; has dimension 12, and it is easy to check that it

ia self-dual and that the words of minimal weight h"-'.ve weight 8.

Thus t is the binary Golay Code and has the Mathieu group M24
acting on it.

Definition The arrangement of 24 points in the above 4 X 6

array with the code C; defined on them and M24 acting on them is

called the MOG ( Miracle Octad Generator ).

( Note that our MOG differs from Curtis' in [3] by transposition

of the left-hand pair of columns )

Definition The 8 and 12 element subsets in ~ are called

( apeclal ) OCT~S and DODECADS respectively. A partitioning of

Jt into six four-element subsets ( tetrads ) such that any two

form an octad is called a SEXTET. A partitionlng of n. into thI"ee

diajoint octads is called a TRIO.

The seta of eight points into which figure 1 ia divided are

called the ERICKS of the MOG, and they form a trio called the

BRICK TRIO. The columna of the MOG form a sextet called the

VERTICAL SEXTET.

Some Bubgroups of M
24

( see [3])

The Sextet Group

The automorphisma in M24 fixing a sextet form a group of

ehape 26.3S6 ' which for the vertical sextet is generated by

(i) Automorphisms of the hexacode lifted to ita action on

the MOG, e. g. cm
~

corresponds to the automorphism named

at the top of the previous page.

( These automorphiama form a group of shape 3S6 )
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(11) Codewords in the hexacode with the interpretatlon

e. g.
I : I ( I.
\ : , ) \'

Table 2

corresponds to the codeword (0-1 O~ ww)

These form an elementary abelian subgroup of order 26

normalised by the 3S6 of (i).

The Octad Group

The stabilizer of an octad is a group of shape 24v48 = 24L~(2)

which for the left-hand octad (i.e. the left-hand brick) acts as fo11ows

(1) The normal 24 is

<CGill, cm 'lJTIlill , Cffifru)
and givee the right-hand square ( i. e. the complement of the

left-hand brick ) the structure of an affine 4-space over GF(2)

on whlch it acts as affine translations.

(il) Stabi1izing a point in the right-hand square ( we usually

use the top-1eft point) we get a complementaryA8 ~ L4 (2)

acting aS~8 on the left-hand brick and as L4 (2) on the right-hand

equare as a 4-dlme~iona1 vector space over GF(2).

The Trio Group

C:gH9~1,

[~~D)~)>rum,:: /I

I l :: I I
r

rl\i1fi1
U!.1!.!-1<l1m---... - -.. - ­.'. - -

00"--- :. -- '-- ~ .. -

The stabilizer af a trio ls of shape 26 (83 X L3 (2» actlng

ae follows ln the case of the brlck trio :

(1) The norma1 26 ls

Thle gives each of the three brlcks the structure of an
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affine 3-apace over GF(2) on which it acta aa 3 affine tranalations

whose sum ia zero.

(ii) Complementary to this there ie a subgroup S3 X L2 (7) (note

that L
3

(2) ~ L2(7) ) where the S3 permutes the bricks "bodily" and

the L2 (7) acta similarly in each brick, preaerving the projective

line structure given by the numbering :

'""" '"'40 ~o

~ 1- '1 1 3 2-
~, ~l S'I
,,"f- Io + ,+

Figure 2

There ia also a aubgroup L
3

(2) of the trio group acting as

L2(7) on one of the bricks and as an L3(2) stabilizing a point in

each of the other two bricke. However, thia does not extend to an

In order to display the aubgroup L2 (23) we uae a STANDARD

HUMBERING of the points of the MOG diagram with the symbols

_, O, 1, • •• , 22 aa follows :

_ O 22
3 15 12 21
6 5 18 20
9 19 8 14 Figure 3

and then the L2 (23) preserving the projective line structure

g1ven by this labelling is contained inside M24 ' though note

that PGL2 (23) is noto

( Note that this numbering is different to that used in [3] )

Ve usually take M22 • 2 to be the subgroup of M24 fixing

{ O, _ } setwise, and write MOG diagrams for M22 .2 with these

pointe partitioned off thus: ElIID Figure 4

It 1a important that we obaerve this convention because we

shall be dealing with two subgroups of J 4 of shapes 21+12.3M2202
11and 2 .M24 whose elements must not be confused.
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The intersection of an octad for M24 with Jl\{~, ~} is called

a (special) HEXAD, HEPTAD or OCT~ for M22 .2 depending on its

cardinality; similarly the intersection of a dodecad with ~\{O, ~}

1s called a DECAD,HENDECAD or DODECAD •

Given a hexad for M22 -2 , the remaining 16 points have a

natural structure as a symplectic space of dimension 4 over GF(2).

A division of this into four isotropic planes (2-spaces) corresponds

to a pair of points in the hexad. So the stabilizer of such a
2

BEXAD + PLANE is a group of shape 2 (S4 X 2) •

If 9 and ~ are two disjoint hexads for M22.2 , then

5tabM 2( 9 ) n StabM 2( ~) is a group isomorphic te S6'
22- 22·

and the permutation actiens of this group on the points of a and

of ~ are inequivalent, and related by the outer automorphism

of 56. Thus points in e correspond to totals in ~ and duads

in 9 correspond to synthemes ~n ~, and vice-versa (see [9]) •



Modules and cohomology for M24 overGF(2)

AB a 12-dimeneional module for M24 ' the Golay code t hae

a unique non-trivial invariant submodule <,0.) which has dimension 1.

't't: = , I (.n.) ie an irreducible module of dimension 11 for M24 •

(; * = { subsets of il} I ~ is a 12-dimensional module dual to

~ ,having an irreducible 11-dimeneional eubmodule

<g ~ * = { even eubsets of lì. } I t .
2- 6The skew-square e of t, of dimension 6 , ie a

unlserial module wlth three composition factore :

<n.>1\ & 1s an invariant 11-dimensional submodule isomorphie to

ft; with quotient 'f (; 2- = t 2- I( (.tl) h ét ) ;; ( r' e }2-

and ~ ~ 2- = <C1 /\ C2 : C1 ' C2 S .n. and C1 n 02 = ~ >
19 an invarlant 55-dimensionaI submodule eontaining (11.> II. ~ •

1'S~ 2- = S ~ 2- I (<n.> A. ~ ) ie an irredue1ble 44-dimensional

module. The dual fg (~*}2- can be built in a similar way.

Lemma 1 A eplit extension J of &* by M24 has a unique

conjugaey class of eomplements for 02(J) •

~ Let K1 and K2 be two such eomplements. Choose an

element Y1 of order 23 in J I 02(J) • Then the two representatives

ot Y1 in K1 and K2 are conjugate by an element of 02(J) ,

by Sylow's theorem, so we may suppose they are the same. Let Y2

be an element of arder 11 in J I02(J} normalizing Y1 • Then

the representatives of Y2 in K1 and K2 differ by an element

of 02(J) eentralizing Y1 ' and hence centralizing Y2 • Thus

einee the two repreeentatives of Y2 both bave order 11, they

must be equal. ~Tow take an element Y3 of arder 1°normalizing

72 in J I 02(J) • The representatives of Y
3

in K1 and K2 differ

by an element of 02(J} eentralizing Y2 ' and have the same order,

and hence are either equal or differ by the duad fixed by Y2 •

In the latter case, conjugating by the monad fixed by Y1

tixes the representatives of Y1 and Y2 ' and sends one
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repreaentative of Y3 to the other. Since J / 02(J) ia

generated by Y1 ' Y2 and Y3 this means that we have found an

element of 02(J) conjugating K1 to K2 • //

Corollary 1 A spIit extension J' of ~ ~* by M24 has

two conjugacy classes of complementa for 02( J') , conjugate by

an outer automorphism of J' (corresponding to an odd element

of 02(J) ).

Warn1ng J 4

~

has a subgroup M (see chapter 3) isomorphic to

the J' above, and the two classes of complements are not conjugate

in J4 • They do not even have the aame conjugacy class fusion maps

with respect to J4 •

Corollary 2 There is a unique isomorphism type of uniserial

module of dimension 12 for ~4 having an 11-dimensional

submodule isomorphic to se * . i.e. Dim Ext1 ( ~ & * , 1 ) = 1 •

Lemma 2 The split extension of the natural permutation

module by S6 has a unique conjugacy claas of subgroups of shape

2 X S6 •

~ Thia follows from a similar argument to that in Lemma 1

using a Sylow 3-subgroup and a transposition mixing the two orbita of it.

Theorem Let R be the eextet group of shape 212.26.336 in the

group J defined in Lemma 1 • Then

(i) there is exactly one conjugacy class of subgroups of shape

2 X (26.336) supplementing 02(J) in R

(ii) any such supplement has a unique subgroup of index 2

complementing 02(J) in R and contained in some complement to

02(J) in J. 3uch a subgroup is contained in exaetly two sueh

complements eonjugate by the involution in Z(R) •

~ First, alI supplements to 02(R) in R of shape 2 X 336

are conjugate, sinee any sueh is a supplement to 02(3) in S where

S is the normalize~ in R of a 3ylow 3-subgroup of 02,3(R) , having

shape (26 X 3).S6 ' and alI auch are eonjugate by Lemma 2.
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Now take sueh a eupplementary subgroup R1 of shape

Then [02(R) , 03(R1)] is an extraspeeial group of shape

2 X 3S6 •

21+12

and ~odulo the centre it decomposes ae the direct eum of two

different (dual) irreducible modules for R1 eo that there is a

unique such decomposition. Thus such a supplement to 02(R) extends

uniquely to a supplement of shape 2 X (26 .386) to 02(J) in R,

and alI euch supplements are hence conjugate, thus proving (i).

Sinee a complement to 02(J) in J doee eontain a eomplement

to 02(J) in R, and the centralizer of the latter is the unique

vector in 02 (J) fixed by R, (11) follows. ,-;

Corollary Let R' be the sextet group of shape 211 .26.336 in

the group J' defined in eorollary 1 to lemma 1. Then

(i) there are exactly two eonjugacy classes of subgroups of shape

2 X (26.3S6) supplementing 02(J') in R' ;

(ii) any euch supplement haa a unique subgroup of index 2 complementing

02(J') in J' • Such a eubgroup is contained in exactly two sueh

complements conjugate by the involution in ZeRI) .1

Under the action of R' , 02(J') reduces uniserially with two

proper invariant submodules :

(i) the sextet as an element of se" forma an invariant

1-dimensional eubmodule

(ii) the PARITY submodule for the sextet group is defined as the

collection of alI el~ments of S8 * intersecting each tetrad of the

sextet with the same parity (i.e. alI evenly or alI oddly) • This i8

vell-defined sinee every element of ~ hits eaeh tetrad with the

Bame parity. This submodule has dimension 7.
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Chapter 2 The Subgraup H af shape 21+12.3M22~

In this chapter we develap a natation for warking inside the subgroup

( ) 1+12H = C!.- z af shape 2 .3M22.2 eatiefying Hypathesis A on P.2 •

Mostly thé natatian daes nat distinguish between an element and its

praduct wlth z, so that a certain amount of informatlon ls lost,

but ve can ueually get around thls difflculty when it matters.

l1rat, let us examine the structure of H= H / <z) . This is

a apllt extension of E = E / <z) = 02(H) / <z> by a camplement

i = p / (z> af ehape 3M22.2 • Janko praved in (2] that FO = F' ls

a praper cover 6M22 • ( But note that cantrary to the title of (2]

the full cavering group of M22 1s in fact of shape 12M22 and not

6M22 ' ae vas d1ecovered in Sumoer .1979 )

Look1ng at the 2-modular character table af 3M22.2 we see that

there 1s a unique faithful 12-dimeneional module over GF(2) and

that this has the structure of a six-dimensional module over GF(4)

vith 03(F) acting as scalar multiplicatians. The outer half af

J~2.2 acts semilinearly; the inner half 11nearIy. (t)
Let <w> = 03(F) so that CH(v) = F , and Iet conjugation by

v in E represent multiplicatian by w f. GF(4), i. e. w y = yW •

Since E = 02(H) has an automarphism of order 3 induced by

w whose centraIizer in E le <z> , E is of type 2:+12

( i. e. a centraI praduct of 6 caples cf the Quaternicn group Q8

Repreeent passage from E to E = E / <z> by x - x . Then

the unitary struct~e an E preserved by F can be obtained es

follovs from the extraepeciality of E and the GF(4)-structure

reaulting from conjugation by v :

Let f: <z) - GF(2)C GF(4)

be glven by I ~ °
Z .. 1

and deflne x . Y= f «(x, GJY]) + Wf «(x,y])

Note that lt doesn't matter which inverse images are taken

for i and y eince <z) le centraI.
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Lemma 2.1

(1) definea a unitary atrueture on E •

Proof

i . wy + w(x • y) = l «(x,wy)l + GVf((x, lVY])

+wf([x,wy]) +p([x,y])

= r«(x,y] + [x,LJY] + (x,wy])

= O

Similarly

-x "',... (x'"·,,1Y=""

wx • y = w (x

y)

,.., (N IV)x. y + z = ,([x, w (y + z)]) + wr ([x, y + z])

... ("«(x, w y]) + r ([x, GAl z]) + Wl ([x,y])

+Wf«(x,z])

,." ,v N ,..,= X • Y + x • z

(
ro ,.. ) IV ,.., AI ,v ~Similarly x + y • z = x • z + y • z

Note that einee <x, w> QSo3 = 2A4
23.3 = 2 X A4

2
2 .3 = A

4

or

ve have x. i' = [x, xW] = x2

so that vectore of norm O are involutions while those of norm 1

are elements of order 4 •

Thus the inverse !mage in E of an isotropic subspace in E is

the same thing as an elementary abe:ian subgroup of E containing z

and invariant under w • If X ia such, then (X, w] is a eomplement

for (z> in X, natural given our ehoice of F •

More generally, if X i8 any elementary abelian Bubgroup of

E containing z then (X, w]v = { w2
xw2xw2 : x E X ia aueh a

complement for <z> in X (see also P. 26 )
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We express veetors in E using a 2 X 3 array of eoerdinates

with ":~ GF(4), and inner produet

When writing down elements of F ae 6 X 6 uBtrices over GF(4)

ye ehall think of these veetors as row veetors (:\, :\1. ~ ~ .. 1, \J.
Can we find 22 objeets in E which are permuted by F in the

same way ae the natural permutation repreeentation of F / -< i)
~ Aut (M22 ) on 22 points ?

To anewer this question, we look for subgroups of E invariant

under the action of 3M21 ~ SL3(4), and find that the module E

reduees uniserially with a unique 3-dimensional irredueible

submodule with irredueible (and dual) 3-dimensional quotient.

Sinee the induced aetion on ~his eubmodule is the natural aetion

ot SL,(4), it must be an isotropie subspace of E.
Let Wi be the isotropie 3-spaee in E stabilized by Stabp(i)

tor itJL \ {O, co}.

~1..1,

Dim(Win Wj > == 1 for i ~ j

and Dim(Wi () Wj () Wk ) == O for i # j #: k F i

!Z22.!
First we note that einee F is 3-transitive on ..n. \ {O, co},

these numbers are independent of ehoiee of i, j and k.

Certainly O ~ Dim'(Wi n Wj ) ~ 2.

It Dim(Wi () Wj ) == O then Stabr(i, j) ~ Stub
rU6

(2)(Wi , Wj ) = {1},

a contradietion. If Dim(W. () W
j

) == 2 then <W., W.) has dimension 4,
~ ~ J 22

and either Wi () Wj == Wi n Wk V i ~ j 1: k l' i in whieh case n (Wi )
i=1

yould be an invariant 2-dimensional subspaee, or Wi n Wj l:· Wi n Wk
V i:;:. j ;: k ;: i in which case <Wi' Wj ) "2 Wk by dimension

counting, and so (Wi I 1 ~ i ~ 22> is an invariant 4-dimensional

subspaee.
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Thus Dim(Wi n Wj ) = 1 for i + j •

It Dim(Wi n Wj n Wk ) = 1 for i * j * k ~ i then

vould be an invariant 1-dimensional subspace •

Thus Dim(Wi n Wj I) Wk ) = o for i 0# j '# k -:# i •

Theorem 1 . :3

Given a 6-dimensional unitary space over GF(4) and a set of

isotropic 3-spaces of maximal aize aubject to the conditiona :

(i) Any tvo intersect in a 1-dimensional space

(ii) Any three intersect trivially

then there are 22 auch aubspaces in the set, and the setvise

stabilizer of thia configuration in rU6(2) ia a group isomorphic

to the triple cover of M22 extended by the outer'automorphism.

!ì:QQ!

W.l.o.g. ve may take the apace to be E •

Let {Xi: 1 ~ i ~ n } be the collection of subspaces and

let {Wi 1 < i ~ 22} be the 22 subspacea defined above.

(*) Since an iaotropic 3-space haa only 21 isotropic 1-spaces L~

it, ve must have n ~ 22, vhich vith the lemma shovs that n = 22 •

I shall find an element of rU6 (2) taking Xi - Wi t 1 ~ 1 ~ 22 t

atter possibly renumbering aome of the Xi •

Since rU6(2) 1s transitive on isotrop1c 3-spacea, ve may

suppose X1 = W1 •

( ) 12 () 12Since Stabru (2) W1 ' of ahape 2 SL3 4 .S3 = 2 rL3(4) acts
6 .

transitively on isotropic 3-spaces 1ntersecting W1 in a 1-spaee,

ve may suppose ~ = W2 •

einee Stab
ru6

(2) {\i1 ) n Stab
rU6

(2)(W2) of shape 26 .24 (32 x SL2 (4».2

acta tranaitively on iaotropie 3-spaees interseeting W1 in a

1-apaee, W2 in a 1-spaee and W1 n W2 in a O-apaee, ve may suppose

that ~ = W3 •

Nov n (Stabru (2){Wi » , of ahape 22+4. 3
2 •2 , has

i=1 ,2,3 6
2 orbita on subspacea X interseeting Wi in a 1-space and W

i
n W

j
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in a Q-space for each pair i f:. j €. {l ,2,3}, dietinguished by

whether Wl n x ~ <Wl () W2 ' Wl () W3ì (orb1t )

or not ( orb1t 2 )

(th1e condition 1e in fact eymmetr1cin Wl ' W2 ' W3 ) •

By the remark (*) on the prev10us page, prec1sely 3 of the

Vi and 3 of the Xi for i ~ {1,2,3} are in orb1t 1 and 16 are in

orb1t 2.

By the trana1tivity propert1es of Aut(M22 ) th1a means that

{1,2,3} together vith the 3 ile for vhich Wi is in orbit form

a hexad for M22 vh1ch must therefore be {1,2,3,5,14,17}. Thus by

apply1ng a su1table element of ~ {Stabru (2){W i » and by
1=1,2,3 6

renumber1ng some Xi in orb1t 1 aa X5 ve may suppose that W5 = x5 •

Next ve aee that n (Stabru (2) (Wi » of shape
1+4 1=1,2,3,5 6

2 .3.2 ie transitive on the elements of orbit 1 apart from W5 '

so by renumbering some X1 ' i # 5 from orbit 1 as X14 and applying

some element of this stabilizer ve may take X14 = W14 ; ther. after

relabel11ng the final Xi of orb1t 1 as X17 we automatically have

~ ( St b (t.r» of order 26 lsI J a j"U (2) "1
1=1,2,3,5,14,17 6

simply transitive on the 26 poeeibilities for choice of a subspace

sat1sfy1ng the requi:::emente (i) and (ii) for intersections with

the W1 ' i e {l, 2,3,5, 14, 17} and having fixed one, the

other 15 are determ~~ed. Thus we may renumber the Xi for

1 ~ {l, 2, 3, 5, 14, 17 } and apply a suitable element of the

above etabil1zer so that X1 = W1 ' 1 ~ 1 ~ 22 • ~

Thus by the above theorem, the following is a valid layout

for the eubspaces of E correspor..ding to the points of..iL \ {o, oo}



21

o x y z 3 S 3 S 3,32 32S,S
00

O O O X Y Z X Y,Z2 ~Y,Z

~2Y z x,y z x O O 3 Y Z 3 Y,Z2 S2Y'Z
~Y Z X,Y Z O y z I S 3 X S,32 ~S,S

x Y2z x y,z O y O X S Z X 3,Z2 ~S1Z

X Y2Z X Y1Z x O z S Y S S Y,S2 S2Y'S

x Y z2 x Y z1 O O z X Y 3 X Y1S2 ~Y,S

X Y Z2 X Y Z, x y O S S Z S 31Z2 S23,Z

TabIe '3

The notation for 3-dimensional subspaces of E is as follows

%, Y and z are generaI elements of GF(4)

x=y+z

Z = x + Y

y = x + z

S=x+y+z

J. eubscript signifies muJ.tipIication by w, GF(4)

and a subscript 2 signifies multiplication by t:i €: GF(4)

Thus for example :

is the subspace spanned by [' ~ 01'1°;;; 01
01.011 101

is the subspace spanned by
~'I" ° 'i~ ~w,'

and].'::;Lo> ':
i;J uJ 01

Ve give a Iist of a few useful coerdinate transformations on E

effected by elements af F and their action an the MOG far H :



Co6rd. Transformation

~
~

DJ]
!ield aut. w - l:i

diag (t LV i3)
l w j;j

22

Effect on H'a MOG

ui[iiui]
li [;0
~I r Il. ,
~: I I I I

G'·'- ~ . -- ... -
- I" _

tillE
10 O 011]
O 1 O 1 O O

O O 1 100
O O O 1 O O

O O O O 1 O)
000001

F-IS1=1
~

(see also
p. S6 )

"-- --.JL..- ~ _

Table 4

------
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Classification of vectors and isotropic subspaces in E= 02(H)/<z>

Having obtainedTable 3, it is easy enough to verify the

tollowing classifications :

Vectors

Under the action of H , E has 3 classes of involution, 'Iith z

in a class of i ts own and y - yz for each y ~ <z) , and one class

ot elements of order 4, whose stabilizers in F / (w) are aa given

in the following table :

elta vectors

J4-class

1-spaces norm 8tabilizer in M22. 2 (see p.3ç)

o M22 .2 2A

231 O 24(85 X 2) = 2-point 2A

stabilizer (EDGE group)

(z)
------------------:------=-~--------

1386 693

2772 1386 462 O 24PGL2(S) = atabilizer 2B

ot hexad + total on it

(TOTAL group) [9J

4032 2016 672 PGL2 (11) = stabilizer

ot pair of disjoint

dodecads (DUUM group)

4A

Table 5

Isotropic 2-spaces

There are three classes of these under the action of H, which

contain the following numbers of EDGE~type and TOTAL-type 1-spaces

and have the following stabilizers :
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number edge 1-spaces total 1-spaces Stabilizer in M2202

462 5 O 24S5 = stabilizer of

hexad + included point

1155 2 24 (S4 X 2) = stabilizer

of hexad + syntheme on it [9J

4620 1 4 22 (S4 X 2) = stabilizer

of hexad + pIane (see P.ll.)

Table 6

Ieotropic 3-spaces

There are four classes of these under the action of H , which

contain the following numbers of EDGE-type and TOTAL-type 1-spaces

and have the following stabilizers

number edge t-spaces total 1-spaces Stabilizer in M22 02

22 21 O M21.2 = POINT stabilizer

77 15 6 24S6 = HEXAD stabilizer

462 5 16 24S5 = stabilizer of

hexad + included point

330 7 14 23(L3(2) X 2) = OCTAD

stabllizer

Table 7

The conta1nments between the isotropic subspaces are given in

the following diagram :



Isotropic

1-spaces

25

Isotropic

2-spaces

Isotropic

3-spaces

EME
(231)

:Figure 5

HEXAD + POINT 11 POINT
(462) ~ • (22)

SYNTHEME . ~~ HEXAD
(1155) (77)

HEXAD + PLANE '1. ~o HEXAD + POINT
(4620)~ (462)

~1'

OCTAD
(330)

where this means, for example, that there are 330 octad type

1sotropic 3-spaces, each of which contains 7 syntheme type and

14 hexad + pIane type isotropic 2-spaces.
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Notation for elements of H

Prom p. 11 we Bee that g1ven an isotropic vector i in E ,
there ie a canon1cal inverse 1mage w2xw2xw2 in E • We shall

denote th1s inverse image w1th a subscr1pt O and the other one w1th

a 8ubscript 1. For norm 1 vectors there is no good notation for

d1et1nguish1ng the inverse 1mages.

Thus for example ['10<51 1s a well-defined element of order

~O

2 in E , and f fXYZl
l ~x+y+z

x + y + Z f: GF(2) }
18 a

vell-defined elementary abel1an subgroup of E of order 2' not

containing z.

~or elements of F , the action on the MOG gives the element

up to mult1plicat1on by an element of Z(F) = <wz) • Sometimes

the J4-class of an element well-def1nes which representat1ve 1t

1e, and then we append the clasa aa a subscr1pt. (See p.31 for

a description of the J4-clasaes of involutions in H)

Por examp1e, r::&li] i. a vell-defined e1ement of P •

.' - - 2A

A general element of H can then be written down (in exactly two

vaya) as the product of an element of E and an element of F •

So for example f100l Efili)'- - f100l Effi]'
~O'::== =~1",~==,

" - ~ 2A ... - - 2B

18 a well-defined element of H •

Sometimes ve shall wr1te down elements of H vithout

vorrying about which of the two representatives 1s concerned.
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z).

of shape

, of shape

RJi1Ti1
~2

the left-hand hexad a= O][J
46.2 S6 • Let

,r. :.I() ()~~{ ,
2

_C_ha_p,l;;,t_e;::;.;r:-3,,--..,;T;;.;.h;.;;e:;...,;;s:.;;u;.::b.gr>.::..:::0.=;u;,o;p__M~_0;::;.;f:.-;s;;.:h~a;;,jp;;.;e;;.......;;2...'_'=M:24

Janko (2) tells us how to find a subgroup M of J4

2"~4 :

Choose a hexad for F (we choose

and let LO be itB stabilizer ln F

U, =O2 (LO' =< UiliJ·:=:: tRJ:., - - , . . ,
.. - - 2 ., 2

an elementary abelian graup af arder 25 , and let E , = CE (U, ' ,

the hexad-type isotroplc 3-space fXYZl for the left-hand hexad O ,
~

an elementary abelian subgroup of order 21 • Then letting V = E, U, '

• 11
V 1e an elementary abelian graup of arder 2 whose normalizer

M = NJ (V) ia a aplit extension of shape 2
"

M24 where the action of
4

~4 on V ls the aame as on se*
Now D =NH(V) =Hn M la the hexad stabl1izer ln H of shape

2'+12.3.24S6 so that D/V has shape 26.3S6 , and is thUB the

sextet atabilizer in M/v • We are free to choose that this ls the

vertical sextet far M'a MOG (see p. 9 ) , anà we are free to

choose that <li> acts as <~l~·j,~.

From the analysls on p.15 we know that there are two conjugacy

classes of supplements of ahape 2 X (2 6.3S6) to V ln D, and that

each has a subgroup of index two contained ln exactly two complements

to V in M, conjugate by z. Representatives of the two classes are

(1) Let 1 be a point of H's MOG not in 8, so that Wi ls
/\

an 1sotropic 3-space in E whoae inverse image Wi is an elementary

abelian aubgroup.of E of order 27 , of point type (aee p.24)~ Then
À A

WiStabL (Wi ) is such a aupplement giving 2 complementary M24S of
O

POINT type •

(il) Let , be a hexad of H's MOG disjoint from 8 , and let
A

W, be the inverse image in E of the isotropic 3-space w~ in E
'\ '"corresponding to ~, of hexad type (see p.24). Then W~StabLo(w~) is

8uch a supplement giving 2 complementary M24s of HEXAD type.
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J.ny complement to V in M ia then of HEXAD or POINT type

depending on whether its intersect10n w1th H fixes a hexad or

a point in the right-hand square of Hts MOG.

Let K be one of the two complements to V in M of

hexad type extending the complement for <z) in li StabL (W )
ep O ep

where 8fiJ so that Wep W·ep = , =• ~ , .. .. l... " , ........ " . x y z

Comparing the submodules of V that we know under the action

D/V (i. <z)
.

E1)of e. and with the list on p. 1S" we see

that z ia the vertical sextet [[[] and E1 ia the,,' ....'* .. ' ..* .. ' ..
PARITY submodule for the vertical sextet. Thus E1 has 36 duad

vectors and 91 sextet vectors, so that mod <z> there are 6

w-orbits of duads and 15 w-orbits of sextets. Looking at table 7

we aee that a duad in E1 mod <z) ia a total type vector in E

and a aextet in E1 mod <z) i8 an edge type vector in E.
Thus a total on the hexad 9 in H's MOG corresponds to a

column of the vertical sextet for M's MOG, and so the six

points in B are in duality with the ab: columns of the vertical

sextet for M 'via the outer automorphism of S6. Thus, looking

back at p. 12 we see that the points of ep are in one-one

correspondence with the columns of M's MOG.

Ve stilI have the freedom of choice of this correspondence,

and so for reasons which will become apparent in Chapters 4 and 5,

we choose the following correspondence :
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:Figure 6

A E c D [ F

M's MOG

Baving ehosen th1s eorrespondenee, the eho1ee of vh1eh

way round to 1dent1fy (v) vith/r;r::r:;1 \ 1s determ1ned,

\l!Jl.lli!ll/
sinee from table 4 ve have

w = [_ . D] (any representatives)

acts on M's MOG as

So the only freedom ve have left in determining the names

in R for elements of the sextet group 211 .26.356 in M 1s

conjugat1on by v.

Prom the defin1t1on of the correspondence in figure 6, ve

see that sinee the total type veetor corresponds

to the point D of ~ by hexad dual1ty in M22 .2 , 1t 1s a

pa1r of d1sjoint duad vectors in V l1ving in column D.

Thus ve may choose that

f100l
~O

= OIJ·····
.,. ., ..
. . l''... .,..

(1)
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Bov from table 4 ve Bee that the element of P of arder

3 acting on E as the linear transformation [; ;jt] has

effect UillUJ on H's MOG, and hence acts as

(A) (B) (C) (DEF) on ~, and hence on the columns of M's MOG.

Moreover, the element commutes vlth v and so lt ls

for some n. It also commutes vlth the field automorphism w - ~

vhlch acts as (AB)(C)(D)(E)(F) on ~ from table 4, and ia

hence lillIJ"·· m for some m. H c n O_ ... , .v en e = •
)< I I I l

So conjugating (1)

fOT01
~O

and ~
1.iuL!J 0

by this ve Bee that

=DIJ"'~~::....•.
• • • " t' .

-DJJ"':~""- ... .. *" •
.. '.' . '"

ls the element of V formed by givingThus~

~o

( O O O ~.r v) the even interpretation of table 1 (see p. 8 ).

Notation Every element of M haa a unique expreasion of the

form (element of V ).(element of K) • We write an element

as a set of stars together vith a permutation on the same MOG

dlagram, vith the underatanding that the product la taken vith

the 'element of V flrst, folloved by the element of K.
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The Dictionary

In order to be able freely to translate back and forth

between the names of elements of D as elements of M and

as elements of H, we break it up into four parta :

(i)

(ii)

(iii)

E1 of shape

02(K (1 D)

02 (CD(w»

27

of shape 26

of shape 25

?

and

(iv) CK(w} of ehape 386 •

Every element of D has exactly two expressions as a product

(element of E1).(element of 02(Kn D». (element of 02(CD(w» ).

(element of CK(w» • Notice that E is generated by (i) and

(ii), V is generated by (i) énd (iii), K n D is generated by

(ii) and (iv), and F n D is generated by (iii) and (iv).

Ve dealt with translation of elements of E1 in the last

aection, so we now deal with (ii), (iii) and (iv).

(ii) Elements of 02(K n D) :

02(K", D) = fOOOl ; so what permutation in K ie fOOOl
. ~ ° l.!...Q.JlI °

It commutea with (i. e. ia orthogonel to ) I~ ~;:I and

~
o ° .which are e ... sets in the last two columns intersecting

1" °° °
each evenly,

the v'ertical

end Cl:D reapeotive1:r. end ia in the

sextet group. Thus i t muat be lTiTiIrl.
~

Conjugating by the element of order 3 acting on E aB

the linear tranafo~ation , as before, we get :



Thue ie the permutation in the of the

i. e.

vertical aextet group in K given by the hexacode word

(? ? 1 ~ i v) ae deecribed at the top of p. lO , where

the queetion-marks are fiIIed in in the unique possible way

to make a hexacode word (see p. 1- ).

e. g. fOOOl
~o

(iii) Elements of 02(Cn(w» = U,

Theee Iie in F, and their effect on H's MOG are as

affine translations of the right-hand square :

<•. EillTI, .LI1I ·G, .EIDKH)
In M these are the t: * seta Iying in the top row of

the MOG.

The correspondence 1s as follows :

Given such an affine translation, there is a un1que cycle Iying

1neide ~ • From the correspondence in figure 6, this corresponds

to a pair of columns of M's MOG. The two representatives in

V of thie element mod <z) =<rm> are then the corresponding

duad in the top row, and its complementary tetrad in the top

row. e. g.

and

00·~~ LITJ*"*.. = ., ..... .. ;' ~.

•. 2A' .....

~ =U1J::(..:~:,. ~ '?( -' .. '
,. 19'" .'
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• and hence ha. 1mege ITD on the

effects the pcrmutation

(see the next section for a description of the J4 classes of

involutions in M and H)

(iv) Elements of CK(w)

CXCv) has shape 336, lies in F, and is of index 2 in

Stab,( e , ~ ) . This means that the image of an element of

CXCv) in i / <vz> depends only on the permutation effected

on the six columns of M'a MOG. Given this permutation,

to find the image in i / <wz>, filI in the corresponding

permutation on the hexad ~ via the correspondence given in

figure 6, and filI out in the unique posaible way to an

, ~ ) .element of Stabi / <wz>( fJ

eo, a. 1:1;~ € CK(w)

(A) (B) (CD) (E) (F)

and ia hence the element

~
.. in- ..

Il :.' X '2.A

hexad ~ • which complete. to the element f0ll1Q E F / <wz> •

Il .. X

i . (again Bee the

next aection)

Ve summarize the translation process given by this

d1ctionary in tne folloving table



(1)

(11)

(111)

(1v)

Subgroup of H
Mnemonic

Exa.mple

PAIRED

M·• • 1\l:-
:: ..~ \ ~ F

AFFINE

Efillj.:;.. ' < F
.. i .. -..;;
.. ". .

PERMS

f-3Xn
~1.A

34

Subgroup of M
Mnémonic

Example

[ll]...... . . . ", .." ..... *.... :41'"

ffNfEI ~j(
VERTICAL

AFLOAT

crn
·~~:ll'·
" . ' • 4<

~. ~. . .

~
WlW~K

PF.RMS

ITTIITJ
· .,

.. -'"
l I )( I l

Table 8

Shape

(see also Appendix D )
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Now that we have this dictionary at our disposal, we

may freely translate back and forth between names for

"elements cf D as elements cf M and as elements cf H •

The process consists cf breaking the element up as a product

ot elements of (i), (ii), (iii) and (iv), translating

each separately via the dictionary, and then multiplying

back up again.

e. g.

~~ ha. clas.( Note that

Bection )

= [~~~]'[~::L.~·
21l

= r; ~jo·~'L
2B frcm the next

Conjugacy classes cf involution in M Rnd their

fusicn in J 4

Jankc [2] gives the involuticn fusicn pattern in J 4 •

However, we shall need to kncw the answer more explicitely

in terms cf our notaticns for M and H.

Since z is defined to be in class 2A, alI sextets

in V are in class 2A. Duada in V are in class 2E.

Translating a ccuple of these which happen te l1e in E

we see that edge-type elementa in E are in clesa 2A

whereaa total-type elements are in class 2B. (see p. 23 )

Ve need to examine the elasses of elements in M under

conjugation by K, sinee this cc~reaponds to passible

'shapes' far our diagrams fcr elements. It turns cut that
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every such clasB has a representative in E , so that the

J
4
-classes are as in the following table

Representative of Name as element

K-class in M of E
J4-class

-

cm ~t,o:: ... ' . *
I ••• ,. • o o , '28
• a ' •• , \

CIJffi ~t1. ~ -... *' '" 211." .' .. O \ I ," ....

t~:: ~ g 'LR
I I Il '. ~ l O O

l>

(. : f'1\'I: f{ m.. Il Il :: I o I 2C
I

, lill1IJ m~~ - Il' I :: o o o 'LA
L-

I

t, :: 11'T' :I~:, [ITDIl " : " l , I lAo

t ~ fU} I ~1;~tJ ~l Il Il : ~ I I W '2&o

~lIll~'~l mé, :. I \ l' ': ~ o C I 2«
o

l,:: l~ ~I~ ~lHI \ ~ o ~J l.gc..Il.,)W
o

t,o:: I~ (lì~~~~1 (0 o u(
~ .., o , 211

Table 9
(continued on next page)
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Representative of Name as element

K-olass in M of E
J4-olass

~'I = 19~19H~@ .~ '2..6'-l w ....
I

1~~1~~19[{ m '7..8l I~ : ~O()
o

t. '3 : 1{}(~JHlf(tJ L~ ~ IJ 2f1t...J IN 1.1
o

t 1+ :; I»(!}~ ~I~~f m- - I "2Bw t...J o

Table 9
(oontinued)

Under the aotion of V, these fuse as follows

so that M has 9 conjugacy classes of involution.

Conjugacy classes of involution in H and their

fusion in J 4
Now we can use the dictionary to give the same

information for H, choosing a representative in D from

eaoh olass of involution in H.

Case 1 Elements of E :

The8e have already been dealt with, and we bave

8 1 = z has olass 2A

82 = edge vector § has class 2A
100

o

8 3 = total vector ITTIJ has clas8 2B
100

o
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(element of E

of norm O)

FirBt work mod <z> .. The element

FViTiil. lj0!.!J :

has effect

(Bee table 4) BO that

and conjugating by an element of E adds on a

vector a;~O .

Thus mod <z) there are ; classes of this shape

RiITii1
~'

fI"OòlRilT/il
~.' L1l.1.'J and fOOo7 R\i1TIl.I I I I

~.~

Do the involutary pr~images of these in H fuse?

The two involutary preimages of EiTIIITJ] are, as elements

of M, s4 = LD:TI and 8 5 = {li]
These are respectively of class 2B and 2A.

The two involutary preimages of fIOCl R"fiTIil are
~.~

conjugate by ~oo in li. Let s6 be the preimage
(.,)00

o[:m in V so that s6 has olass 2A.

. fOOOIRfiTiIlBimilarly the two involutary preimages of ~J~ U1.uJ

are conjugate by ~oo in H. Let s7 be the preimage
c,.J()O

O

Il li ~~

" Il '..,
in M so that s7 haa clasa 2B.
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Case 3 Elements of shape (element of E

of norm O) 9'· -_.. -
........... ­- .,-

l!'lr'st work mod <z > . This time alI three elements of

p wlth lmage D in F / <wz) are involutary,

and they are conjugate via w. So choose the one acting

on E as the field automorphlsm ~ - w (see table 4) •

Its centrallzer in E ia the set of alI vectors with

entrles in GF(2) = {O, 1} • Conjugating by x ~ E

adds on a vector x + i , and vectors of this form span

the centralizer of our element in E, so that alI

involutlons of shape (element of E

of norm O)
[[[[l,. -- - .. -

o -" -- .. -
are conjugate mod <z)

The two preimages

[iliJJJ,. '.- ~. "

7< l I J I
and

in Fare, as elements of M,

s9 = rn ;(J]
8a ls in class 2A whereas is in class 2B •

Case 4 Elements of shape (element of E

of norm O)

l!'lrst work mod <z}

wlth image~

~l

• Again alI three elements of F

in F / <wz) are involutary and

conjugate via w. So choose the one acting on E aB

~ followed by the field automorphism

~--......
The centrallzer of thls element in E is with

1, , \1" € GF(2) • Conjugating by an element of E adds a

vector with /' ) i" (: GF(2) and so alI such
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be the preimage which is~ as
~

, of claBs 2B.

in M. Let 8 10

an element of M

elements are conjugate in li .

The two preimages of our element in H are conjugate

by § as can be checked by looking at these elements
o o ~ o

ThUB H has 10 conjugacy classes of involution

as displayed in the following table :

Representative of Name as element of M J
4
-class I

class in H

'fDI1 I~, ~ '!
,. .. '. 2A".. ".· ....

I

Sz : e~o~l = 211 I
'eD l' Il ..

1t>

tlTIJ cmSj
., .' - .

:: o o o
. ~ . .' 'lB..... "

S... -: ~ CIìJ:'. (l \ I zg .. . .... l.g i., ....
t

BI\ITJ [ijJ I
S~ = -' ,I /I

." . - ~ . 211.. . , ...
.. 'lA -J

~lTITIIill 00 I
$, ::

· .# ..

100 1>. :: Il l/
· .... -"LA

21f
. ' ... '

Si- ~ (1goJ ~ fH~' ~r~1 'Z..g
I o o' ~: Il l/ 111\ ".

'tg

g liliIill- .. ' -
S. : - ... - -" .

_ -_ - c.)H'::; x Il Il ?-Il
1.~

~ @}'i;-[[ESq :- - .'-
::. :'. .:: w~o 28

1-8

~ (ITIill] 'Z.g
S'I> r-1' ::. Il -,<

Table 10
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Chapter 4 The 'Pentad' Subgroup P of shape 23+12(S5~~

Looking again at [2J. we find a recipe for obtaining in

J4 a subgroup of shape 23+12 (S5 X L3(2». In thia chapter ,

I shall develop a notation for working inside this subgroup,

and investigate the Sylow 5-normalizer and Sylow 7-nornalizer

in J4 ' which 1ie inside this subgroup.

Let T be the trio group in M of shape 211 .26(S3 X L
3

(2)}

for the brick trio (see po'}-IO) • Then Z(02(T» = V1 ~ V has

arder 23 , and the 'Fentad' group P = NJ (V) has shape

2}+12(S5 X L
3

(2» with 02(P} specia1 (se: p. 3 ) o

Looking at V1 in H, we find that 1t 1s the inverse

!mage in E of an isotropic l-space in E, namely ~
~

a l-space of edge type for the edge 13. 15} = r=J:. [J] ·
Thus NH(V1) is the sextet group of shape 21+12.3.24(S5 X 2)

for the square sextet fT1: Iin li.

Thus

- /Il- - haa shape

{

211026(S3 X L
3

(2» in M

23+12 (S4 X L3(2» in p

{
21+12.3024(S5 X 2) in H

23+12 (S5 X 22L2(2» in p



42

!he centralizer cf an element of order 7 (c.f. p.4- )

Let x7 = rm~Ii] t M n P •

7 X S4 •

OJ (x7) = 0p(x7)
4

in P, we must be

haa shape

Stnee

haa index 7

<crrJ" "" cm- rnJ \.' ' .. . .
::::.::: :: /

<EJmJ..~ ~ EJ(3El'. . rn' )~: ,~X1~ ;.-
. " t8 - ~ ~ - U' /., I . l lA

has shape 7 X S5 ' and H n p

able to find an element of

have, name1y

order 5 in H commuting with x7 o Now Np(x7) has sh~pe

7.3 X S5 with 07,,(Np (x7» = 07,,(NM(x7» = (x7, w> •

Thus the element of order 5 must commute with w, and hence

1le ln F. Now there is a unique element of order 5 in F

vhieh acta on the 5 tetrads of the square sextet for H IS

MOG as~ end makes an 35 vith the 34 ve already

- ... c I> c (, 15'")(" 13 2z. ...0 /1)
• . J, a.. ti -:=:

c. J. I: A. c... I> (,., Il U g /0) (, 1. f l j ~)

b • ti ti q. çA (5 "+ , .. ,,. t')

and so we have [x5 , x7 ] = 1

Thus

Let
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!he eentralizer of an element of order 5

Ve now have enough information to find CJ (x5) of
4

shape 5 X 23L3(2) (with the 23L3(2) non-split ) , sinee

we already k:now that Cp (x5 )~ <x5 , V1 , w, x7 , y>
vhere Y ie the unique representative of tm XU 'I=X Il

eommuting with x5 (note that the M22 02 eentralizer of

an element of order 5 is of order 10 )

i. e. Y = 0i; lIJ ae sn element of M.

Sinee <x5, Vl' w, x7, y '> . is already big enough, it

must be the whole eentralizer of x5 •

CM(x5) ia a non-split extension of shape 23L3(2) and

lies in the trio group T. Its action on the three bricks is

Left-hand brick

on the briek •

~(7) on the standard numbering (;:\
S" I

io

atandard numbering on the brick •

projective pIane structure given by in the

Right-hand brick L3(2) fixing _ and preserving

•2. S'" ~

the

Middle briek : Rewriting Y asoo'"- .,.. ..

X 1t Il

ve see that

the action on the middle brick is the same as the action on

the right-hand brick except that a ~*-set has been attached

to eaeh permutation on {O, ••• , 6} to give a non-split

monomial group 23L3(2) o

Bow let I\. = <00 ' x7 > of shape L2 (7) (i. e.

the elements of T n K acting acting on each brick, preserving

the standard numçering ) • Then .1\. () CpC E ) = <x7, w)

• Stab
A

(_). OUr notations for P will be based on the tvo

Bubgroups l\. and E o
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The etructure of 02(P) and notation for elemente of P

The action of P / 02(P) = 35 X L3(2) on 02(P) / V1 ie

the eame as on the tensor product of the two-dimensional module

for 35 ~ LL2 (4) written as a 4-dimensional

GF(2) , with a 3-dimensional module for L
3

(2)

(We calI elements of V1 linea and of the dual

module over

over GF(4)

dual to V1 •

V1• pointe)

Thus we shc~d label the tetrads of the square sextet for H

with the pointe of a projective line PG(1,4) o We choose

the numbering :

Figure 7

The elemente of V1 are given namee as follows :

DDD[] tJ
'* *" .

- ;ft
~ * '* . lf

... . '* 'l'- . * If:: '*
~ . . . "* . * </<.

LO L1 L2 L3 L4 L5 L6

Table 11

where €ach element of V1 ie a sextet vector in V for

a eextet refining the brick trio for M, labelled above by

giving the pair of tetrads comprising any brick (such sextets

are eimilar in each brick) o

Ve give elements of the dual of V1 two interpretations,

one as affine translatione on a brick, and one as seta

ot four points on a brick (c. f. fig. 2) ae followe



45

*
)< { I

~ ~~ ( ~X l I
no n1 n2 n; n4 ~

n6

" * ] [ili [] ~*'
.~

k '* >I<-

'K. • . ~ * ~
. 'f . . . 'f.

't . If. ~ . . *. . * . Jt:' * ~

~O * * * * .. *61 2 ; 4 5

Table 12

This meana that linea (in V1 ' and points (in V1*, are

incident as follows :

3 3

Fip:ure 8

This numberi~ gives a 1-1 correspondence between lines

and points which 1s respected by the group A n CpeL') but

1s NOT incidence preserving.

Thus we see that elements of 02(P) / V
1

are spanned

by elements of the form (n) @ (x, y), O~ n ~ 6 x, y é GF(4'.

Ve choo~e a particul.ar inverse image nxy in O2(P), of

(n) ~ (x, y), as follows :
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n l = EIill n, C'" lliQn n

n",~ =~ n", 0=~ E Mn n

n- = CJSEl n = ffEJ"'''' n n lJ o n n

and then linearly :

nx+x ' y+y' = nx y • n x' y'

Let tr(x) = x + i f. {o, 1}·, and let

n* = n t. tr(xy)
xy xt-n

Then elements of P ean be written in the form :

(element of V1). (produet of nxy' s). (element of i:). (element of A)

The multipl!eation rules are :

(1) Z(02 (p» :

L 2 =1a where La' ~, Le are three lines

interseeting in a point

IL. n. = r L tr(xy)
·x y • ··x y x y. a

where Cm, n, r) are 3 points lying

on line a

trl
X

~, I[ mx y , ] x'
nx ' y' = La

where a ie the line joining

m and n
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(iii) Action of .A on O2 (.p)

Let ~ ~ A. Then

(La)~ =~ where A: a ... b as linea

'l
(nx y'> = mx y where ~: n ,... m as points

(iv) Action of 'E on O2 (p) :

Let eT ( L o Then

t:r
(La) = La

( • )a' _ ..
nx y - nx ' y'

where C' : (x, y) - (x', y')

as an element of ZL2 (4)

(v) [I.',A ] :

[ f1" , :.\ ] = nac oa
where ~: = ... n

and (j = (a b)
·c d

(1, O)

(O, 1)

(a, b)

(c, d)
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Remark

Let M ~ H be the free amalgamated product of groups

isomorphic to M and li with the vertical sextet group in

M identified with the left-hand hexad group in H via the

dictionary of Chapter 2 (i.e. D as a subgroup of each

identified ). Let M~ H be the quotient of this by the

<[xS,x7J>
normal closure of the element [xS,x7J. Then there la a

surjective map

given in the obvious way. We shall be investigating the

kernel of this map in Chapter 8 , but for the moment, let

us remark that <M n p , H (1 P> , as a subgroup of MDli

([xS,x7J)

is isomorphic to P i.e. that alI relations in P follow

from the dictionary of p.31 and the fact that Xs commutes

vith x
7

• This follows easily from the fact that 02(P)';::;; D •
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Th b L f h 210L5'2'e su group o s ape ~

in J4 a subgroup of shape

Looking once more at [2] we find a recipe for obtaining
102 L5(2) • In this chapter I

sha11 investigate this subgroup and its intersections wlth

M, B and P.

Let AO ~ V be the subgroup of even ~ *-sets with a

representatlve contained in the 1eft-hand octad ~r-J (,
- ~

so that IAol = 26
o Then NM(AO) ls the octad group in M

of shape 211 .24L4(2) (see p. IO ) and CK(AO) has order

24 and consists of affine trans1atlons of the right-hand

square • Let A = AoCi(AO) so that A ls elementary

abe1ian of order 210, and 1et L = NJ (A) • Then L ls
4

of shape 210L5 (2), L sp11ts over 02(L) , and the action

of L / 02(L) on 02(L) is irreducib1e and is the same

as the action on the skew-square of a natura1 5-dimensiona1

lrreducib1e module •

Looking at A L~ H, we find that A-n E has order

27 , and is the invfrse image in E of the isotropic 3-space

~ in E of octad type for the I I!llddle I octad
~

of Hls MOO.

A()F < Ff-T=l RXrl ~ >= z, ~2.' ~:z.' l:11d:z.
has order 24 , and A = <A n E t A n F >.
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Thus NH(A) ia the octad group of ahape 21+12.3.23(L3(2) X 2)

for the middle octad of H's MOG.

As a eubgroup of P A 1s

<v1 ' {nx y
BO that Np(A)

in p / 02(P)

and has shape

: x, y ( {O, 1}}, (<.J ~ w ) € 1: >
is the inverse image in P of the centralizer

of the field automorphism( w - ;;j )

23+12 ((83 X 2) X L3(2» io P.

So we have

L n M= NM(A) has shape {210.24L4(2) in M

210.24L4(2) in L

(but note that the two subgroups A and

L n v of size 210 are not the same )

L n H = NH(A) has shape

L n P = Np(A) has shape

{
21+12.3.23(L3(2) X 2)

210.26 (L2(2) X L3(2»

{

23+12«2 X 8
3

) X L
3

(2»

210.26 (L3(2) X L2 (2»

in H

in L

in P

in L

Ve shell find anice basis with reapect to which we shall

vrite elements of L / 02(L) as 5 X 5 matrices in such a

way that the intersections with M, H and P are three cf

the four maximal parabolics defined by the upper triangular

matr1ces with respect to thia basia. Then we shall find a

part1cular complement to 02(L) in L, in order to be able

to write elements of L in the form

(sum of wedge-products) • 5 X 5 matrix •
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Looklng at AO as a module for NM(A) / A we see that

lt ls lsomorphic to the skew-square of CK(AO) • The rule for

finding the wedge-product of two different involutions À and

I" of CK(AO) as an element of AO is as follows :

The orbits of < ':À, j'- > of length four are congruent

mod t: , and define a C:*-set A,,/ in AO (we denote

thie wedge product by a circle to distinguish it from the

wedge-product A from WX W to A to be defined later )

To which conjugacy class in J 4 do elements of A

From the analysis on p. 35'- 31 we see that :

(i) elements of CK(AO) are in class 2A

(11) duads in AO are in class 2B

(i11) sextets in AO are in class 2A

(iv) elements of the form

eextet e in AO ' element A of CK(AO)

are in class {2A if J r f CK(AO) s. t. s =
2B otherwise

belong ?

(V)i elements of the form

duad in AO • element of CK(AO) are in class 2B

Thua if we let W= (a, b, c, d, e) be an abstract

5-dimensional space over GF(2) so that W2-, the skew-square

of W, is ten-dimensional (we write wedge-products in W2­

with a A ) then we can identify W2- with A via:

•
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a O

o

[flJ]J
t-~ ....
• # .' .,
.' .' . ~« .. ' ..

o

o

o

ùJ1]..,1< ..., '
. I: .

fJlEJ·- - lcm'. - "

.~: == .~

[[].,. .•.... '•.....

ffIJ-.' .' [illJJj.",'.or 1# ., •• .••• •

:: :: :: ~~ .: .:

mJ
···~:6· ..

~ .. , ... . ...

c

b

e

d

a b c d e

Table 13

.
and with this identification we find that for

" 'I ~ <a, b, c, d > ~ ,.. r = ( ~ /\ e) o ~ A e)

and so an element of A is in

class 2A if it is a simple wedge-product

class 2B otherwise.

If X 18 a vector-space over a field having alI

square roots, and dim(X) ~ 4 , then every automorphism of

X2- preserving the set of wedge-products is the skew-square

of an element of rL(X).

~ We examine the subspaces of X2- such that every

element is a wedge-product of elements of X. Sueh a subspace

corresponds to a collection of 2-spaces in X such that if

Xo and X1 are in the collection then dim(XO n X1 ) = 1,

and every subspace Y w1th Xo n X1 ~ Y < <XO' X1> is

also a member of the collection.

The p08sible structures of such collections of subspaces,
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for given dimenaion of aubspace of x2-, are by induction aa

follova :

diDienaion

dimension 2 :

dimension 3

a aingle 2-space Xo
{y : Xo < Y < X1} for a 1-space Xo and

a 3-space X1
There are nov tvo possibilitiea :

(1) {Y : Y < Xo and dim Y = 2} for

a 3-space Xo
(il) {Y : Xo < Y < X1 and dim Y = 2} for

a 1-space Xo and a 4-space X1
dimension 4 (i) above cannot be extended to a 4-space

and so the only possibility is

{Y : dim Y = 2 and Xo < Y < X1} for a 1-space

Xo and a 5-space X1
dimension n ~ 4 The only possibility here ls

{Y : dim Y = 2 and Xc ~ Y< X1} for a 1-space

Xo and an (n+1)-space X1

Let 112 (X) be the collection of subspaces of X2- of

maximal dimension such that every element is a vedge-product

of elements of X, so that ve have ahown that if dim X ~ 5

then every element of Jn (X) has dimension dim X - 1 and

is of the form Xo A X for a uniquely determined 1- space Xo .
Assume nov that dim X ~ 5 •

Three 1-spaces XO' X1 and X2 lie in a 2-space iff

dim( (XO " X) n (X1 " x) n (~ A X» =
Thua am automorphism ~ of X2- preserving the collection

of vedge-products determines a permutation of the 1-spaces

preserving vhether three such lie in a 2-space • Hence there

ia an element of PfL(X) determining the same permutation •

Choose a preimage (. for thia in rL(X) and look at . ' 2-f E •
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Thls flxes each element of 11?(X) , and hence fixes each

intersection of a palr of elements of 172 (x) • But these are

preclsely the 1-spaces of wedge-products.
-I 2-Thla ls enough to show that ~ E is a scalar

transformation ~ I • Then ~ = ()?\ E)2- •

Thua the result is proven for dim X ~ 5 • The result

la clear for dim X ~ 3 , and is false for dim X = 4 •

(take the skew-square of a duality for example)

Thus we have a well-defined action of L I 02(L) on

W , and can hence write elementsof L I 02(L) as 5 X 5

matrlces acting on W as the space of row vectors. The

groups (M (l L)I 02(L), (H I) L)/ 02(L) and (p 11 L)I 02(L)

are as follows :

{(~)
J(:{'~'7

H4.) Figure 9

Ve now attack the problem of a complement for 02(L)

in L. Ve notice that 02(L) has a natural conjugacy class of

complements in L n M , a representative of which is C (A ){~,22}
K °

where {m,22} is a duad in V. Can we extend this to a

complement for 02(L) in L?
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~ 5".1.

L5 (2) has the following presentation by generators

and relations :

<ai' bi' 1 ~ i ~ 4 (aia j ,: =1}
n={:

if li-jj = O

(bib j ) = 1 if ji-jl =
if li-jl 3- 2

(aibj)n = 1
n = {~

if i = j

if i 1= j

(ai bi a i +1)3 = (bi+1biai+1)3 = (bi+1aiai+1 )3

= 1 for each 1~i~3 >
Proof These relations are satisfied by

Igf~gg) a3 = (gb~gg) a4 =
00010 00110
00001 00001

(

10000)01000
00100
00010
00011

~
10000)01000
00100
00011

0001

cosets cf

i ~ r-1 , a r ,> in <ai' bi' 1 ~ i <:. r >
coseta cf <ai' bi' 1 ~ i ~ r> in

~ i ~ r , a r +1;> show that these relaticna are

and successive coset enumerations of the 2r +1_1

<ai' bi' 1 ~
and the 2r +1

<ai' bi' 1

8ufficient.
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Theorem 5".3

The following elements of M and H generate a

complèment L1 for 02(L) in L:

(~\- ffiffliH < !~ n H

ooooH

U~gg~01100 =
00010
00001

(

10000)01100 X ~: ::
00100 = '><m" ~ M
00010 ~
00001

(

10000)01000 _.'
00110 =~ ~ Mn H
00010 ~
00001

(

10000)01000 .
00100 =~ E Mn H
00010 ~
00011

(

10000)01000
00100
00011
00001 ~

'~"
= -.

.. 1A
= a è' H

!ì:Q.g1

Taking these as the ai and bi of the lemma, we see

that each of the given relations is either satisfied in

M or H , or ls the relation :

[CX,ooJ=

Th1s relation holds in the pentad group, as is easlly checked.
g
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Remark

The proof of the theorem shows that in the group M * H
-.JL.

([xS,x7J>
descr1bed on p. 4-8 the subgroup <M () L , H (I L> 1s

isomorph1c to the group L described in this chapter; i.e.

alI relations in L fol1ow from the dictionary of p. 31

and the fact that cammutes with

Having the comp1ement L1 ' we now have a notatian far

elements af L as

(element of 02(L».(element of L1 )

i. e. as

(sum of wedge-praducts).(S X S matrix)

The reader 1s now referred ta Append1x D where many

usefÙl elements of J 4 are written in the natat10ns far

those af M, H, P and L in which they Iie.
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CODA Larghetto

The Sm1th-Ronan Diagram for J 4

In [11) , Smith and Ronan investigate diagrams for

groups 'of GF(2) type' o These are supposed to be an

extension of the Dynkin Diagram notation for Chevalley

Groups over GF(2) • The nodes of the diagram represent

an 'incident' set of maximal 2-10cal subgroups in such a

way that 8uppressing a particular node and alI the edges

leading from it leaves the diagram f6r the quotient af

that maxima1 2-10cal by its O2 • For examp1e, the following

18 their diagram for M24
c • •

.
24L.(2) 26{83 X L3(2» 263SP4(2)

OCTAD TRIO 6 Figure 10= 2 3S6
SEXTET

In their notation, a missing node is one which cannot

be euppressed, end which magically reappears when certain

ot the other nodes have been suppressed. Thus it might be

better to re-draw the above diagram as

OCTAD

SEXTET

TRIO

Figure 11

w1th the rule that a trapped node cannot be suppressed.

Then the diagram for 386 would be

F,-gure 12
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In this notation the diagram for M2202 ie

/
that for 3M2202 is

250-(2)
4

= 25S5
'SEXTET'

Figure 13

and finally the diagram for J4 ie

Fi~ure 14

Figure 15

The notions of incidence involved in these diagrams

vere used as a guide to the choice of notations for H,

M , P and L; in H we choose an incident hexad, sextet

and octad to define H n M , H n P and H () L , and in

M ve choose an incident sextet, trio and octad to define

M n H , Mn p and Mn L o Then the notations for P
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and L tollow naturally.

In the Chevalley groups, not only can we choose an

inc1dent set of maximal 2-10cals, but we can also choose

an 'incident' set of Levi Complements in these maximal

2-10cals. Corresponding to this, our 'complements'

P' < H , K < M , A and L < p and L1 < L seem to be

inc1dent in a similar way.

(Other ex~mples of trapped nodes are

and perhaps a little more far-fetched are

S~.2.
3.s~.2. )
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Chapter 6 The construction of J 4 via the

112-dimensional 2-modular representation Là

In this chapter, I shall deacribe the construction by

Norton, Parker and Thackray of a pair of 112 X 112 matrices

over GF(2) generating J 4 (see [6]), some of the methods

developed by Parker and Thackray (see [7]) for dealing with

2-modular repreaentations on a computer, and the proof by

Norton, Parker, Conway, Thackray and myself that the group

generated by these matrices is indeed isomorphic to J 4 •

In the next chapter I shall develop more of the internaI

structure of the module.

When the ordinary character table of J 4 had been

produced in Cambridge in 1975, it was seen that the amallest

ordinary character degree was 1333, and that even that was

1rrat1onal, so that it would be quite difficult to construct

the group via this ordinary representation. Hence Thomnson

decided to examine the possibilities for a modular

representation of small degree. By restricting to various

subgroups, he showed that for p # 2 , there could be no

non-trivial p-modular renresentation of degree less than

1333, and that for p = 2 , the smallest possibility was

a (self-dual) 112-dimensional representation over GF(2) •

Thus he made :

Conjecture 1

J. has·a representation of degree 112 over GF(2) •

The problem was then to try to construct a pair of

112 X 112 matrices over GF(2) generating this representation

of J 4 • To do this, it was necessary to find a moderately

large sùbgroup of odd characteristic. Looking again at the

ordinary character table of J 4 , it waa seen that IU
3

(11)!
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divides IJ41, and that a set of apparently consistent

character restrictions from J 4 to U3(11) could be written

down '. Thus we have :

Conjecture 2

J
4

hae a subgroup U ''JolY\er'ph\'c io L(3(/I)

S'(A ('f'c:;<.: T't ~)'. i ~ ts c..rt~J s,..t lsr· E. 5 C.Of~ ~c- t () r.e s I tl./t) '2 .

Under the action of U, the 112-dimensional module ~ would

have to be uniserial 1+110+1 , with a unique invariant

1-dimensional submodule ~V and a unique invariant 111-dimensional

submodule 6 V11 .6V11 / 6 V lifts to characteristic o.

(Notation when 4 has a unique invariant submodule of

dimension n under the action of a group X, we denote this

submodule by ~X)
n

An element of order 11 in the centre of a Sylow

11-aubgroun acts fixed noint freely on .6:.V11 / 6. V ' and

hence has a unique fixed point on 6/ .6 Y• Thus this module

ia a quotient of the permutation module on the coseta of a

Sylow 11-normalizer (i.e. on isotropic vectors). It turns

out that the kernel is generated by fixed points on even

elements of the module. Thus 6:. / 6 V can easily be built

aa matrices. Moreover, ~ V11 is dual to this module. Since

6 V11 / 6. V is self-dual, i t is ,then possible to choose

bases so that the matrices for these two modules agree in

110 rows and columns. Gluing them together leaves only one

bit of the resulting matrices unresolved :
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f ~ ~I

O * *
o ~ ,~

Figure 16

Since the group of alI matrices obtained by filling in

this bit in both possible ways ls a group of shape U3 (11) X 2,

choosing an odd order generating set resolves the ambiguity.

Bow we need an extra element to complete this to a

representation of J4 • This was done by enlarging the

Sylow 11-normalizer :

!\
u}(~ ~11+2(5 X 234'

111+2(5 X 8) Figure 17

Under the action of the J 4 3ylow 11-normalizer, ~

decomposes as a direct sum of a 110-dlmensional module and

a 2-dimensional module (with 33 action on the latter).

Restricting to the subgroup of shape 111+2.5 , the 110-snace

becomes a 55-space over GF(4) • Thus we can find a matrix.of

arder 3 normalizing this subgroup in the required way, by the

methods described in the next section, and then alI such

matrices can be obtained from this one by multiplication

by a GF(4)-scalar matrix.

Thus very few possibilities were found for a set of

generating matrices for J 4 • AlI but one of thAse possibilities

vas rejected immediately by taking random products of the
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generating matrices and finding an element whese erder is

riot the arder ef an element ef J4 •

Thus we were left with a particular set ef generating

matrices fora group which we believed to be isomerphic to

J4 • The problem was then to prove that this was indeed the

case. Before I give this proof, I shall discuss the computer

techniques used to verify certain facts about the module

needed in the preof.
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Computer Technigues for Modular Renresentations of

Finite Groups

This section is a brief description of a body of techniques

developed by Richard Parker and Jon Thackray for dealing with

modular re~resentations of finite groups on a computer (see [7J

for further details). These work in principle for any finite

field, but have so far been implemented only over GF(2),

where the techniques are most efficiente

A group representation is stored as a set of non-singular

matrices generating the group. Since we mostly deal with

groups which can be generated by two matrices, the nrogrammes

bave been written to store a group representation as a ~air of

matrices. AlI vectors considered are row veetors aeted on the

right by matriees.

The basie operations defined on matrices and veetors are

the following

(i) Rank

(ii) Addition

(iii) Multiplication

(iv) Inversion

(v) Transposition

(vi) Tensor Produet

(vii) Exterior Powers Etc.

(viii) Null Spaee

(ix) 'Invariant Subspace'

(x) 'Standard Base'

(xi) Top Left

(xii) Split

and a few more teehnical operations.
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Only the last five of these need explanation.

Null space

This takes as input a singu1ar matrix say of nu11ity

n , and gives as output a non-singular matrix the first n

rows of which give a basia far the nul1 space, and the rest

of which complete thia to a basis far the who1e space.

Invariant Subsnace :

This takes as input a pair of matrices and a vector.

It then finds the submodu1e generated by the vector under

the action of the matrices, and gives as output the dimension

n of this space, and a matrix the first n rows of which

give a basis for the subspace and the rest of which complete

this to a basis for the whole space.

Standard Base :

This takes as input a pair of matrices and a vector not

in any proper invariant subspace. The output is a matrix

.whose rows form a basis obtained in a standard way from the

input. (i.e. conjugating the input by a matrix wi11 have the

effect of conjugating the output by the same matrix.)

Top Left :

This takes as input a matrix and an integer n, and

gives as output the top-1eft n xn portion of the matrix.

Split

This takes as input two matrices and a vector. It finds

the submodule generated by the vector under the action of the

matrices, and outputs the two group elements in the two new

representations : submodule and quotient module.
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Vith the above tools, the complete lattice of submodules

for a representation may be found as follova :

(i) The nullity tr1ck :

The bas1c obaervat1on here is that a 'random' element

ot the group algebra aa a matrix in a g1ven repreaentation

over a f1nite field is quite l1kely to have amalI non-zero

nullity. Thia 1a at its beat over GF(2) and gets worse for

bigger fields. (For example for an absolutely irreducible

repreaentation over GF(2) the probab1l1ty of a random matrix

having nullity 1s about 0.56, over GF(3) about 0.42,

and over GF(5) about 0.24. For a reduc1ble representation

the probabilities are not much different, unless the representation

ia really a repreaentat10n over a larger f1eld of the same

oharacter1stic, wr1tten over the small f1eld. Then the nullities

are alI d1v1s1ble by the degree of the field extension.)

Bow suppose we are given a reduc1ble representation and

we wish to find an invariant submodule. The first step is to

take random elements of the group algebra ~ the representation

until one is found of amalI non-zero nul11ty. The next atep

ia to take the non-zero null vectors of this element one

by one and find the invar1ant subspace generated by each

under the action of the group. Since it is quite likely that

the element has nullity in a proper submodule if there is one,

this meane that a proper invariant subspace will be found

after a few tries like this. We may then extract the submodule

and quotient module as new matrix representations of the group.
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(11) The 1rreducibility test :

Having applied the nullity trick to a representation and

not found an invariant eubspace, we may wieh to try to prove

that the ~epresentation le lrreducible. To do thie, again we

take random elements of the group algebra in the representation

until we find one of amalI non-zero nulllty (preferably nullity

1 ), and then we take alI its non-zero null vectore and find

the aubmodule generated by each under the action of the group.

If in each case the whole space is found to be the answer, we

repeat the procedure with the transpose of the matrix and the

transpose inverse of the generatore of the group. If the whole

space is again found to be the anewer in each case, we know

that the representation is irreducible.

(iii) Isomorphism types; fingerprints

Having obtained the compoaition factors of the module,

ve wish to know which are isomorphic. The first and obvious

remark is that modules of different dimensions are non­

iaomorphic. Secondly, a quick and easy test for non-isomerphism

1a to find an element of the group algebra with different

-nullities in the two representations. Thus we try te find a

ahort list of test-elementa of the group algebra, so that the

'fingerprint' of a module - i.e. the set of nullities of

the test-elements - is enough to ascertain the ieomorphism

type.

The method for proving that tvo modules are isomorphic

la aa followa :

Plrat, ve find an element of the group algebra of small

non-zero nullity (again preferably nullity 1 ) in the

representations (the nullities had better be the aame ! ) •

Then ve take a particular null vector in the first representatlon
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and find the etandard baee (see above) with respect to this

vector. Doing the eame for each null vector in the other

representation, we find either that :

(a) there ie a null vector euch that expreseing the

matrices for each representation with respect to the standard

bases for these null vectors, the two representations have

1dentical matrtcee, in which case the representations are

1eomorphic, or

(b) no such null vector has th1s property, in which case

the representations are non-isomorphic.

(iv) Non-czistence of composition factors

In order to show t~at an irreducible module A ia not

a compasition factor of a module B, it is sufficient to find

an element of the group algebra having greater nullity on A

than on B.

(v) The Lattice of Submodules :

Ve now know the isomorphism types of alI tae composition

factors, and wish to know the lattice of submodules. For this

it ie enough to be able to tell what are the bottom constituents

of a module (i.e. the socle) and then to 'peel off' bottom

constituents one at a time. To find alI submodules of our

representation B isomorphic to a particular irreducible

module A, we find an element ofthe group algebra having

non-zero nullity on A and small nullity on B. We then

take each of the null vectore of this element on the representat10n

B • and for each one we find the invariant submodule generated

bl it under the action of the group. The number of ti.es the

submodule generated 1s isomorphic to A tells us the number

of copies of A there are in the socle of B, if ve knov
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the correct field of definitiqn of A (i.e. if we know the

centralizer ring of A) •

There are aleo many short-cute for decreasing the amount

of work needed, and ao far these have made the methods

uBable for representations of dimensiona up to about 10000 •

The Group Game; the Centralizer of an Involution

In ita atricteat aense, the group game ie. the following

There are two players, A and B. A thinks of a group

and givea B a list of symbole for generatore. B may then

aak A for the aymbol for any word in A's generators. The

only restriction on A is that if he names the same element

twice he must use the aame symbol. B's task is to find aut

what graup A ia thinking af.



71

EX8mple :

A givea B the list 81 • 82 o

B's queation A'a anawer

&1 81 &,

&,8, &,

8282 8,

8182 8.

8.8.8.a4a4a4 84

At this point B deduces that A is thinking of the

dihedral group of order 10.

Our problem with J 4 was very similar, with the computer

8a p18yer A and us as player B , except that we could obtain

information inadmissible to the group game player. For example,

ii 1+x has different rank from 1+y , then x is not

conjugate to y. (For each conjugacy class of element x in

J•• the rank of 1+x in the representation 6 is given in

Appendix C l kfiH th..f Q.l'sf.,(-<,ce hc... 5 beel" rrc~el'\)

Our taska were to show :

(i) The centralizer of some involution z in the group

generated by our matrices has the form given in Hypothesis A

on p. 3
(ii) The group generated by our matrices ia simple.

Then by the characterization given in J8nkO [2] the

group generated would be proven to be J 4 .



72

Inside the group game, there is a quick and easy method

for finding a subgroup of the centralizer of an involution

x , which is probably the whole of 02'(C(x» , as follows

Pirst, randomly multiply elements together until an

element of even order is obtained, and then take a suitable

power of it in order to obtain an involution x. Repeat

the process to obtain another involution y, preferably

not conjugate to x. Then <x, y> is a dihedral group,

and if xy has even order 2n (which i t does if x '1-- Y )

then (xy)n is an involution commuting with x. Repeating

this process with conjugates of y or with other random

involutions, soon the whole of 02'(C(x» will be

ob~ained. However, there is never a guarantee that it has

alI been found.

In our group of matrices, we found an involution z

with Rank(1+z) = 50 , and found by the above method a

group H centralizing it. It was thus suspected that H

was of the form given in Hypothesis A on p. 3 . The

action of H on a suitable composition factor of ~

under this action was used to identify H / 02,3(H)(~with

Aut(M22). A supplement F of shape 6M22 .2 to 02(H)

in H waw then found by the following method, which is

again a group game technique

Take an element w € 02,3(H) of order 3 (i.e. an

element of order 3 acting trivially on the above

composition factor) and define F = NH(w) • Given an

involution t in H\ H' , either wt = w-1 , in which

t -1 )case t ( F , or w = xv with x ~ 02(H • In the
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latter case (t, w , z) l <z) -;t 64 with t acting

as (01)(2)(3) and w as (0)(123). Thus twtw2t ls

an element of F equivalent to t modulo 02,3(H) •

~ ls generated by elements of this formo

Next, Todd's presentation of M22 given in [10]

vas used to prove by generators and relatora that H

really is as in Hypothesis A • Thus the notation developed

in Chapter 2 can be used to describe elements of H.

As the next step, two involutions of total type (see

p. 23 ) lying in the subgroup E1 of 02(H) (see p.21­

vere taken, and again by the above method, subgroups of

their centralizers were found. By means of looking at the

actlon of the group M generated by these on an invariant

submodule of ~ of dimension 12 under this action, this

group M was identified wlth the group of shape 211
M

24

described in (ii) on p. 3 , and again Todd's presentation

of M
24

was used to prove by generators and relators that

M really is isomorphic to the group described there.

Notation for M was chosen in such a way that the dictionary

ot p.31 held, and this dictionary was explicitely verified

on the computer. Thus the rest of the analysis of Chapter 3

holds,in the group of matrices G= <M , H)

Bext, the relation [x5,x7] = 1 (see p. +2 ) was

verlfied, so that our group G is a quotient of the group

M * H--L defined on p. +~ . Thus by the remarks on p.4-fl and

(1x5'x7]>
p.S1 there are subgroups P and L of the shapes descrlbed

in chapters 4 and 5, intersecting M and H in the

vays described there.



74

In tact ve aleo checked on the computer directly by

generatore and relatcre using the presentation given in

(12] that the elementa given on p. ~b do indeed generate

a eubgroup isomorphic to L5 (2) , sinee this fact is used

in our proot that G ia isomorphic toJ4 •
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!he Actiona of H! M • P and L on ~; 8acred Vectora

The methods of p. bS- - 10 were used to show that under

the action of each of H, M ,P and L, ~ reducea almost

un1serially, as illustrated in the following diagrams :

R M P L

10 1 41 S es
30 TT (Se'') 42 ~ 3p 10

10 44 (f$(!1"n (1 @ x) e (4 1 ~ 31 ) 40
_(912
10 44 (fS~2) 42 @ 8 40

30 11 (re) (1 @ x) ~ (41 @ 3p ) 10

10 42 0 31 1 lB 5

41 {f; 1

Table 14

Theee diagrams indicate al1 submodules, and the numbers

are dimensione of composition factora. Bare indicate duality,

80 that 10 denotes a module dual to 10. For example, thia

meane that under the action of H, there are invariant submodules

of dimensiona 10, 40 , 50 , 52 , 60 , 62 ,72 and 102

(exactly one of each). See p. b2 for the notation for these

8ubmodules.

Por P, any irreducible module is the tensor product

of one for Ss and one for L3(2) • For 85 ' the module

.1 18 the deleted permutation module on 5 points, and 42
18 the doubly deleted permutation module on 6 points. For

31 (linea) ia a module 1somorph1c to the module

,and 3p (pointa) is the dual of thia module (see p.4S).
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X ls a self-dual unlaerial module far L3(2) wlth diagram :

Under the action of M, we see that there ls a unique

non-zero fixed vector v • We shall calI the images of v
co 00

under the group G the 'sacred vectors' •

Under the actlon of K, ~ ~2 ';{ ~ , 80 that we may

identify veetors in thia with octads, dodecads, etc.

Tvo Generators for G = <M • H)

!3:2.2.! Certainly (M , H) 2 <g1 ' g2) , so we must

prove that <M, H> ç <g1 ' g2) • We prove this in five

stagea

(i) K.. (g1
2

, g/>
g1 2 E K , and ainee

examine the aet of maximal subgroupa of ~4 which are

transitive and have order divisible by 7. There are the

trio group of ahape 26(S3 X L
3

(2» and the octern group

of shape L
3

(2) • We see firstly that X7 is in only. one

trio group , namely that for the briek trio, and that g1 2

ie not in this. Secondly, in the oetern group the set of fixed

points of an element of order 7 ia a set of imprimitivity

whereas this doea not hold for the fixed points of x7 .



77

in <g/, g/> .
(ii) P' = <g1 ' g2

7>
g1 E P' , and einee (x5,x7] = 1 , g27 = x5

3 € P' •

<g1 t g27> is transitive on the 22 points, whereas alI

proper subgroups of M22 are intransitive.

(iii) M = (g1 ' g25>:
g1 3 = Z E V , whieh ie an irredueibIe module for K.

(iv) E ~ (g1 ' g2) einee E ~ M •

(v) H ~ (81 ' g2) einee M containe eIemente in the

outer haIf of F o

TheBe generatore g1 and g2 are ehown in apuendix B o
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SpIitt1ng the skew-sguare of ~ i the ne1ghbourhood of a vector

of the ekew-square

J 4 was the finding of an invariant submodule

A 2- A. d~ of ~ un er the act10n of the two

The moet important etep in the proof that G 1s

ieomorphic to

generatore g1 and g2. Th1s took the computer about 100 min.

ot centraI processing unit time,
2-submodule A 4995 of dimens10n

6216 ) generated by a vector in

and produced an invariant

4995 ( A 2- has dimension

A~ ".6 ~2 •

Detinition Given a subspace X of A , we define the

NEIGHBOURHOOD of X by

~(X) = { w E 6 : V v E X, W A V €.6 ~995

and the neighbourhood of a vector is the neighbourhood of

the l-dimensional space spanned by it.

The neighbourhood of a subspace X 18 clearly invarlant

under StabG(X) •

The following facts needed in the proof that G i6

isomorphic to J 4 were verified by computer

(i)v1!'( A~ ) = A ~2

The non-zero vector in ~ t
(for the left - hand octad )

(ii)

A~2

(iii)~( A t ) = À ~

i8 an octad vector in

(iv) If v 18 a dodecad vector in ~~2 then dV'( v )

has dimension 2 •
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~ ~2

79

If w1 w2 and v
3

are three octad vectors in

far disjoint octads then v11 w1 ) n vf/'( w2 ) (ì A/'( w
3

has dimension 2 , and consists of v~, another sacred vector

in 6. ~6 \ D. ~i2 called the TRIO vector f 1 ( w1 ' w2 ' w3 )

(see p. 93) and a non-sacred vector.

(vii) An orthogonal farro on 6. was found which i8

invariant under the action of g1 and g2 •

The structure of these facts will become clearer in the

next chapter.

As an example of how these facts were proven, we showeò

(iii) tobe true by showing that ~( ~~) contains some

element of ~L \ ~ L and does not contain some element6 1

of il ~6 \.6.. ~ • Then sinee uZ/'( 6. ~) ls L-invariant

it mus t be 6 ~ .
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The proof that G ia iaomorphic to J
4

Stage CG( V
oo

) = M :

J'irst, CG( v
oo

) fixea Do ~2 setwise by (i). If v

and v· are reapectively an octad vector and a dodecad

veetor in À ~2 ' faeta (ii), (iii) and (iv) above

show that

dim .)P( v ) "# dim vY'( v' )

Thua octad vectors in b. ~2 are really different from

dodeead vectora under the action of CG( v_ ) , and hence

thls acta as M
24

on ~ ~2 / ~ ~ ~ ~C; • Hence the action

on ~~2 is at most 211M24 , end so it is aufficient to

show that CG( ~ ~2) ia triviale

P'irat we obaerve that FixA(CG ( ~ ~2» is a subapace

of ~ invarlant under M o Now CG( f:::. ~2 ) stabilizes

eH( w1 ) n cH( W2 ) n JY ( w
3

) where w1 ,w2 and w
3

are three octad vectors in il ~2 for disjoint octads, and

hence by (vi) above, lt stabllizes the trio vector

f l (Wl ' w2 ' w3) so that CG ( b.. ~2 ) ~ CG( ~ ~6 ) ~ CG( .6 ~6 )

by (v).

If Y E CG( ~ t6) then y stabilizes v and so
00

3 x E M sue}: that the action of x on A ~2 is the same

as that of y • But then yx-l E CG( A ~2 ) ~ CG( ~ r6 )
so that x ~ cM( ~ ~6 ) = {l} • Hence Y f CG( ~ ~2) •

. Thus we have cG( l:::> ~2 ) = CG( ~ r6 ) , so that

P'1x
À

(CG( D. ~2 » la invariant under both M and L. But

looking on p. 7-S we see that thls impliea that lt la the

whole of .6.. o Thus CG( À ~2 ) = {1} aB required.
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Stage 2 Since F1x (02 (M» 1s 1nvar1ant under M , 1t

must be è:i ~ • Thus the orbits of. 02(M) on sacred vectors

are alI of even length except {v } and so there are oddly
00

many aacred vectors. Hence a Sylow 2-subgroup of M i8 a

Sylow 2-subgroup of G.

Stage 3 CG(z) = H :

(recall that <z) = Z(H»

(1 + z)2 = °, so Ker(1 + z) / Im(1 + z} 18 invar1ant

under CG(z} • S1nce Rank:(1 + z} = 50 ,

d1m(Ker(1 + z} / Im(1 + z» = 12

(Cof. p. 1~ )

and the act10n of H on th1s 1a as 3M2202. But

For every X w1th 3M22.2 < X~ SP12(2) ,

the order of a Sylow 2-subg~oup of X 18 (*)

greater than the order of a Sylow 2-subgroup

of 3M2202 (see r~Jotndte ({) ~ Ail-1( f~e )

so that the act10n of CG(z) on 1t is just 3M22 02 o

Now consider a min1mal normal subgroup of the kernel

of th1s act10n , mod <z> • If 1t 1s a d1rect product of

1aomorphic non-abelian simple groups, then the Sylow

2-subgroup 1s elementary abelian of order 212 and the

automorphism group contains 3M22 02, which 1s clearly

absurd. If 1t 1s an elementary abe11an group of odd order
)

then ~ decomposes aa a d1rect aum of at least two e1genspaces

under the act10n of th1s group, each of wh1ch 1s invar1ant

under the action of H, again absurd. Thus 02 (H / <z> )

1a the un1que m1nimal normal subgroup.

Thua any odd order ch1ef factor _of CG(z) / <c> acta
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on 02{H / (z> ) non-tr1v1ally, so that by (*) we have

H= CG{z) as requ1red.

Stage 4 G 1s simple

Suppose N 18 a minimal normal subgroup of G. S1nce

there are no normal 8ubgroups of M and H 1ntersecting

M1'\ H 1n the same way, e1ther N ~ <M , H) = G , or

Il fl M = N(\ H = {1} • But then N has odd order, and 1s

hence elementary abe11an, and aga1n ~ decomposes as a d1rect

sum of at least two e1genspaces of N , a contrad1ct1on, ~'~Le

01.0"1) .t{etS a.. 1-)':·"'t~SIOI1"'( f>leJ 5fo..(e.

Thus by the character1zat1on of Janko [2], G 1s

1somorph1c to J4 •

f ~ / (t): ~~ r-y~tD...t..~ i CG-(~ì cM /G.;~(i ~~ì/r"'4{1f'~)

~~ Sj""fte.e.t;c fc-r tL..f({~ ;·e·r;..50<·

r {",,-cf (V;I) ~~ue.s <\..i\. (.~o/".çrf(!."'" ~ ~ .ò'f( )

Mci. l.uc.u. 16..r-A, (1+~)/r"'A (/+t:.) ~ K...rA.... (r+~) Ir""A"Jr +-è)

~ (16..r (( + 'è,) I I m ( I ·F~)t"
~ ~

r~~ th- fct (~r).

tlu. ll-~t of
St~e 2'8 c....J

;$Iure ~ ,....~ w~ 5 ::.l
Pu-r llf.6VVlf <e .6~ c~J eook. c;.t

~rovrs w: tI.. ~eo;.j '2.-s~b,sc ..rs 1
c. O"'. t.... l.""'" rtq 3M 2.. ''''''"d (J .

--J "2."2.', ~.J c.

1.. - f1'loJuk..r ~f :~'$ <A-Tè..t;..({V\ .
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Chapter 7

The Geometry of ~ i a Presentation for J 4
by Generators and Relators

Since the stabilizer of v is exactly M, the sacred
00

vectors are in one-one correspondence with the right coseta

of M in G (throughout this chapter the word coaet will

automatically mean right coset) so that there are exactly

173 067 389 of them. In this chapter I shall investigate

further properties of the module ~ from the point of view

of the geometry of the set of sacred vectors at the same

time as making an abstract coset enumeration for the cosets
~

of M in a group G defined below on p. 'S 9 by generators

and relators , with the aim of proving that G~ G • Thus

many of the arguments in this chapter have two simultaneous

contexts. This is merely a device for saving having to write

down the same arguments twice, and I hope this does not

cause too much confusion.

For the purpose of the detailed analysis of stabilizers

needed in this chapter I need a technical definition :

Definition

For X1 ' ~ ~ X fini te groups , define

m (X1 ' ~) = { N ~ X1 I N < N' ~ X1 ~

N () ~ <. N' n ~ }

Lemma 7.1

(ii) m (X1 , ~) = { X1 } <=1 ~ n ~ = {1}
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(iii) X2 ~ X3 ~ m (Xl ' ~) ~ m{Xl ' ~)

(iv) Xl ~ ~ =*1r1 (Xl ' X2 ) = { N () Xl I N é m(~ , X2 )}

(v) I:f' X3 ~ (Xl ' X2) then

II / X:3 é m{Xl / X3 ' ~ / X3) ~ N e. m(Xl ' X2 )

(vi) I:f' G acts on a set S, and X! S , suppose

y s; Stabx (x) and
1

<y , Stabxl n~ ex:)> € 7fl (Xl ' X2 ) •

Then

Proo:f'

Clear /;'

(y , Stab
xl

(ì ~ (x)> = Stabx (x)
1

Part (vi) o:f' this lemma will be used repeatedly.
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One-funetions and Nought-funetions

Under the aetion of M / 02(M) ,

(eee p. 13 ). Let jr: re x cge*
.Dr. ~2 / 6. ~ ;;: re
GF(2) be the b1l1near

map estab11sh1ng duality between re and 5t*; i. e.

~(x,y) = li n yl (mod 2) where x and y are subsets

of n representing x and y. Then 02 (M) aets on C::. ~2

by
x : y ... y + t (x,y) .vco •

Bow let f: ~ - ~ ~2be a linear funetion sueh that

t
) ~ ~2~

projeetiool lprojeetioo

fe ~

~~~2/iJ.~

commutes.

There are 212 such functions, sinee the differenee

between two is a linear function from G to L1 ~ ,

1.e. an element of ~* . For 211 of these, f(Sl.) = v
ClO

t t M
) Ll 12

-11 18"g

.t,8
~- ) ~~2
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and the stabilizer of a particular such function f ie

a complement to 02(M) in M. The two types of complement

given in this way (c.f. p. j~ ) are called one-type

complements and nought-type complements. It turns out that

a hexad-type complement (see p. 2~ ) ie the eame aB a one-type

complement and a point-type is the same as a nought-type.

Thue our complement K corresponds to a particular

one-function f 1 • The other t's are then cf the form

f 1x where x ~ 11 and Ixl 18 odd for a ncught-functicn

and even fcr a one-function.
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'"The Iast relator i the group G

Let x23 be the element of order 23 in K aoting

as the permutation x ~ x+1 on M's MOG, and Iet x11
be the element of order 11 in K acting as x ~ 2x and

hence normalizing x23 • Let f be the element of G of

order 2 normalizing x23 and centralizing x11 (the

SyIov 23-normalizer in J4 ia Frobenius of shape 23.22).

Then Janko [2] has ehown that

J1 = (M () M!) <f) ~ llGL2 (23)

vith J1 A M N L2(23) • (f is the eIemeAt x ~ -x )

Thus V! ie a eacred vector vith StabM(v l ,> = J7 () M •CIO l CIO

So J7~ M has a tvo-dimensional fixed space, and v f liesCIO

outside A ~11 • The image of vCIO
f

in À I 6 ~00 is an

odd ~ *-set stab1Iized by J7 n M , i. e. {CIO}, and hence J1 () M

Iies in the nought-type complement corresponding to this

~*-set.

The element f was constructed by computer, and in

part1cular i t vas shown that

vhere
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m1 =~.(~ 6 22 12 1 7 3 21 4 11 10 8 9 19)

~ (O 14 16 17 2013 2)(5 18)(15) ( M

h=a=lm:\' l'P1 -' -
. 'l il

m2 = (~ 15 14 8 2 17 11 21 4 22)(1 7)

(O 18 6 10 20 12 13 3 16 5)(9 19)

Il, = FT07l € K

~

( K

h3 = ( (~)(1 9 11 3 21 10 18 5 14 17 7) ]22A € 'P

(0)(2 15 22 16 13 12 6 20 4 8 19)

mJ"··· ..
_ ......
... ' .'

• (~ O 11 21 2 10 15 17 22 7 5 8 16)

(3 14 18 20 9 13 16){4 19)(12)
€. M

and t ia an involut1on in class 2B.
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Letting f be thia element of the group M ~ H

defined on p. 48 , we see that G ia a quotient of the

group

a= M ~ H

([x5'X7],f-1x23fX23)

In the reat of this chapter I ahall ahow that this is

in tact a presentation for J4 ; i.e. that

Theorem 1.2
A

The aurjection G - G is an isomorphism.

It required, Todd's presentation (10] for the Mathieu

Groups may be used to make this into an explicit presentation

by generators and relato~a, but I see no point in writing

down the details.

I shall use the same symbols for cosets of M in ~

as tor aacred vectors, so that for example v is the
00

identity coset af M. Each coset/sacred vectar will have

two names, ane as an element af an M-arbit and ane as an

element of an H-orbit. My arguments will be phrased in

terma af casets, but will a~ply bath to caseta and sacred

vectora. The relationship between the set of sacred vectars

and the linear structure of ~ is discussed in square

bracketa after the relevant caseta have been investigated

abstractly~ Thus theae parta may be amitted withaut

hindering the analysia of Sand the praaf of thearem 7.2 •
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A
By the remarks on p.4-8 and p.~ , G has eubgroupe

p and L of the shapes given in chapters 4 and 5

intersecting M and H in the way described there.

It ia clear from the analysis on p. 3~ - +0 that M

and H contain the fusion of involutions in M and H
A

so that in G , there are at least two classes 2A and 2B

of involutions such that every involution òf M and of H

ia in one of these classes in the way shown in Tables 9

and 10.

Ve may use the language of nought-functions and
A

one-functions for the subgroup M of G , since M still

has a faithful representation of dimension 12 isomorphic to

the module 6.. ~2 for M as a subgroup of G.

The idea of the argument for proving that
AN

G isG =
as follows ..

.A
induces dThe map G-G a mapfrom the set of cosets

of M in G to the set 4 of sacred vectors. It is

aufficient to prove that this map is injective.

A character-theoretic calculation showa that under

the actions of H and M, the set 4' falls into

respectively 9 and ~ orbits. The intersection of an

M-orbit with an H-orbit decomposes as a union of orbits

of D = Mn H , of which there are 36 altogether •

. Appendix E , due to S.Norton [6] , shows how these

intersections of orbita decompose, in each case as a union

of at most two D-orbits.
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What I shall do is to find a set of 7 particular

elements of /.i representing the 7 M-orbita on ~ , end
A

show that their G-stabilizer is at least as big as

the G-stabilizer of their image in A , end likewise

for the 9 H-orbits. This will be by a process of going

backwards and forewards between M- end H-orbits. For

example, we may take an element of an M-orbit, and find

its H-stabilizer by the process of taking the M n H­

stabilizer and using one of the extra relations if

necessary to complete this to the whole H-stabilizer.

If the resulting group is in m (H , M) then we may

conclude by Lemma 7.1 (vi) that the whole of the H-

stabilizer of this coset has been found, end that it is
A

the same in G as it is in G. The method will become

clearer when you see it in practice. This produces for us
A

two sets of 173 067 389 cosets of M in G, the first

closed under multipllcation by elements of M and the

second closed under multiplication by elements of H.

Thus alI that remains is to identify the two sets with
A

each other, so that IG : MI = 173 067 389 • This will

complete the proof that A '"G = G •

To make the identifications, we proceed as follows.

Each of the two collections of cosets falls into 36

orbits under D • If we can show that one element of a

D-orbit in the one set is the same as one element of a

D-orbit in the other set, the whole orbits are automatically

identified. Thus we must check 36 identifications. Some

of these wi11 follow from the definition of the coset, and

the rest will follow from the relation [x5 ,x7] = 1 , as

wi11 be seen (c.f. p.lo~ where the first example of an
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'x
5
-x

7
square' occurs). Thus the tables in Appendices

E and F will be verified.

To convert this into an abstract proof of the

existence of J 4 ' the following extra verifications

are necessary

(i) The subgroup D of M really i6 isomorphic to

the subgroup D of H. This is not clear from the analysis

of Chapter 3 , but shouldn't be too difficult to prove.

(il) The D-stabilizers of a representative of each

of the 36 D-orbits are the same in the two sets of cosets.

Por some of these this follaws from definition, but for

the rest an explicit check ls necessary.

Then J 4 will have been constructed as a group of

permutatlons of 173 067-389 objects.
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The Pentad i the M-orbit T of Trio cosets

einee Ip : P f1 MI = 5 , v
00

has 5 images under P,

vhich are permuted like the 5 tetrads in figure 7 (p. 4"'l- ).

Thue ve label theee cosets voo ' Vo ' v1 ' Vw and vw '
and they form a 'Pentad' on which the Pentad group P acts.

[ The epace spanned by these vectore is invariant

under P, and hence from p.15" ve eee that i t

le 6 ~ . Thus

V
oo

+ V o + v 1 + v", + v(j = O (1) ]

Let a be the element of P with action (= O)(1)(w)(w)

on PG(1,4) defined on p. S't:. • Then vooO( = Vo ' and so

etabMfl p(vO) = M n (M n p)a is a group of shape

29.26 (S, X L3(2» generated by the even ~*-sets in V

hitting each octad of the brick trio evenly, and the trio

group in K for the brick trio.

eince StabMOp(vO) f m (M, p) ,we eee by lemma 7.1 (vi)

that StabM(vO) = StabMn p(vO) •

Thus the M-orbit of Vo consists of 22.3795 cosets

ealled the TRIO cosete (c.f. p. 1"1 ) and that such a

eoeet is determined by a trio on M's MOG and a one-function

t , vhere two one functions determine the ssme coset iff they

are conjugate by a ~*-eet in V hitting each of the octads

ot the trio evenly.

Ve write f(a,b,c) for the trio coset defined by the

trio {a,b,c} and the one-function f. Ve denote by

~,b(a,b,e) the trio coset determined by the asme trio
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{ a,b,o} but by a one-funotion eonjugate to f by a

~*-set hitting the oetads a and b oddly and c

even1y. Thus while ~,b is not a well-defined one-tunetion,

~,b(a,b,e) is a well-defined trio veetor. So for example

labelling the briek trio as~
L.LU

we have

vo = t 1(brick trio) = t 1(1,w,w)

v1 = ft ,1.>(1 ,.::i,w)

t 1 ,i:i(1 - )vJ,J = 1 ,w,1.,)

v~ = t1-f '''''(1 ,;:i, ...)

[ On the computer it was eheeked that va f L\ ~6 '

so that all trio veetors are in A ~6 • In

partieular, t::.. ~ ~ 6 ~ ~ ~ ~6 •

Since the veetors f(a,b,c) and ~,b(a,b,e)

are conjugate by an element of 02(M) , they must

have the same image in D.. ~6 / L\ ~2 ' and henee

t(a,b,e) + ~,b(a,b,e) E .6 ~2 •

Its !mage in d ~2 / ~ ~ ls stabl1ized by

StabM(c) , and so sinee lt cannot be v_

(or else ra,b(a,b,e) = fb,e(a,b,e» it must be

t(c) or t(e) + v-then fb,C(a,b,c) +

=t(c) + v ,vhich
CIO

• If it were f(c) + v ,-
~,c(a,b,e) = t(a) + t(b)

implies that

Vo + v1 + vw + v.;:; = O , contradieting the known

structure ot ~ ~ • Hence ve have

t(a,b,c) + ~,b(a,b,c) = t(c) (2) ]
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The H-orbit 9 of Hexad cosets

Since IH : H n MI = 77 , v
00

has 77 images under H •

- (*)

The stabilizer of such a coset is the stabilizer of a hexad

f for HI S MOG, and we write this coset as <9 (f ) •

Thus for example

Voo = @ ( ffiill )= G ( 9 )
(see p. 21 )

Since a € H , we see that

G(ECIriJ·;·::~ )........".. .. ",

@n T :

Thus the 60 hexad cosds for hexads intersecting the

hexad B in two points (these hexads clearly form a D-orbit)

are the same as the 60 trio cosets for the 15 trios

incident with (i.e. made up of paire of tetrads of) the

vertical sextet for M's MOG. The rule for translation

ia as follows

Rule @ - T

The hexad intersects 9 in a duad, which determines

a eyntheme on q> (see pp. 12 , 21 and 2~ ) and hence a

trio refining the vertical sextet for M's MOG, via the

correspondence in figure 6 on p. 2' . The other four

points of the hexad either miss q>, in which case the trio

t:. oset is f 1(trio) , or intersects i t in one of the duads

ot the syntheme, in whioh case if the other two duads

determine octads a and b of the trio, the coset is

t 1
a ,b(trio) •
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There 1e one euch Rule for every D-orb1t (Rule

I ~ ~ 1e statement (*) above; the M-orb1t I 1s

{v } }. I shall g1ve these rules only when they take a
00

fa1r1y s1mp1e form, as these are the only cases of interest.

'or the rest, I shall eimp1y g1ve one ident1f1cat10n;

acting on th1s by D g1yes the 'rule'.

[ It vas checked by computer that v~ E ~ ~O

so that a11 hexad vectors are in 6 ~O •

The module L1 ~O has O2,3 (H) in i ts kernel,

and as a module for Aut (M22 ) 1t 1s ieomorph1c

. to the module of even ~ -sets ulcluding both

or none of {CIO,O} , modulo <Jl'7. Hexads as

Buch ~ -seta are the same as hexads as sacred

vectors. ]
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The M-orblt S of Sextet cosets

Let g be an element of H with eg = ep • Then

Stabn ( e ( ep » = M () Dg , which ls a aubgroup of M of

shape 27.26 •3S6 and is generated by the even ~ *-sets

in V hitting each tetrad of the vertical sextet with

the aame parity (Le. the PARITY aubgroup E1 (see p. 1 ~ »,
and the sextet group L~ K for the vertical sextet.

Since StabD( e ( ep » f. m (M , H), lemma 7.1 (vi)

shows that StabM( @ ( ep » = Stabn( e ( ep » .

Thua the M-orbit of QV ( ep) consists of 24 .1771

coaeta calIed the SEXTET cosets, and each ia determined

by a sextet on M'a MOG and a one-function f, where two

one-functions determine the same coset iff they are

conjugate by a ~*-set in V hitting each of the tetrads

of the eextet evenly.

As on p. 93 , we write f(u,v,w,x,y,z) for the sextet

coset defined by the sextet {u,v,w,x,y,z} and the

one-function f, and simiIarly define fU'v(u,v,w,x,y,z)

to be the coset defined by the same sextet and a one-function

conjugate to f by a ~ *-set hitting uand v oddly

and w, x, y and z evenly. Thus for example

~ ( ep ) = f 1(vertical sextet)

So ve eee that the 16 hexad cosets for hexads

disjoint from 9 are the same as the 16 sextet cosets

for the vertical sextet, the correspondence being given by:
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Rule e - S

Let the hexad be ~x, vith x an element of U1

(i.e. an affine translation on the right-hand square of

lira MOG - see p. l.-:t ). If x 1= , then x determines

a pair of columns u, v of M's MOG as on p. 32 •

The vertical sextet coset is then

t 1 (vertical sextet) if x = 1

t
1
U,v(vertical sextet) if x ~

[ On the computer it vas checked that

f)( ~ ) , and hence all sextet vectora, are in

M so that c6 P < ,6.VO..ç M
b. 56 ' ve have 4--- ~ 56 •

Thus as before ve have

t(u,v,v,x,y,z) + fU'v(u,v,v,x,y,z) f ~ ~2 '

and must equal either

Thus

f(u + v) or f(u + v) + v
co

fV'x(u,v,v,x,y,z) + fY'z(u,v,v,x,y,z)

= f(v + x) + f(y + z)

= f(u + v) + v
co

ConjugatiDg by a -c:*-set in V hitting w and

x oddly and u, v, y and z evenly, this gives

t(u,v,v,x,y,z) + fU'v(u,v,w,x,y,z}

= f(u + v) + v (3)
co

Boy conjugating (1) byan element of H taking

the duad {3, 15} to the duad {2, 11} on H'a

MOG , ve Bee that
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f 1(A,B,C,D,E,F) + f 1
A,B(A,B,C,D,E,F) + f1CD,EF(AB,CD,E~

+ f CE,DF(AB CE DF) + f CF,DE(AB CF DE) - O1 " 1 ,,-,

where {A,B,C,D,E,F} is the vertical sextet far

M'e MOG (c.f. figure 6 , p. 2~ ).

Combining this with (2) and (3), we get

= vco

and hence for any sextet {u,v,w,x,y,z} and any

one-function f,

f(uv,wx,yz) + f(uv,wy,xz) + f(uv,wz,xy) =v
co

Now these four vectors are hexad vectors far

hexads satisfying :

(i) Any two intersect in two points

(ii) Any three intersect trivially

Since Aut(~2) is transitive on such configurations,

thie means that if 3" 02' 93 and 94 are any

four hexads satisfying (i) and (ii) above,

then

@ (9,) + e (02) + e (9
3

) + (9 ('3 4 ) = O

(5 )

In particular,

f 1
BE,CF(AD,BE,CF) + f 1(AF,BD,CE) + f

l
(AF,BD,CE)

+ f 1
A,D(A,B,C,D,E,F) = O

and hence using (2) and (3) and acting by

elements of M, we see that for any sextet {u,v,w,x,y,z}

and any one-function f,

f(ux,vy,wz) + f(uy,vz,wx) + f(uz,vx,wy)

=f(u,v,w,x,y,z) + v
CIO

(6) ]
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[ Note added in proof

It hae now oeen shown

on the computer that the modules S ( A r2)2- and

A ~6/ .6 rare conjugate by an outer automorphism of M

(c.f. p. 13 and cor. 1 on p. 14 )

Thu8 if f is a one-function, thinking of an odd

~ *-set as an outer automorohism of M, and hence as

an isomorphism between 6 ~6/Ll ~ and S (..6. ~2) 2- we

have :

fU (u, v , w, x ,Y, z) = f (v) " f (w) + f (v )A f (x) + f (v) 1\ f (y) +

t(v)~ fez) + t(w)" f(x) + f(W)A f(y) + f(w)" f(z) +

t(x)" f(y) + f(X)A fez) + f(y)~ t(z)

( graphical1y." :~.)
~

fU'v,w(u,v,w,x,y,z) = f(u)" t(v) + f(uL" t(w) + f(v) 1'\ t(w) +

f(x)" f(y) + f(x)"" fez) + t(y) A fez)

~(a,b,c) = f(b) A f(c)

(
.Iò.

)

( LS )
Il c

Then relations (2), (3), (4) and (6) above follow
Mimmediately modulo ~ 1 • Maybe an extension of this

construction could be used as an abstract construction

for the moduie ~ under the action of M and hence give

an easy naming system for the sacred vectors. Adjoining some
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!urther automorphism would then provide an abstraet

geometrie eonstruetion for J 4 · J
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The action of L; the H-orbit ~ of Big-Octad Cosets

Since 1M: Mn LI ~ 31 , v haa 31 images under
00

L correaponding to the non-zero pointe ot W* , the dual

ot W. Since a (L (see p. 56 ) , VooOi = Vo = f 1 (brick trio)

le one of these. Thls has 30 images under Mn L , namely

t 1
X

( (J,b,c) for the 15 'trios {(j ,b,c} containing the

left-hand octad (J' for M'a r'.OG, and x ~ L n v , i.e.

t 1 ( (J , b, c ) and f 1b, c ( (.?"', b, c ) •

( From the relatlons (2) and (4) on p. 9f.. and p. ~'j

ve Bee that the set

{ O , f 1 <Ci) , vco ' f 1 (Li) + v• •f 1 ( ~\ b , c) , f 1b, c ( et, b , c ) ,

t 1 ( (J', b, c) + v00 ' f 1b, c ( a, b, c ) + v00 I { (J", b ,c } ls

a trio containing the octad (J }

ls closed under additlon and invariant ur.der L

and is hence the module b. ~ . This decomposes as

a direct sum of b.. ~ = <f 1 «(J) + voo> and

L\. ~ = { O , f 1 ( (J) , f 1ur, b, c) + v00 } ;;{ w*

as in the following diagram :

t , «7) + V
oo

v f
1
b,c( (J,b,c) , t , (O'.b,c)

co
--

O t , (O) f , (cJ,b,c) + v , f
1
b,c( a,b,c) + v

00 co,

l'
.6~ Table ~ 5

h L-modules, tJ. ~6 / ~ ~ ~ ( ~ ~)2- = (02(L»* ,

the dual ot the module 02(L) • It was checked

by computer that the vector f , (vertical sextet) 18

in D. t6 • The L-orbit of this vector is eas ily

seen to be the following set

280 sextet vectors for the 35 sextets in

vhlch Cl is a union of tetrade, 8 vectors for

each sextet as follows :
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f 1(u,v,w,x,y,z)

f
1

U,V(u,v,w,x,y,z)

f 1
w,x(u,v,w,x,y,z) 6

(where u + v = (J)

and 30 trio vectors for the 15 trios

containing Cf , 2 vectors f 1c..r,a( Ci,a, b) and

f 1 O',b( C1,a,b) for each such trio {D',a,b} •

It can be seen that 02(L) fuses these vectors

in pairs as follows :

f 1 (u,v,w,x,y,z) ~ f 1
U ,V(u,v,w,x,y,z)

.. w,x( )~fY'z( )~1 u,v,w,x,y,z 1 u,v,w,x,y,z

f
1

c.r ,a( er,a, b) ,,-..; f
1

(J', b( (f,a, b)

so that the image of this orbit in ~ t6 / .D ~

i6 an L-invariant set of 155 vectors. L has two

orbits on the non-zero vectors in this

1o-dimensional module, namely 155 pure

wedge-products and 868 sums of two wedge-products,

and so these sacred vectors have as image the

pure wedge-products in this space.

From p.15 we see thp. t ~ t6 / b,. ~ is a

uniserial module of shape 10 , i. e. having unique1
invariant submodule 6.L/~L • The 310 vectors6 5
above have distinct images in this space, and we can

choose one vector from each pair as followa in such

a way that the resulting set is invariant under our

complement L1 , and span a 10-dimensional subspace

of ~ t6 / 6 ~
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f 1(u,v,w,x,y,z)

f 1
W,X(u,v,w,x,y,z)

f
1

(1,a( O',a, b)

where the point 22 of M's MOG

1e in the tetrad w and the octad a.

So under the action of L" ~ t6 / ~ ~

decomposes as a direct sum 1 + 10 , and

complements conjugate to L , are in one-one

correspondence with hyperplanes in ~ t6 / ,6. ~

net containing ~ ~ / il ~ . J

Bow censider the trio coset

Then StabL(c1) contains A = 02(L) and has image

*0*** in /L A.
* 1 * * *
* O * * *
* O * * *

* 0** *
. Thus StabLn H(c1) 18 the subgroup of H of shape

21+9 .1.24L
3

(2) generated by the centralizèr in F cf the

element l.V~jj(~ ), of shape 2
1

024L3(2) and the subgroup

E(c) = { ~1 +).5 +16 ,?t 2 +14 +:-\6' A3 +À 4 +)5
1

are in GF(2); i = O or 1 }

of I of ehape 21+9 •

Since StabLfl H(c1) f m(H, L) , lemma 7.1 (v1)

shows that StabL(c1) = StabLo H(c1) • Thus the orb1t of

c1 under H consists cf 23.3.330 cosets calIed the

BIG-OCTAD cesets (to distinguish them from the Little-Octad

ceeeta defined on p. 106 ).
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Notatlon for Big-Octad cosets :

. Suppose x ls another Big-Octad coseto Then for some

h E H , x = c1h , and StabH(x) = StabH(c1)h o Let h = Y1 Y2

wlth Y1 € E and Y2 é F o Since CF(E(c
1

» = StabF (c1 ) ,

h·the coset x ls determined by E(c) and the cos~t

h 1
E(c

1
) oY2 in E, and hence by the pair

( (- h).l. <- h -).L)E(c) , E(c) , Y2 '
1 1

where perps are taken in the GF(2)-orthogonal structure

on E.

x, Y, Z E GF(2) }

BillJ·...... ·
.' )I Jt •.

. . v:- ... ' *'* ..

1a the aet of fixed poL~ts of the involution (w ~~) L~

, (acting as ~ on H's MOG) on the octad-type

3-space in E for the middle octad

Thus the Big-Octad cosets are in one-one correspondence

w1th pairs (~1 ' l2) where cP1 is the set of fued

points in an octad type 3-space of an involution in F

stab1lizing the octad pointwise, and ~2 is either ~ 1 or

a GF(2)-hyperplane in ili1 .\fe write ~ ( 2 1 ' ~ 2) for

the corresponding coset. If ~ 1 = ~2 ' we abbreviate

~ ( i 1 ' g? 2) to ~ ( ~ 1 ) o Thus for example

t 1a,b( 8" ~ ] )= i ( E(c ) )
~ 1
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R (\ T :

So ve Bee that the 2'.'.30 Big-Octad cosete for octads

disjoint from 9 are the same as the 22. 180 trio coseta

tor trios meeting the vertical sextet (42.04 )( 24.02 )2

( the notation here has the obvious meaning, and is the same

as the notation used by R.T.Curtis [3] (p.41-43) in his

analysia of orbita of maximal aubgroupa of M24 on other

maximal subgroupa ).

Nov ve produce our first example of an 'x5-x7 square'

(c.t. p. 91 ):

J<>iXl
~

1 •

x , y , z ~ GF(2) }

so that c2 1s a B1g-0ctad coaet for the octad

Then ve have

sextet)= f 1{vertical

1%7
4

t 1(equare aextet

)

EEB )
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= f 1(square sextet) •

~ n s
Thus ve see that the 23.3060 Big-Octad coeets for

octads meeting e in 4 pointe are the same ae the 24.90

sextet cosets for sextets meeting the vertical sextet

( 22. 04 )6 •
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!he H-crb1t j( cf Little-Octad cesets

. Let be the sextet ccset u v ww ww
vu x x x x
vu y y yy
vu z z z z

) .

Then 8tabn(C3) la the aubgreup of H cf shape 20+6. 3•2484

generated by the ectad-type subgroup E(c
3

} = ~

I~~o
of E of ahape 20+6 • for the middle octad LigIJfor

B's MOG, and a subgrcup of F cf shape 4302 S4 stabilizing

the middle octad and the left-hand hexad. A set of generators

for thia greup i8 shown in Appendix F on p. 1~1, taking all

but the last cf the elements shown there.

U UIW xi-wx
VV\WXIWX
u v y Ziy Z
V U Y zi y z

= ( fXOXl
~

x, y, z € GF(2) )

Then c4 ls stabll1zed by a

we knew that [a, x7 ] =
atabilized by a.

=~t·
and hence c3

Frcm Chapter 4.

15 also

20+6.3.24L
3

(2)

7.1 (vi)

N'ov <8tabn(c3) , a> haa shape

and ls in m(H , M) , and hence by lemma

StabH(c3) = <StabD(c3) , a> .
Thus there are 27.330 casets in the H-orbit af

called the LITTLE-OCTAD cosets.
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Notation for Little-Octad casets :

Since NH(NH(StabH(c3») ~ NH(Sta~(c3» = Stabg(c3) x <z>

there are twa Little-Octad casete stabilized by StabH(c3),

namely c3 end c3.z, and this pair of casete is stabilized

setwise by NH(Stabg(c3» • Similarly ta the Big-Octad

notatian, such a pair af Little-Octad casets is specified

by a pair (:F 1 ' r 2) where ~1 ia an actad-type

ieotrapic 3-apace in E and ~2 is either ~, ar a

GF(2)-hyperplane in ~1 • Ve label this pair af caseta as

r ( f" 1 ' T 2 ) and abbreviate thia to y ( f", ) when

i"1=~2·

Thus for example

j[ns
Thus we see that the 27.30 Little-Octad cosets far

octads disjoint from the hexad 9 are the same as the

24.240 sextet caseta far sextets hitting the vertical

sextet (3.1.04 )2( 14.02 )4 •
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The M-orbit Z of Sextet-line cosets

Let c -c x 2 - c x 3x 2 -_ ~ (
5 - 4 5 - 375 ~

o x x x,y,ZEGF(2»

a Blg-0ctad coset for the octad EUEJ,··
!'~ ::~~ •
" . '/C • ,

Then

Stabo(c5' ls a subgroup of M of shape 24.26(S3 X Da' •

A eet of generators for thls group is glven in Appendix F

on p. I~', taking all but the last of the elements shown

2
c4x5 = c5 •

46)2 .2 (S3 X 34 '

(vi)

there.
x 3

Now w 7 f1xes c4 , and from Chapter 4 ve know that
x 3<v , x7>~ Cp (x5' so that v 7 fixes

, WX73. >Moreover, <Stabn(c5' , of shape

le in m(M , H) , and hence by lemma 7.1
3

< V X7 >Sta~(c5) = Stabo(c5), •

t \
/

PG(2,2) ) •

= (StabM(c5)

stabilizes

such sextets form a projective plane

Since

where t =

Thus the M-orbit of c5 consista of 27.26565 cosets

called the SEXTET-LINE cosets (since the s~abllizer haa as

image in M / V the stabilizer of aline of sexteta refining

a trl0 -

NM(NM(StabM(c5») = NM(StabM(c5»

[ffl' the atabi1izer of 0 5

exactly two such coeete c5 and c5.t, and the setwise

stab1l1zer of thls pair of coseta is NM(StabM(c5» •
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Hatatian far Sextet-line caseta

A pair af sextet-line cosets is thus determined by a

line of sextets a1 ' s2 ' B3 refining a trio and a

ane-function f, and two such one-functions determine

the Bame sextet-line COBet iff they are conjugate by an

element af the appropriate sextet-line type 5-space in V

( i.e. by the appropriate conjugate of <StabV{c5) , t) ).

Ve shall vrite this pair of sextet-line casets as

f{B 1,s2,s3). We draw a sextet-line as a set of four pairs

of points whoae union ia an octad, in such a way that the

sum af any two pairs is a tetrad determining a sextet in

the line. Thus far example

:f n z
Thus the 23.3.240 Big-Octad cosets far octads meeting

9 in two pointB are the aame as the 27.45 sextet-line

casets for the trios incident with the vertical sextet and

such that the vertical sextet ia contained in the 1ine.

334 2Applying the relation x7 x5 x7 x5 = ta

~ ( fTITTl )~1 iliL.D ' we Bee that

f{ (illJJ'"-. >=f{1 ~ 1. .' ••
33 -' .,
f- "" ., . .

aB a pair of cosets. Thus :

I~>
~
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..
The 27.60 Little-Octad coaeta for octada meeting 9

in four pointa are the aame aa the 27.60 aextet-11ne coaeta

for trioa incident with the vertical sextet, and such that

the vertical sextet ia not contained in the line. The pairing

as Little-Octad coseta ia the same as the pairing as

sextet-line coseta.
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The H-arbit 6 af Duad casets

1 1 2 2 3 3
1 1 2 2 3 3

~ ~
1 1 2 2
1 1 2 2

) , a trio caset.

, and so

1 3 2 1 3 21 ) =
132132
1 3 2 1 3 ~i
1 3 2 1 3 21

x5°~
U±J2A

Boy

( ) 1+6 5Then Stabn c6 is a subgroup of H of shape 2 .1.2 34 •

A set af generatore far this group ie given in Appendix F

on p. 153, taking alI but the last of the elements shown

there.

1s invariant under

invarlant unèer the !mage of thie under x7
4 , i.eo it

ls invarlant under

=~
~J1

and hence under ~ .x5 •

~O

But <Stabn(c6)'~ .x5 > ls a subgroup

~o

of H of shape 21+6.1.25S5 end 11es in (m(H , M) , end

hence by lemma 7.1 (vi)
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Thie has as image in Aut {M22 ' the duad stabil1zer

far' the duad E.JI] .
6So the H-orbit of c6 consists of 2 .3.231 cosets

called the DUAD cosets, and ve have :

The duad cosets for duads in the hexad 9
are the same as the 22 .720 trio cosets for trios hitting

the vertical sextet (24.02 )3.

1 1 3 2 3 2
2 2 3 2 3 2
1 2 1 3 1 3
2 1 1 3 1 3

) , a trio coset. By

6The 2 .3.120 duad cosete for duads not intersecting

~ are the same as the 27 .180 sextet-line cosets for

trios meeting the vert1cal sextet (42.04 ){ 24 .02 )2 and

the sextet-line in this consisting of those sextets incident

with the trio vhich hit the vertical sextet {22.04 )6



113

r-'I
The H-orbit ~ of Big-Syntheme coseta

1 2 3 3 3 3
2 1 3 3 3 3
2 1 2 2 2 2
2 1 1 1 1 1

) , a trio coset.

fJ •
is the

Then Stabn(cS) ia a aubgroup of H of shape 20+5.1024(23S
3

) •

A eet of generators for this group i8 given in Appendix F

on p. r54-. The !mage in Aut(M22 ) of StabD(cS)

stsbilizer of tbe syntheme &(: ..0in the hexad

Since every proper subgroup of M22 is intransitive,

Stabn(cS) ( ??l (H , M) , eo lemma 7.1 (vi) shows that

Staba(cS) = Stabn(cS)
sThus the H-orbit of Cs consists of 2 .3.1155 coseta

called the BIG-SYNTHEME cosets, and we have :

S (l T ..
8The 2 .3.15 Big-Syntheme cosets for the aynthemes in

the hexad 0 are the same as the 22 .2S80 trio coseta for

. trioa cutting the vertical aextet (24.02 )( 3.1 5 )2

Equating ve aee that

The
8 .

2 .3.180 Big-Syntheme coseta for hexads meeting

9 in two pointa comprising a duad of the syntheme are the

same ae the 27.1080 Sextet-line cosets for trios meeting

the vertical sextet (42.04 )( 24 .02 )2 and the sextet-lines

in thie other than the « 22.04 )6)3 one
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The remaining H-orbits E ,L, x and f\ ,~

M-orbits F, N and L.

Continuing in the same way, we find the following

Let 09 = f 1 ( u u uv w x
vv uv w x
wx z y yy
xv y z Z 7.

) , a eextet coset.

Then StabH(c9) = Stabn(c9)€ 1?1(H ,M) is a 8ubgroup of

ehape 20+4. 1•24(2 X S4) generated by the elements shown

on p. /55 • Again the !mage in Aut (M22 ) i8 the stabilizer

of a eyntherne in e , and the H-orbit of c9 consists of

29.'.1155 cosete called the LITTLE-SYNTHEME cosets, forming

, a duad coset for the

the H-orbit r; .

Let cIO = c6 '~,.

duad ITTI .Then StabM(c10) = Stabn(c1O) é ì17U·! , H )

1e a subgroup of shape 21
o 26PGL2 (5) having as image in

M24 the centralizer of the involution

generated by the elemente shown on p.l+3. So the M-orbit

of 010 consista of 210.31818 cosets calIed the

REGULAR-INVOLUTION coseta, forming the M-orbit F.

Let C.11 ~ tI ( 1m)·a sextet-line coset.

!hen Sta~(c11) = Stabn(c11) (; m (H , M) is a subgroup

of shape 1.1.24(2 X S,) generated by the elements shown

is the stabiIizer ofon p.IS~ • The image in Aut(~2)

the hexagon~ in the hexad 9 • So the H-orbit
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ot c11 consists of 213 .3.462 cosete calIed the HEXAGON

coeéte, forming the H-orbit 1\ .

ruJ
1.

3+
I ;

"'2.

) , a

eextet-line coset. Then Stabn(c12) isgenerated by the

elementa shown on p. 15b. It le not immediately clear

whether this group ia in Y;7(H , M) , so we poetpone

turther discussion of the H-orbit of c12 until p. 111 •

Let 013 = °12 ,n ,a ,Then Stabn(013'

containe as a subgroup the group.p generated by alI but

the last of the elementa shown on p. ISO. Now we use the
-1last relation f x23fx23 = 1 (see p. 8~) to obtain

a further element of StabM(c ,3 ) •

Firet ve rewrite this relator as

vhere (6)(15 17 20 5 ~ 13 4 12 14 7

O 21 11 18 22 3 9 19 5 10 2 16)

and m6 = Eh4>1" (E)(~ 17 11 184 14 15 13 103
8

)
9 12 O 2 20 5 22 1 7 19 16 21
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Thus c13 1s stabil1zed by <-p , mS> wh1ch has

shape L2 (23) , 11es in the nought-type complement

defined by f 1{6,13,20} and stab1lizes the projective line

structure given by the numbering : 4 10 14
15 O 7

00 3 13
16 17 18

20 12 21
11 5 9

2. 6 19
8122 1

(wh1ch of course differs from the standard numbering by

) , a aextet-lineNow let

an element of M24 )

c14 = cn·a.x? € t l ( KD
coset. Then Stabn(c14 ) ia a subgroup of H of shape

20+1.1.24na • A set of generators for this grour is given

in Appendix F on p. 151, taking alI but the last element

there.

But ia stabiIized by the element

(the image under x7 of the element

for the above numbering) which ia

8z+1z ---4z-8

stabilizes

H
• (1 iJ O O O Wl f,;; 1 O O 0<.)

O O ........ <-J O
00w1';:;0
00I.J iJ 10
w '" O O O L.)J 2A

)

~=I~
~O

(acting as~ on Ht s MOG

~
and hence the image Ja of th1s under a

This 1s the las t element shown on p. 15"+ , and
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Sta~(c14) = <StabD(c14 ) ~a> ~ m(H , M) is a group

of shape 20+1.1.24S4 • Nowa 2818 type involution

swapping O and _ on H's MOG fixes an octad

pointwise, and ia determined by that octad. StabH(c14 )

acts on H's MOG as the stabilizer of an octad and one

of the 7 pairs of points defined in this way :

~ "'~ 'f'.*"
"-

ll<-K ~ >f

Thus the H-orbit of c14 consists of 212 .3.2310

cosets called the OCTAD-PAIR cosets, forming the H-orbit

x .
Now we see that in the group G, we have eight

orbits e, ~ ,~ , 11 , 2 , L , X and A of H on the

cosets of M, and a coset c12 not in any of them. Sìnce

from the character-theoretic calculation H has on1y 9

orbits on cosets of M, and·· lG : MI would be too small

L •M-orbit

if StabH(c12 ) > StabD(c 12 ) , we must have

StabH(c12 ) = StabD(c12 ) in Gand hence in ~. The

image of this group in Aut(M22 ) is the stabilizer of

the hexad 9 and tne duad {3,15} in e . Thus the

H-orbit of C12 consists of 213 .1155 cosets called the

DUAD-HEXAD cosets, forming the H-orbit r .
Thus 'P = Stabn(c13) , and StabM(c13) = <'P ' rns>

~ m(M , H) is a group of shape L2 (23) • Thus the M-orbit

of c13 consists of 211 .40320 cosets called the

PROJECTIVE-LlNE cosets, forming the
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Notation for projective-line cosets

4 10 14 20 12 21
15 O 7 11 5 9

00 3 13 2 6 19
16 17 18 8 22 1

Such a coset is determined by a nought-function f

and a numbering of the MOG (conjugate to the atandard

numbering by an element of M24 ) on which the atabilizer

acta aa L2 (23) • We write this coset as f(numbering) so

that for example c
13

= f 1{6,1 3 ,20}( ) ,

and tvo numberings determine the same coset iff they

d1ffer by a projective special linear transformation.

Bow let c15 f -f ( O x x ) , a Little-Octad

coset for the octad

06)Bubgroup of M of shape 2.2 .3(2 X S4 • A set of

generators for this group if given in Appendix F on

p. I+~ • Again, in the group G , ve ha~e six orbits

I , T , S , Z , F and L of M on cosets of M, and

a coset c15 not in any of them. Since the character­

theoretic calculation shovs that M has only 7 orbits

on these cosets, and IG MI would be too small if

StabM(c15 ) » Stabn(c15) , ve must have StabM(c15 ) = StabH(c15 )
A

in G, and hence in G • The image of this group in M24
ia the stabilizer of an incident trio and sextet. Thus

the M-orbit of c15 consists of 211 .26565 cosets

called the TRIO-SEXTET cosets, forming the M-orbit N.
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Botatlon for trio-eextet cosets

Let the nought~function f O be defined by

f
O

= f
1
{~,22,11} and let K

O
be the nought-type

complement for V in M defined by f O • Let YO be

the etabl1izer in KO of the brick trio and the vertical

eextet, and let Zo be the subgroup af index tvo in YO
obtained by anly permitting even permutations of the six

columns of M' s MOG. Then StabM(c15 ) = Zo U (YO\ ZO)z ,

and NM(StabM(c15 » = <YO ' z > contains StabM(c15 )

to index two. So StabM(c15 ) etabilizea two trio-sextet

coseta c15 and c15z. Thus a pair of trio-sextet coseta

le determined by an incident trio t and sextet s, and

a nought-function f. We write this palr of coaeta as

f(e,t) • Tvo nought-functions determine the same pair

of caseta iff they are conjugate by the element of V

correaponding to the sextet. Thua far example

From these definitiane ve have the following

identifications :

L1 " S

The 29.3.15 Little-Syntheme coseta for synthemes

in e are the same as the 24.1440 sextet coaeta for

eextets cutting the vertical sextet (2.1 2 .03 )4( 14 .02 )2 •
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~.r) F

The 26 .3.96 Duad cosets for duada straddling 9
10and ita complement are the same as the 2 .18 Regular-

Involution coseta for involutiona preserving each calumn

ot the vertical sextet.

An z
The 213 .3.60 Hexagon casets far hexagons in 9 are

the aame aS the 27.11520 Sextet-line casets for trias

cutting the vertical sextet (3.1 5 )2( 24 .02 ) and sextet

linea cutting the vertical sextet « 2.1 2.03 )4( 14 .02 )2)3 •

x(1 z

The 212 .3.90 Octad-pair cosets far actads diajaint

trom e and paira in 0 are the same as the 27.8640

Sextet-line coseta for trios hitting the vertical sextet

( 3.1 5 )2( 24.02 ) and sextet lines cutting the vertical

eextet « 2.1 2.03 )4( 1102 )2)2« 3.1.04 )2( 14.02 )4)

rnz
The 213.3.15 Duad-hexad casets far the hexad 9

are the same as the 27.2880 sextet-line cosets for

trios hitting the vertical sextet (24.02 )3 and sextet

linea hitting the vertical sextet « 2.1 2 .03 )4( 14 .02 )2)3 •
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rnL
The 213 .3.480 Duad-hexad cosets for hexads meeting

e in two points, one of which is in the duad, are the same

as the 211 .5760 Projective-line cosets for numberings

where the tetrads of the vertical sextet alI have cross-

ratio 2.

~f"IN

The 27.240 Little-Octad cosets for octads meeting

9 in two points are the same as the 211 .15 Trio-Sextet

cosets for the vertical sextet.

Further x5-x7 squares and a-x7 squares show the

.remaining identifications :

.s n F

The 28 .3.720 Big-Syntheme cosets for hexads meeting

9 in. a pair which ia not in the syntheme are the same as

the 210.540 Regular-involution cosets for involutions

whose centralizer fixes a sextet cutting the vertical one

( 22.04)6 and having four orbits in columns of the

vertical sextet. (e.g.~ )

~

S () N

The 28 .3.240 Big-Syntheme cosets for hexads disjoint

trom e are the same as the 211 .90 Trio-Sextet cosets

tor trios incident with the vertical sextet and sextets other

than the vertical one.
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1:flN

The 29.3.270 Little-Syntheme coseta for hexada meeting

S ina pair which doea not comprise a duad in the syntheme

are the same as the 211 .540 Trio-Sextet cosets for trios

hitting the vertical aextet ( 42.04 )( 24002 )2 and

sextete hitting the vertical sextet ( 22.04 )6

1: n z
The 29.3.180 Little-Syntheme cosets for hexads meeting

9 in two points comprising a duad of the syntheme are the

same as the 27.2160 Sextet-line cosets for trios hitting

the vertical sextet (24 .02 )3 and sextet lines cutting

the vertical sextet « 2.1 2.03 )4( 14.02 )2)2« 22. 04 )6)

~()p

disjoint from e
92 .3.240The Little-Syntheme cosets for hexads

are the same as the 210.360 Regular-

Involution cosets for involutions whose centralizer fixes

a sextet cutting the vertical one (22. 04)6 and having

no orbits in the columns of the vertical sextet.

rnp
The 213 .3.360 Duad-Hexad cosets for hexads meeting

9 in two points neither of which is in the duad are the

.ame aB the 210.8640 Regular-Involution cosets for

involutions whose centralizer fixes a sextet cutting the

verticalone (2.1 2.03 )4( 14.02 )2 and having ne orbits

in the columns of the vertical sextet.
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rflN (1)

The 213.3.60 Duad-Hexad cosets for hexads meeting

9 in two points comprising the duad are the same as the

211 .720 Trio-Sextet cosets for trios hitting the vertical

aextet (24.02 )3 and sextcta hitting the vertical one

( 22. 04 )6

rnN(2) :

The 213.3.240 Duad-Hexad cosets far hexads disjoint

from e are the same as the 211 .2880 Trio-Sextet cosets

for trios hitting the vertical sextet (24 .02 )( 301 5 )2

and sextets hitting the vertical one (3.1.04 )2( 14 .02 )4 o

x. n F (1) :

The 212 .3.60 Octad-Pair coseta far octads meeting

f) in four points and the pA.ir also in gare the same

ae the 21°.720 Regular-Involution cosats far involutions

whose centralizer fixes a sextet cutting the vertical one

( 22.04 )6 and having 6 orbits in columns of the

vertical sextet.

x n F (2)

The 212 .30360 Octad-Pair cosets far octads meeting

9 in four points and the pair disjoint from e are the

aame aa the 21°.4320 Regular-Involution cosets far

involutions whose centralizer fixes a sextet cutting the

vertical one •
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Xn N (1)

The 212 .3.120 Octad-Pair cosets for octads disjoint

trom e and pair also disjoint from 9 are the same as

the 211 .720 Trio-Sextet cosets for trios hitting the

vertical sextet (42.04 )( 24 .02 )2 and sextets hitting

the vertical one (3.1.04 )2( 14 .02 )4

X n N (2)

The 212 .3.720 Octad-Pair cosets for octads meeting

e in two points and pairs disjoint from gare the same

as the 211 .4320 Trio-Sextet cosets for trios hitting the

vertical sextet (24.02 )3

one (2.1 2.03 )4( 14.02 )2

and aextets hitting the vertical

•

x n L

The 212 .3.960 Octad-Pair coseta for octads hitting

e in two points and pairs meeting 9 in one point are

the same as the 211 .5760 Projective-line cosets far

numberings where the tetrads of the vertical sextet alI

have cross-ratio 5.

AnF

The 213.3.720 Hexagon cosets for hexagons intersecting

e in two opposite points of the hexagon are the same as

the 210.17280 Regular-Involution coseta for involutions

whose centralizer fixes a sextet cutting the vertical one

( 2.1 2.03 )4( 14 .02 )2 and having two orbits in columns

of the vertical sextet.
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A nN

The 213.3.1440 Hexagon"cosets for hexagons intersecting

9 in two points at distance two on the hexagon are the same

as the 211 .17280 Trio-Sextet cosets for trios meeting the

vertical sextet (24. 02 )( 3.1 5 )2 and sextets meeting

the vertical one (2.1 2 .03 )4( 14 .02 )2

.IL n L (1)

The 213.3.960 Hexagon cosets for hexagons disjoint

from Bare the same as the 211 .11520 Projective-line

coseta for the numberings where the tetrada of the vertical

sextet all have cross-ratio 3.

il "L (2)

The 213.3.1440 Hexagon coseta for hexagons hitting

e in two adjacent points of the hexagonare the aame as

the 211 .17280 Projective-line coseta for numberings where

four of the tetrads of the vertical sextet have cross-ratio

4 and the other two have cross-ratio 5.

This completes the proof that a~ G •
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Index of Notation

" l'.n.. 8 Vi 27 x11 87 115

~ 8 l' 28 f 87 c14 116

'/'-& 13 X 28 J7 87 ~ 116
&$ 13 T 41 m1,m2,m3,m4 88 f(projective

St:" 13 V1 41 h1,h2,h3 88 line) 118
'f-t1.' 13 p 41 G 89 fO,KO'YO'ZO 119
gl'l~ 13 x7 42 4 90 f(trio,

fS e1.- 13 x5 42 /.f 90 sextet) 119

z 16 E 42 vO,v1 ,ve.> ,v~ 93

H 16 y 43 t(trio) 93

Il 16 l\. 43 t(sextet) 97

E 16 AO 49 (j 100

I 16 A 49 cl 102
.., 16 L 49 !(~1'~2) 103

J 16 L1 56 ~ ( ~ 1) 103

"'0 16 a 56 c2 104

w 16 6. 62 c3' c4 106

f 16 ~X 62 y(f1'Y2) 107n

Vi 18 G 73 Y(Y1 ) 107

M 27 v 76 c5 108
00

e 27 gl' g2 76 f(eextet-line) 109

LO 27 cA/'(X) 78 c6 111

U1 27 7Yl (Xl ,X2) 83 c7 112

El 27 Y 85 c8 113

V 27 f 1 86 c9,cl0,cll 114

D 27 %23 87 c12 , c13,Ins ,m6 115
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Appendix A

The character table of J 4 in

'Atlas' notation.

(see [5])
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Appendix C

Bank of 1+x for x a representative

of each conjugacy class of element of J 4
in the 112-dimensional representation aver

GF(2) •
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J
4
-class

Rank(1 +x)
J

4
-class I J

4
-class

Rank( 1+x)Rank(1 +x)
of elt. x of elt. x of elt. x

fA O 12B 100 31A 110

2A. 50 120 102 31B 110

2B 56 14A 104 310 110

3A 72 14B 104 33A 112

4A. SO 140 104 33B 112

4B SO 14D 104 35A 112

40 S4 15A 104 35B 112

5A SS 16A 104 37A 108

6A 92 20A 104 37B 10S

6B 90 20B 104 370 108

60 92 21A 108 40A 108

7A. 96 21B 10S 40B 108

7B 96 22A 110 42A 110

SA 96 22:B 106 42B 110

SB 96 23A 110 43A 112

SO 96 24A 106 43B 112

10A 9S 24B 106 430 112

10B 100 28A 10S 44A 110

11A 110 28B 10S 66A 112

11B 100 29A 112 66B 112

12A 100 30A 108



Appendix D

Some elements of J 4 written in the

notations for those of H, M , P and

L in which they lie. Elements of H

are wr1tten as the product of a

vector representing an element of E

and a 6 X 6 matrix representing an

element of F (c.f. p. Ig ), and also

the action on H's MOG is given.
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AppenclLx E

O r b t t s o f  M r E  a n d  D = M f ]  H

oa r lght cosets of M ln J4.

(ctue to S.Norton)
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Appendix F

Generating seta for the stabl1lzers in

M and H of representatlves of the orbits

of these groups on the cosets of M.

In each case a generating set ls given

in such a way that each composition factor

in a auitable composltlon serles is

covered ~ turn.
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M-Orbits

Trivial Orbit I

. One ooeet vOD ' stabilizer M of shape 112 M24 •

Trio Orbit T :

22.3795 oosets, representative Vo = f 1 (brick trio) o

Stabilizer shape 29.26(8, X L,(2» generated by

even tf*-sete in V hitting each octad of the brick trio

evenly, and the trio group in K for the brick trio.

Sextet Orb1t S

24 .1771 cosets, representative f 1 (vertical sextet) •
7 6Stabilizer shape 2.2 .'86 generated by

even ~*-sete in V hitting eaoh tetrad of the vertical

sextet with the same parity (i.e. the parity subgroup

Et (eee p. 2 f. » and the sextet group in K for the vertical

sextet.
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. Sextet-line Orbit Z

27.26565 cosets, representative

o x x , x. Y. Z E GF(2)J E f 1({~WJJ )
Stabilizer shape generated by

f1i'Ol
~o

f<'iIl
~ ()

[JJIJ".......
:: .. ~ :/< ~.. .. ..

cm",·
: " . ~~:
. . . . . .

0Jill"""'''.' .' '.". ..:((.
" .' .A

---M- f (H_) _

[llJ.l'" .. ..

ffrifIiì
~

~
l.1...!-!.J c

~
oo

w ..... ...,
o

'2' CITITI
"- -.. - ­

.' - - ~
·x··., "

=1/ =1.A

fOiOI
~ o

00-".- - ..
- - ..

fO'OO7
~o

RX'l=1@.Jl!J
lA

(continued on
next page)
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(H)
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Regular-Involution Orbit F

21°.31878 coseta, representative

148

°10 = °
6

° [il~~~la
Stabilizer shape 21.26PGL2 (5) generated by

M l (H)

rnJ·····
~ "

11:" '.....

U1E*-.' - ~
," -,...,...
0. __

~L=.GLJ

[TIlJ0I
, o l

O

fIlil
~o

~
wo

100
O

roool
LE2..!J o

10lil
~o

~
(

W,;lOOOI)
I O ~ .::; ... () O O l W #::-7 W)
, O W o· [ O O l I ~ O • ( ] LA

o O , '"' o
o o I ~ o
I I o o o l
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!rio-sextet orbit N :

2
11

.26565 cosets, representative c
,5

€ f ( O x x )

M

filTiiT:l
lill!l1J

generated by

(H)

fJ1]O O

'00 o

fOOOl
~o

fOIil
l.E.2.JJ o

fOiIl
19...L.QJo

3

x [Jili],- -.. - ­.. - ­
" - -

cm-. -
. ,

F-I:n
~

w

(~ (w~w) ~:x ': )
l;l.EJ . ::11=- .. - 2.A 2/1

mJ·x::..
-11=
- 7..A
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Projective-Line Orbit L :

211 .40320 ooaeta.· repreaentative 0 13 = 0 12• U .a

~ ti {6,13,20}( 4 10 14 20 12 21, )
15 O 7 11 5 9
~ 3 13 2 6 19

16 17 18 8 22 1

stabilizer shape

M

1.L2(23) generated by

(transformation
in L2 (23)

for above
numbering )

(H)

~~]

I~~~~l

s~ ~

l[m
m5 = FTJ8.

LCL!l
(6)(15 17 20 5 ~ 13 4 12
14 7 O 21 11 18 22 3919
5 10 1 2 16)

4z+1
z - z-4

1-6zz ---b+Z,

2.ill.
z - z-2

z - z+1

I~·rm:I~o .'\.1. ,. (
• 1.4\
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H-Orbita

Hexad Orbit G) :

77 caseta, repreaentative G ( B ) = v •
00

Stabilizer shape 21+12.3.24S6 generated by

E and the stabilizer in P at the hexad 9.

Big-Octad Orbit ~ :

23.3.330 casete, representative c, = ~ ( fXYZl : x, y, z )

~ E GF(2)

Stabilizer shape 2'+9. 1•24L3 (2) generated by

the centralizer in P at the element w - w ( [[EJ"" - ):: :." = '- '. -
at shape 2'.24L4(2)

E(c,) = { ?, ~l ~J I
.:>.. ~) ~, "L-----,

at E at shape 21+9

and the subgroup

?1 +). 5 + A6 ,}. 2 + '). 4 + '). 6 ' '). 3 +).4 + ~5

are in GF(2); i = O or 1}

o
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Little-Octad Orbit y :
27.330 cosets, representative c

3
= f 1 ( uv ww ww

v u x x x x
vu y y y y
Iv u z z z z

)

Stabi11zer shape 20+6.3.24L
3

(2)

H

m
y~

x c;Y z
O

~t(!XYZì)

~
generated by

(M)

3 w ~

Elill] o:ro.- - -.. - -
.. - - 2A

~ Dill].. - -
1-'+ ='\\::2.A .. - -.. - -

EI3IJ cm..
ZJlt

ru~LA(W~W) ffilIJTIJ

= [JJJ". " ..
.. \ I 112.8 ., .... '.

[]!illBls DìJ........

51-
.... ...... ' ...

ITiliili1~A 00- " -- .... -- ". -

Ml1.A {~]J

~t
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Duad Orbit 6. :
62 .3.231 coseta, representative c6 = f 1 ( 1 1 2 2 3 3

1 1 2 2 3 3
3 3 1 1 2 2
3 3 1 1 2 2

)

Stabilizer shape 21+6.1025S5 generated by

H (M)

-
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r-tB1g-Syntheme Orbit W :

2S.3.1155 cosets, repreaentative cs = f 1{'

Stab11izer shape 20+5. 1 • 24{23S
3

) generated by

H (M)

1 2 3 3 3 3
2 1 3 3 3 3
2 1 2 2 2 2
2 1 1 1 1 1

)

RXTXl
LE.WZ$

RTifill
l1!.ù.0J '2.8

~ EIIJ':~.,.o ._

2&

f[ll ('" -)_ .' _ ~w- .. -
'-A

~ lA
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.... ..

~
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ffIiTX1
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Little-5yntheme Orbit E
29.'.1155 cosets, representative

stabilizer shape 20+4.1024{2 X 54) generated by

H , (M)

u u u v w x1 )
v v u v w xi
w x z Y Y 11'
x w y z z z
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" - - 28

ElE··..
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~ rnIl':1111
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Duad-Hexad Orbit r :
213.3.1155 cosets, representative

Stabilizer shape 1.1.24 (2 X 54) generated by

H (M)
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(M)

generated by

Octad-Pair Orbit )(

212 .3.2310 cosets, representative

20+1 .1.24S..Stabilizer ahape ~

H

0+\

1 ~
wo
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(M)

generated by5tabilizer shape 1.1.24 (2 X 53)

H

Hexagon Orbit .i\.. :
213 .3.462 cosets,representative

[]]EJ, 'Cf. '/J'
" .. "I/f.
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APPendix  G

The 2-r ,qodrr lar  eharacter  tab l -es

al}
P p
p r
t  n d

+
o

:
o
o

o2
o ?
o 2
o ?
o?
o 2

I
- 1
- l

I

- l
I t
i a

I
I

t n d
+
o

:
+

:

f u e

a

i i :
&i''x'"

r i  , ''i.1
'A ''

Js20  36  5
o . . F  A  t
p a r t  A  A

L A  3 A  5 4  7
l l l

l o  r  o  b
t o  I  o  +
3 4  - 2  - l
7 0  - ?  o
7 0  - ? .  o
9 E  - l  - 2

1 3 5
: J  : l  : 3  :

6 C l -
l 5  c  o
4 5  C  o  b
4 !  C  O  +
9 4  C  - l

3 6 a  O  - l  ?

7
A
A

o
o
7

7  * *
*  b 7
I  - l

o -  1 + b  l 1
+ * - l + b t l

3  : * 1
t  - 1  - b l t
I  l - l + b l l
7  * *
* b 7

o  l - b  t t
I  - l - l

of  ILZZ ,  \ f i22.2 ,  1 l [22 and.  71h2.2

1n  ' n t l as '  no ta t i on .

( see t i l  )

7
A
n

o

o
7

A  B * *  l l A  B * *
I

- l
- l

I
* *

- l
l l
: 3
r t
+ t

I
I

r*.
+ t

t * +
trt +

t o 2
t *
* * .  - , . - *
r f+
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