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Declaration of Originality

This dissertation is partly work done in collaberation
with S.Norton, R.Parker, J.Conway and J.Thackray, and

partly work done on my own. Attributions are as follows :

Chapter 1 : Only the last section of this is my own
work. The rest is due to R.T.Curtis and J.Conway.

Chapter 2 : This is mainly due to J.Conway although

Theorem 2.3 is my own.
Chapter 3 : This is mostly my own work.

Chapter 4

The first three sections are my own work,
while the last section is a description of a notation due

to Conway.
Chapter 5 : This is entirely my own work.

Chapter 6 : This describes joint work of Norton, Parker,
Conway, Thackray and myself culminating in the proof of

the existence of the simple group J4 .

Chapter 7 : This is my own work.

Por further details see pages 4 to 6 of the

introduction.
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Chapter O Introduction

One of the most useful tools in Mathematics and
Theoretical Physics is the study of an object from the
point of view of its group of symmetries. Thus for
example Galois in the last century proved the insolubility
of the general quintic equation by radicals, by looking
at the symmetry groups of field extensions; and more
recently ILie Groups have played an enormous part in the
theory of fundamental particles in Physics.

Groups can be broken down into basic building blocks
called simple groups (under some basic assumptions
satisfied by most interesting groups including 211 finite
groups and all Lie groups) so that structure theory breaks
down naturally into two parts :

1) What are the simple groups ?
2) How are they glued together to make an arbitrary
group ?

There ére many questions for which an answer to 1)
and some induction argument gives the full answer, but
2) is in general more intractable than 1).

For compact Lie groups, the answers to both 1) and
2) were fully worked out earlier this century by Cartan,
Weyl, etc.

For finite groups the situation is more complicated.
Work on the classification of finite simple groups is
8till in orogress, and a general description of the
present state of the theory can be found in [1]. The

second question is only tractable in restricted situations.



The currently known finite simple groups, which are
thought to comprise at least most, if not all, of the
possible ones, are :

(1) The Alternating Groups GA}n for n2> 5
(11) The Chevalley Groups Chev(p")
(11i) The twisted Chevalley Groups T Chev(p®)

(iv) 26 Sporadic Groups, not fitting into classes (i) - (iii)

Classes (ii) and (iii) are the finite analogues
of the compact Lie groups.
0f the 26 Sporadic groups, at the beginning of
930 two had not been proven to exist, namely F1 the 'Monster'
(so called because of its enormous size - it has
246,320 59 76 112,133.17.19.23.29.31.41.47.59.71 elements)
and Janko's fourth group J4. However, in January Robert
L. Griess announced that he had constructed the Monster
and that his construction had been carried out entirely
by hand, and_in February, S.Norton, R.Parker, J.Conway,
Jd.Thackray and I completed our proof of the existence of
-J4 using a computer (see [4]). It is the latter group

which I wish to discuss in this dissertation.

In the process of trying to classify finite simvle
groups with a 'large' extraspecial 2-subgrouv (an
extraspecial p-subgroup E 1is large in G if E = Op(CG(E'))
and CG(E)fs'B ), Janko [2] conjectured the
existence of a new sporadic group J4 e« In particular,

he proved that given a finite simple group G satisfying :



Hypothesis A

The centralizer of some involution CG(z) =H

is of shape 1+12

-3M, .2 with 02(H) extraspecial
and containing its centralizer, and modulo <z> ,
H splits over 02(H), with as complement the triple
cover of M22 with the outer automorphism adjoined.
(a group is of SHAPE A.B or AB when it has a normal
subgroup of shape A with quotient of shape B ; names
of groups are shapes; an elementary abelian group of order

pn has shape pn ; 2 special group whose centre has order

p® and index p° has shape poth , etc.)

then G satisfiés a list of properties including :
(1) | ¢ | = 221.3%.5.7.117.23.29.31.37.43
(11i) A Sylow 2-subgroup of G possesses exactly one

1 and the

elementary abelian subgroup of order 2
normalizer of such a subgroup is a split extension of
shape 2“M24 where the action of M24 on the elementary
abelian subgroup is the same as on the even portion of

the dual of the Golay Code.

(111) G possesses exactly one conjugacy-class o2
gself-centralizing elemeniary abelian subgroups of order
210 , and the normalizer of such a subgroup is a split
extension of shape 2! L5(2) where the action of L5(2)
on the elementary abelian subgroup is the same as the
action on the skew-square (i.e. exterior second power)
of =2 natural 5-dimensional module.

(iv) G possesses a special 2~-subgroup of shape p3+i2
whose normalizer is of shape 23+12(S5 X L3(2)). This
group does not split over its O2 , but does contain

subgroups isomorphic to S5 and L3(2). It contains



the Sylow S-normalizer in G of shape 5.4 X 23L3(2)
(with the 23L3(2) non-split) and the 7-normalizer of
shape 7.3 X S5 .

(v) For p =23, 29, 31, 37 and 43, a Sylow p-subgroup
is self-centralizing with normalizers of shape 23.22 ,
29.28 , 31.10 , 37.12 and 43.14 respectively (all
Frobenius groups). Sylow 3- and 11-subgroups are

142 8.2

extraspecial with normalizers of shape 3
(semidihedral 2-subgroup of order 16 ) and 11 %2(5 X 25,)
( 284 non-split ) respectively.

(vi) G possesses PGL2(23) as a subgroup.

(vii) The character table of @ is known and was

determined in Cambridge in 1975 by J.Conway, S.Norton,

J.Thompson and D.Hunt (see Appendix A ).

In January 1980 , Thompson and Norton showed that
a simple group satisfying these conditions is unique, using
character-theoretic methods (before the existence proof
was completed) and so I shall say that any group satisfying
the above conditions is 'isomorvhic to J4'.

In this dissertation, I shall develop notations for
working inside J4 , glve the existence proof, and provide
a presentation for J4 by generators and relators. I shall

use [2] and the character table of J, as my starting

4
~ point.
Complete familiarity with the Mathieu groups will

be assumed, although I have spent Chapter 1! developing



Curtis' MOG for M24 . The approach given is a recent
unpublished one due to Conway.

In Chapters 2, 3, 4 and 5, I take an 'incident' set
of representatives (in the sense of Smith and Ronan [11],
see the CODA after Chapter 5 ) H, M, P and L of the
four conjugacy classes of maximal 2-local subgroups of
J4 and develop notations for working with them, given
that J4 exists.

Chapter 2 gives a notation for working inside the
maximal 2-local H = CJ4(Z) of shape 21+12.3M22.2
described in Hypothesis A above. The notation is mostly
due to Conway.

In Chapter 3 a particular representative M is
chosen of the conjugacy class of maximel 2-locals of
shape 211M24 described in (ii) above and the 'diétionary'
is developed between the notations for elements of M NH
as elements of ! and as elements of H . Some elementary
consequenceé of this dictionary are then investigated,
for use later on. This chapter is mostly my own work.

Chapter 4 describes a particular representative P
of the class of maximal 2-locals of shape 23+12(S5 X L3(2))
described in (iv) above, and describes the notation due
to Conway for elements of this. This notation is not used
again but is included for the Sake of completeness.

In Chapter 5 a representative L is chosen of the
class of maximal 2-locals of shape 210L5(2) descrited
in (iii) above, and a particularly good complement for

OZ(L) in I is found. This chapter is my own work.



Chapter 6 describes the construction by Norton,
Parker and Thackray of a pair of 112 X 112 matrices
over GF(2) generating J4 , some of the methods developed
by Parker and Thackray for dealing with 2-modular
representations on a computer, and the proof by Norton,
Parker, Conway, Thackray and myself that the group
generéted by these matrices is indeed isomorphic to J4 .
The main heavy computer work in this proof is involved
in showing that the skew-square of the 112-dimensional
representation has an invariant subspace of dimension
4995. )

In chapter 7 , further details of the geometry of
the 112-dimensional representation are investigated, and
& presentation for J4 by generators and relators is
proven. This presentation consists of adding two relators
to the amalgamated product of a copy of M with a copy
of H via their intersection D =M nH . It is conceptually
easy to see what these relators are doing : one comes from
the subgroup P described in chapter 4, and the other
involves a subgroup PGL2(23) intersecting M in a
subgroup L2(23) (c.f. (vi) above). The work of this
chapter can easily be modified to give a proof that the
112-dimensional matrices described in chapter 6 generate
a group isémorphic to J4 , indevendent of the finding of
the invariant subspace of the skew-square of the representation.

This chapter is my own work.
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Chapter 1 The MOG for M24

Since the notations we have developed for working inside J4
depend heavily on use of R.T.Curtis' MOG (Miracle Octad Generator)
for My, (see [3]), a few words about this are in order.

Let GF(4) = {0, 1,w, 3 } with the usual multiplication and
addition.

Definition The HEXACODE is the self-dual code in (GF(4))6
generated by the following code-words :
(WD W Wk
(W 0w Jw)
(B0 wa v

and (Bw Dw W)

Since these words add up to zero and clearly satisfy no other

linear relations, the code generated has dimension 3.

Definition An AUTOMORPHISM of the Hexacode is a semilinear
transformation of the form :

(multiplication of each coBrdinate by a non-zero element of

GF(4)) . (permutation of the six coB8rdinates) . (field

automorphism (possibly trivial))

preserving the set of codewords.
There is a visible automorphism group 3(821,33) given by

multiplications by field elements followed by permutations
preserving the given grouping of the six co8rdinates into three
sets of two, followed by the field automorphism for odd coBrdinate
permutations.
It is clear that every code-word is equivalent under the

action of this group to one of :

(00 oo 00) 1 word

(04 04 «w@) 36 words

(00 44 44) 9 words

(wd wd wd) 12 words

(M4 vw 30 6 words

64 words



8
Adjoininé another automorphism, e. g. :
(multiplication by ({4 44 <Tw)) . (permutation by ( « s . + . ))
. (field automorphism)
we have a non-split group 386 acting as the full automorphism
group of the code.
Now we use the Hexacode to build up a binary code in
(GF(Z))24 = { subsets of L} where (L is a set of 24 objects arranged
in a 4 X 6 array :

FPigure 1

A subset is designated by a set of stars in the appropriate

positions, e. g. : is an 8-element. subset.

Addition of subsets is given by :
A+B=(AUB)Y\N(ANB)

The six coBrdinates of the hexacode are put into correspondence
with the six columns of this array, a2nd elements of GF(4) are given
‘interpretations' as subsets of a column as follows :

Definition The EVEN and ODD interpretations of elements of GF(4)
as subsets of a column are as in the table below :

0 1 w

[0 B
“'0[80]0] =

. Now let éf'be the code in {‘suBsets of £L. } given as follows :

Table !

{ hexacdde words given the EVEN interpretation in each column

- PLUS all elements from an even number of columns } U { hexacode
words given the ODD interpretation in each column PLUS all elements
from an odd number of columns }

( PLUS in the sense of vector space addition as given above )



| ’ v
e. g. L3 NS M A o*
«®) |* ¥ and kX -
x| =) * R R é é
£~~ﬂ,' hE R L4
0t ol wid 50 11 114

Then ¢, has dimension 12, and it is easy to check that it
18 self-dual and that the words of minimal weight hrve weight 8.
. Thus 7 is the binary Golay Code and has the Mathieu group My,
acting on it.

Definition The arrangement of 24 points in the above 4 X 6
array with the code Z defined on them and M24 acting on them is
called the MOG ( Miracle Octad Generator ).

( Note that our MOG differs from Curtis' in [3] by transposition
of the left-hand pair of columns )

Definition The 8 and 12 element subsets in ¢ are called
( special ) OCTADS and DODECADS respectively. A partitioning of
L into six four-element subsets ( tetrads ) such that any two
form an octad is callad a SEXTET. A partitioning of £2 into three
disjoint octads is called a TRIO.

The sets of eight points into which figure 1 is divided are
called the BRICKS of the MOG, and they form a trio called the

BRICK TRIO. The columns of the MOG form a sextet called the
VERTICAL SEXTET.

Some_subgroups_of M)y ( see [3])
The Sextet Group

The automorphisms in M24 fixing a sextet form a group of
shape 26.336 » which for the vertical sextet is generated by :
(1) Automorphisms of the hexacode lifted to its action on

the MOG, e. g. [:SE:j.. corresponds to the automorphism named
. l ) -
I, i

at the top of the previous page.

( These automorphisms form a group of shape 38¢ )
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(11) Codewords in the hexacode with the interpretation

0 1 W )
D @ ’ @ Table 2
e Lo N ;
{:: ;:156 corresponds to the codeword (04 o1 w3)

These form an elementary abelian subgfoup of order 26
normalised by the 386 of (i).

The Octad Group

The stabilizer of an octad is a group of shape 24V48 = 24L4(2)
which for the left-hand octad (i.e. the left-hand brick) acts as follows

(1) The normel 2% is
) (I, [ )

-
.

[EE

and gives the right-hand square ( i. e. the complement of the

e

AR

Wt

left-hand brick ) the structure of an affine 4-space over GF(2)

on which it acts as affine translations.

(i1) Stabilizing a point in the right-hand square ( we usually

use the top-left point ) we get a complementaryu{8 = L4(2)

acting 88048 on the left-hand brick and as L4(2) on the right-hand

square as a 4-dimensional vector space over GF(2).

The Trioc Group

The stabilizer of a trio is of shape 26(83 X L3(2)) acting
as follows in the case of the brick trio

(1) The normal 2% is < | {:::::
N BEA T

This gives each of the three bricks the structure of an




i1
affine 3-space over GF(2) on which it acts as 3 affine translations
whose sum is zero.
(11) Complementary to this there is a subgroup S5 X L2(7) ( note
that L3(2) = L2(7) ) where the S5 permutes the bricks "bodily" and
the L2(7) acts similarly in each brick, preserving the projective

line structure given by the numbering :

8a o ©d O] O¢ O

‘5:-21 32 i 2
S sl st re
il sy| Heure2

There is also a subgroup L3(2) of the trio group acting as
L2(7) on one of the bricks and as an L3(2) stabilizing a point in
each of the other two bricks. However, this does not extend to an

83 x L3(2).

1,(23)

In order to display the subgroup L2(23) we use a STANDARD
RUMBERING of the points of the MOG diagram with the symbols

o, 0, 1, . ¢« « , 22 as follows :

‘@ O[22 111 2]

3 15{12 21|13 7!

6 5|18 20| 4 16| .

9 19| 8 14|16 17/  Iigure

and then the L2(23) preserving the projective line structure
given by this labelling is contained inside M
that PGL2(23) is not.

o4 ¢ though note

( Note that this numbering is different to that used in [3] )

7

We usually take M22.2 to be the subgroup of M24 fixing
{ 0, » } setwise, and write MOG diagrams for M,,+2 with these

points partitioned off thus :

Figure

It is important that we observe this convention because we

shall be dealing witﬁ two subgroups of J4 of shapes 21+12

and 2“.M24 whose elements must not be confused.

.3M22.2
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_ The intersection of an octad for M24 with.fl\{q, w} is called
a (special) HEXAD, HEPTAD or OCTAD for M,,.2 depending on its
cardinality; similarly the intersection of a dodecad with -2\{0, o}
is called a DECAD,HENDECAD or DODECAD .

@Given a hexad for M22.2 , the remaining 16 points have a
netural structure as a symplectic space of dimension 4 over GF(2).
A division of this into four isotropic planes (2-spaces) corresponds
to a pair of points in the hexad. So the stabilizer of such a
HEXAD + PLANE is 2 group of shape 2°(S, X 2) .

If 9 and ¢ are two disjoint hexads for M,5e2 , then
StabM22.2( 9)n StabM22.2( ¢ ) is a group isomorphic to S¢ »
and the permutation actions of this group on the points of 9 and
of ¢ are inequivalent, and related by the outer automorphism
of 8. . Thus points in 9 correspond to totals in ¢ and duads

in 9 correspond to synthemes in ¢ , and vice-versa (see [9]) .
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Modules and cohomology for M, 4 over GF(2)

As a 12-dimensional module for M24 , the Golay code tf has
a uniqge non-trivial invariant submodule {<.) which has dimension 1.
Y6 = ¢ /(n.) is an 1rreduci‘$le module of dimension 11 for M24 .
6 = { subsets of N} /¢ is a 12-dimensional module dual to
¢ , having an irreducible 11-dimensional submodule
@4 * = { even subsets of N} / £ . |

2= of £ , of dimension 66, is a

The skew-square ¢
uniserial module with three composition factors :
{), & 1is an invariant 11-dimensional submodule isomorphic to
P& , with quotient P£2" = ¢ 27 /(<. g ) T (PE )2,
and 4% =¢CAC:C ,0c N eand C,NC, =0 >
is an invariant 55-dimensional submodule containing (N>, ¢ .
FS€ 2~ = 84 % /(<ad, ¢ ) is an irreducible 44-dimensional

module. The dual ¥’§ (¢ *)2" can be built in a similar way.

Lemma { A split extension J of £ * by M,, has a unique
conjugacy class of complements for 02(J) .

Proof Let K, and K, be two such complements. Choose an
element y, of order 23 in J / OZ(J) . Then the two representatives
ofy, in K, and K, are conjugate by an element of 02(J) ,
by Sylow's theorem, so we may suppose they are the same. Let Yo
be an element of order 11 in J / 02(J) normalizing y, . Then
the representatives of Y5 in K1 and K2 differ by an element
of 02(J) centralizing y, , and hence centralizing y, . Thus
since the two representatives of Y5 both have order 11, they
must be equal. Now take an element Y3 of order 10 normalizing

¥ inJd / 02(J) « The representatives of y_ in K1 and K2 differ

3
by an element of 02(J) centralizing y, , and have the same order,
and hence are either equal or differ by the duad fixed by yo -
In the latter case, conjugating by the monad fixed by y,

fixes the representatives of ¥y and Yo and sends one
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representative of y; to the other. Since J / 0,(J) 1is
generated by Yy 0 Y5 and Y3 this means that we have found an
element of 02(J) conjugating XK, to K, .
Corollary 1 A split extension J' of $4£* by M24 has
two conjugacy classes of complements for 02( J') , conjugate by
an outer automorphism of J' (corresponding to an odd element
of 02(J) ). P
¥arning J4 has a subgroup M (see chapter 3) isomorphic to
the J' above, and the two classes of complements are not conjugate
in J4 » They do not even have the same conjugacy class fusion maps
with respect to J4 .
Corollary 2 There is a unique isomorphism type of uniserial
module of dimension 12 for M24 having an 11-dimensional
submodule isomorphic to SE&* . i.e. Dim Ext' ( § E*,1)=1,
Lemma 2 The split extension 2686 of the natural permutation
module by 36 has a unique conjugacy class of subgroups of shape
2X3; .
‘Proof This follows from a similar argument to that in Lemma 1
using a Sylow 3-subgroup and a transposition mixing the two orbits of it.
Tﬁeorem Let R be the sextet group of shape 212.26.386 in the
group J defined in Lemma 1 . Then
(1) there is exactly one conjugacy class of subgroups of shape
2X (26.386) supplementing 02(J) in R ;
(11) any such supplement has a unique subgroup of index 2
complementing 02(J) in R and contained in some complement to
02(J) in J . Such a subgroup is contained in exactly two such
complements conjugate by the involution in Z(R) .
Proof First, all supplements to 02(R) in R of shape 2 X 35
are conjugate, since any such is a supplement to 02(S) in S where

S 1is the normalizer in R of a Sylow 3-subgroup of O2 3(R) » having
?

shape (26 X 3).86 , and all such are conjugate by Lemma 2.
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Now take such a supplementary subgroup R1 of shape 2 X 386 .

Then [02(R) , 03(R1)] is an extraspecial group of shape o1+12

’
and modulo the centre it decomposes as the direct sum of two
different (dual) irreducible modules for R, 8o that there is a
" unique such decomposition. Thus such a supplement to 02(R) extends
uniquely to a supplement of shape 2 X (26.35.) to 0,(J) in R,
and all such supplements are hence conjugate, thus proving (i).
Since a complement to OZ(J) in J does contain a complement

to 02<J) in R, and the centralizer of the latter is the unique
vector in 02(J) fixed by R, (ii) follows. /-

Corollary Let R' be the sextet group of shape 211.26.336 in
the group J' defined in corollary 1 to lemma 1. Then

(1) there are exactly two conjugacy classes of subgroups of shape
2X (26.386) supplementing 02(J') in R*' ;

(i1) any such supplement has. 2 unique subgroup of index 2 complementing

0,(J') in J' . Such a subgroup is contained in exactly two such

complements conjugate by the involution in 2Z(R') . p

Under the action of R' , OZ(J') reduces uniserially with two
. proper invariant submodules :

(1) the sextet as an element of (£ * forms an invariant
{~dimensional submodule ;

(i1) +the PARITY submodule for the sextet group is defined as the
~collection of all elements of S{Z* intersecting each tetrad of the
sextet with the same parity (i.e. all evenly or all oddly) . This is
well-defined since every element of ¢ hits each tetrad with the
same parity. This submodule has dimension T .
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Chapter 2 The Subgroup H of shape 21+12{3M2242

In this chapter we develop a notation for working inside the subgroup

H = CJ(z) of shape 21+12

.3M22.2 satisfying Hypothesis A on P.2 .
Mostly the notation does not distinguish between an element and its
product with z, so that a certain amount of information is lost,
but we can usually get around this difficulty when it matters.

First, let us examine the structure of H=H / {z) . This is
a split extension of E = E / (2> = 0,(H) / (z) by a complement
F=Pr/ {z) of shape 3M,,.2 . Janko proved in [2] that F, = F' is
a proper cover 6M22 . ( But note that contrary to the title of [2]
the full covering group of M22 is in fact of shape 12M22 and not
6M22 , as was discovered in Summer . 1979 )

Looking at the 2-modular character table of 3M22.2 we see that
there is a unique faithful 12-dimensional module over GF(2) and
that this has the structure of a six-dimensional module over GF(4)
with 03(?) acting as scalar multiplications. The outer half of
3M,,-2 acts semilinearly; the inner half linearly. (T) |

Let <wd> = 03(F) 80 that CH(w) = F , and let conjugation by
w in E represent multiplication by we GF(4), i. e. wy =y" .

Since E = 02(H) has an automorphism of order 3 induced by

v whose centralizer in E is {z)» , E is of type 21+12
( 1. e. a central product of 6 coples of the Quaternicn group Q8 )

Represent passage from E to E = E / (z) vwx - X . Then
the unitary structure on E preserved by F can be obtained es
follows from the extraspeciality of E and the GF(4)-structure
resulting from conjugation by w :

Let p: <z> -~ GF(2)c GF(4)

be given by I ~ O
z =1

and define ¥ . ¥ = ¢ ([x,wy]) + qu([x,y])‘ (1)
Note that it doesn't matter which inverse images are taken

for T and ¥ since <z) is central .

(T) See ﬂffendi)( G
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Lemma 2.1
(1) defines a unitary structure on E .
Proof

T.ufj+o(x.7)

(J([xo‘jy]). + w(“([x' ‘\)Y])
+ape([x,wy]) +(>([x.y])

p([x.y] + [x,wy] + [x,3¥])
=0
=2 X .wF=T(X.7) .

Similarly wZ . F=w(iE.7¥ .

.(F+2)= (J([x. w(y + 2)]) +wf(IX. y + z])

= pllx, 03D + Pz, @ 2]) +wp ([xy])
+ wr([x,zn

3

Similarly (3 +%) . 2=X.2+F .2 . 7

Note that since {x, w) = Qge3 = 24,
2.3=2124, or
2,3 -
2°.3 = A,

we have X . ¥ = [x, x"] = x°
so that vectors of norm O are involutions .while those of norm 1
are elements of order 4 .

Thus the inverse image in E of an isotropic subspace in E is
the same thing 2s an elementary abelian subgroup of E containing z
and invariant under w . If X is such, 'then [X, w] is a complement
for {z) in X, natural given our choice of F .

More generally, if X is any elementary abelian subgroup of
E containing z then [X, w]¥ = { woxwlxve : x € X} 4is such a

complement for (z» in X (see also P. 26 )
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We express vectors in E using a 2 X 3 array of coBrdinates

(IR F with '/\;e GF(4), and inner product :

L "\s ]( .
7\.7\.‘7\" Y My - - - - _ _ _

When writing down elements of F as 6 X 6 matrices over GF(4)

we shall think of these vectors as row vectors (4, 1, 4 3, 3:1).

Can we find 22 objects in E which are permuted by F in the
same way as the natural permutation representation of F / %>
%'Aut(M22) on 22 points ?

To answer this question, we look for subgroups of E invariant
under the action of 3M,, = SI,(4), and find that the module E
reduces uniserially with a unique 3-dimensional irreducible
submodule with irreducible. (and dual) 3-dimensional quotient.

Since the induced action on this submodule is the natural action
ot SL3(4), it must be an isotropic subspace of E.
Let Wi be the isotropic 3-space in E stabilized by Stabﬁ(i)
for ie L\ {0, }.
Lemma 2.2
Dim(wi(‘: wj) =1 fori#j
and Dim(Wi(\Wjﬂwk) =0 fori#£J#Ek#£i1
Proof
Pirst we note that since F is 3-transitive on )L \ {0, =},
these numbers are independent of choice of i, j and k. -

Certainly O < Dim(W, N Wj) < 2.

If Dim(W, N wj) = 0 then Stabp(i, j) < Stabrus(z)(wi, wj) = {1},
a contradiction. If Dim(‘rlin wj) = 2 then <wi, wj) has dimensigg 4,
and either W; N ¥, =W, N W V 1# j#k#1i in which case /| (W

i=1
would be an invariant 2-dimensional subspace, or wi NW j # wi n wk

)

V 1i#J#k#i in which case <wi, wj> > W, by dimension
counting, and so {W; 8 1< 1< 22> 1is an invariant 4-dimensional

subspace,
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Thus Dim(wi¢\ wj) =1 for 1#3 . "

I Dim(W, 0 W, N W) =1 for 1#J+#k=1then {:} (w,)
would be an invariant 1-dimensional subspace .

Thus Dim(W, N WyNW) =0 for 1#3#k#1 .

V4
Theorenm 7. .3 '
Given a 6~dimensional unitary space over GF(4) and a set of
isotropic 3-spaces of maximal size subject to the conditions :
(1) Any two intersect in a 1-dimensional space
(1i1) Any three intersect trivially

then there are 22 such subspaces in the set, and the setwise
stabilizer of this configuration in i"U6(2) is a group isomorphic
to the triple cover of M,, extended by the outer automorphism.

Proof
W.l.0.g2. we may take the space to be E .

Let { X, :1<1i<n } be the collection of subspaces and

let { W, s 1 <122 } be the 22 subspaces defined above.
(*) Since an isotropic 3-space has only 21 isotropic 1-spaces in
it, we must have n < 22, which with the lemma shows that n = 22 .
I shall find an element of f’U6(2) taking X, - W, , 1< 1< 22,
after possibly renumbering some of the Xi .

Since FU6(2) is transitive on isotropic 3-spaces, we may
suppose X1 = W1 .

Stace Stabny (5)(W,), of shape .2‘2'511.3(4).3.3 = 2'2r15(4) acts
transitively on isotropic 3-spaces intergecting W1 in a 1-space,
we may suppose X2 = W2 .

Since Staer6(2)(W1)(\ Staers(z)(W2) of shape 26.24(32 x SL2(4)).2
acts transitively on isotropic 3-spaces intersecting w1 in a
{-space, W2 in a 1-space and W1IW Wz in a O~space, we may suppose

that X3 = W3 .
244 .2

Now () ( Stab (W,)) , of shape 2°77.3°,2 , has
1=1,2,3 rug(2)7a77 »
=1 14

2 orbits on subspaces X intersecting Vi in a2 1-space and WiIW wj
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in a O-space for each pair 1 # j £ {1,2,3}, distinguished by
vhether W, N X < (W, N W, , W, N ¥Wyy (orbit 1)
or not ( orvit 2 )
(this condition is in fact symmetric-in W, , Wy, W ) .
By the remark (*) on the previous page, precisely 3 of the

W, and 3 of the X; for i ¢ {1,2,3} are in orbit 1 and 16 are in

i
orbit 2.

By the transitivity properties of Aut(M22) this means that
{1,2,3} together with the 3 i's for which Wi is in orbit 1 form
a hexad for M,, which must therefore be {1,2,3,5,14,17}. Thus by
applying a suitable element of /"\ ( Staer (2)(W.)) and by

i=1,2,3 6 1
renumbering some Xi in orbit 1 as XS we may suppose that WS = XS’
Next we see that //..\ ( StabFU6(2)(wi)) of shape

i=1,2,3,5
e3+.2 18 transitive on the elements of orbit 1 apart from WS ’

21+4
80 by renumbering some Xi , 1 #5 from orbit 1 as X14 and applying
some element of this stabilizer we may take X14 = w14 ; then after
relabelling the final Xi of orbit 1 as X17 we automatically have
117 = W17 °
Finally //”“\\ ( Stab.; (2)(Wi)) of order 2° is
1=1,2,3,5,14,17 6

simply transitive on the 2~ possibilities for choice of a subspace
satisfying the requirements (1) and (ii) for intersections with
the W, , 1 € {t, 2, 3, 5, 14, 17} end having fixed one, the
other 15 are determined. Thus we may renumber thevxi for

ié {1, 2, 3,5, 14, 17 } and apply a suitable element of the

above stabilizer so that Xi = Wi y 1€ 1g 22, 4

Thus by the above theorem, the following is a valid layout

for the subspaces of E corresponding to the points of L1\ {0, «} :
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8

o
M
«
N

S8S 3 8182 32813
X ¥ A X Y1Z2 12Y1Z

(o]
(o]
o

X5 2 L,y z x00 SY2Z 3 Y1Z
sz 2

X ¥,z X y2 Oy
X Yzz XY 2 x 0

2 51,2
Xss | X85, K83

_N
(]
N
o
«
N

(o]

X8z X 3122 XéS1Z

SYS S Y1S2 32Y1S

00z XyYs X Y182 12Y1S
xy

0 3852 S S1Z2 82812

N

xXyz, XJ2z
XY 22 XY Z1

Table 3

The notation for 3-dimensional subspaces of E is as follows :
x, y and z are general elements of GF(4)
X=y+2 Y=x+2
Z=x+y S =x+4+y+2
A subscript 1 signifies multiplication by w e GF(4)
and a subscript 2 signifies multiplication by Se GF(4)

Thus for example :

X ¥,2 is the subspace spanned by |1 0 0/,/0 & O] and |00 1t
X Y% 01| {101 13 0]
L———w—’ -————!

XéY1S is the subspace spanned by |[Ow 1],/5 01! and [5 @« 1]
S.8,2 Sw 1] (@ wi 5 w0
2.1 | I

We give a list of a few useful cobrdinate transformations on B

effected by elements of F and their action on the MOG for H :



22

Co8rd. Transformation Effect on H's MOG

= Ll

|
o

—
—_—

field aut. w ~ &

ol

diag(' w ‘3) -

| w3 le‘““"

100011

010100 — TS
001100 —-NN (seealso
000100 p. 5¢ )
000010/

000001

Table 4
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Classification of vectors and isotropic subspaces in E = 0,(H)/<{z)

Having obtained Table 3, it is easy enough to verify the
following classifications :
Yectors
Under the action of H , E has 3 classes of involution, with z
in a class of its own and y ~ yz for each y ¢ {z) , and one class
of elements of order 4, whose stabilizers in F / < w» are as given

in the following table :

J4-class
elts vectors 1-gpaces norm Stabilizer in M22.2 (see p.35)
(z) 1 ~ - 0 M,,.2 2A
1386 693 231 0 2%(s5 x 2) = 2-point 24

stabilizer (EDGE group)

2772 1386 462 0  2%P6L,(5) = stabilizer 2B
of hexad + total on it
(TOTAL group) [9]
4032 2016 672 1 POL,(11) = stabilizer 44

of pair of disjoint
dodecads (DUUM group)

8191 = 2'°

Table 5

Isotropic 2-spaces

There are three classes of these under the action of H, which
contain the following numbers of EDGE-type and TOTAL-type 1-spaces
and have the following stabilizers :
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number edge 1-s8paces total 1-spaces Stabilizer in M22.2

462 5 0’ 2455 = stabilizer of

hexad + included point

1155 3 2 24(s4 X 2) = stabilizer

of hexad + syntheme on it [9]

4620 1 4 22(s4 X 2) = stabilizer

of hexad + plane (see p.i2)

Table 6

Isotropic 3-spaces

There are four classes of these under the action of H , which
contain the following numbers of EDGE-type and TOTAL-type 1-spaces
and have the following stabilizers :

number edge 1-spaces total 1-spaces Stabilizer in M22.2

22 21 0 M,,.2 = POINT stabilizer
77 15 6 2%3, = HEXAD stabilizer
462 5 16 2435 = stabilizer of
hexad + included point
330 7 14 23(L3(2) X 2) = OCTAD
stabilizer
Table 7

The containments between the isotropic subspaces are given in

the following diagram :
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Isotropic Isotropic Isotropic
1-gpaces 2-gpaces 3-spaces
10 S HEXAD + POINT ' POINT

(231)\\’\\K (462) \\ (22)
TOTAL 2~ SYNTHEME
(462) \‘\ (nss)\ \ =
+ PLANE HEXAD + POINT
: (4620) \ (462)
PaXg
OCTAD

Figure (330)

where this means, for example, that there are 330 octad type
isotropic 3-spaces, each of which contains 7 syntheme type and

14 hexad + plane type isotropic 2-gpaces.



26

Notation for elements of H

From p. |7 we see that given an isotropic vector X in E R
there is a canonical inverse image wzxwzxw2 in E . We shall
denote this inverse image with a subscript O and the other one with
& subscript 1. For norm 1 vectors there is no good notation for

distinguishing the inverse images.

Thus for example |1 O O is a well-defined element of order
000

2in E , and { Xy 2 a

is
Iy : x+y+ 2z e GF(2)

X+y+2
well-defined elementary abelian subgroup of E of order 25 not
containing z .

For elements of F , the action on the MOG gives the element
up to multiplication by an element of Z(F) = (wz) . Sometimes
~ the J4-c1ass of an element well-defines which representative it
is, and then we append the class as a subscript. (See p.37 for

a description of the J4-c1asses of involutions in H)

For example, ﬁ:
—L= 2A

A general element 6f H can then be written down (in exactly two

is a well-defined element of F .

P

ways) as the product of an element of E and an element of F .

S0 for example {1 0O EE 100
000, = =looo
0 —1oa 1

is a well-defined element of H .

Sometimes we shall write down elements of H without

worrying about which of the two representatives is concerned.
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Chapter 3 The subgroup M of shape M

24
Janko [2] tells us how to find a subgroup M of J, of shape

11 N
M4 ¢ ,
Choose a hexad for F (we choose the left-hand hexad 3 = "ffJ )
and let LO be its stabilizer in P , of shape 6. o4 Sé . Let
=0 = -
o - -( R, . (1K), - (O, -, . -.

an elementary abelian group of order 29 , and let E, = CE(U1) ,

IRER
K

the hexad-type isotropic 3-space {x y z| for the left-hand hexad ) ,
b 4 z

an elementary abelian subgroup of order 27 « Then letting V = E1U1 ’
V is an elementary abelian group of order 211 whose normalizer
M= NJ4(V) is a split extension of shape 2 M24 where the action of
M24 on V is the same as on S&* .

Now D = NH(V) = HN M is the hexad stabilizer in H of shape
21+12.3.2486 so that D/V haé shape 26.386 , énd is thus the
sextet stabilizer in M/V . We are free to choose that this is the

vertical sextet for M's MOG (see p. 9 ) , and we are free to
choose that <w>» acts as <:,ibiiii;>.

From the analysis on p.15 we know that there are two conjugacy

clagsses of supplements of shape 2 X (26.386) to V in D , and that

each has a subgroup of index two contained in exactly two complements

to V in M, conjugate by =z . Representatives of the two classes are :

(1) Let 1 be a point of H's MOG not in {) , so that W, is
an isotropic 3-space in E whose inverse image Qi is an elementary
abelian subgroup.of E of order 27 , of point tyve (see p.24): Then
QistabLo(ﬁi) is such a supplement giving 2 complementary Myy5 of
POINT type .

(11) Let ¢ be a hexad of H's MOG disjoint from J , and let
§¢ be the inverse image in E of the isotropic 3-space Ww in E

P
such a supplement giving 2 complementary M24s of HEXAD type.

corresponding to ¢ , of hexad type (see p.24). Then Q StabL (Qw) is
0 .
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Any complement to V in M is then of HEXAD or POINT type
depending on whether its intersection with H <fixes 2 hexad or
a point in the right-hand square of H's MOG .

Let K be one of the two complements to V in M of
hexad type extending the complement for <z) in Q¢StabLo(W¢)

where ¢ = 1] » so that “’q:: 000].
SR xXyz

Comparing the submodules of V that we know under the action
of D/ V (i. e« <z) and -E1) with the 1ist on p. IS we see

j}i; and E, 1is the

x
x
x| -] -
*_:

that z is the vertical sextet

PARITY submodule for the vertical sextet. Thus E1 has 36 duad
vectors and 91 sextet vectors, so that mod <;z>» there are 6
w-orbits of duads and 15 w-orbits of sextets. Looking at table 7
we see that a duad in B, mod {z}) is a total type vector in E
and a sextet in E, mod (z) 1is an edge type vector in E.
Thus a total on the hexad @ 4in H's MOG corresponds to a
column of the vertical sextet for M's MOG , and so the six
points in § are in duslity with the six columns of the vertical
sextet for M "via the outer automorphism of 8¢ « Thus, looking
back at p. 12 we see that the points of ¢ are in one-one
correspondence with the columns of M's MOG .

We 8till have the freedom of choice of this correspondence,
and so for reasons which will become apparent in Chapters 4 and 5,

we choose the following correspondence :
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- Iy

N iy D AIBICIDIEIF

. +lF J

H's MOG M's MOG
Pigure 6

Having chosen this correspondence, the choice of which

way round to identify {(w) with<-L X “ is determined,
Ll

~

since from table 4 we have

v =[ “ u H( | m‘g (any representatives)
acts on M's MOG as
[WE 1] - [l

So the only freedom we have left in determining the names
‘ 11

T

in H for elements of the sextet group 2 .26.386 in M is
conjugation by w .
Prom the definition of the correspondence in figure 6, we

see that since the total type vector 100 in i‘." corresponds
10 O}

to the point D of ¢ by hexed duality in M22.2 , it is8 a
pair of disjoint duad vectors in V 1living in column D .
Thus we may choose that

100
100

(1)
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Now from table 4 we see that the element of F of order

3 acting on E as the linear transformation has

effect |—4' ) on H's MOG , and hence acts as

M

(A)(B)(C)(DEF) on ¢ , and hence on the columns of M's MOG .

g W
|
>

for some n. It also commutes with the field automorphism w & & ,

Moreover, the element commutes with w and so it is ﬁ T ;!

Jb b

which acts as (AB)(C)(D)(E)(F) on ¢ from table 4, and is

hence :j',j:.wm for some m. Hence n =0,
Xh i

So conjugating (1) by this we see that

010 i
019%0 [

and 001 -

001

Thus |3 m v is the element of V formed by giving
A py 0

(ooo A p v) the even int.erpretation of table 1 (see p. 3 ).

Notation ZEvery element of M has a unique expression of the
form (element of V ).(element of K ) . We write an element
as a set of stars together with a permutation on the same MOG
diagram, with the understanding that the product is taken with
the element of V first, followed by the element of K .
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The Dictionary

In order to be able freely to translate back and forth
between the names of elements of D as elements of M and
as elements of H , we break it up into four parts :

(1) By of shape 27

(11) 0,(K A D) of shape 2°
(111) 02(CD(H)) of shape 25
and

(iv) CK(w) of shape 3S; .

Every element of D has exactly two expressions as a product
(element of E1).(e1ement of OZ(K‘n D)).(élement of 02(CD(w)) ).
(element of CK(w)) . Notice that E 1is generated by (i) and
(11), V is generated by (i) end (iii), K n D 1is generated by
(11) and (iv), and P N D is generated by (111) and (iv).

We dealt with translation of elements of Ey in the last
section, so we now deal with (ii), (iii) and (iv).

(11) Elements of 02(K N D) :

02(K11 p)=[000 ; 80 what permutation in X is [0 0O 2
xXyzlyg 100 0

It commutes with (i. e. is orthogonal to ) {0 A m and
' 0 2 pm

100 which are £ * sets in the last two columns intersecting

100 0

each evenly, and |- o ::J respectively, and is in the 02 of
R T
O {

the vertical sextet group. Thus it must be I {{j({..{.
VU

Conjugating by the element of order 3 acting on E as

the linear transformation —o- | » 88 before, we get :
o—)e
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01 e, DL

and 000 = ( ( [ "
i ol
001, M1
Thus 00 is the permutation in the O2 of the
A pu Y 0

vertical sextet group in X given by the hexacode word
(711 2 P ) as described at the top of p. 10 , where
the question-marks are filled in in the unique possible way

to make a hexacode word (see p. 7 ).

Rl I ]

0]

- 0y 01 W&
(111) Elements of OZ(CD(w)) =T, :
These lie in F , and their effect on H's MOG are as
affine translations of the riéht-hand square ¢ _A

i. . e 0 =
" (B IEINETE z;6‘;4§>
! 2 0 . =3 7 A

In M these are the ¢£* sets lying in the top row of

[REN!
RN

the MOG .

The correspondence is as follows :
Given such an affine translation, there is a unique cycle lying
inside ¢ . From the correspondence in figure 6, this corresponds

to a pair of columns of M's MOG . The two representatives in

> are then the corresponding

V of this element mod {z) =<E’_":(f*\"

duad in the top row, and its complementary tetrad in the top

I'OW. €. g.
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(see the next section for a description of the .'l’4 classes of

involutions in M and H)
(iv) Elements of CK(w‘) :

Cx(w) has shape 35, , lies in F , and is of index 2 in
StabF( 9, 9 ) . This means that the image of an element of
CK(w) in F /< wz) depends only on the permutation effected
on the six columns of M's MOG . Given this permutation,
to find the image in F / < wz> o £111 in the corresponding
permutation kon the hexad ¢ via the correspondence given in
figure 6, and £ill out in the unique possible way to an

element of StabF/<wz> (9,9).

e. g [ = ’J € CK(w) effects the permutation

Jyyxit!

(A)(B)(CD)(E)(F) , and hence has image i' on the
hexad ¢ , which completes to the element E e P/ w2y,
H- X

and is hence the element [=]xT - in F . (again see the

——

LI (X

2A
next section)

We summarize the translation process given by this

dictionary in the following table :

N



34

Subgroup of H Subgroup of M
Mnemonic Mnemonic Shape
Example e——L4> : Example
22: <E Eoo <V
(1) PATRED PARITY 27
w3 - 1
1 w & B ™
o L x
'oool 212
LA A Vi, <E AR <K
(11) VENTRAL | VERTICAL 2%
O o0 ] .|( J
= R |
] e =
. “ﬁ < F =§'\/
(111) AFFINE AFLOAT 22
T TT
= 28
AJR]c[plE
2 <F < K
AR J
(1iv) PERMS _ PERMS 386
=X sz ::(
o Xt
1. qu !
Table 8

(see also Appendix D )
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Now that we have this dictionary at our disposal, we
may freely translate back and forth between names for
"elements of D as elements of M and as elements of H .
The process consists of breaking the element up as a product
of elements of (i), (ii), (iii) and (iv), translating
each separately via the dictionary, and then multiplying
back up a2gain.

(-3 g_.

[ B

1
101

)

. lle
= [www =T
o ool - —
X —
o xI=i,,
( Note that [ii}- +x] has class 2B from the next
section )
Conjugacy classes of involution in M and their
fusion in J4
Janko [2] gives the involution fusion pattern in Iy

However, we shall need to know the answer more explicitely
in terms of our notations for M and H .

Since 2z is defined to be in class 2A, all sextets
in V are in class 2A . Duads in V are in class 2B.
Translating a couple of these which happen to lie in E
we see that edge-type elements in E are in class 2A
whereas total-type elements are in class 2B. (see p. 23 )

We need to examine the classes of elements in M under
conjugation by X , since this corresponds to possible

‘shapes' for our diagrams for elements. It turns out that
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every such class has a representative in E , so that the

J,~-classes are as in the following table :

4
Representative of Name as element
‘ ’ J4-class
) K-class in M of E
N e oo
.- [T 2
o b EE
é.L: ’4‘* o . Z.A
RRERT N 5 0 o
‘VE\H‘,: o of, -A
¢ . LAIRR f?{ -]
% ] 1o, 26
iy X
‘s = Lty :J 000, 28
¥ ¥
. ¥« [« BN N
¢ - H (l;’ 0! w
? g 1 LdJly 28
¢ - ns;E; o 1
’ I oo tj, 28
- 0 oo
é')' ()('()6()(' DwDo 28
- Q0o
éu: ()(l()(' ()g 0w 0‘ ZH

Table 9

(continued on next page)

-
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Representative of Name as element
J4-c1ass
K-clasgs in M of E
‘foo o
- Ul e

)0
o¢
o U

¢, R EEH R

.. - P 5ol 24
t, = [HOERE zah 28

Table 9
(continued)

Under the action of V , these fuse as follows

so that M has 9 conjugacy classes of involution.

Conjugacy classes of involution in H and their

fusion in J,
Now we can use the dictionary to givevthe same
information for H , choosing a representative in D from

each class of involution in H .

Cagse 1 Elements of E :

These have already been dealt with, and we have

8y =2 has class 2A
8, = edge vector [o oo has class 2A
100
8z = total vector (100 has class 2B
3 {00
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Case 2 Elements of shape (element of E E”

of norm O )

Lt

@ on E (see table 4) so that
JERDY

and conjugating F i{{t] by an element of E adds on a

First work mod <z> -« The element 1] has effect

—

o

vector .

Thus mod {z) there are 3 classes of this shape :

=T %3] '.:HHJ =
ey ? f S and ‘oot I il
Do the involutary preimages of these in H fuse ?

"The twd involutary preimages of m are, as elements

of M, 84 = ¥ and 35={¢ *] -

-~

These are respectively of class 2B and 2A .

The two involutary preimages of are
tool ! X

conjugate by [99Cl in E . Let sg be the preimage

Ll :E in V so that s, has class 2A .

Similarly the two involutary preimages of ?:g

v
—
—

are conjugate by ""20 in H. Let s; be the preimage
l w oi
i (3]

1 )qf."f‘ in M so that s, has class 2B .
niiefs,
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Case 3 FElements of shape (element of B l:EE
of norm O ) E

Pirst work mod {z) . This time all three elements of

F with image

’::! in F/ <wz) are involutary,

IIEG

and they are conjugate via w . So choose the one acting
on E as the field automorphism o« « & (see table 4) .
Ite centralizer in E is the set of all vectors with
entries in GF(2) = {0, 1} . Conjugating by x¢ E
edds on a vector x + X , and vectors of this form span

the centralizer of our element in E , so that all

‘fhe two preimages in F are, as elements of M ,

Rl 1 T i < T

88 is in class 2A whereas 89 is in class 2B .

involutions of shape (element of E

Ltk

of norm 0 )

are conjugate mod (z> .

Case 4 Elements of shape (element of E =TTTTX
of norm O) “hdx)”

First work mod <z> « Again all three elements of F

with image [I{x] in F / {wz) are involutary and

X

. conjugate via w . So choose the one acting on E as

-

. I 1 followed by the field automorphism w ~ < ,

The centralizer of this element in E is :' t\: 3l with

bl

2, v'\r € GF(2) . Conjugating by an element of E adds a

vector [ papm with P € @F(2) and so all such
o A Fs
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elements are conjugate in H .

The two preimages of our element in H are conjugate

by (O <4 5{' as can be checked by looking at these elements
60 w
0 -

—1 A%

bR
an element of M , of class 2B .

in M . Let 8,0 be the preimage which is as

Thus H has 10 conjugacy classes of involution
as displayed in the following table :

Representative of Name as element of M J4-class ’
class in H
x: ;:[::{ 24
KR e
- 000 P jing .
S‘,— ool vt 2A
|
i oo 0 P !
§3: ool, - 28 “

24

‘ 24 A
ocoo = LI
$3 * (oo.)?_““ mmﬁ 78
S¢ = = ‘-;(u.-»s r; 0l 2.A
14
Se T || {wed ;Jin % 28
28
=A% e B ko
Sie ™ | 2l X | fxuu z¢

Table 10
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Chapter 4 The 'Pentad' Subgroup P of shape 23+12(S: X L3g222
7

Looking again at [2] . we find a recipe for obtaining in
J4 a subgroup of shape 23+12(S5 X L3(2)). In this chapter ,
I shall develop a notation for working inside this subgroup,
and investigate the Sylow 5-normalizer and Sylow 7-normalizer
in J 40 which lie inside this subgroup.

11,6
2'".2 (S3XL3(2))

Let. T be the trio group in M of shape
for the brick trio (see p.9-10) . Then 2(0,(T)) = V, €V has
order 23 , and the 'Pentad' group P = NJ (V) has shape
234'12(85 X L3(2)) with Oz(P) special (see p. 3 ) .

Looking at V1 in EH, we find that it is the inverse

image in E of an isotropic t-space in E , namely

a t-space of edge type for the edge {3, 15} = E‘ ﬁlz .
. 1412 4
Thus NH(V1) is the sextet group of shape 2 +3.2 (85 X 2)
for the square sextet [--1 -| :{ in H .
Thus
PNnM-=

Ny(V,) = has shape { 2”.2‘5(33 X 15(2)) in M
23"12(34 X I5(2)) in P

PnH

Ng(V,) has shape { 2”‘2.3.24(35 X2) inH
23‘”2(s5 X 2°5,(2)) in P

and P=(PAM,PnE).



,
The centrelizer of an element of order 7 (c.f. p.4 )
e+ (T [ EDD
<+ <G, B, B>

has shape 7 X 34 .
Since CJ"*(x.]) = CP(x7) has shape 7 X 35 ,and HN P

;et x7

Then cm(x.?)

has index 7 in P , we must be able to find an element of
order 5 in H commuting with X7 o Now NP(x.?) has shipe
7.3 X 85 with 0y 5(Np(xy)) = 07 5(My(x;)) = <x y WD e

Thus the element of order 5 must commute with w , and hence
lie in F . Now there is a unique element of order 5 in F

which acts on the 5 tetrads of the square sextet for H 's

MOG as I and makes an S5 with the S4 we already

- ) [« < b< _ 3 1IS2(9 13 22 20 17)
ve, namely X = L
’ 5 — - Q9w g i0)(s 2 t ¢
A LL ! 7 A (5% 12 14 1)
and so we have | X5 » Xq } L

Thus CJ;(x.?) = <x7, xg, z"> |
Iet T = o7(cJ4(x7)) = <x, E y =
- 24
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The centralizer of an element of order 5

We now have enough information to find Cj (xs) of
shape 5 X 231,3(2) ( with the 231.3(2) non-split ) , since
we already know that Cp(xs)z <xs, Vyy W, X9 Y>

X
X

where Y 1is the unique representative of

VI

commuting with xs ( note that the M22.2 centralizer of

an element of order 5 is of order 10 )

i.e. Y = **1° '] as an element of M,

x|l

Since (x5, Vi, W, Xq, Y Y 'is already big enough, it
must be therwhole centralizer of Xg -

Cn(xs) is a non-split extension of shape 23L3(2) and
lies in the trio group T. Its action on the three bricks is :

Left-hand brick : L2(7) on the standard numbering |3 2'
s ]

on the brick . +

Right-hand brick : L3(2) fixing o and preserving the
'

projective plane structure given by

standard numbering on the brick .

Middle brick : Rewriting Y asE - 17 ] we see that
X

the action on the middle brick is the same as the action on
the right-hand brick except that a (£ ¥*-set has been attached
to each permutation on {0, ... , 6} to give a non-split

monomial group 23L3(2) 0

Now let A =‘< ;iﬂ , x7> of shape L2(7) (i. e.

the elements of T n K acting acting on each brick, preserving

the standard numbering ) . Then A n Cp( L ) = <x7, W)
= StabA(eo) o Our notations for P will be based on the two

subgroups A and %, .
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The structure of 02(P) and notation for elements of P

The action of P / 02(2) =85 X L3(2) on Oz(P) / v, is
the same as on the tensor product of the two-dimensional module
| over GF(4) for S5 € 3 L,(4) written as a 4-dimensional
module over GF(2) , with a 3-dimensional module for L3(2)

dual to V (We call elements of V, 1lines and of the dual

1 *
V4®* points )
Thus we should label the tetrads of the square sextet for H

with the points of a projective line PG(1,4) : We choose

the numbering : 514
ot | O
' Figure 7
The elements of V1 are given names as follows :
* PR | X % - X X ¥ x x
* . x * % * - COX
¥ *x * * X x
* x X . . F's . . . R x i ok
Lo L1 L2 L3 L4 L5 L6
Teble 11

where each element of V1 is a sextet vector in V for
a sextet refining the brick trio for M , labelled above by
giving the pair of tetrads comprising any brick (such sextets
are similar in each brick) .

Ve give elements of the duval of V1 two interpretations,
one as affine translations on a brick, and one as sets

of - four points on a brick (c. £. fig. 2 ) as follows :
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||
3> W

1 n, n3 Ty g g
* * A . X

X * *x ¥ X * X x*

X X x ¥ X ’ X Xk *

X & X - K * X * X

’AO *1 <l'2 *3 -l4 *5 *6
Table 12

This means that lines (in V1) and points (in V1*) are
incident as follows :

Ficure 8

This numbering gives a 1-1 correspondence betwzen lines

and points which is respected by the group A ﬂCP(Z) but
18 NOT incidence preserving,

Thus we see that elements of 02‘(1’) / V, are spanned

by elements of the form (n)@® (x, ), O<n<6; x, ye GF(4),

We chooce a particular inverse image Ny in OZ(P) , of
(n) ® (x, y), as follows :
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and then linearly :

Drex' y+y' “ Pz y x'y'

Let tr(x) =x+x ¢{0, 1} , 2nd let

- tr(xy)
n;y,— nxyolln

Then elements of P can be written in the form :
(element of V1).(product of nxy's).(element of T ).(element of A )

The multiplication rules are :

(1) 2(0,(P)) :
Laa = 1 where La, Lb’ Lc are three lines

, intersecting in a point
IlaaLb=Lc

(11) 02(P) :

= Dxext yiy'

By y° Dy vy Tx y* Latr(xy)

where {(m, n, r) are 3 points lying

on line a

trlxu yt‘

[mxy"nx|y']=1|a x}'
where a is the line joining

m and n
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(111) Action of /A on 02(»P) :
Let 2¢/l. Then

2
(La) = L, where 1:a - b as lines

)

(nx y) =m where QA:n ~ m as points

(iv) Action of 3] on OZ(P) :
Let o ¢ 3 o Then
o
(1) = 1,
4
(n'; y) = n;c y!
where o : (x, y) -~ (x', y')
as an element of 3 L2(4)

w [Z,A]:

[o’.3]=n'55'53'
where 2 2 o =~ n

and o = (a b) : (1, 0) - (a, b)
L c d (0, 1) - (c, d)

as an element of 2‘L2(4)
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Remark

Let M ﬁ H be the free amalgamated product of groups
isomorphic to M and H with the vertical sextet group in
M identified with the left-hand hexad group in H via the
dictionary of Chapter 2 (i.e. D as a subgroup of each
identified ). Let M $ H Dbe the quotient of this by the

(M)

normal closure of the element [xs,x7]. Then there is a

surjective map
M pH
<Ixs,x7]>
given in the obvious way. We shall be investigating the

kernel of this map in Chapter 8 , but for the moment, let

us remark that <M N P, Hn P> , as a subgroup of M 3 H

([15 px7]>

is isomorphic to P ; i.e. that all relations in P follow

from the dictionary of p. 3! and the fact that x5 commutes

with x7 o This follows easily from the fact that OZ(P)fé D .
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Chapter 5  The subgroup L of shape 210L5£§l

Looking once more at [2] we find a recipe for obtaining
in J, =a subgroup of shape 210L5(2) . In this chapter I
. shall investigate this subgroup and its intersections with
M, B and P .

Let Ao < V be the subgroup of even £ *-sets with a

representative contained in the left-hand octad 7 ,
Z

so that |Ay| = 26 . Then Ny(Ay) 1s the octad group in M
of shape 211.24L4(2) (see p. 10 ) and CK(AO) has order
24 and consists of affine translations of the right-hand
square . Let A = AOCK(AO) so that A is elementary
abelian of order 2'° , and let I =N; (1) - Then I is
of shape 21OL5(2), L splits over 02(%) , and the action
of L/ OZ(L) on 02(L) is irreducible and is the same
as the action on the skew-square of a natural 5-dimensional
irreducible module .

Looking ét Ain H, we find that A°'NE has order

27 , and is the inverse image in E of the isotropic 3-space

XYz in E of octad type for the 'middle' octad
x Y3

5/ of H's MOG .
Z

AQF = <z[

has order 2* , and A= (ANE,ANF > .

JEHE R E

Z 2 2

ttry

thiy
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21+12 5 23(L (2) X 2)

Thus Ny (A) 1is the octad group of shape
for the middle octad of H's MOG .
As a subgroup of P, A is
<V1,{nxy:x,yg{0,1}}.(u 5 )e )
80 that NP(A) is the inverse image in P of the centralizer
in P/ 02(P) of the field automorphism ( w « T )

and has shape 23“’2((33 X 2) X I5(2)) in P.

So we have :

LaM= NM(A) has shape {'210.24L4(2) in M
10.24L4(2) in L
(but note that the two subgroups A and
LNV of size 210 are not the same )
L N H = Ng(A) has shape {' 21+12 5, 23(L (2) X 2) in H
10, 6(L2(2) I15(2) in L
LnP-=

Np(A) has shape { 231205 5;) X I5(2)) in P
0.26(L3(2) X L,(2)) in L

We shall find a nice basis with respect to which we shall
write elements of L / 02(L) as 5 X5 matrices in such a
way that the intersections with M, H and P are three of
the four maximal parabolics defined by the upper triangular
matrices with respect to this basis. Then we shall find a
particular complement to 02(L) in L , in order to be able
td write elements of I in the form

(sum of wedge-products) . 5 X 5 matrix .
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Looking at A, as a module for NM(A) / A we see that
it is isomorphic to the skew-square of CK(AO) . The rule for
finding the wedge-product of two different involutions ) and
e of CK(AO) as an element of A, is as follows :

The orbits of { 2, /.¢> of length four are congruent
mod 7 , and define a (*-set Aep in A4 (we denote
this wedge product by a circle to distinguish it from the

wedge-product . from WX W to A +to be defined later )

To which conjugacy class in J4 do elements of A Dbelong ?

From the analysis on p. 35-3% we see that :
(1) elements of CK(AO) are in class 24
(i) duaas in A, are in class 2B
(iii) sextets in A, are in class 2A
(iv) elements of the form

sextet 8 in A, . element A of Cp(4,)
are in class { 24 if 3 o€ CK(AO) 8. t. s = XO/L
2B otherwise

(v)i elements of the form

duad in Ay . element of CK(AO) are in class 2B

Thus if we let W = (a, b, ¢, d, €> Dbe an abstract

S5-dimensional space over GF(2) so that W~

, the skew-square
of W, is ten-dimensional (we write wedge-products in we-

with a . ) then we can identify We™ with A via:



EXS
-

E

Table 13

and with this identification we find that for

',\./ue<a, b, c,d> R '),\/u. = (2. e)O(/u,‘e)
and so an element of A 1is in

clags 2A 1if it is a simple wedge-product

class 2B otherwise .

Lemma 5.1
If X 41s a vector-space over a field having all

square roots, and dim(X) # 4 , then every automorphism of
XZ’ preserving the set of wedge-vroducts is the skew-square
of an element of [L(X) .

2= such that every

Proof We examine the subspaces of X
element is a wedge-product of elements of X . Such a subspace
corresponds to a collection of 2-spaces in X such that if
X
and every subspace Y with X N X £ T < <X0, X1> is

and X, are in the collection then dim(Xo r)X1) =1,

also a member of the collection.

The possible structures of such collections of subspaces,
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for given dimension of subspace of 12- » are by induction as
follows :
dimension 1 : a single 2-space Xo

dimension 2 H:XO<Y<Q}mrah@meXoam

(1)

& 3-space X1
dimension 3 : There are now two possibilities
(1) {Y : Y< Xy and dim Y = 2} for
a 3-space XO
(11) {1 : Xg< Y <X and dim Y = 2} for
a 1-space Xo and a 4-space X,
dimension 4 : (i) above cannot be extended to a 4-space
and so the only possibility is
{Y : dim Y = 2 and I, <Y< X,} for a 1-space
Xo end a 5-space X,
dimension n > 4 : The only possibility here is
{Y :dimY=2and X;<Y< X,} for a 1-space

X, and an (n+1)-space X,

Let /7] (X) be the collection of subspaces of X2 of
maximal dimension such that every element is a wedge-product
of elements of X , so that we have shown that if dim X = 5
then every element of ‘%q (X) has dimension dim X - 1 and
is of the form XO A X for a uniquely determined 1- space XO .

Assume now that dim X > 5 .

Three 1-spaces XO' X, and X lie in a 2-space iff

dim((Xg , X) N (X, 4 X) N (X, 4 X)) =1

Thus am automorphism /0 of X2' preserving the collection
of wedge-products determines a permutation of the 1-spaces
preserving whether three such lie in a 2-space . Hence there
is an element of PrL(X) determining the same permutation.

Choose a preimage € for this in L(X) and look at f;'ez- .
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This fixes each element of 70?(X) , and hence fixes each
intersection of a pair of elements of 77](X) . But these are
precisely the 1-spaces of wedge-products.

This is enough to show that /0452' is a scalar

transformation A I . Then /0 = (4 2)2' .
Thus the result is proven for dim X 2 5 . The result

is clear for dim X £ 3 , and is false for dim X = 4 .

(take the skew-square of a duality for example) P

Thus we have a well-defined action of I / OZ(L) on
W , and can hence write elements of I / 02(L) as 5 X5

matrices acting on W as the space of row vectors. The

groups (M N L)/ 0,(L) , (Hn L)/ 0,(L) anda (P AL)/ 0,(L)

are as follows :

a L ¢ ol <
[ %
b
MaL) o)y M * g
4
e * )
‘ A, * b e da
(EN1)/ oy() (EL O
41 X K
[4
At b oo de
(pn1) OZ(L) f * 8 Fiure 9
: * *

We now attack the problem of a complement for 0, (L)
in 1L . We notice that OZ(L) has a natural conjugacy class of

complements in L N M , a representative of which is CK(AO)&”’22}

where {=,22} is a duad in V . Can we extend this to a

complement for OZ(L) in L ?
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Lemma 5.2
L5(2) has the following presentation by generators

and relations :

<ai, by, 114 | (aiaj)n=1} n=¢2i1if |i-j] = 0
(1;119._,)‘rl =1 4 if |i-j] =1
2 if |i-j]| » 2

(aibj)n=1 n={3if i=3j

2 it i # 3

3 _ 3 _ 3
(23by8;,9)7 = (byabya;4)7 = (b; 4858, )

=1 foreach 1< ig3 ;>

Proof These relations are satisfied by

10000 10000 10000 10000

11000 01000 01000 01000

ay = 00100 a, = 01100 a3 = 00100 a4 = 00100
00010 00010 00110 00010

00001 00001 00001 00011

11000 10000 10000 10000

01000 01100 01000 01000

b, = ]00100 b2 = 00100 b3 = 00110 b4 = 00100
00010 00010 00010 0C011

00001 00001 00001 0001

and successive coset enumerations of the 2r+1_1 cosets of

<ai, b, 1<i<r1,a in {a, b, 1<icr>
and the 21""1 cogsets of <ai, bi’ 1¢1 gr> in
<:ai, b, 1gigr, ar+1;> show that these relations are

sufficient. ,
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Theorem 5.3
The following elements of M and H generate a

complement L, for Oz(L)' in L :

10000 11000
11000 — 01000
00100) = e MNH 00100} = EM/)H
00010 X 00010
00001 00001
0000 10000
01000 , 01100 X
01100| = MM € MNH 00100 | =, c M
00010 ! 00010 !
00001 00001
10000
iz 01000 A=
= S~ € MNH 00110 = cTl € MNHE
3 s 00010 i Sy
00001
10000 10000
01000 - 01000 T
00100 = € Mn H Q0100 = | =4— =0 ¢ H
00010 3 00011 s0
00011 00001
Proof

Taking these as the a

i

and b,
i

of the lemma, we see

that each of the given relations is either satisfied in

M or H , or is the relation :

[a, .’,(]=1

This relation holds in the pentad group, as is easily checked.
7
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Remark
The proof of the theorem shows that in the group M B H
) ‘ ([x5,%41}

described on p.48 the subgroup <M NL,HN L) is
isomorphic to the group L described in this chapter; i.e.
all relations in I follow from the dictionary of p. 3i
and the fact that X5 commutes with Xq .

Having the complement L1 , we now have a notation for
elements of L as
(element of 0,(L)).(element of IL,)
i. e. as

(sum of wedge-products).(5 X 5 matrix)

The reader is now referred to Appendix D where many
useful elements of J4 are written in the notations for

those of M, H, P and I in which they 1lie.
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CODA Larghetto

The Smith-Ronan Diagram for J4

In [11]) , Smith and Ronan investigate diagrams for
groups 'of GF(2) type' . These are supposed to be an
extension of the Dynkin Diagram notation for Chevalley
Groups over GF(2) . The nodes of the diagram represent
an 'incident' set of maximal 2-local subgroups in such a
way that suppressing a particular node and éll the edges
leading from it leaves the diagram fér the quotient of
that maximal 2-local by its O2 . For example, the following
is their diagram for Mé4 :

e - ~—

24L4(2) 26(33 X Ly(2)) 2633p4(2)
OCTAD TRIO - 26386 Figure 10 -
SEXTET

In their notation, a missing node is one which cannot
be suppressed, and which magically reappears when certain
of the other nodes have been suppressed. Thus it might be

better to re-draw the above diagram as

OCTAD TRIO

Figure 11
SEXTET

with the rule that a trapped node cannot be suppressed.

Then the diagram for 386 would be

‘:::::::::7 Figure 12



In this notation the diagram for Mé2.2 is

HEXAD
4
2 S6
3 5 Figure 13
OCTAD =2 85
tSEXTET!
that for 3M22.2 is
2433,
Z//ﬂ Figure 14
3 4
2 (L3(2) X 83) 2 (85 X S3)
and finally the diagram for J4 is
11
2 My,
10 / 3412
2 L5(2) 2 (SS b L3(2))
. Pigure 15
2?*’2.3M22.2

The notions of incidence involved in these diagrams
were used as a guide to the choice of notations for H ,
M, P and L ; in H we choose an incident hexad, sextet
and octad to define HN M, HN P and HN L , and in
M we choose an incident sextet, trio and octad +to define

MNE, MNP and MN L . Then the notations for P
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and L follow naturally.

In the Chevalley groups, not only can we choose an
incident set of maximal 2-locals, but we can also choose
an 'incident' set of Levi Complements in these maximal
2-locals. Corresponding to this, our 'complements'
F<H,EK<M,A and T <P and I, <L seem to be
incident in a similar way.

(Other exzmples of trapped nodes are :

>

g ( 3). 2* 312*‘1-( 3. z
Fipe-2 3fiac?

and perhaps a little more far-fetched are :

<> @
Uy (2)-2 <0 352.2 )
1.
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Chapter 6 The construction of J4 via the
112-dimensional 2-modular representation A\

In this chapter, I shall describe the construction by
Norton, Parker and Thackray of a pair of 112 X 112 matrices
over GF(2) generating 9 (see [6]), some of the methods
developed by Parker and Thackray (see [7]) for dealing with
2-modular representations on a computer, and the proof by
Norton,'Parker, Conway, Thackray and myself that the group
generated by these matrices is indeed isomorphic to J4 .

In the next chapter I shall develop more of the internal
structure of the module.

When the ordinary character table of J4 had been
produced in Cambridge'in 1975, it was seen that the smallest
ordinary character degree was 1333, and that even that was
irrational, so that it would be quite difficult to construct
the group via this ordinary representation. Hence Thomnson
decided to examine the possibilities for a modular
representation of small degree. By restricting to various
subgroups, he showed that for p # 2 , thefe could te no
non-trivial p-modular revresentation of degree less than
1333, and that for p =2 , the smallest possibility was
a {self-dual) 112-dimensional representation over GF(2) .
Thus he made :

Conjecture 1

J, has.-a representation of degree 112 over GF(2) .

4
The problem was then to try to construct a pair of

112 X 112 matrices over GF(2) generating this representation

of J4 « To do this, it was necessary to find a moderately

large subgroup of odd characteristic. Looking again at the

ordinary character table of Iy it was seen that IU3(11)]
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divides |J4| , and that a set of apparently consistent
character restrictions from J4 to U3(11) could be written
down . Thus we have s

Conjecture 2

J, has a subgroup U isomerphic t, LLE(H7.

Shffcyz'fg axists and sukigfgeg coﬁigctures { and 2 .
Under the action of U , the 112-dimensional module /\ would
have to be uniserial 1+119+1 , with a unique invariant
1~dimensional submodule ZS? and a unique invariant 111-dimensional

submodule 43?11 : 15?11 / ZSEI lifts to characteristic O .

(Notation : when 4\ has a unique invariant submodule of
dimension n under the action of a group X , we denote this

submodule by Z}i )

An element of order 11 in the centre of a Sylow
11-subgroun acts fixed point freely on Z3?11 / Aﬁ.? , and
hence has a unique fixed point on AN/ 45;? . Thus this module
is a quotient of the permutation module on the cosets of a
Sylow 11-normalizer (i.e. on isotropic vectors). It turnms
out that the kernel is generated by fixed points on even
elements of the module. Thus 2 / zC;? can easily be built
as matrices. Moreover, 43?51 is dual to this module. Since

A?H / A? is self-dual, it is then possible to choose
bases so that the matrices for these two modules agree in
110 rows and columns. Gluing them together leaves only one

bit of the resulting matrices unresolved :
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4 o K
(0 * "

Figure 16
/] [t} 4

Since the group of all matrices obtained by filling in
this bit in both possible ways is a group of shape U3(11) X 2,

choosing an odd order generating set resolves the ambiguity.

Now we need an extra element to complete this to a

representation of J4 . This was done by enlarging the

/N

Sylow ti-normalizer :

142

U3(11) //11 (5 X 234)
111+2(5 X 8) Figure 17

Under the action of the J, Sylow 11-normalizer, A\

4
- @ecomposes as a direct sum of a 110-dimensional module and
a 2-dimensional module (with S3 action on the latter).

Restricting to the subgroup of shape 111+2.

5 , the 110-space
becomes a 55-space over GF(4) . Thus we canm find a matrix of
order 3 normalizing this subgroup in the required way, by the
methods described in the next section, and then all such
matrices can be obtained from this one by multiplication
by a GF(4)-scalar matrix.

Thus very few possibilities were found for a set of
generating matrices for J4 . All but one of these possibilities

wvas rejected immediately by taking random products of the
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generating matrices and findiﬁg an element whose order is

riot the order of an element of J4 .

Thus we were left with a particular set of generating
metrices for-a group which we believed to be isomorphic to
J4 . The problem was then to prove that this was indeed the
case. Before I give this proof, I shall discuss the computer
techniques used to verify certain facts about the module

needed in the proof.
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Computer Techniques for Modular Representations of

Pinite Groups

'This section is a brief description of a body of techniques
developed by Richard Parker and Jon Thackray for dealing with
modular revresentations of finite groups on a computer (see [7]
for further details). These work in prinéiple for any finite
field, but have so far been implemented only over GF(2),
where the techniques are most efficient.

A group representation is stored as a set of non-singular
matrices generating the group. Since we mosfly deal with
groups which can be generated by two matrices, the programmes
have been written to store a group representation as a pair of
matrices. All vectors considered are row vectors acted on the
right by matrices.

v The basic operations defined on matrices and vectors are

the following :

(1) Rank
(11) Addition
(i1i) Multiplication
(iv) Inversion
(v) Transposition
(vi) Tensor Product
(vii) Exterior Powers Etc.
(viii) Null Space
(ix) 'Invariant Subspace'
(x) 'Standard Base'
(xi) Top Left
(xii) Split

and a few more technical operations.
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Only the last five of these need explanation.

Null space :
This takes as input a singular matrix say of nullity

n , and gives as output a non-singular matrix the first n
rows of which give a basis for the null space, and the rest

of which complete this to a basis for the whole space.

Invariant Subsvace :

This takes as input a pair of matrices and a vector.
It then finds the submodule generated by the vector under
the action of the matrices, and gives as output the dimension
n of this space, and a2 matrix the first n rows of which
give a basis for the subspace and the rest of which complete

this to a basis for the whole space.

Standard Base :

This takes as input a pair of matrices and a vector not
in any proper invariant subspace. The output is a matrix
.whose rows form a basis obtained in a standard way from the
input. (i.e. conjugating the input by a matrix will have the

effect of cbnjugating the output by the same matrix.)

Top Left :

This takes as input a matrix and an integer n , and

gives as output the top-left n xn portion of the matrix.

Split :

This takes as input two matrices and a vector. It finds
the submodule generated by the vector under the action of the
matrices, and outputs the two group elements in the two new

representations : submodule and quotient module.



67

With the above tools, the complete lattice of submodules

for a representation may be found as follows :

(1) The nullity trick :

The basic observation here is that a 'random' element
of the group algebra as a matrix in a given representation
over a finite field is quite likely to have small non-zero
nullity. This is at its best over GF(2) and gets worse for
bigger fields. (For example for an absolutely irreducible
representation over GF(2) the probability of-a random matrix
having nullity 1 is about 0.56 , over GF(3) about 0.42 ,
and over GF(5) about 0.24 . For a reducible representation
the probabilities are not much different, unless the representation
is really a representation over a larger field of the same
characteristic, written over the small field. Then the nullities
are all divisible by the degree of the field extension.)

Now suppose we are given a reducible representation and
we wish to find an invariant submodule. The first step is to
take random elements of the group algebra in the representation
until one is found of small non-zero nullity. The next step
is to take the non-zero null vectors of this element one
by one and find the invariant subspace generated by each
under the action of the group. Since it is quite likely that
the element has nﬁllity in a proper submodule if there is one,
this means that a proper invariant subspace will be found
after a few tries like this. We may then extract the submodule

and quotient module as new matrix represemtations of the group.
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(11) The irreducibility test :

Eaving applied the nullity trick to a representation and
not found an invariant suﬁspace, we may wish to try to prove
that the representation is irreducible. To do this, again we
take random elements of the group algebra in the representation
until we find one of small non-zero nullify (preferably nullity
1 ), and then we take all its non-zero null vectors and find
the submodule generated by each under the action of the group.
If in each case the whole space is found to be the answer, we
repeat the procedure with the transpose of the matrix and the
transpose inverse of the generators of the group. If the whole
space 1s again found to be the answer in each case, we know

that the representation is irreducible.

‘(111) 1Isomorphism types; fingerprints :

Having obtained the composition factors of the module,
we wish to know which are isomorphic. The first and obvious
remark is that modules of different dimensions are non-
isomorphic. Secondly, 2 quick and easy test for non-iscomorphism
is to find an element of the group algebra with different
‘nullities in the two representations. Thus we try to find a
short list of test-elements of the group algebra, so that the
'fingerprint' of a module - i.e. the set of nullities of
the test-elements - is enough to ascertain the isomorphism
type.

’ The method for proving that two modules are isomorphic
is as follows :

First, we find an element of the group algebra of small
non-zero nullity (again preferably nullity 1 ) in the
representations (the nullities had better be the same ! ) .

Then we take a particular null vector in the first representation
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and find the standard base (see above) with respect to this
vector. Doing the same for each ngll vector in the other
representation, we find either that :

(a) there is 2 null vector such that expressing the
matrices for each representation with respect to the standard
bases for these null vectors, the two representations have
identical matrices, in which case the representations are
isomorphic, or

(b) no such null vector has this property, in which case

the representations are non-isomorphic.

(iv) Non-existence of composition factors :
In order to show tkat an irreducible module A is not
a composition factor of a module B , it is sufficient to find
an element of the group algebra having greater nullity on A
than on B .

(v) The ILattice of Submodules :

We now know the isomorphism types of all the composition
factors, and wish to know the lattice of submodules. For this
it is enough to be able to tell what are the bottom constituents
of a module (i.e. the socle) and then to 'peel off' bottom
constituents one at a time. To find all submodules of our
representation B isomorphic to a particular irreducible
module A , we find an element of the group algebra having
non-zero nullity on A and small nullity on B . We then
take each of the null vectors of this element on the representation
B , and for each one ﬁe find the invariant submodule generated
by it under the action of the‘group. The number of times the
submodule generated is isomorphic to A tells us the number

of copies of A there are in the socle of B , if we know
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the correct field of definition of A (i.e. if we know the

centralizer ring of A ) .

There are also many short-cuts for decreasing the amount
of work needed, and so far these have made the methods

usable for representations of dimensions up to about 10000 .

The Group Game; the Centralizer of an Involution

In its strictest sense, the group game is. the following
There are two players, A and B . A thinks of a group
and gives B a list of symbols for generators. B may then
agsk A for the symbol for any word in A's generators. The
only restriction on A is that if he names the same element
twice he must use the same_symbol. B's taék is to find out
wvhat group A is thinking of.

.
.
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Exemple :

A gives B the list 8y 4 85 o

B's question A's ansver
8.1 8.1 8.3
8383 83
3232 a3
81 8.2 8.4
Bp248424%42 84

At this point B deduces that A 1is thinking of the

dihedral group of order 10 .

Our problem with J4 was very similar, with the computer
as player A and us as player B , except that we could obtzin
information inadmissible to the'group game player. For example,
if 1+x has different rank from 1+y , then x is not
conjugate to y . (For each conjugacy class of element x in
J4 , the rank of 1+x in the representation /\ 1is given in

Appendix C uffer the existence hos been proven )

?
Our tasks were to show :

(1) The centralizer of some involution 2z in the group
generated by our matrices has the form given in Hypothesis A
onp. 3 .

(11) The group generated by our matrices is simple.

Then by the characterization given in Janko [2] the

group generated would be proven to be J4 .
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Inside the group game, there is a quick and easy method
for finding a subgroup of the centralizer of an involution
x , which is probably the whole of 02'(C(x)) , as follows :

Pirst, randomly multiply elements together until an
element of even order is obtained, and then take a suitable
povwer of it in order to obtain an involution x . Repeat
the process to obtain another involution y , preferably
not conjugate to x . Then <(x , y» 1is a dihedral group,
and if xy has even order 2n (which it does if x~+~y )
then (xy)n is an involution commuting with x . Repeating
this process with conjugates of y or with other random
involutions, soon the whole of 02 (C(x)) will be
obtained. However, there is never a guarantee that it has

all been found.

In our group of matrices, we found an involution =z
with Rank(1+z) = 50 , and found by the above method a
group H centralizing it. It was thus suspected that H
was of the form given in Hypothesis A on p. 3 . The
~action of H on a suitable composition factor of A
under this action was used to identify H / 02’3(H)qowith
Aut(Méz). A supplement F of shape 6M,,.2 to OZ(H)
in H waw then found by the following method, which is
again a group game technique :

Take an element w ¢ 02’3(H) of order 3 (i.e. an
element of order 3 acting trivially on the above
composition factor) and define F = Nﬁ(w) . Given an

involution t in H\H' , either w® = w~' , in which

case te¢ F, or wo = xw! with x ¢ 02(H) . In the

P 2. a j/uot(?_n{ df H JL«(«(—\ mll laler Tum out
G be H/0p5 (K. The same comment m/vf(@, € Fhe ot
_ %‘ﬁﬁ;,ﬂfa3 the Aﬁxf f&fﬁgruyk,



3

latter case (t, w, z) 7 (z) 8, with t acting
as (01)(2)(3) and w as (0)(123) . Thus twtwot is
an element of F equivalent to t modulo 02,3(H) .

P 1is generated by elements of this form.

Next, Todd's presentation of M,, given in [10]
wag used to prove by generators and relators that H
really is as in Hypothesis A . Thus the notation developed
in Chépter 2 can be used to describe elements of H .

As the next step, two involutions of total type (see
pP. 23 ) lying in the subgroup E, of O0,(H) (see p.27 )
were teken, and again by the above method, subgroups of
their centralizers were found. By means of looking at the
action of the group‘ M generated by these on an invariant
submodule of & of dimension 12 under this action, this

"

group M was identified with the group of shape 2 M

24
described in (ii) on p. 3 , and again Todd's presentation

of Mé4

M really is isomorphic to the group described there,

was used to prove by generators and relators that

Notation for M was chosen in such a way that the dictionary
of p.3! held, and this dictionary was explicitely verified
on the computer. Thus the rest of the analysis of Chapter 3
holds.in the group of matrices G = '<M 0 H> .

Next, the relation [xs,x7] =1 ( see p. 42 ) was
verified, so that our group G is a quotient of the group
M 5 H
<[15,x7]>

p. 57 there are subgroups P and L of the shapes described

defined on p. ¢¢ . Thus by the remarks on p. 48 and

in chapters 4 and 5 , intersecting M and H in the

ways described there.
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In fact we also checked on the computer directly by
gengrators and relatcrs using the presentation given in
[12] that the elements éiven on p.S6 do indeed generate
‘a subgroup isomorphic to L5(2) , Since this fact is used
in our proof that G is isomorphic to J4 .
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The Actions of H , M, P and L on A : Sacred Vectors

The methods of p. 65 - 70 were used to show that under
the action of each of H, M , P and L , A reduces almost

uniserially, as illustrated in the following diagrams :

E M P L
70 1 4,9 1 185
30 1 (8¢7) 4, ® 3, 10

10 512 3E(rsey) 1@ X) @ (4, ®3,) 30
10 44 (r35™) 4,® 8 40

30 nrg) (@1 e (4,@3,) 10

10 1 4,8 3 15
4@ 1
Table 14

These diagrams indicate all submodules, and the numbers
are dimensions of composition factors. Bars indicate duality,

80 that 10 denotes a module dual to 10 . For example, this
means that under the action of H , there are invariant submodules
of dimensions 10, 40, 50, 52 , 60, 62 , 72 and 102
(exactly one of each). See p.é42 for the notation for these
submodules.

Por P , any irreducible module is the tensor product
of one for S; and one for L3(25 . For 8§ , the module

41 is the deleted permutation module on 5 points, and 42
is the doubly deleted permutation module on 6 points. For
L3(2) v 5 (lines).is a module isomorphic to the module
2(0,(P)) , and 3p (points) is the dual of this module (see p.4§5),
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X 1is a self-dual uniserial module for L3(2) with diagram :

Under the action of M , we see that there is a unique
non-—zero‘ fixed vector A We shall call the images of v,
under the group G the ‘'sacred vectors' . .

Under the action of K, Arf2 = 6 , 30 that we may
identify vectors in this with octads, dodecads, etc.

Two Generators for G = <M, B

emma G = <g1 » 83)° , where

—
-1
g1=g/‘geld,and 8y = X5 X .
|

Proof Certainly <M , H>2 <g1 ’ g2> , SO we must
prove that < M, H> c <g1 , g2> . We prove this in five
stages ¢

(1) K= (g’ 8 ¢

512 € K, and since [xs,x7] =1, gzs = x75 € K . Ve
examine the get of maximal subgroups of M2 4 which are
transitive and have order divi.sible by 7 . There are the
trio group of shape 26(33 X L3(2)) and the octern group
of shape L3(2) » We see firstly that x, is in only ome
trio group , namely that for the brick trio , and that g12 .
18 not in this. Secondly, in the octern group the set of fixed
points of an element of order 7 1is a set of imprimitivity

whereas this does not hold for the fixed points of Xq -
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2 5
in (& &) -
— 7 [
(11) P = <8'1 r & > :
g € F' , and since [xs,x.?] =1, g27 = x53e L
<g1 . 527> is transitive on the 22 points , whereas all
proper subgroups of M22 are intransitive.
- 5\ .
(111) M= gy » &)
g13 =2 € V , which is an irreducible module for K .
(iv) E < <g1 , g2> since ELM .,
(v) Hg <8 » &) since M contains elements in the
outer half of F . 7

These generators &, and g, are shown in aprendix B .
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Splitting the skew-gsquare of JAY 3 the neighbourhood of a vector

The most important step in the proof that G is
isomorphic to J 4 was the finding of an invariant submodule
of the skew~-square Az- of /A under the action of the two
generators 8, and 8> o This took the computer about 100 min.
of central processing unit time, and produced an invariant

submodule Ai;% of dimension 4995 ( Az- has dimension

M

6216 ) generated by a vector in A? AA 12 ¢

Definition Given a subspace X of A, we define the
NEIGHBOURHOOD of X by

A ={vedr: Yvex, w,\veAiggs }

and the neighbourhood of a vector is the neighbourhood of

the 1-dimensional space spanned by it.

The neighbourhood of a subspace X is clearly invariant

under SfabG(X) .

The following facts needed in the proof that G is

isomorphic to J 4 were verified by computer :
WMAY) = AL

(11i) The non-zero vector in Af’ is an octad vector in

A’fz (for the left - hand octad )
(MO ANAY) = A

(iv) If v 1is a dodecad vector in Al;xz then A ( v )
has dimension 2 .»

M) A< AL
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(vi) If w, , w, and w5 are three octad vectors in
M A
A §, for disjoint octads then V4 W )0 A w, YO Ny )
has dimension 2 , and consists of Vs another sacred vector
in AI;I6\ A 242 called the TRIO vector f,( Wy, Wy o, W3 )
(see p. 93 ) and a non-sacred vector.
(vii) An orthogonal form on /A was found which is

invariant under the action of g, and g5 -

The structure of these facts will become clearer in the

next chapter.

As an example of how these facts were proven, we showed
(111) to be true by showing that I/ ( ka') contains sone
element of [lg \ A % and does not contain some element
of A%G\Ag . Then since A/ A% ) is L-invariant ,

it must be AIg .
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The proof that G is isomorphic to J "

Stage 1 CG( v, y=M :

First, CG( v, ) fixes Alfz setwise by (1). If v
and v' are respectively an octad vector and a dodecad
vector in A]fz , facts (ii) , (4ii) and (iv) above
show that

dim M( v ) #dim A ( v* )

Thus octad vectors in Aﬂdz are really different from
dodecad vectors under the action of CG( v, ) , and hence
oy OO AI;IZ / A];I 2 ¥4 . Hence the action
on A?z is at most 2111&24 , and so it is sufficient to

this acts as M

show that Cg( JAN ¥2 ) 1is trivial.

First we observe that FixA(CG( A 1:12 )) is a subspace

of A invariant under M . Now Cq ( A 1:12 ) stabilizes

¢ W, ) N A L2 Yn N ( Vs ) where w, , w, and Ws

are three octad vectors in AI;IZ for disjoint octads, and

hence by (vi) above, it stabilizes the trio vector

2,00 5w, , w5) so that Col AT, )< GU AT )L (A T)
by (v) .

It yeCy( Ajg) then y stabilizes v_ and so
J x € M suck that the action of x on Aﬁ"z is the same
as that of y . But then yx_1 € CG( A?Z )< CG( A{"B )
80 that x € CM( A%G ) = {1} . Hence y ¢ CG(AI:IZ) .

. Thus we have Cg Alfz ) = Cg( A{'s ) , so that
Fix,(Co( A M )) is invariant under both M and I . But
looking on p. 75 we see that this implies that it is the
whole of A . Thus CG( Ar;lz Y = {1} as requifed.

-



81

Stage 2 Since Pix (OZ(M)) is invariant under M , it
must be [\? . Thus the orbits of 0,(M) on sacred vectors
are all of even length except { A } and so there are oddly
many sacred vectors. Hence a Sylow 2-subgroup of M is a

Sylow 2-subgroup of G .

Stage 3 CG(z) =H :
(recall that (z> = Z(H) )

(1 + z)2 =0, so Ker(1 + 2) / Im(1 + z) is invariant
under CG(z) . Since Rank(1 + z) = 50,

dim(Ker(l + z) / Im(1 + 2)) = 12
' (cef. p. 75 )
and the action of H on this is as 3M22.2 . But

Por every X with 3M22.2~< X< Sp12(2) ,
the order of a Sylow 2-subgroup of X is (*)
greater than the order of a Sylow 2-subgroup

of 3M22°2 ('See Fooer\ofe (f‘) on AJL)(f /)':tj‘é

8o that the action of CG(z) on it is just 3M,,.2 .

Now consider a minimal normal subgroup of the kernel
of this action , mod 2> . If it is a direcf product of
isomorphic non-abelian simple groups, then the Sylow
2-subgroup is elementary abelian of order 212 and the
automorphism group contains 3M22°2 o which is clearly
absurd. If it is an elemenﬁary abelian group of odd order
then A decomposes as a direct sum of at least two eigenspaces
under the action of this group, each of which is invariant
under the action of H , again absurd. Thus 02(H / {z> )
is the unique minimal normal subgroup.

Thus any odd order chief factor of Cg(z) / <> acts

)
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on 02(H / {z)» ) non-trivially, so that by (*) we have

H = CG(z) as required.

Stage 4 @ 1is simple :

Suppose N is a minimal normal subgroup of G . Since
there are no normal subgroups of M and H intersecting
MN E in the same way, either N > (M, H> =G, or
NnM=Nn H= {1} . But then N has odd order, and is
hence elementary abelian, and again /A decomposes as a direct
sum of at least two eigenspaces of N , a contradiction, -cnce
OL(M) Zas o 1-dimensional f).’xea( spece.

Thus by the characterization of Janko [2], G is
isomorphic to J 4 °

v
el ) The mpraantalion of Co(2) on Kay(142)/TmCie2)
$osymplectic for e {follounng eason:

i frjcf i) Z;Uesf\lx c.go,-\or/J‘igm A x A* ,
ond barce ‘K,QJ'A((+%\/IAA((+’+,) K&FA“('(*%)/IMA*(("E)

we

ne

(‘Kua(wz) /IMa(H-%))f
are are many ays of poomg the fact (x).

FJ( ,q%M/a(Q , Cne CO’JJ ZOOA c\.{ Hu (.L_S(' o{

(_irours W th S;jfou 'Z’suLjrC¢»s 4{ Size 28 P

contarmng IM,, 2 wnd Bawrag o 122 Dosnsione e

2~mon]u,(o~f Nf‘%»@‘-f‘-—am
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Chapter 7

The Geometry of A ; a Pregentation for J4

by Generators and Relators

Since the stabilizer of v, is exactly M , the sacred
vectors are in one-one correspondence with the right cosets
of M in G (throughout this chapter the word coset will
automatically mean right coset) so that there are exactly
173 067 389 of them. In this chapter I shall investigate
further properties of the module A from the point of view
of the geometry of the set of sacred vectors at the same
time as ﬁéking an abstract coset enumeration for the cosets
of M in a group G defined below on p. 89 by generators
and relators , with the aim of proving that 6 £6 . Thus
many of the arguments in this chapter have two simultaneous
contexts. This is merely a device for saving having to write
down the same arguments twice, and I hope this does not

cause too much confusion.

Por the purpose of the detailed analysis of stabilizers
needed in this chapter I need a technical definition :

Definition
For X1 R X2 < X finite groups , define

]

Mm@, , )

{ N < X1|N<N'€ X, =
FNNX, < N'NX,}

Lemma o1

(1) ME, , %)

{rvex,} & X <X

(11) ME ,L)={%} & 4 Nnx, = {1}



(111) X, < X3 =3 M(X, L)c ME, , %)
' (iv) LTy = MK, L) ={ N0 | Ne ME, %)}
(v) If ;<X , X,) then
¥/ X e Xy /X5, %/ %5) 3 Ne(Zx , %)

(vi) If G acts onaset S, and xe¢ S, suppose
Y & Staby (x) and
1
{r, Stabx1nx2(x)> e M, , X,) .
Then

T, Stabx1n XZ(x)> = Stabxt(x) ]

Part (vi) of this lemm2 will be used repeatedly.
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One-functions and Nought-functions

~

Under the action of M / dZ(M) , A 11«2 / A If i 4
(see p. 13 ). Let Y : Y€ X §4* —~ GF(2) bve the bilinear
map establishing duality between £ and gg*; i.e.
V¥ (x,y) = [£n §| (mod 2) where X and § are subsets
of {1 representing x and y . Then O0,(M) acts on A 1112
by
x:y»y+)&(x,y).v¢° .

Fowlet £ : Z -~ A 11!2 .be a linear function such that

z M
6*-)&12

projection projection
{) ' —i) M M
¢ NV

commutes.

12

There are 2 such functions, since the difference

between two is a linear function from 7F to A I;[ ,

i.e. an element of £* . For 2!

of these, £(fL) =v_,

and these are called the one-functions. For the remaining

21 , £(LL) = 0, and these are called the nought-functions.
g€ M with image g e M24. acts on the set of such

£'s via

£
M

-1

£ . g

18
& —— Al
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and the stabilizer of a particular such function f is
a complement to OZ(M) in M . The two types of complement
given in this way (c.f. p. {4 ) are called one-type
complements and nought-type complements. It turns out that
a hexad-type complement (see p. 28 ) is the same as a one-type
complement and a point-type is the same as a nought-type.
Thus our complement K corresponds to a particular
one-~-function f1 . The other £f's are then of the form
f1x where x¢ (1 and |x| 1s odd for a nought-function

~and even for a one-function.



87

The last relator ; the group a

Let X53 be the eiement of order 23 in X acting
as the permutation x+~ x+1 on M's MOG , and let b
be the element of order 11 in K acting as x +~ 2x and
hence normalizing Let £ Dbe the' element of G of
order 2 normalizing Xo3 and centralizing x,, (the

Sylow 23-normalizer in J, is Frobenius of shape 23.22 ).

4
Then Janko [2] has shown that

J

(M nuf)<e) = BeL,(23)

n

with JINM L2(23) . (f is the element x » -x )

Thus v © is a sacred vector with Staby(v‘t) =JINM.

(- -] (] o0

80 JIN M has a two-dimensional fixed space, and vmf lies
' M b id
outside Ay, . The image of v~ in A/ L\‘I:IOO is an
odd  *-set stabilized by JINM , i.e. {w}, and hence JIN M
lies in the nought-type complement corresponding to this

{*-Set.

The element f was constructed by computer, and in

particular it was shown that

f = m1h1m2h2m3h3m4

where



m = ;.‘“].(oo6221217321411 10 8 9 19)
4 o) (014 16 17 20 13 2)(5 18)(15)
hy =a = FAN|_| ¢ F
;__/”’
m2=(eo1514821711 21 4 22)(1 7T)
€
(018 6 10 20 12 13 3 16 5)(9 19)
h2=x53g1’
m; = [~ ;y;/ € K
A
h3=[(;°)(19113211018514177) looy ¢ F

(0)(2 15 22 16 13 12 6 20 4 8 19)

m, = x;;_*( {011 21 210151722 75 8 16)
1 (31418 20 9 13 16)(4 19) (12)

and f is an involution in class 2B .
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Letting f ©be this element of the group M B H
defined on p. 48 , we see that G 1is a quotient of the

group

8 = MpH
<[x5,x7],f-1x23fx23>

In the rest of this chapter I shall show that this is

in fact a presentation for J4 ; 1.e. that

Theorem 7.2

The surjection 6 -+ @G 1is an isomorphism.

If required, Todd's presentation [10] for the Mathieu
Groups may be used to make this into an explicit presentation
by generators and relators, but I see no point in writing
down the details.

I shall use the same symbols for cosets of M in 8
a3 for sacred vectors, so that for example v, 1is the
identity coset of M . Fach coset/sacred vector wi;l have
two names, one as an element of an M-orbit and one as an
element of an H-~orbit. My arguments will be phrased in
terms of cosets, but will apply both to cosets and sacred
vectors. The relationship between the set of sacred vectors
and the linear structure of A is discussed in square
brackets after the relevant cosets have been investigated
abastractly. Thus these parts may be omitted without
hindering the analysis of 6 and the proof of theorem 7.2 .
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By the remarks on p.48 and p.$7 , ¢ nas subgroups
P and L of the shapes given in chapters 4 and 5
intersecting M and H in the way described there.

It is clear from the analysis on p. 35 -40 that M
and H contain the fusion of involutions in M and H
so that in 6', there are at least two classes 2A and 2B
of involutions such that every involution 6f M and of H
is in one of these classes in the way shown in Tables 9
and 10.

We may use the language of nought-functions and
one-functions for the subgroup M of @ , 8ince M still
has a faithful representation of dimension 12 isomorphic to

the module A];Iz for M as a subgroup of G .

The idea of the argument for proving that 8 26 is
as follows :

A

The map 6 ~ G induces a2 map from the set 4/ of cosets
of M in & to the set -J of sscred vectors. It is
sufficient to prove that this map is injective.

A character-theoretic calculation shows that under
the actions of H and M , the set ./ falls into
respectively 9 and 7 orbits. The intersection of an
M-orbit with an H-orbit decomposes as a ﬁnion of orbits
of D=MNH, of which there are' 36 altogether.

.Appendix E , due to S.Norton [6] , shows how these

intersections of orbits decompose, in each case as a union

of at most two D-orbits.
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What I shall do is to find a set of 7 particular
elements of 2? representing the 7 M-orbits on 4/ , and
show that their 6—stabilizer is at least as big as
the  G-stabilizer of their image in .4 , and likewise
for the 9 H-orbits. This will be by a process of going
backwards and forewards between M- and H-orbits. For
example, we may take an element of an M-orbit, and find
its H-stabilizer by the process of taking the M N H-
stabilizer and using one of the extra relatibns irf
necessary to complete this to the whole H-stabilizer.

If the resulting group is in 7 (H , M) then we may
conclude by Lemma 7.1 (vi) that the whole of the H-
stabilizer of this coset has been found, and that it is
the same in 6 as it is in G . The method will become
clearer when you see it in practice. This produces for us
two sets of 173 067 389 cosets of M in 6 , the first
closed under multiplication by elements of M and the
second closed under multiplication by elements of H .
TThus all that remains is to identify the two sets with
each other, so that |& : M| = 173 067 389 . This will
complete the proof that Gza . ‘

To make the identifications, we proceed as follows.
Each of the two collections of cosets falls into 36
orbits under D . If we can shoﬁ that one element of a
D-orbit in the one set is the same as one element of a
D-orbit in the other set, the whole orbits are automatically
identified. Thus we must check 36 identifications. Some
of these will follow from the definition of the coset, and
the rest will follow from the relation [x5,x7] =1, as

will be seen (c.f. p.l/0o¢ where the first example of an
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'15-x7 square' occurs). Thus the tables in Appendices
E and F will be verified.
To convert this into an abstract proof of the
existence of J4 , the following extra verifications
are necessary
(1) The subgroup D of M really is isomorphic to
the subgroup D of H . This is not clear from the analysis
of Chépter 3 , but shouldn't be too difficult to prove.
(11) The D-stabilizers of a representatiée of each
of the 36 D-orbits are the same in the two sets of cosets.
Por some of these this follows from definition, but for
the rest an explicit check is necessary.
Then J4 wili have been constructed as a group of

permutations of 173 067-389 objects.
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The Pentad ; the M-orbit T of Trio cosets

Since |P: PNM| =5, v_ has 5 4images under P ,
which are permuted like the 5 tetrads in figure 7 (p. 44 ).
Thus we label these cosets Vo1 Vo r V40 Y, and v,
and they form a 'Pentad' on which the Pentad group P acts.

[ The space spanned by these vectors is invariant
under P , and hence from p. #?5 we see that it
18 Af . Thus
Vot VotV Y, +v;=0 - (1) ]

Let a be the element of P with action (e 0)(1)(w)(R)
on PG(1,4) defined on p. S&6 . Then v o= vy, and so
StaanP(vo) =M N (MNP is a group of shape
29.26(33 X ‘L3(2)) generated by the even (£ *-sets in V
hitting each octad of the brick trio evenly, and the trio
group in X for the brick trio.

Since Stabmnp(vo) ¢ MM (M, P) , we see by lemma 7.1 (vi)
that Staby(v,) = Staby , plv,) .

Thus the M-orbit of v, comsists of 2°.3795 cosets
called the TRIO cosets (c.f. p. 79 ) and that such a
coset is determined by a trio on M's MOG and a one-function
f , where two one functions determine the same coset iff they
;are conjugate by a H*-set in V hitting each of the octads
of the trio evenly.

‘We write f(a,b,c) for the trio coset defined by the
trio { a,b,c } and the one-function t . ‘We denote by

fa'b(a,b,c) the trio coset determined by the same trio
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. { a,b,c } but by a one-function conjugate to f by a
¢ *-set hitting the octads a and b oddly and ¢
evenly. Thus while o 'b is not a well-defined one-function,

fa’b(a,b,c) is a well-defined trie vector. So for example

labelling the brick trio as 1—55 " we have
vo = £, (brick trio) = £,(1,5,)
vy = f15 '0(1-:’9‘“‘)
v, =2, 51 ,5,0)
Vs = f1 ’U(1159“’)

" [ On the computer it was checked that vy € A 1‘546 .

8o that 2ll trio vectors are in Agﬂs . In
particular, A ]1( < Af < ABS(G .

Since the vectors f(a,b,c) and fa'b(a,b,c)
are conjugate by an element of 02(M) , they must

have the same image in /\ Igs / A 1;42 , and hence

f(a,b,c) + £2P(a,b,c) € Alfz .

Ite image in Ay / A Y is stabilized by
StabM(c) » and so since it cannot be v_
(or else f’a’b(a,b,c) = fb’c(a,b,c)) it must be
£(c) or f(c) + v_ . If it were £(c) + v,
then fb’c(a,b,c) + 2%a,b,c) = £(a) + £(b)
= f(c) + v_ » which implies that
Yo + Vit vV, +V; = 0 , contradicting the known

structure of Af . Hence we have

£(a,b,c) + £2'P(a,b,e) = £(c) - (2) ]
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The H-orbit CD of Hexad cosets

Since |H : Hn M| =77, v_ has 77 images under H .
The stabilizer of such a coset is the stabilizer of a hexad
r for H's MOG , and we write this coset as ® (/0 ) .

Thus for example

"= O

T [)=009) =
L (see p. 27 )
Since a ¢ H , we see that

R -

Thus the 60 hexad Coscts_for hexads intersecting the
hexad § in two points (these hexads clearly form a D-orbit)
are the same as the 60 trio coseks for the 15 trios
incident with (i.e. made up of pairs of tetrads of) the
vertical gsextet for M's MOG . The rule for translation
is as follows :

Rule ® -1 :

The hexad intersects 9 in a duad, which determines
a syntkeme on ¢ (see pp. 12 ,2? and 28 ) and hence a
trio refining the vertical sextet for M's MOG , via the
correapondence in figure 6 on p. 129 . The other four
pointas of the hexad either miss ¢ , in which case the trio
ecoset 1s f1(trio), or intersects it in one of the duads
of the syntheme, in which case if the other two duads
determine octads a and b of the trio, the coget is

f1a'b(trio) .



96

There is one such Rule for every D-orbit (Rule
I - (@ is statement (*) above ; the M-orbit I is
{ v, } ). I shall give these rules only when they take a
fairly simple form, as these are the only cases of interest.
For the rest, I shall simply give one identification;
acting on this by D gives the 'rule’,
[ It was checked by computer that v, € A ?O
so that all hexad vectors are in [&?O .
The module AY, has 0, 5(H) in its kernel,
and as a module for Aut(M22) it is isomorphic
_to the module of even 7 -sets including both
or none of { «,0 } , modulo <Ny . Hexads as
such £ -sets are the same as hexads as sacred

vectors. ]
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The M-orbit S of Sextet cosets

Let g be an element of >H with 9& = ¢ . Then
StabD( @ (9 )) =MNnDE , which is a subgroup of M of
shape 27.26.336 and is generated by the even (¢ *-sets
in V hitting each tetrad of the vertical sextet with
the same parity (i.e. the PARITY subgroup E, (see p. 29 )),
and the sextet group in K for the vertical sextet.

Since Stabp(® (¢ )) ¢ M (M, H), lemma T.1 (vi)
shows that Staby(® (¢ )) = stabp (@ (9 )) .

Thus the M-orbit of (@ ( ¢ ) consists of 2%.1771
cosets called the SEXTET cosets, and each is determined
by a sextet on M's MOG and a one-function f , where two
one-functions determine the same coset iff they are
éonjugate by a Z*-set in V hitting each of the tetrads
of the sextet evenly.

As on p. 93 , we write f(u,v,w,x,y,z) for the sextet
coset defined by the sextet {u,v,w,X,y,z} and the
- one-function f , and similarly define fu’v(u,v,w,x,y,z)
to be the coset defined by the same sextet and a2 one-function
conjugate to £ by a £ *-set hitting u and v oddly

and w, x, y and 2z evenly. Thus for example

@(9) =1, (vertical sextet) .

®Ns:
S0 we see that the 16 hexad cosets for hexads
disjoint from g are the same as the 16 sextet cosets

for the vertical sextet, the correspondence being given by:
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Rule ® -8 :

Let the hexad be ¢x', with x an element of U1
(i.e. 2an affine translation on the right-hand square of
H's MOG - see p.2% ). If x# 1, then x determines
& pair of columns wu, v of M's MOG as on p. 32 .

The vertical sextet coset 1is then

f1(vertical sextet) if x =1
f1u'v(vertica1 sextet) if x # 1

[ On the computer it was checked that

® (¢ ), and hence all sextet vectors, are in
M P_ g M

‘A56 , 80 that we have A4\ A1O€ ASG .

Thus as before we have
£(u,v,w,x,y,z) + £V (u,v,w,x,7,2) € 2\ ?2 ’

and must equal either f(u + v) or f(u + v) + v .
Thus

fw’x(u,v,w,x,y,z) + fy'z(u,v,w,x,y,z)

f(w +x) + £(y + z)

]

flu+v) +v_.
Conjugating by a *-set in V hitting w and

x oddly and u, v, y and 2z evenly, this gives

£(u,v,w,x,7,2) + £V (u,v,w,X,y¥,2)

= f(u + v) + v, o= (3)

Now conjugating (1) by an element of H taking
the duad {3, 15} to the duad {2, 11} on H's
MOG , we see that
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£,(A,B,0,0,E,F) + £,%3(a,8,c,0,8,F) + £,°P+FF (43, 0D, =
+ 2,%5PF (a5 ¢, D) + £,%FPE(43,0F,DE) = 0,

where {A,B,C,D,E,F} is the vertical sextet for
M's MOG (c.f. figure 6 , p. 29 ).
Combining this with (2) and (3) , we get

f1(AB,CD,EF) + f1(AB,CE,DF) + f1(AB,CF,DE) =v_

‘and hence for any sextet {u,v,w,x,y,2} and any
one-function f ,
f(uv,wx,yz) + f(uv,wy,xz) + £(uv,wz,xy) = v_

- (4)

Now these four vectors are hexad vectors for
hexads satisfying :

(1) Any two intersect in two points

(i1) Any three intersect trivially .
Since Aut(MzZ) is transitive on such configurations,
this means that if J,, 92, 93 and 94 are any
four hexads satisfying (i) and (ii) above,
then

@8+ @9, + ®(95) + @(3,) =0
- (5)

In particular,

£, %5 CF(aD, BE,CF) + £, (AF,BD,CE) + f, (AF,BD,CE)

1
+2A4P0,8,0,0,5,7) = 0 ,

and hence using (2) and (3) and acting by

elements of M , we see that for any sextet {u,v,w,x,y,z}

and any one-function f ,

£(ux,vy,wz) + £(uy,vz,wx) + f£(uz,vx,wy)

= £(u,v,w,x,y,2) + v - (6) ]
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[ Note added in proof

It has now bBeen shown
on the computer that the modules S (A¥2)2- and
A!,;IG/AI;I are conjugate by an outer automorphism of M
(c.f. p. 13 and cor. 1 on p. 14 )

Thus if f 1is a one-function, thinking of an odd
¢ *-set as an outer automorvhism of M , and hence as
an isomorphism between A gslAl;q and § (A¥2)2' we
have :

£4(u,v,w,%,5,2) = £(v) A £(w) + £(v). £(x) + 2(v) A £(y) +
E(v). £(2) + £(w), £(x) + £(w), £(y) + £(w)  £(z) +
O 2(x), £(y) + 2(x) , £(a) + £(y), £(2)

( graphically .. @. x)
E
4

fu'v'w(u,v,;r,x,y,z) = f(u),\ f{v) + £(u), fl{w) + £(v) A £(w) +
£(x) A £(y) + £(x), £(z) + £(y) 4 £(2)

( )
YAAN
£2(a,b,c) = £(b) . £(c)

« )
bo—"c
£2:2:%(a,1,c) = £(a), £(b) + £(a), £(c) + £(b) , £(c)

AN

b <
. Then relations (2), (3), (4) and (6) above follow
immediately modulo A)f . Maybe an extension of this
construction could be used as an abstract construction

for the module A\ under the action of M and hence give

an easy naming system for the sacred vectors. Adjoining some
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further automorphism would then provide an abstract

geometric construction for J4 . ]
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The action of L ; the H-orbit $ of Big-Octad Cosets

‘Since |[M:MANL| =31, v  has 31 images under
L corresponding to the non-zero points of W* , the dual
of W. Since ae L (see p.56 ) , v o= vy = £ (brick trio)
is one of these. This has 30 images under M N L , namely
f1x( U,b,c) for the 15 +rios { (J,b,c } containing the
left-hand octad ¢ for M's MOG , and xe¢ LNV, i.e.
£,(U,b,c) ana £,°°(¢,p,0) .
[ From the relations (2) and (4) on p.9¢ and p.9?
we seé that the set
{0, 2,(0), v, £,(0)e 2, (Cb,0) , £,2°(0,b,0) ,
f1(U,b,c) +v_, f1b’°((7,b,c) v | { F,b,c} is
a trio containing the octad (J }
is8 closed under addition and invariant urder L
and is hence the module Ag . This decomposes as
a direct sum of A]{" = <f1(67) + vm> and
AL=1{0,2(0), 1,(0me) +v } e,
as in the following diagram :

£,(0) +v | v, |£%%(0,b,e) |, £,(U,b,0)

o
AP 0 . f1((7)“f1((j,b,c) +v_, f1b’c(U,b,c) * v,
?
Ag Table 15

ts I-modules, Ayg / AFE (A = (0,(W))*,
the dual of the module Oz(L) . It was checked
by computer that the vector f1 (vertical sextet) is
in A:1L6 . The I-orbit of this vector is easily
seen to be the following set :
280 sextet vectors for the 35 sextets in
" which (J is a union of tetrads, 8 vectors for

each sextet as follows :
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f1(u,v,w,x,y,z) 1
f1u'v(upv'wox9sz) 1
f1w'x(u,v,w,x,y,z) 6

(where u+ v =()

and 30 +trio vectors for the 15 1trios
¢,a,b) and
1, U'b( U,a,b) for each such trio { ¢7,a,b } .

containing 0, 2 vectors £, O',a(

It can be seen that 0,(L) fuses these vectors
in pairs as follows :

£, (u,v,w,x,y,2) ~ f1u’v(u,v,w,x,y,z)

f1"'x(u,v,w,x,y,z) ~ f1y’z(u,v,w,x,y,z)

z, U,a( 0,a,b) ~ £, U’b( U,a,b)
80 that the image of this orbit in AT, / A ¥
is an L—invariant set of 155 wvectors. L has two
orbits on the non-zero vectors in this
10-dimensional module, namely 155 pure
wedge-products and 868 sums of two wedge-products,
and so these sacred vectors have as image the
pure wedge-products in this space.

From p. 7S we see that 43‘%6 / A g is a
uniserial module of shape 1? , 1se. havirg wunique
invariant submodule [}kg / A g . The 310 vectors
above have distinct images in this space, and we can
choose one vector from each pair as follows in such
a way that the resulting set is invariant under our

complement Ly and span a 10-dimensional subspace

of Af's/Aé‘:
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1, (u,v,w,x,y,2)
f1w'x(u,v,'w,x,y,z)
£, 9+8(0,a,p)
where the point 22 of M's MOG
is in the tetrad w and the octad =2 .

So under the action of L,, A ?6 / Ag‘

decomposes as a direct sum 1 + 10, and

complements conjugate to L, are in one-one

correspondence with hyperplanes in /\ %6 / A é’

not

containing Aé’ / Aé‘ . ]

Now consider the trio coset ¢y = f1a’b( )
b

Then StabL(cd) contains A = 0, (L) and has image

#*

X % % %k %
L I ]

. % ¥ %
OO o0 o -0

*

in L/A.

-Thus Stabp nH(°1) is the subgroup of H of shape

21*9.1.2413(2) generated by the centralizer in F of the

element wed(

= ), of shape 2,241 (2) and the subgroup
= 3

3(01) = { [;;‘;:;il | 2, +)5 +’16 ,’z\z +’X4 +7s6 , A3 +A4 +',15

are in GF(2); i =Q or 1 }

of B of shépe 2“’9_.
Since StabLnH(c1) € M@E, 1), lemma 7.1 (vi)

shows that StabL(c1) = Stab

cy under H

LnH(°1) . Thus the orbit of

consists of 23.3.330 cosets called the

BIG-OCTAD cosets (to distinguish them from the Little-Octad

cosets defined on p. 106 ).
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Notation for Big-Octad cosets :
Suppose x 1is another Big-Octad coset. Then for some
h ¢H, x=ch,and Staby(x) = Staby(c,)® . Iet h =y,y,
with y, € B and y, € F . Since CF(E(c1)) = StabF(c1) ,
the coset x 1is determined by E(c1 )h "and the coset
E(c1 )h.y2 in E , and hence by the pair

= hy+ = h =11
(o))" v <Bieyy 27 ) o
wvhere perps are taken in the GF(2)-orthogonal structure

on E .

Now ﬁ(c1)l ={ |X Y 2 : x,y, z € GF(2) }
x ¥y

is the set of fixed points of the involution (w <+ @) in

F ( acting as r?'::.

-] on H's MOG ) on the octad-type

3-gpace in E for the middle octad

Thus the Big-Octad cosets are in one-one correspondence

with pairs ( §1 , §2 ) where @

-1

points in an octad type 3-space of an involution in F

is the set of fixed

8tabllizing the octad pointwise, and §2 is either 1-51 or
a GF(2)-hyperplane in §1 . We write 3 (&, , §2 ) for
the corresponding coset. If § y = §2 , We abbreviate

P ( e, @2 ) to & ( §1 ) . Thus for example

»D a - E
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I Ml

S0 we see that the 23.3.30 Big-Octad cosets for octads
disjoint from § are the same as the 22.180 trio cosets
for trios meeting the vertical sextet ( 42.04 )( 24,02 )2
( the notation here has the obvious meaning, and is the same
as the notation used by R.T.Curtis [3] (p.41-43) in his
analysis of orbits of maximal subgroups of M2 4 on other
maximal subgroups ).

Now we produce our first example of an 'xs-x7 square'

(cefe pa 91 )

Since [xs‘ , x7] =1, x53x731521c74 =1

= 2 _ g8 4
Let ¢, = ¢yx;° = & ( E(cz) ) where

Bley) = ! P x, v,z e 0RR) )
y z 2z

so that c, is a Big-Octad coset for the octad L ‘ .
x| |x¥
- fexd

Then we have

3 (E(cz)l)

3
I

‘§(§(c1)l) - f1a.b( E a )

i

(LT

i
h
»
-
o’
~~
=Y
[l
»
[T
)
e

£, (vertical sextet)

4

2, (square sextet )

£ %
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end hence & ( E(cz)l) = f1(square sextet) .

NS :
Thus we see that the 29.3.60 Big-Octad cosets for
octads meeting 9 in 4 points are the same as the 2%.90

sextet cosets for sextets meeting the vertical sextet
( 2%.0* )6 .
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The H-orbit ¥ of Little-Octad cosets

Let c¢, be the sextet coset f1(

3

d<<E

ced
N M %
N M %
NS M %
N W =

Then StabD(c3) is the subgroup of E o

generated by the octad-type subgroup E(c
of E of shape 20+6 , for the middle oc

H's MOG , and a subgroup of F of shape
the middle octad and the left-hand hexad.
for this group is shown in Appendix F on

but the last of the elements shown there.

_ 3
= ¢3%7

Let

1]

cy f1(

f shape 2o+6.3.24S

y= [ Y 2z
3
lx__w:__ZJ 0

3,2434 stabilizing

4

A set of generators

P. 152, taking all

= 0 x| : x,y¥, z € GF(2) )
z_y
Then Cy is stabilized by « = [—=|\'|'_.| - From Chapter 4
~3
[~
="
we know that [ « , xq ] =1 and hence ¢z 1s also
stabilized by «a .
- O+6 4
Now <'Stabn(c3) , @ > has shape 2° °.3.2 Ls(2)
“and is in 7}(H , M) , and hence by lemma 7.1 (vi)

Staby(es) = < Stabp(es) , @) .
Thus there are 27.330 cosets in th
called the LITTLE-OCTAD cosets.

e H-orbit of Cg s
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Notation for Little-Octad cosets :

Since Ny(Ny(Staby(cs))) = Ny(Staby(eg)) = Stabgles) X (2
there are two Little-~Octad cosets stabilized by StabH(c3),
namely Cy and CzeZ and this pair of cosets is stabilized
setwise by NH(StabH(CB)) . Similarly to the Big-Octad
notation, such a pair of Little-Octad cosets is specified
by a pair ( 51_:1 . Tz ) where 321 is an octad-type
isotropic 3-space in E and 3§§ is either §?1 or a
GF(2)~hyperplane in i?1 . We label this pair of cosets as

¥ ( ¥, , i?z ) and abbreviate this to ¥ ( *_T(1 ) when
¥,=%,.

Thus for example

{ 03 ’ 0302 } =‘f( i-(c})) .

¥ns :

Thus we see that the 27.30 Little-Octad cosets for
octads disjoint from the hexad 9 are the same as the
24.240 sextet cosets for sextets hitting the vertical
. gextet ( 3.1.0% )2( 14.0%2 )% .
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The M-orbit Z of Sextet-line cosets

Let cg = c:.,'xs2 = 031:73x52 =p(}o0 x x |:x,y, z2€GF(2))
X,+2 X +y Xy

(- ¥
Tl

Stabp(cs) 1s a subgroup of M of shape 24.26(33 X Dg) .

a Big-Octad coset for the octad « Then

P3E R 4

A set of generators for this group is given in Appendix F
on p. l44(, taking all but the last of the elements shown

there. 3
7
Now w fixes Cq s and from Chapter 4 we know that
3
x
7 2 _
<w , x7> < Cplxg) so thz;t w fizes c,x;° = cg .

. x
7 4 .6
Moreover, <StabD(cs) , W > , of shape 27.2 (S3 X S4) ,
is in 77)(M , H) , and hence by lemma 7.1 (vi)
3
x

Staby(es) = < Stabp(es) , w | > .

Thus the M-orbit of Cg consists of 27.26565 cosets
called the SEXTET-LINE cosets (since the stabilizer has as
image in M / V the stabilizer of a line of sextets refining
a trio - such sextets form a projective plane PG(2,2) ) .

Since NM(NM(StabM(cS))) = NM(StabM(cs)) = <StabM(c5) R

where t = [--|' -|""|, the stabilizer of Cg stabilizes
BN T Y I
3 B

exactly two such cosets Cg and cs.t , and the setwise

stabilizer of this pair of cosets is NM(StabM(cS)) .
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Notation for Sextet-line cosets :

A pair of sextet-liﬁe cosets is thus determined by a
line of sextets 8y » 85 s 83 refining a trio and a
one-function f , and two such one-functions determine
the same sextet-~line coset iff they are conjugate by an
element of the appropriate sextet-line type 5-space in V
( i.e. by the appropriate conjugate of StabV(CS) y 1> ).
We shall write this pair of sextet-line cosets aé
f(s1,s2,s3)° We draw a sextet-line as a set of four pairs
of points whose union is an octad, in such a way that the
sum of any two pairs is a tetrad determining a sextet in

the line. Thus for example

f1( ::'_ )={051c5°t}
is
dNz :

Thus the 23.3.240 Big-Octad cosets for octads meeting
9 in two points are the same as the 27.45 sextet-line
cosets for the trios incident with the vertical sextet and

such that the vertical sextet is contained in the line.

Applying the relation x73x53x74x52 =1 %o

—_—

11( {“ Z} fil ) , we see that

12
33}
<41

33y "t
[ 24 AN S y z 2

£, ( {%; ) =:f‘( 0 x x| )

as a palr of cosets. Thus :
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¥nz

The 27,60 ILittle-Octad cosets for octads meeting §
in four points are the same as the 27.60 sextet-line cosets
for trios incident with the vertical sextet, and such that
the vertical sextet is not contained in the line. The pairing
as Little-Octad cosets is the same as the pairing as

sextet-line cosets.
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The H~orbit D of Duad cosets

Let c6=f1( 1 1]2 2]3 3] ), a trio coset.
11(2 233
331122
3 31 112 2

Then StabD(cs) is a subgroup of H of shape 21+6.1.2584 .
A set of generators for this group is given in Appendix F
on p. |53, taking all but the last of the elements shown

there.
< x73
Bow cg ' =1£,( [13[21132] )= @[ )
1 32132 ‘ .
1 3|21|32 "
1 312 1{3 2|
i8 invariant under x.. {3 , and s0 c, is
5° |l = 6
B =AY

invariant under the image of this under x74 , i.e. it

is invariant under

X1 - - S
Xge [ S R L BT HI/@
and hence under .x5 o
But <StabD(06) y [ O W -Xg > is a subgroup
1 w

0

146

of H of shape 2'*.1.2%3, and lies in )7)(H , ¥) , and

hence by lemma 7.1 (vi)

Staby(cg) = <StabD(c6) y [w 0B | > .
1T w1 0
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This has as image in Aut(M22) the duad stabilizer

ru) -

for the duad [;4 ) e

So the H-orbit of cg consists of 26.3.231 cosets
called the DUAD cosets, and we have @

ANt
The 20.3.15 duad cosets for duads in the hexad 9
are the same as the 22.720 trio cosets for trios hitting
the vertical sextet ( 2%.0° )3 .

Now let c, = £, ( ) , & trio coset. By

— -1\
AN\ N N

IS
- =W
hot i 0

equating c7a with c7x74ax73 we see that :

ANz :
The 26.3.120 duad cosets for duads not intersecting
9 are the same as the 27.180 sextet-line cosets for
trios meeting the vertical sextet ( 42,04 I( 24 .02 )2 and
the sextet-line in this consisting of those sextets incident

with the trio which hit the vertical sextet ( 22.0% )°
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—
The H-orbit =, of Big-Syntheme cosets

Let cg = f1( ) , a trio coset.

—-—
- NV
- N\
- POV

3
3
2
1

DN~

Then StabD(cs) is a subgroup of H of shape 20+5.1024(2333) .
A set of generators for this group is given in Appendix F

on p.l54 . The image in Aut(M22) of StabD(cB) is the

stabilizer of the syntheme in the hexad ¢ .

Since every proper subgroup of M22 is intransitive,
StabD(cs) € M([E, M), so lemma 7.1 (vi) shows that
Stabg(cg) = Stabp(cg) .

Thus the H-orbit of Cg consists of 28.3.1155 cosets
called the BIG-SYNTHEME cosets, and we have ¢

=
[

nNT
The 28.3.15 Big-Syntheme cosets for the synthemes in
the hexad 9 are the same as the 22.2880 trio cosets for
" trios cutting the vertical sextet ( 2%.0% )( 3.1° )2 .

Equating cga with c8x73ax74 we see that :

r—

= N Z :

The 28.3.180 Big—Syntheme'cosets for hexads meeting
9 1in two points comprising a duad of the syntheme are the
same as the 27.1080 Sextet-line cosets for trios meeting
the vertical sextet ( 42.04 DXt 24.02 )2 and the sextet-lines
in this other than the (( 22.0% )®)> one .
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The remaining H-orbits L , " , X and A , and
M-orbits F , N and L .

Continuing in the same way, we find the following :

Let cq = f1( } , a sextet coset.

HEde
EHd4dcC
< Ng g
N q 4
N £ €
N MM

Th;n StabH(cg) = StabD(cg)e 77 (H , M) is a subgroup of
shape 20+4.1.24(2 X S4) generated by the elements shown
on p.!55. Again the image in Aut(Mzz) is the stabilize‘r
of a syntheme in § , and the H-orbit of cq consists of

29.3.1155 cosets called the LITTLE-SYNTHEME cosets, forming

<T|.a , 2 duad coset for the

S

duad =] * . Then Staby(c,,) = Staby(c,) € 77/(1 , H)

the H-orbit 7 .

Let. C10 = %° <«

7N

is a subgroup of shape 2! 026PGL2(5) having as image in

M24 the centralizer of the involution {: : ’('[I ()() , and

generated by the elements shown on p.!43 . So the M-orbit
of 40 consists of 210.31878 cosets called the
REQULAR-INVOLUTION cosets, forming the M-orbit F .

Let ¢y, ¢ f,( " z3§r ) , a sextet-line coset.

4w

Then StabH(c”) = StabD(c“)e 7 (2, M) is a subgroup
of shape 1.1.24(2 X S-),) generated by the elements shown
on p.i5% . The image in Aut(M22) is the stabilizer of

the hexagon —) -] in the hexad 9§ . So the H-orbit
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of Cqq consists of 213.3.462 cosets called the HEXAGON
cosets, forming the H-orbit A\ .

Let 012=°5-"-t_‘§ € 2,( '34,‘3 J ), e
o fazf

sextet-line coset. Then StabD(c12) is generated by the

elements shown on p. |Sé. It is not immediately clear
whether this group is in 777(H , M) , so we postpone
further discussion of the H-orbit of 4o until p. {7 .
—> |l.a . Then Stab
AR5

contains as a subgroup the group 1) generzted by all but

Let Cyz = Cqpe D(313)

the last of the elements shown on p. 150 . Now we use the
last relation f"1x231’x23 =1 (see p. 839 ) to obtain
a further element of StabM(c13) .

First we rewrite this relator as

h1 m21121:13r13 -

05 6

0
B

where ms

,1 (6)(15 17 20 5 00 13 4 12 14 7
021 11182239195 101 2 16)

.

and  mg = ;:P\;-_ . (E)(eo 17 11 18 4 14 15 13 1G 3
LMYl 91202205221 719 16 21 8)

B R PO s B
Thus vth m3 h, ‘m, 'h, -is stabilized by m .

Writing m2-1 as x75.t' ‘t‘b( . TE tg we see that
: b

-1 -1, -1 - -1, -1

-1 -1, ~1
Vb3 mgT hy'm, hT o= ® (9 ).m3 hy,” m," by
-1 =1, -1
= 03h2 m2 h1
= <t > h -1
= %2 { - ;: S |

=c13 R
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Thus c;5 1s stabilized by <'19 , m5> which has

shape L2(23) s, lies in the nought-type complement

6,13,20}

defined by f1{ and stabilizes the projective line

1 0] 71115 9
o 3|13 2] 6 19
16 17{18 8l22 1

structure given by the numbering : | 4 10{14 20112 21 .

(which of course differs from the standard numbering by
an element of M,, )
Now let Cyq = Cq3+@Xq € f,( E’; 1 ), a sextet-line

i

coset. Then StabD(c14) is a subgroup of H of shape
2°+1.1.24D8 . A set of generators for this group is given
in Appendix F on p.15%#, taking 211 but the last element
there.

But Cq3%y is stabilized by the element

? = e M
<
N\ X
(the image under x; of the element 2z - 48;:18 of L2(23)
for the above numbering) which is
d =G50 . N T000w ¢ H
1 000w
000/ 5 |g0wwwo
00w1 30
00w O/
wwO00O0w oA

(acting as &g on H's MOG )
|

and hence the image Ja of this under a stabilizes

C14 L]
This is the last element shown on p.!5%, and
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StabH(cM) = <StabD(c14) , ’5a> ¢ M(H , M) is a group

of shape 20”.1.2484 . Nowa 2818

type involution
swapping O and o on H's MOG fixes an octad
pointwise, and is determined by that octad. StabH(c14)
acts on H's MOG as the stabilizer of an octad and one

of the 7 pairs of points defined in this way :

Ll 3 P
N
| expt k)T

consists of 2'2.3.2310

Thus the H-orbit of g
cosets called the OCTAD-PAIR cosets, forming the H-orbit
X .

Now rwe see that in the group G , we have eight
orbits @, §,£ , A ,E',,Z,)( and A of E on the
cosets of M, and a cos;at Cyp not in aﬁy of them. Since
from the character-theoretic calculation H has only 9
orbits on cosets of M, and |G : M| would be too small
ir StabH(cm) > StabD(c.‘z) , we must have
StabH(c12) = StabD(c12) in @ , and hence in ¢ . The
image of this group in Aut(M22) is the stabilizer of
the hexad 9 and the duad {3,15} in 9 . Thus the

B-orbit of ¢ consists of 213.1155 cosets called the

12
DUAD-HEXAD cosets, forming the H-orbdit [ .

- -7
Thus P = Staby(cy3) , and Stabyle,5) =< P, ng>
€ M (M, H) is a group of shape L2(23) . Thus the M-orbit
ot 43 consists of 2”.40320 cosets called the
PROJECTIVE-LINE cosets, forming the M-orbit L .
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Notation for projective-line cosets :

Such a coset is determined by a nought-function ¢
and a numbering of the MOG (conjugate to the standard
numbering by an element of M24) on which the stabilizer

acts as L2(23) . We write this coset as f(numbering) so

that for example ¢ 5 = f1{6’13'20}( & T0[74 20(12 21| ) ,
t

15 0l 71115 9
o 313 2| 619
16 17{18 8.22 1

and two numberings determine the same coset iff they

differ by a projective special linear transformation.

Now let cyg¢ (o x x ) , a Little-Octad
X, 42 X +y Xty

coset for the octad 7%, ;;{ . Then StabD(c15) is a

bR

0,56 302 x S,) - A set of

subgroup of M of shape 2

generators for this group if given in Appendix F on

P. 149 . Again, in the group G , we have six orbits

I1,7,8,2,PF ani L of M on cosets of M, and

a coset 5 not in any of them. Since the character-

theoretic calculation shows that M has only 7 orbits

on these cosets, and |G : M| would be too small if

StabM(c15) > StabD(c15) , We must have .StabM(c15) = StabH(c15)
A

in @ , and hence in G . The image of this group in M24

" i the stabilizer of an incident trio and sextet. Thus

the M-orbit of 5 consists of 211.26565 cosets
called the TRIO-SEXTET cosets, forming the M-orbit N .
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Notation for trio-sextet cosets :

Let the nought-function fo be defined by

. = f,b”’22’11} and let K, be the nought-type

0
complement for V in M  defined by fo . Let YO be

the stabilizer in KO of the brick trio and the vertical
sextet, and let ZO be the subgroup of index two in Yo
obtained by only permitting even permutations of the six
columns of M's MOG . Then StabM(c15) = 25 U (YO\ Zo)z ,
and NM(StabM(c15)) = 4< Ty, z > contains Stabylc,g)

to index two. So StabM(c15) stabilizes two trio-sextet
cosets 45 and c1sz » Thus a pair of trio-sextet cosets
is determined by an incident trio t and sextet s , and
& nought-function f . We write this pair of cosets as
£(s,t) . Two nought~functions determine the same pair

of cosets iff they are conjugate by the element of V

corresponding to the sextet. Thus for example

fo( l f?] )={ci5 s eq52 ) -

Prom these definitions we have the following

identifications :

Ins
The 29.3.15 Little-Syntheme cosets for synthemes

in 9 are the same as the 24.1440 sextet cosets for
sextets cutting the vertical sextet ( 2.12.00 )4( 14.0° )2
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ANF

The 20.3.96 Duad cosets for duads straddling >
10

and its complement are the same as the 2 “.18 Regular-
Involution cosets for involutions preserving each column

of the vertical sextet.

Loz

The 213.3.60 Hexagon cosets for hexagons in 9 are
the same zs the 27.11520 Sextet-line cosets for trios
cutting the vertical sextet ( 3.15 )2( 24,02 ) and sextet
lines cutting the vertical sextet (( 2.12,0° )4( 14,02 )2)3 .

XNz :
The 212.3.90 Octad-pair cosets for octads disjoint

trom ) and pairs in § are the same as the 27.8640
Sextet-line cosets for trios hitting the vertical sextet
( 3.1S )2( 24,02 ) and sextet lines cutting the vertical
sextet (( 2.12.0% )4( 1407 )?)2(( 3.1.0% )2( 1%.02 )4

rnz :
The 213.3.15 Duad-hexad cosets for the hexad §

are the same as the 27.2880 gsextet-line cosets for
trios hitting the vertical sextet ( 24,02 ) and sextet
lines hitting the vertical sextet (( 2.12.0°0 )4( 14.0° )%)3 .
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"rny :

The 213.3.480 Duad-hexad cosets for hexads meeting
© 1in two points, one of which is in the duad, are the same
as the 211.5760 Projective-line cosets for numberings

where the tetrads of the vertical sextet all have cross-

ratio 2 .
FNAN :

The 27.240 Little-Octad cosets for octads meeting
9 1in two points are the same as the 2'1.15 Trio-Sextet

cosets for the vertical sextet.

Further Xg-Xq squares and a=Xq squares show the

.remaining identifications :

=NF :
The 28.3.720 Big-Syntheme cosets for hexads meeting
9 in a pair which is not in the syntheme are the same as

the 2'0

«540 Regular-involution cosets for involutions
whose centralizer fixes a sextet cutting the vertical one
( 22,0t )6 and having four orbits in columns of the

)

vertical sextet. (e.g.

Xt
X

(RN

7
—

NN :

The 28.3.240 Big~-Syntheme cosets for hexads disjoint
from 9 are the same as the 2”.90 Trio-Sextet cosets
for trios incident with the vertical sextet and sextets other

than the vertical one.
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EAN :

The 29.3.270 Little-Syntheme cosets for hexads meeting

9 4in a pair which does not comprise a duad in the syntheme

1

are the same as the 2 '.540 Trio-Sextet cosets for trios

hitting the vertical sextet ( 42.0% )( 2%.0° )° ana

sextets hitting the vertical sextet ( 22 ot )6

TN 72

The 29.3.180 Little-Syntheme cosets for hexads meeting
9 in two points comprising a duad of the syntheme are the
same as the 27.2160 Sextet-line cosets for trios hitting
the vertical sextet ( 24,02 )3 and sextet lines cutting
the vertical sextet (( 2.12.0° )*( 14.02 )%)2(( 22.0* )®) .

TNP

The 29.3.240 Little~Syntheme cosets for hexads
disjoint from & are the same as the 210,360 Regular-
Involution cosets for involutions whose centralizer fixes
a sextet cutting the vertical one ( 22,0t )6 and having

no orbits in the columns of the vertical sextet.

CNF

The 2'3.3.360 Duad-Hexad cosets for hexads meeting
9 in two points neither of which is in the duad are the
same as the 210.8640 Regular-Involution cosets for
involutions whose centralizer fixes a sextet cutting the
vertical one ( 2.12,0% )4( 14,0° )2 and having nc orbits

in the columns of the vertical sextet.
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fCoN (1)

The 213.3.60 Duad-Hexad cosets for hexads meeting
9 in two points comprising the duad are the same as the
211.720 Trio-Sextet cosets for trios hitting the vertical
sextet ( 24,02 )3 and sextets hitting the vertical one
( 22.04 )6 .

rCNn N (@ :

The 213.3.240 Duad-Hexad cosets for hexads disjoint
from 9 are the same as the 211.2880 Trio-Sextet cosets
for trios hitting the vertical sextet ( 2%4.02 )( 3.1° )2
and sextets hitting the vertical ome ( 3.1.0% )2( 1%4.0% )* .

XD F (1)
The 212.3.60 Octad-Pair cosets for octads meeting
9 1in four points and the pair also in 9 are the same
as the 210.720 Regular-Involution coszts for involutions
whose centralizer fixes a sextet cutting the vertical one
( 22.04 )6 and having 6 orbits in columns of the

vertical sextet.

XN F(2)

The 212.3.360 Octad-Pair cosets for octads meeting

9 1in four points and the pair disjoint from § are the
same as the 210.4320 Regular-Involution cosets for
involutions whose centralizer fixes a sextet cutting the

vertical one ( 3-1.04 )2( 14002 )4 .
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XON (1) :

The 212.3.120 Octad-Pair cosets for octads disjoint
from O and pair also disjoint from @ are the same as
the 2'1.720 Trio-Sextet cosets for trios hitting the
vertical sextet ( 42.0% )( 2%.0%7 )2 and sextets hitting
the vertical one ( 3.1.04 )2( 14,0° )4 .

XnN (@) :
The 212.3.720 Octad-Pair cosets for octads meeting

9 in two points and pairs disjoint from 9 are the same
as the 211.4320 Trio-Sextet cosets for trios hitting the
24.0% )3

vertical sextet ( and sextets hitting the vertical

one ( 2.12.07 )4( 14,02 )2 .

XL

The 212.3.960 Octad-Pair cosets for octads hitting
9 in two points and pairs meeting & in one point are
the same as the 211.5760 Projective-line cosets for
numberings where the tetrads of the vertical seztet all

have cross-ratio 5 .

AANF

The 213.3.720 Hexagon cosets for ﬁexagons intersecting
8§ 1in two opposite points of the hexagon are the same as
10.17280 Regular-Involution cosets for involutions
whose centralizer fixes a sextet cutting the vertical one
( 2.12,0° )4( 14.0? )2 and having two orbits in columns

of the vertical sextet.
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AnN :
The 213.3.1440 Hexagon cosets for hexagons intersecting
9 in two points at distance two on the hexagon are the same

as the 211

.17280 Trio-Sextet cosets for trios meeting the
vertical sextet ( 24,0° )( 3.15 )2 and sextets meeting

the vertical one ( 2.12.0° )4( 14.02 )2 .

AN (1)
The 213.3.960 Hexagon cosets for hexagons disjoint

from 9 are the same as the 211

+11520 Projective-line
cosets for the numberings where the tetrads of the vertical

sextet all have cross-ratio 3 .

ANnL (2) :
The 213.3.1440 Hexagon cosets for hexagons hitting
9 1in two adjacent points of the hexagon are the same as

the 2'1

.17280 Projective-line cosets for numberings where
four of the tetrads of the vertical sextet have cross-ratio

4 and the other two have cross-ratio 5 .

This completes the proof that §zc.
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16

18

16
16
16
16
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16
16
18
27
27
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27
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Index of Notation

27

28
28
41
41
41
42
42

42

43
43
49
49
49
56
56
62
62
73
76

m1 ,mz’mB'm4

hy,h,,h
G

/D

A
A

\TANA

f(trio)

f(sextet)

o

4

(%, 8,)

3(%,)
2
C3s C4

T(F,,%,)
F(T,)

Cs

97
100
102
103
103
104
106
107
107
108

f(sextet-1ine)109

Cg1C1grCy1

111
112
13
114

012,013,m5,m6 15

Cyg
)

f(projective
line)

£0rKgr¥gs 20
f£(trio,

sextet)

15
116
116

118
119

119
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Appendix A
The character table of J

'*Atlas' notation.

(see [5])

4

in



Jé

ind

+ + + + + O 00O +00 + 00+ 0O0O0OCoC O +

LR TR T R

+ ¢+ e A+

+

LR L R R B R T K R R I IR N B T T

867755710217997

46077562880 95740
A

p power
p' part A
14 2A
1 1
1333 53
1333 53

299357 ~153
299367 ~153
887778 738
887770 738
889111 20731
1187145 585
1187185 sS85
1776838 2808
3403189 ~627
3403149 ~627
4290927 1647
12307363 -6237
32307363 -6237
22897107 —5293
32897107 —-5293
215411145 10185
35411185 10185
95288172 25452
230279749 11333
2€9775040 6720
259775080 6720
300364870 34650
3€€159104 —-2816
3$3877506-10494
354765238 —9755
460559498 24458
453456605 16605

690839247 23247-10801

7€6127419 168473
786127319 16443
73E127419 16447
785530563 49673
38257855 24192
185257056 24192
1016407158 27776
1016407168 27776
1085604531-17229
1035007630 14400

1182518964-32076
118340678 1-31339
1183406741 39061
1184295052-29268
1445942610-13230
1445942610-13230
1445942610-13230
1506863773 =5027
1579061136 31632
1842237992 1064
1903741279 26719

1981808640 o
1981808640 V]
1781803630 4]

2001151 845-10395-10395
2001151845-10395-10335
2001151245~10395-1035%

2267824128-49152
2692972480-34880

27274958948 25256 .—~4312-385 -08

30€4840657 1617

1816626615405 93
57920 120 720 3034
A A A

A A A A

28 3A 4A aB

T 1 1

-11 10 -11 S
-11 10 -1t S
231 45 -89 7
231 a5 -ga 7
~606 45 34 -14
-606 45 34 ~14
727 ss 87 3%
-375 -85 -55 -7
-375 -45 -55 -7
120 99 120 24
-627 -66 77 12
-627 —66 77 11
175 141 175 31
$9 0 99 51

99 o 99 S1
~749 10 211 35
-749 10 211 35
3465 105 265 25
3465 105 265 25
364 231 44 108
6853-308 197 37
6720 210 320 64
6720 210 320 64
-7910 420-550 42
~1792 440 768 O
7106 561 66-110
-2716 309 804 &
6586 329 -S54 90
7645-120 285 29
21 79 15

3003 252 187 -37
3003-126 187 -37
3093-126 197 -37
-430-111-440 40
-3068 0 398 ¢
-3764 0 334 ¢
0856 -56 384 O
%856 -56 184 O
~9633 330 307 15
~3520-330 320 -614
10166 $9-396 —12
341-154 341 101
6677 440~363 —75
10284 =99-276 12
6530 0 210 -30
630 0 210 —-30
6530 0 210 -3¢
-7139-176 ~99 45
4752-384 528 —48
3752-285-472 8
-737 385-737 —-17
o o o o

o o o o

o o o ¢

0 165 —27

0 165 —27

0 165 —27

03 0 0
3320-230-320 64
e

-495 231-495 33

43
coa
B8

A
4C

-3
-3

10
10
-1
17
17

-3
-3

-21
-21
-21

-2t

-2
-28
-14

L3
<

-21
-21
-21

-8

35
—74
-29
-35
-7
-0

2

42

A2
-27
-A43

56

7
0
o
Q9
21
21
21
0
-64
o6
-7

62661
20 120
A AaA
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Appendix C

Rank of 1+x for x a representative
of each conjugacy class of element of J4
in the 112-dimensional representation over

GF(2) .
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J,-class J,-class J,-class
Rank(1+x) Rank (1+x) Rank (1+x)
of elt. x of elt. x of elt. x
1A 0 12B 100 314 110
2A 50 12C 102 31B 10
2B 56 14A 104 31C 110
A 72 14B 104 33A 112
4A 80 14C 104 33B 12
4B 80 14D 104 35A 112
4C 84 15A 104 35B 12
5A 88 16A 104 37A 108
6A 92 20A 104 37B 108
6B 90 20B 104 37¢C 108
6C 92 21A 108 40A 108
TA 96 21B 108 40B 108
B 96 22A 110 42A 110
8A 96 228 106 42B 110
8B 96 23A 110 43A 12
8C 96 244 106 43B 112
10A 98 243 106 43C 12
10B 100 28A 108 44A 110
11A 110 28B 108 66A 112
1B 100 29A 112 66B 112
124 100 30A 108
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Appendix D

Some elements of J4 written in the
~notations for those of H , M , P and
L in which they lie. Elements of H
are written as the product of a
vector representing an element of E
and 2 6 X 6 matrix representing an
element of F (c.f. p. I8 ), and also

the action on H's MOG is given.
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M P L
0060 RS
000, ) Lo A b
(a,.b+a,c)e
100 TR 10000
izl L,.3 01000
00 0}, IR 2w 00100
10010
10001
(ap,b +a.d).
— Ty e3= o 10000
000, L 5, 1-(e5) |[101C0
00010

001
000

000
100

000
010

&

000
001

&

(04)(12)(36) 110001

L2031 ; *

(04)(12)(36)

L,-3u 0

(a,b+2a,.c +

e d). 110000
(01000
10100
\10010
10001/

(a,b +a,c+

a . e). /10000
01000
00100
00010
10001

(arb+a,d+

b . e). /10000
01000
00100
00010
10001

(b +2a,c+
B.d+2a,e).

10000
01000
00100

00010
10001

The Subgroup E = 0,(H)
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[eXe Yo R Jo]

H M P y
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11000
diag(w) . nIMEESIC) 00100
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111110 ;: T s
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11011 1
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T c.e). (10000
000001 t:n{n o N 10000
0001 00/ [ ifuy 0 01000
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001 00 0 0001 ¢
1S 00wiH
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wE s %‘ e Yo _
O wl was E IR I‘o’(o“’)(1"")
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= 0} (16) 10000
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(v-5) == xiujnf | 11 (233(45) 00100
2 00010
00001

The Subgroup M N F
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The Subgroup O,(P)
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M P L
BRI
o WAL 39 1 a,d +a,e
(a b +a,c+
0 wo o7 bac +ard).
o 1], 3 0000
12520 0w 01000
00100
10010
1 0001
w0 wl P
M
w0 wis ;l;R;L 51 0 bad
(a.b +a.c +
b Ae)./10000
— 01000
W 3 5 00100
w © 3 Lt w O \00010
01001
W 0 W (13 ] ‘
=13, ‘*()()()ﬂ 50 1 b.d+b,e
(a.b+a.c +
0@ 1 e bAd). 10000
= - X 5A . 01000
w2lo i 0w 001 00
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01001

The Subgroup OZ(P) contd.
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H M P L
10001
070500\ 21600
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00000 1h
011000
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0001 01 : 00001
0001 1 Ol

The Subgroups 2 and /A < P
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The Subgroun 0, (L)
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| (““D)zﬂ

W O w

O-=0—"00 O0CO0O0OO-—
O0O0O—0O0
[oXoNoNoRoJ o
= 0000 O0O0O~+00O0
00000
=000 O—-00O0O0O
~
-3

- = s
O~ 000~
O—-~00C0O00

~
3

diag(w). (ved)

= (lﬂa)zn

COO0O—-+0O0
OCO0OO0O0O—+0 COO0OO0O=—-O
COO0O~00C OO0OO0OO0OO0O-—
00000
O~ 000—~ O—+000O0

[eJoNoNoNeo o
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(Q)e 3

The Subgroup' L1
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01000
01100

00100
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11000
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00000
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01000
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10000
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Appendix E

Orbits of M, H and D=MNH

on right cosets of M 1in J4.

(due to S.Norton)
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® ¢ ¥ o = i r X A
. ...:'(.l_\lll.. - e T T e e e e
;‘ ’ td
(95) PR R ’ P
60 720 | 2880
(95) (104) . (ni2) \ \\
16 1440 3840 ' 23040 SR
(9%) (105) (107) (v9) |, . P
5760 7680 23040 138240 276480 368640 | 1105920 | 1474560
(109) (o) (n2) (122) (i20) (120) (120)
\ O 18432 552960 368640 | 8847360 737280 | 17694720
g R e (120) (122) (122) | 4423680 (12¢)
P . (123)
s 30720 |7 7 7| 184320 | 1105920 | 1474560 | 1474560 | 35389440
1 o)) | 7 (22) | 5898240 | 8847360 (125)
. y - (123) (i24)
e pd P P <777 | 11796480 | 11796480 | 23592960
o pd o g (121) (124) | 35389240
P \\ ) \ a ’ . A_‘P“v
s \ \ \ \.\ - \\\ Ve B . \

Sizes of the 36 orbits of D on the cosets of M

the identifications are made)

(numbers in brackets refer to page numbers where
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Appendix F

Generating sets for the stabilizers in
M and H of representatives of the orbits

of these groups on the cosets of M .

In each case a generating set is given
in such a way that each composition factor
in a suitable composition series is

covered in turm.
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M-Orbits

Trivial Orbit I :

. One coset V. stabilizer M of shape 211M24 .

Trio Orbit T :

22.3795 cosets, representative v, = f1(brick trio)
Stabilizer shape 29.26(33 X I5(2)) generated by
even Z*-sets in V hitting each octad of the brick trio

evenly, and the trio group in K for the brick trio.

Sextet Orbit 8

24.1771 cosets, represenfative f1(vertical sextet) .
Stabilizer shape 27.26.386 generated by
even /£ *-gsets in V hitting each tetrad of the vertical
sextet with the same parity (i.e. the parity subgroup
E, (see pe 27)) and the sextet group in X <for the vertical

sextet.
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" Sextet~line Orbit 2 :

27.26565 cosets, representative

c5=§( 0 x x :x,y,zeGF(Z))gf1(‘. = )
+Z X4y Xty 3 .‘:

Stabilizer shape 2"’.25(33 X'S,) generated by
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T
— .
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o] ) ee
o
== [;—ﬁx:
_ XL

(continued on
next page)
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Regular-Involution Orbit F

210.31878 cosets, representative Cyo = Cge (€T <T—|-©
2
X
Stabilizer shape 21.26PGL2(5) generated by
M [ (E)
ys -8 e
S SRR E X
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e
by o
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P T i 0BT =
._*:k o&ﬁo. x
— 2
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° X I
28
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o 2 —
1oa] Lfegeoo) o],
0ol uwwo
00 i WwoO
‘|000(
‘O-Ot'::\j [- %] ‘-—'X'// on H‘S Moc-)
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Trio-sextet orbit N :

2”.26565 cosets, representative - I( 0 x x )»
X 42 X4y Xty

Stabilizer shape 20.26.3(2 b ¢ 84) generated by

- M (H)
R 553,
] )

¥ bl Sotl
HA'E 00w,

P
N
K
Wil
X ()
Hnb

X
IR
1y
b
llii'.
=~ X
L I

g

S = |
4 === ~1 28
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= | 2l
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Projective-Line Orbit L

211.40320 cosets, representative ¢,z = Ci e |© —1] .«
13 12 Eq
5@‘ ”
= 11{6"3'20}( 3 10[14 20[12 21|
15 O] 711 5 9
o 313 2| 6 19
16 17118 8j22 1
Stabilizer shape 1.L2(23) generated by
(transformation
for above
numbering )
XX‘ 5 - 4zl L E
‘><¢ z=4 RIS PN el D4
zA

ikl

. 1-62 . - - [
th | z"é...?_ D":::':"o Xl—lx
28

wft x x| B

& k ;?4;55‘ z ”%% @o zﬁ
 ET
B = A

z ~ z+1

(6)(15 17 20 5 w0 13 4 12
14 7021 11 18 22 3 9 19
5101 2 16)

?i -2 (R [RE )
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H-Orbits

Hexad Orbit @ :
77 cosets, representative (D (9 ) =v_ .

- -]
21+12

Stabilizer shape .3.2486 generated by

E and the stabilizer in F of the hexad 9 .

Big-Octad Orbit & :

23.3.330 cosets, representative ¢, = (/X Y 2|:x,y9, z)
1:":; Z] ¢ GF(2)

=2, %1% ]E‘]”TF] )

b

Stabilizer shape 2”9.1.241.3(2) generated by

),

ERR

the centralizer in P of the element ~+«& ( F o

of shape 21.24L4(2) and the subgroup

E<e1>={a VR VY VI VL Y VAN TP YOS S
' A s el are in GF(2); i =0 or 1}
of E of shape 2“'9 °
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Little-Octad Orbit Y

27.330 cosets, representative cg = f1(

ey ( (X Y 2})
X y z
20+6.3.24L3(2) generated by

H (M)

- i

d 4 d4¢
s e e q
NS MR
N M &
N M £
N W%

Stabilizer shape

}
th

(I
=<
HE
H
ot

<21
; ;m‘“"”‘m E{\\l
 F, [T
" S i B L
I3 — P
3 EHREW L]
u lltlfl vl 3
L, :
L ENE
="

S 1A —




153

Duad Orbit A :
' 26.3.231 cosets, representative cg = f1(

Stabilizer shape 21+6.1.2585 generated by
H i (M)

VI = =

\NA\N = —»

- =N
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N NI
N oW
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Big-Syntheme Orbit ‘- :

—

28.3.115‘5 cosets, representative cg = f1('

Stabilizer shape 20*5.1.24(2333) generated by
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ILittle-Syntheme Orbit 2

29.3.1155 cosets, representative cg = f1(

Stabilizer shape 2°*4.1.2%(2 X'5,) generated by

H
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Duad-Hexad Orbit [ :

213.3.1155 cogsets, representative

Ci2

05 oW

TR

€ f1( )
3
42

Stabilizer shape 1.1.24(2 X 34) generated by
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Octad-Pair Orbit X
12

Stabilizer shape 20"'1 .1 .24'84 generated by

" (M)

e3.2310 cosets, representative Ciq = c13.a.x
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Hexagon Orbit A

213.3.462 cosets, representative eqq € f1 ([

+ W

Stabilizer shape 1.1.2%(2 X 3;) generated by
H (M)
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Appendix G

The 2-modular character tables

3M22.2

2.2 s 3M22 and

M,
[

?122 s
"itlas'

of

notation.

in

(see [5] )
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