Lecture Notes in Mathematics

Editors:

J.-M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris

David J. Benson

Modular
 Representation Theory

New Trends and Methods

Second printing

Springer

Author

David J. Benson
Department of Mathematical Sciences
University of Aberdeen
Meston Building
King's College
Aberdeen AB24 3UE
Scotland UK

Library of Congress Cataloging in Publication Data. Benson, David, 1955-. Modular representation theory. (Lecture notes in mathematics; 1081) Bibliography: p. Includes index. 1. Modular representations of groups. 2. Rings (Algebra) I. Title. II. Series: Lecture notes in mathematics (Springer-Verlag); 1081. QA3.L28 no. 1081 [QA171] 510s [512'.2] 84-20207
ISBN 0-387-13389-5 (U.S.)

Mathematics Subject Classification (1980): 20C20

Second printing 2006
ISSN 0075-8434
ISBN-10 3-540-13389-5 Springer-Verlag Berlin Heidelberg New York
ISBN-13 978-3-540-13389-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
(C) Springer-Verlag Berlin Heidelberg 1984

Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt \& Vöckler GbR, Leipzig
Cover design: design \& production GmbH , Heidelberg
Printed on acid-free paper \quad SPIN: $11749158 \quad 41 / 3100 / Y L \quad 543210$

This book grew out of a graduate course which I gave at Yale University in the spring semester of 1983. The aim of this course was to make some recent results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians.

The material covered has remarkably little overlap with the material currently available in textbook form. The reader new to modular representation theory is therefore encouraged also to read, for example, Feit [51], Curtis and Reiner [37,38], Dornhoff [44], Landrock [65], as well as Brauer's collected works [16], for rather different angles on the subject.

The first of the book's two chapters is intended as background material from the theory of rings and modules. The reader is expected already to be familiar with a large proportion of this, and to refer to the rest as he needs it; proofs are included for the sake of completeness.

The second chapter treats three main topics in detail.
(i) Representation rings.
(ii) Almost split sequences and the Auslander-Reiten quiver.
(iii) Complexity and cohomology varieties.

I hope to impress upon the reader that these three topics are closely connected, and to encourage further investigation of their interplay.

The study of modular representation theory was in some sense started by L. E. Dickson [40] in 1902. However, it was not until R. Brauer [16] started investigating the subject that it really got off the ground. In the years between 1935 and his death in 1977, he almost single-handedly constructed the corpus of what is now regarded as the classical modular representation theory. Brauer's main motivation in studying modular representations was to obtain number theoretic restrictions on the possible behaviour of ordinary character tables, and thereby find restrictions upon the structure of finite groups. His work has been a major tool in the classification of the finite simple groups. For a definitive account of modular representation theory from the Brauer viewpoint (as well as some more modern material) see Feit [51].

It was really J. A. Green who first systematically developed the study of modular representation theory from the point of view of
examining the set of indecomposable modules, starting with his paper [54]. Green's results were an indispensable tool in the treatment by Thompson, and then more fully by Dade, of blocks with cyclic defect groups. Since then, many other people have become interested in the study of the modules for their own sake.

In the study of representation theory in characteristic zero, it is customary to work in terms of the character table, namely the square table whose rows are indexed by the ordinary irreducible representations, whose columns are indexed by the conjugacy classes of group elements, and where a typical entry gives the trace of the group element on the representation. Why do we use the trace function? This is because the maps $V \mapsto \operatorname{tr}(\mathrm{~g}, \mathrm{~V})$ are precisely the algebra homomorphisms from the representation ring to \mathbb{C}, and these homomorphisms separate representations. In particular, in this case the representation ring is semisimple. This has the effect that we can compute with representations easily and.effectively in terms of their characters; representations are distinguished by their characters, direct sum corresponds to addition and tensor product corresponds to multiplication. The orthogonality relations state that we may determine the dimension of the space of homomorphisms from one representation to another by taking the inner product of their characters.

How much of this carries over to characteristic p, where $\mathrm{p}||G|$? The first problem is that Maschke's theorem no longer holds; a representation may be indecomposable without being irreducible. Thus the concepts of representation ring $A(G)$ and Grothendieck ring do not coincide. The latter is a quotient of the former by the "ideal of short exact sequences" $A_{0}(G, 1)$. Brauer discovered the remarkable fact that the Grothendieck ring $A(G) / A_{0}(G, l)$ is semisimple, and found the set of algebra homomorphisms from this to \mathbb{C}, in terms of lifting eigenvalues. Thus he gets a square character table, giving information about composition factors of modules, but saying nothing about how they are glued together.

In an attempt to generalize this, we define a species of the representation ring to be an algebra homomorphism $A(G) \rightarrow \mathbb{C}$. Even if we use the set of all species, we cannot distinguish between modules V_{1} and V_{2} when $V_{1}-V_{2}$ is nilpotent as an element of $A(G)$. For some time, it was conjectured that $A(G)$ has no nilpotent elements in general. However, it is now known that $A(G)$ has no nilpotent elements whenever $k G$ has finite representation type (i.e. the Sylow p-subgroups
of G are cyclic, where $p=c h a r(k))$, as well as a few other cases in characteristic two, whilst in general there are nilpotents (see O'Reilly [98] and Zemanek [95, 96] as well as a forthcoming paper by J. Carlson and the author).

The Brauer species (i.e. the species of $A(G)$ which vanish on $\left.A_{o}(G, 1)\right)$ may be evaluated by first restricting down to a cyclic subgroup of order coprime to p, and then lifting eigenvalues. The corresponding concept for a general species is the origin, namely the minimal subgroup through which thespecies factors. We show that the origins of a species are very restricted in shape, namely if H is an origin then $H / O_{P}(H)$ is a cyclic group of order coprime to p, and we show how $O_{p}(H)$ is related to the vertices of modules on which the species does not vanish.

Many of the properties of representation rings and species are governed by the trivial source subring $A(G, T r i v)$, which is a finite dimensional semisimple subring of $A(G)$. Thus we spend several sections investigating trivial source modules, and showing how these modules are connected with block theory. Instead of developing defect groups and Brauer's first main theorem just for group algebras, we develop them for arbitrary permutation modules, and recover the classical case by applying the theory to $G \times G$ acting on the set of elements of G by left and right multiplication. When applied to this case, the orthogonality relations 2.6 .4 become the ordinary character orthogonality relations.

In ordinary character theory, one of the ways in which the structure of the group is reflected in the character table is via the so-called power maps, or Adams operations. Namely there are ring homomorphisms $\psi^{\mathbf{n}}$ on the character ring, with the property that the character value of g on $\psi^{n}(V)$ is the character value of g^{n} on V. These are usually given in terms of the exterior power operations Λ^{n}, and these operations make the character ring into a special lambda-ring. It turns out that for modular representations we must first construct the ring homomorphisms $\psi^{n}: a(G) \rightarrow a(G)$, and then use them to construct operations λ^{n}, which do not agree with the exterior power operations unless $n<p$ (although they do at the level of Brauer characters), and the λ^{n} make $a(G) \otimes Z[1 / p]$ into a special lambda-ring. It then makes sense to use the ψ^{n} to define the powers of a species. As an application of these power maps, we give Kervaire's proof that the determinant of the Cartan matrix is a power of p, rather than using Brauer's characterization of characters.

The next feature of ordinary character theory which we may wish to mimic is the fact that the orthogonality relations may be interpreted as saying that a module is characterized by its inner products with the indecomposable modules. It turns out that this is still true in arbitrary characteristic although the proof is much harder. There are two sensible bilinear forms to use here, which both agree with the usual inner product in the case of characteristic zero. These are

$$
(V, W)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}(V, W)
$$

and

$$
<V, W\rangle=\operatorname{rank} \text { of } \sum_{g_{\varepsilon} G}^{\sum} g \text { on } \operatorname{Hom}_{k}(V, W) .
$$

There are elements u and v of $A(G)$ with $u v=1, u^{*}=v$, $(\mathrm{V}, \mathrm{W})=\langle\mathrm{V} . \mathrm{V}, \mathrm{W}\rangle=\langle\mathrm{V}, \mathrm{u} . \mathrm{W}\rangle$ and $\langle\mathrm{V}, \mathrm{W}\rangle=(\mathrm{u} . \mathrm{V}, \mathrm{W})=(\mathrm{V}, \mathrm{v} . \mathrm{W})$. It is thus easy to pass back and forth between the two inner products, and the second has the advantage that it is symmetric. It is not until 2.18 , after we have introduced the almost split sequences, that we can prove that these inner products are non-singular on $A(G)$. We do this by finding elements $\tau(V) \in A(G)$, one for each indecomposable module V, such that $<V, \tau(W)>$ is non-zero if and only if $V \cong W$. These elements $\tau(V)$ are called atoms, and they are the simple modules and the 'irreducible glues', the latter being related to the almost split sequences. Any module may then be regarded as a formal sum of atoms, namely the composition factors and the glues holding it together.

As an application of the non-singularity theorem, in 2.19 we find the radical of the bilinear forms $\operatorname{dim}_{k} \operatorname{Ext}_{k G}^{n}(-,-)$ on $A(G)$.

In section 2.21 we bring together these results on representation rings to provide an extension of Brauer character theory. We project all the information we have onto a finite dimensional direct summand of $A(G)$ satisfying certain natural conditions. We define tables $T_{i j}$ and $U_{i j}$ called the atom table and representation table, which satisfy certain orthogonality relations. The minimal direct summand satisfying our conditions is the summand spanned by the projective modules. In this case $T_{i j}$ is the table of Brauer characters of irreducible modules, and $U_{i j}$ is the table of Brauer characters of projective indecomposable modules. The analogues in the general case for the centralizer orders in the Brauer theory are certain algebraic numbers which need not be positive or rational.

We have now reached a position where we would like to understand better how to compute inside. $A(G)$. This means that we need to understand the behaviour of tensor products of modules. One of the
most interesting tools we have available for this at the moment is Carison's idea of associating varieties to modules. To each module we associate a homogeneous subvariety of Spec $H^{e v}(G, k)$, the spectrum of the even cohomology ring of G. These varieties $X_{G}(V)$ have the properties that $X_{G}(V \oplus W)=X_{G}(V) U X_{G}(W), X_{G}(V \otimes W)=X_{G}(V) \cap X_{G}(W)$, and if V is indecomposable then the projective variety $\bar{X}_{G}(V)$ corresponding to $X_{G}(V)$ is connected. Thus at the level of representation rings, if X is a homogeneous subset of $\operatorname{Spec} H^{e v}(G, k)$, then the linear span $A(G, X)$ of the modules V with $X_{G}(V) \subseteq X$ is an ideal in A(G).

Generalizing a result of Quillen, Avrunin and Scott [9] have shown how to stratify $X_{G}(V)$ into strata corresponding to restrictions of V to elementary abelian p-subgroups E of G. Thus many properties of modules are controlled by these restrictions. For example, Chouinard's theorem states that V is projective if and only if $V \nmid E$ is projective for all such E.

The dimension of $X_{G}(V)$ is an important invariant of V, called the complexity, $\quad c x_{G}(V)$. It measures the rate of growth of a minimal projective resolution of V, and the Alperin-Evens theorem states that $\mathrm{cx}_{\mathrm{G}}(\mathrm{V})$ is equal to the maximal complexity of $V \downarrow_{E}$ as E ranges over the elementary abelian p-subgroups of G.

All the results in this area seem to depend on two basic results, namely a theorem of Serre (2.23.3) on products of Bocksteins for p-groups, and the Quillen-Venkov lemma (2.23.4). In order to prove and use these results, we need to introduce the Lyndon-Hochschild-Serre spectral sequence, and the Steenrod algebra. The former is introduced in section 2.22 without complete proofs, while the latter is introduced at the beginning of 2.23 with no proofs at all! This is because complete construction of these tools would take us too far away from the purpose of this book. However, we do give a very sketchy outline of the construction of the Steenrod operations in characteristic two in an exercise at the end of 2.23 .

We return to the almost split sequences in sections 2.28 to 2.33 , and show how these may be fitted together to form a locally finite graph (the Auslander-Reiten quiver). We pull off the projective modules, since these often get in the way, and are then left with the stable quiver. This is an example of an abstract stable representation quiver, and the Riedtmann structure theorem (2.29.6) shows that a connected stable representation quiver is uniquely expressible as a quotient of the universal covering quiver of a tree, by an 'admissible' group of automorphisms. This tree is called the tree class of the
connected component of the stable quiver. Using an invariant $\eta(V)$ related to the complexity of V, together with the finite generation of cohomology, we prove Webb's theorem (2.31.2), that for modules for a group algebra, the tree class of a connected component is either a Dynkin diagram (finite or infinite) or a Euclidean diagram. Following Webb, we investigate each of these possibilities in turn, and the results are summarized in 2.32.6.

One surprising corollary of Webb's theorem is given in 2.31.5, which states that if P is a non-simple projective indecomposable $k G-m o d u l e$, then $\operatorname{Rad}(P) / S o c(P)$ falls into at most four indecomposable direct summands. In practice, this module will usually be indecomposable. For the alternating group A_{4} over the field of two elements, there is a projective indecomposable module P such that $\operatorname{Rad}(P) / \operatorname{Soc}(P)$ has three summands, but I know of no examples with four.

We include exercises at the end of most sections. These vary substantially in difficulty, from routine exercises designed to familiarize the reader with the concepts of the text, to outlines of recent related results for which there was not enough room in the text.

We also include an appendix containing descriptions of the representation theory of some particular groups, in order to illustrate some of the concepts in the text and provide the reader with concrete examples.

Finally, it is my pleasure to thank all those who made this book possible. I would particularly like to thank Richard Parker, Peter Landrock, Jon Carlson, Peter Webb and Walter Feit for sharing their insights with me, Yale University for employing me during the period in which I was writing this book, and Mel DelVecchio for her patience in typing the manuscript.

Table of Contents

Section One: Rings and Modules

1.1 The Jacobson Radical 1
1.2 The Wedderburn-Artin Structure Theorem 2
1.3 The Krull-Schmidt Theorem 4
1.4 Cohomology of modules 6
1.5 Idempotents and the Cartan Matrix 11
1.6 Blocks and Central Idempotents 13
1.7 Algebras over a Valuation Ring 15
1.8 A Little Commutative Algebra 18
Section Two: Modules for Group Algebras
2.1 Tensors and Homs; Induction and Restriction 23
2.2 Representation Rings 25
2.3 Relative Projectivity and the Trace Mr. 30
2.4 Inner Products on $A(G)$ 34
2.5 Vertices and Sources 37
2.6 Trivial Source Modules 39
2.7 Defect Groups 45
2.8 The Brauer Homomorphism 49
2.9 Origins of Species 53
2.10 The Induction Formula 55
2.11 Brauer Species 56
2.12 Green Correspondence and the Burry-Carlson Theorem 60
2.13 Semisimplicity of A(G,Triv) 64
2.14 Structure Theorem for Vertices and Origins 67
2.15 Tensor Induction, and Yet Another Decomposition of $A(G)$ 68
2.16 Power Maps on A(G) 72
2.17 Almost Split Sequences 79
2.18 Non-singularity of the Inner Products on $A(G)$ 85
2.19 The Radical of $\mathrm{dim}_{k} E x t_{G}^{n}$ 91
2.20 The Atom Copying Theorem 93
2.21 The Discrete Spectrum of $A(G)$ 93
2.22 Group Cohomology and the Lyndon-Hochschild-Serre Spectral Sequence $H^{p}\left(G / N, H^{q}(N, V)\right) \Rightarrow H^{p+q}(G, V)$ 99
2.23 Bockstein Operations and the Steenrod Algebra 112
2.24 Complexity 121
2.25 Varieties Associated to Modules 127
2.26 The Quillen Stratification 132
2.27 What varieties can occur? 140
2.28 Irreducible maps and the Auslander-Reiten Quiver 145
2.29 The Riedtmann Structure Theorem 149
2.30 Dynkin and Euclidean Diagrams 154
2.31 The Tree Class of a Connected Component of the Stable Quiver 158
2.32 Weyl groups and Coxeter transformations 164
2.33 Galois descent on the stable quiver 167
Appendix 173
References 221
Index 226

All rings have an identity element, although homomorphisms need not take identity elements to identity elements.

Maps are written on the right.
All groups are finite, and all permutation representations are on finite sets.
D.C.C. denotes the descending chain condition or Artinian condition on right ideals of a ring, or on submodules of a module.
A.C.C. denotes the ascending chain condition or Noetherian condition on right ideals of a ring, or on submodules of a module.

- marks the end of a proof.
\leftrightarrow denotes a monomorphism, and $\longrightarrow>$ denotes an epimorphism.
\leftrightarrow denotes an inclusion.
\mapsto denotes the action of a map on an element.
If H and K are subgroups of a group G, then Σ will HgK denote a sum over a set of $H-K$ double coset representatives g in G.
$H \leq G$ means "H is a subgroup of G ", and $H<G$ means 'H is a proper subgroup of G ". $N \leq G$ means " N is a normal subgroup of G".

Note that the index is also an index of notation.

1.1 The Jacobson Radical

Let Λ be a ring and V a Λ-module. The socle of V is the sum of all the irreducible submodules of V, and is written Soc(V). The radical of V is the intersection of all the maximal submodules of V, and is written $\operatorname{Rad}(V) . V$ is said to be completely reducible if $V=\operatorname{Soc}(V)$. The head of V is $V / \operatorname{Rad}(V)$.

1.1.1 Lemma

If V satisfies D.C.C. then V is completely reducible if and only if $\operatorname{Rad}(V)=0$. In this case, V is a finite direct sum of irreducible modules.

The proof is an exercise. \quad
$J(\Lambda)$, the Jacobson radical of Λ, is defined to be the intersection of the annihilators of the irreducible Λ-modules, i.e. the intersection of the maximal right ideals of Λ. Let Λ_{Λ} denote Λ as a right Λ-module (called the regular representation of Λ). Then $J(\Lambda)=\operatorname{Rad}\left(\Lambda_{\Lambda}\right)$. We say that Λ is semisimple if $J(\Lambda)=0$. Note that $J(\Lambda / J(\Lambda))$ is always zero.

1.1.2 Lemma

Any right ideal of Λ is contained in a maximal right ideal of Δ.

Proof

Use Zorn's lemma and the fact that Λ has an identity element. व
1.1.3 Lemma

If $a \in J(\Lambda)$ then $1-a$ has a right inverse in Λ.
Proof
$1=a+(1-a)$, and so $\Lambda=J(\Lambda)+(1-a) \Lambda$. If (l-a) $\Delta \neq \Lambda$, choose M a maximal right ideal with (1-a) $\Lambda \subseteq M$ (l.l.2). Then $J(\Lambda) \subseteq M$ also, so $\Lambda \subseteq M$, a contradiction. \quad
1.1.4 Lemma (Nakayama)

If W is a finitely generated Λ-module and $W . J(\Lambda)=W$ then $\mathrm{W}=0$.

Proof

Suppose $W \neq 0$. Choose w_{1}, \ldots, w_{n} generating W with n minimal. Since $W \cdot J(\Lambda)=W$, we can write $w_{n}=\sum_{i=1}^{n} w_{i} a_{i}$ with $a_{i} \in J(\Lambda)$. By l.1.3, $1-a_{n}$ has a right inverse b in Δ. Then $w_{n}\left(l-a_{n}\right)=\sum_{i=1}^{n-1} w_{i} a_{i}$, and so $w_{n}=\left(\sum_{i=1}^{n-1} w_{i} a_{i}\right) \cdot b$. This contradiction
proves the lemma. \quad.

1.1.5 Lemma

If Λ is semisimple and satisfies D.C.C. then every Λ-module is completely reducible.

Proof
$\operatorname{Rad}\left(\Lambda_{\Lambda}\right)=0$, so by l.l.l, Λ_{Λ} is completely reducible. Thus any module is a quotient of a direct sum of completely reducible modules, and is hence completely reducible. \quad

1.1.6 Theorem

If Λ satisfies D.C.C. then
(i) $J(\Lambda)$ is nilpotent.
(ii) If V is finitely generated then V satisfies A.C.C. and D.C.C. (i.e. V has a composition series).
(ii1) Λ satisfies A.C.C.
Proof
(i) By D.C.C., for some $n, J(\Lambda)^{n}=J(\Lambda)^{2 n}$, and if $J(\Lambda)^{n} \neq 0$, we may choose a minimal right ideal I with $I J(\Lambda)^{n} \neq 0$. Choose $a \in I$ with $a J(\Lambda)^{n} \neq 0$. Then $I=a J(\Lambda)^{\mathrm{n}}$ by minimality of I, and so for some $x \in J(\Lambda)^{n}$, $a=a x$. But then $a(1-x)=0$, and so $a=0$ by 1.1.3.
(ii) Let $V_{i}=V . J(\Lambda)^{i}$. Then V_{1} / V_{1+l} is anninilated by $J(\Lambda)$, and is hence completely reducible by l.l.5. Since V is finitely generated it satisfies $D . C . C$. and hence so does V_{i} / V_{i+1}. Thus by l.l.l, V_{i} / V_{i+l} has a composition series, and hence so does V.
(iii) follows by applying (ii) to Λ_{Λ}. $口$
1.2 The Wedderburn-Artin Structure Theorem
1.2.1 Lemma (Schur)

If V and W are simple Λ-modules, then for $V \nsubseteq W$, $\operatorname{Hom}_{\Lambda}(V, W)=0$, while $\operatorname{Hom}_{\Lambda}(V, V)=\operatorname{End}_{\Lambda}(V)=E_{\Lambda}(V)$ is a division ring. \quad a

An idempotent in Λ is a non-zero element e with $e^{2}=e$.
1.2.2. Lemma
(i) If V is a Λ-module and e is an idempotent in Λ then $V . e \cong \operatorname{Hom}_{\Lambda}(e \Lambda, V)$.
(ii) $e \Lambda e \cong \operatorname{End}_{\Lambda}(e \Lambda)$.

Proof

(i) Define $f_{1}: V e \rightarrow \operatorname{Hom}_{\Lambda}(e \Lambda, V)$ by $f_{1}(v e):$ ea \mapsto vea and $f_{2}: \operatorname{Hom}_{\Lambda}(e \Lambda, V) \rightarrow V e$ by $f_{2}: \lambda H \lambda(e)$. Then f_{1} and f_{2} are inverse module homomorphisms.
(ii) follows from (i). व

1.2.3 Theorem

Let V be a completely reducible Λ-module with a composition series. Write $V=V_{1} \oplus \ldots \oplus V_{r}$, with each V_{1} a direct sum of n_{i} modules $U_{i l} \oplus \ldots \oplus U_{i n_{i}}$ isomorphic to a simple module U_{i}, and $U_{i} \not \approx U_{j}$ if $i \neq j$. Let $\Delta_{i}=\operatorname{End}_{\Lambda}\left(U_{i}\right)$. Then Δ_{i} is a division ring, $\operatorname{End}_{\Lambda}\left(V_{i}\right) \cong \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right)$, and $E n d_{\Lambda}(V)=\underset{i}{\oplus} \operatorname{End}_{\Lambda}\left(V_{i}\right)$ is semisimple. Proof
By 1.2.1, Δ_{i} is a division ring. Choose once and for all isomorphisms $\theta_{i j}: U_{i j} \rightarrow U_{i}$. Now given $\lambda \in \operatorname{End}_{\Lambda}\left(V_{i}\right)$, we define $\lambda_{j k} \in \Delta_{i}$ as the composite map

The map $\lambda \rightarrow\left(\lambda_{j k}\right)$ is then an injective homomorphism
$\operatorname{End}_{\Lambda}\left(V_{i}\right) \rightarrow \operatorname{Mat}_{n_{i}}\left(\Delta_{i}\right)$. Conversely, given $\left(\lambda_{j k}\right)$, we can construct λ as the sum of the composite endomorphisms
$V_{i} \longrightarrow U_{i j} \underset{\theta_{i j}-1}{\cong} U_{i} \longrightarrow U_{i k} \xlongequal[\lambda_{i k}]{\cong} U_{i k} \longrightarrow$
Finally, $\operatorname{End}_{\Lambda}(V)=\underset{i}{\oplus} \operatorname{End}_{\Lambda}\left(V_{i}\right)$ since if $i \neq j$, l.2.l implies that $\operatorname{Hom}_{\Lambda}\left(\mathrm{V}_{\mathbf{i}}, \mathrm{V}_{\mathrm{j}}\right)=0 . \quad$ 口
1.2.4 Theorem (Wedderburn-Artin Structure Theorem)

Let Λ be a semisimple ring satisfying D.C.C. Then r
$\Lambda=\underset{i=1}{\oplus} \Lambda_{1}, \quad \Lambda_{1} \cong \operatorname{Mat}_{n_{1}}\left(\Delta_{i}\right), \quad \Delta_{i}$ is a division ring, and the Λ_{i} are uniquely determined. Λ has exactly r isomorphism classes of irreducible modules V_{i} with $\operatorname{dim}_{\Delta_{i}}\left(V_{i}\right)=n_{i}$. If Λ is simple then $\Lambda \cong \operatorname{Mat}_{n}(\Delta)$.

Proof

By l.l.5, Λ_{Λ} is completely reducible. By l.2.2 with $e=1$, $\Lambda \cong \operatorname{End}_{\Lambda}\left(\Lambda_{\Lambda}\right)$. The result now follows by applying 1.2.3 to Λ_{Λ}.

Remarks

(i) Wedderburn has shown that every division ring with finitely many elements is a field.
(1i) If Λ is a finite dimensional algebra over a field k,
then each Δ_{i} for $\Lambda / J(\Lambda)$ has k in its centre. If for each 1 , we have $\Delta_{i}=k$, then k is called a splitting field for Λ. If k_{1} is an extension field of k, regarding $V \otimes k_{l}$ as a $\Gamma \underset{k}{\otimes} k_{1}$-module, we have $\operatorname{End}_{k_{1}}\left(V \underset{k}{\otimes} k_{1}\right) \cong \operatorname{End}_{k}(V) \underset{k}{\otimes} k_{1}$. Thus if k is a splitting field for Δ, every extension k_{l} of k is a splitting field for $\Gamma \underset{k}{\otimes} k_{l}$. An algebraically closed field is a splitting field for any k algebra over k of finite dimension.

Exercises

1. Suppose Λ is an n-dimensional semisimple commutative algebra over \mathbb{C}. Show that the number $f(n)$ of subalgebras of Λ (containing the identity element) satisfies $f(l)=1$ and $f(n+1)=f(n)+n \cdot f(n-1)+\binom{n}{2} \cdot f(n-2)+\ldots+n \cdot f(1)+1$. Find $f(7)$.
2. Suppose k_{1} and k_{2} are finfte extensions of k with k_{1} separable. Show that $k_{1}{ }_{k}^{*} k_{2}$ is semisimple. Show that if Λ is a finite dimensional semisimple algebra over k and k_{l} is a finite separable extension of k then $\Lambda \underset{k}{\otimes} k_{I}$ is semisimple.

1.3 The Krull-Schmidt Theorem

A ring R is said to be a local ring if the non-units in R form an ideal.

A Λ-module V is said to have the unique decomposition property $1 f$
(i) V is a direct sum of a finite number of indecomposable modules, and
(ii) Whenever $V=\underset{i=1}{m} U_{i}=\stackrel{n}{\oplus}{ }_{i=1}^{\oplus} V_{i}$ with each U_{i} and each $V_{i}(\neq 0)$ indecomposable, then $m=n$ and after reordering if necessary, $U_{i} \cong V_{1}$.

A ring Δ is said to have the unique decomposition property if every finitely generated Λ-module has.

1.3.1 Theorem

Suppose V is a finite sum of indecomposable A-modules V_{i} with the property that the endomorphism ring of each V_{i} is a local ring. Then V has the unique decomposition property.

Proof

Let $V=\underset{i=1}{m} U_{i}=\underset{i=1}{\oplus} V_{i}$ and work by induction on n. Assume $n>1 .{ }^{\prime}$ Let
and

$$
\begin{aligned}
& a_{i}: U_{i} c \longrightarrow V \longrightarrow v_{1} \\
& \beta_{i}: V_{1} \longrightarrow V \longrightarrow u_{i} .
\end{aligned}
$$

Then ${ }^{1} V_{1}=\Sigma \beta_{i} \alpha_{i}: V_{1} \rightarrow V_{1}$. Since End $\left(V_{1}\right)$ is a local ring, some $\beta_{1} a_{i}$ is a unit. Renumber so that $\beta_{1}{ }^{a_{1}}$ is a unit. Then $U_{1} \cong V_{1}$. Consider the map $\mu=1-\theta$, where

Then $U_{1} \mu=V_{1}$, and $\left.\underset{1=2}{(\underset{i}{\oplus}} \mathrm{V}_{i}\right) \mu=\underset{1=2}{\oplus} V_{i}$, so μ is onto. If $w \mu=0$, then $w=w \theta$ and so $w \in \underset{i=2}{\oplus} V_{i}$. But then $w \theta=0$.

Thus μ is an automorphism of V with $U_{1} \mu=V_{1}$, and so
$\underset{i=2}{\oplus} U_{i}=V / U_{1} \cong V / V_{I}=\stackrel{\underset{i=2}{\oplus} V_{i} . \quad \square}{\square}$
1.3.2 Lemma (Fitting)

Suppose V has a composition series and $f \in E n d_{\Lambda}(V)$. Then for large enough $n, V=\operatorname{Im}\left(f^{n}\right) \oplus \operatorname{Ker}\left(f^{n}\right)$.

Proof
Choose n so that $f^{n}: V f^{n} \rightarrow V f^{2 n}$ is an isomorphism. If $u \in V$, write $u f^{n}=v f^{2 n}$. Then $u=v f^{n}+\left(u-v f^{n}\right) \in \operatorname{Im}\left(f^{n}\right)+\operatorname{Ker}\left(f^{n}\right)$. If $u f^{n} \in \operatorname{Im}\left(f^{n}\right) \cap \operatorname{Ker}\left(f^{n}\right)$ then $u f^{2 n}=0$, and so $u f^{n}=0$. \quad.

1.3.3 Lemma

Suppose V is indecomposable and has a composition series. Then End $_{\Lambda}(V)$ is a local ring.

Proof

Let $E=E_{\Lambda}(V)$, and choose I a maximal right ideal. Suppose $a \leqslant I$. Then $E=a E+I$. Write $l=a \lambda+\mu, \lambda \in E, \mu \in I$. Since μ is not an isomorphism, 1.3 .2 implies that $\mu^{n}=0$ for some n. Thus $a \lambda\left(1+\mu+\ldots+\mu^{n-1}\right)=(1-\mu)\left(1+\ldots+\mu^{n-1}\right)=1$, and so a is invertible. \square
1.3.4 Theorem (Krull-Schmidt)

Suppose Λ satisfies D.C.C. Then Λ has the unique decomposition property.

Proof
Suppose V is a finitely generated indecomposable Λ-module. Then by 1.1 .6 V has a composition series, and so by 1.3 .3 , End (V) is a local ring. The result now follows from l.3.1. a

1.4 Cohomology of Modules

A module P is said to be projective if given two modules V and W and maps $\lambda: P \rightarrow V$ and $\mu: W \rightarrow V$ with μ epi, there is a map $v: P \rightarrow W$ such that

commutes.

A module I is injective if given two modules V and W and $\operatorname{maps} \quad \lambda: V \rightarrow I$ and $\mu: V \rightarrow W$ with μ mono, there is a map $v: W \rightarrow I$ such that

1.4 .1

Lemma
The following are equivalent:
(i) P is projective.
(i1) Every epimorphism $\lambda: V \rightarrow P$ splits.
(i11) P is a direct summand of a free module. \quad 口
1.4.2 Lemma
(1) Suppose $0 \longrightarrow W_{1} \longrightarrow U_{1} \xrightarrow{\sigma} V \longrightarrow 0$ and
$0 \longrightarrow \mathrm{~W}_{2} \longrightarrow \mathrm{P}_{2} \longrightarrow \mathrm{~V} \longrightarrow 0$ are short exact sequences, with P_{2} projective, and suppose σ factors through a projective module. Then $W_{1} \oplus \mathrm{P}_{2} \cong \mathrm{U}_{1} \oplus \mathrm{~W}_{2}$ (This is needed in the proof of 2.27.1).
(11) (Schanuel's lemma) Suppose $0 \longrightarrow W_{1} \longrightarrow P_{I} \longrightarrow V \longrightarrow 0$ and $0 \longrightarrow \mathrm{~W}_{2} \longrightarrow \mathrm{P}_{2} \longrightarrow \mathrm{~V} \longrightarrow 0$ are short exact sequences with P_{1} and P_{2} projective. Then $W_{1} \oplus P_{2} \cong P_{1} \oplus W_{2}$.

Proof
(i) We construct a pullback diagram

Since $(1-\alpha \beta \gamma \delta) \sigma=0$, we may define

$$
\theta=a \beta \gamma+(1-a \beta \gamma \delta) \varepsilon^{-1} \zeta .
$$

Then θ is a splitting for δ, and so

$$
W_{1} \oplus P_{2} \cong X \cong U_{1} \oplus W_{2}
$$

(ii) This follows from (i). a

A map $\quad \lambda: U \rightarrow V$ is called an essential epimorphism if no proper submodule of U is mapped onto V by λ, and it is called an essential monomorphism if every non-zero submodule of V has a nonzero intersection with $\operatorname{Im}(f)$. A projective cover for V is a projective module P together with an essential epimorphism $\lambda: P \rightarrow V$. An injective hull for V is an injective module I together with an essential monomorphism $\mu: V \rightarrow I$. The following theorem contains the necessary results about injective hulls and projective covers.

1.4.3. Theorem

(i) Projective covers, if they exist, are unique up to an isomorphism which commutes with the essential epimorphisms.

(ii) Injective hulls always exist, and are unique up to an isomorphism which commutes with the essential monomorphisms.

(iii) The following conditions on a ring Λ are equivalent : (a) Every finitely generated Δ-module has a projective
cover,
and (b) $\Lambda / J(\Lambda)$ satisfies D.C.C., and any decomposition of $\Lambda / J(\Lambda)$ as a direct sum of Λ-modules (c.f. 1.2.4) lifts to a decomposition of Λ_{Λ}.
(Note: a ring satisfying condition (b) is called semiperfect). Proof.
(i), (ii) and (iii) (b) \Rightarrow (a) can be found in Curtis and Reiner [38] §6. We shall not need (iii) (a) = (b). a

Note
We shall see in section 1.5 that if Λ satisfies D.C.C. then Λ is semiperfect. In section 1.7 we shall see that a finitely generated algebra over a complete rank one discrete valuation ring is also semiperfect.

We write P_{V} for the projective cover of a module V, and I_{V} for its injective hull. We write $\Omega(\mathrm{V})=\operatorname{Ker}\left(\mathrm{P}_{\mathrm{V}} \rightarrow \mathrm{V}\right)$ and $\Omega^{-1}(\mathrm{~V})=$ \% $(\mathrm{V})=\operatorname{Coker}\left(\mathrm{V} \rightarrow \mathrm{I}_{\mathrm{V}}\right)$.

Given a module V, a projective resolution of V is an infinite exact sequence
$\ldots \longrightarrow \mathrm{P}_{\mathrm{n}} \longrightarrow \cdots \longrightarrow \mathrm{P}_{2} \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{~V} \longrightarrow 0$ with each P_{i} projective.

It is clear that every module has a projective resolution, since every module is a quotient of a free module. If W is another module, we get long sequences (not necessarily exact)
and $0 \longrightarrow \operatorname{Hom}_{\Lambda}(V, W) \longrightarrow \operatorname{Hom}_{\Lambda}\left(\mathrm{P}_{1}, W\right) \xrightarrow[\delta_{2}]{ } \operatorname{Hom}_{\Lambda}\left(\mathrm{P}_{2}, W\right) \longrightarrow \delta_{3} \ldots$
$\cdots \mathrm{P}_{2} \underset{\Delta}{\otimes} \mathrm{~W} \underset{\partial_{2}}{ } \mathrm{P}_{1}{ }_{\Lambda}^{*} \mathrm{~W} \xrightarrow[\partial_{1}]{ } \mathrm{V} \underset{\Lambda}{\otimes W} \longrightarrow 0$
with $\delta_{i} \delta_{i+1}=0$ and $\partial_{i+1} \partial_{i}=0$. We define
$\operatorname{Ext}_{\Lambda}^{i}(V, W)=\operatorname{Ker}\left(\delta_{i+1}\right) / \operatorname{Im}\left(\delta_{i}\right)$
and

$$
\operatorname{Tor}_{i}^{\Lambda}(V, W)=\operatorname{Ker}\left(\partial_{i}\right) / \operatorname{Im}\left(\partial_{i+1}\right) \quad(i \geq 1)
$$

The following facts are well known from homological algebra (see for example Cartan and Eilenberg 'Homological Algebra' or S. Maclane, 'Homological Algebra'; see also section 2.22):
(i) The functors $\operatorname{Ext}_{\Lambda}^{1}$ and $\operatorname{Tor}_{1}^{\Lambda}$ are independent of the choice of projective resolution, in the sense that given two different projective resolutions of V, we get natural isomorphisms between the two functors Ext ${ }_{\Lambda}^{i}$ so defined, and Iikewise for $\operatorname{Tor}_{i}^{\Lambda}$.
(ii) A short exact sequence $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0$ gives rise to
long exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{\Lambda}\left(V_{3}, W\right) \longrightarrow \operatorname{Hom}_{\Lambda}\left(V_{2}, W\right) \longrightarrow \operatorname{Hom}_{\Lambda}\left(V_{1}, W\right) \longrightarrow \\
&\left.\operatorname{Ext}_{\Lambda}^{1}\left(V_{3}, W\right) \longrightarrow V_{2}, W\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(V_{1}, W\right) \\
& \operatorname{Ext}_{\Lambda}^{2}\left(V_{3}, W\right) \longrightarrow \cdots
\end{aligned}
$$

and

(1ii) A short exact sequence $0 \rightarrow W_{1} \rightarrow W_{2} \rightarrow W_{3} \rightarrow 0$ gives rise to a long exact sequence

$$
\begin{aligned}
0 & \left.\rightarrow \operatorname{Hom}_{\Lambda}\left(V, W_{1}\right) \longrightarrow \operatorname{Hom}_{\Lambda}\left(V, W_{2}\right) \longrightarrow \operatorname{Hom}_{\Lambda}\left(V, W_{3}\right)\right) \\
& \left.\operatorname{Ext}_{\Lambda}^{1}\left(V, W_{1}\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(V, W_{2}\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(V, W_{3}\right)\right) \\
& \rightarrow \operatorname{Ext}_{\Lambda}^{2}\left(V, W_{1}\right) \longrightarrow
\end{aligned}
$$

(1v) The elements of $\operatorname{Ext}_{\Lambda}^{l}(V, W)$ may be interpreted as equivalence classes of short exact sequences $0 \rightarrow V \rightarrow X \rightarrow W \rightarrow 0$, two such being equivalent if there is a map of short exact sequences

Note that by the five-lemma, the middle map $X \rightarrow X^{\prime}$ is an isomorphism. See also [67] III. 5 for a similar interpretation of Ext \boldsymbol{E}_{\wedge}, $i>1$.

We shall study cohomology for group algebras in more detail in section 2.22 ; what we have described here will suffice for our needs until then.

Now let Λ be an algebra over a field k. If V is a right Λ-module, then $V^{*}=\operatorname{Hom}_{k}(V, k)$ has a natural structure as a left Λ-module, and vice-versa. If V is finite dimensional as a vector space over k, then there is a natural isomorphism ($\left.V^{*}\right)^{*} \cong V$. If V is injective, then V^{*} is projective, and vice-versa, since duality reverses all arrows.

In general, projective and injective modules for a ring are very different. However, there is a special situation under which they are the same. We say a finite dimensional algebra Λ over a field k is Frobenius if there is a linear map $\lambda: \Lambda \rightarrow k$ such that
(1) Ker (λ) contains no non-zero left or right ideal.

We say that Λ is symmetric if it satisfies (i) together with
(ii) For all $a, b \varepsilon \Lambda, \quad \lambda(a b)=\lambda(b a)$.
1.4.4 Proposition

Let Λ be a Frobenius algebra over k. Then
(i) $(\Lambda \Lambda)^{*} \cong \Lambda_{\Lambda}$.
(ii) The following conditions on a finitely generated Λ-module are equivalent.
(a) V is projective
(b) V is injective
(c) V^{*} is projective
and
(d) V^{*} is injective.

Proof

(i) We define a linear map $\varphi: \Lambda_{\Lambda} \longrightarrow(\Lambda \Lambda)^{*}$ via $\mathrm{X} \varphi: \mathrm{y} \rightarrow \lambda(\mathrm{xy})$. Then if $\gamma \in \Lambda, \mathrm{y}[(\mathrm{X} \varphi) \varphi]=(\gamma \mathrm{y})(\mathrm{X} \varphi)=\lambda(\mathrm{x} \varphi \mathrm{y})=$ $y[(x Y) \varphi]$, so φ is a homomorphism. By the defining property of λ, φ is injective, and hence surjective.
(ii) It follows from (i) that V is projective if and only if V^{*} is projective, so that (a) and (c) are equivalent. W. have already remarked that $(a) \Leftrightarrow(d)$ and (b) \Leftrightarrow (c) hold for all finite dimensional algebras. a

Remarks
(i) If Δ is the group algebra of a finite group (see 2.1), then Λ is symmetric, with $\lambda: \Sigma a_{g} . g \rightarrow a_{1}$. Then since $\lambda\left(\left(\Sigma a_{g} \cdot g\right) \cdot g^{-l}\right)=a_{g}$, property (i) is satisfied. Property (ii) is clear.
(ii) If Λ is Frobenius, and V has no projective direct summands, then $\mathrm{P}_{\mathrm{V}} \cong I_{\Omega(\mathrm{V})}$, and so $\because(\Omega(\mathrm{V})) \cong \mathrm{V}$. Similarly $\Omega(\%(V)) \cong V$.
(iii) See the exercise to 1.5 for a property of symmetric algebras not shared by all Frobenius algebras.

Exercises

1. Let Δ be a finite dimensional division ring over its centre K. Show that $[\Delta, \Delta]=\operatorname{span}(\{a b-b a \mid a, b \varepsilon \Delta\})$ is properly contained in Δ (Hint: let K_{1} be a maximal subfield of Δ. Then $\Delta \underset{K}{\otimes} K_{1} \cong \operatorname{Mat}_{n}\left(K_{1}\right)$, and so $\left.\left[\Delta \underset{K}{\otimes} K_{1}, \Delta \underset{K}{\otimes} K_{l}\right] \underset{F}{\varsubsetneqq} \underset{K}{\otimes} K_{l}\right)$. Deduce that every finite dimensional semisimple algebra over a field k is symmetric.
2. Show that if V and W are finitely generated \mathbb{Z}-modules, then $\operatorname{Tor}_{n}^{\mathbb{Z}}(V, W)=0$ for $n>1$. Find $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / \mathrm{m} \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$.

1.5 Idempotents and the Cartan Matrix

Recall that an idempotent in Λ is a non-zero element e with $e^{2}=e$. If e is an idempotent than so is l-e. Two idempotents e_{1} and e_{2} are said to be orthogonal if $e_{1} e_{2}=e_{2} e_{1}=0$. An idempotent e is primitive if we cannot write $e=e_{1}+e_{2}$ with e_{1} and e_{2} orthogonal idempotents.

There is a one-one correspondence between expressions
$l=e_{1}+\ldots+e_{n}$ with the e_{i} orthogonal idempotents, and direct sum decompositions $\Lambda_{\Lambda}=\Lambda_{I} \oplus \ldots \oplus \Lambda_{n}$ of the regular representation, given by $\Lambda_{i}=e_{i} \Lambda$. Under this correspondence, e_{i} is primitive if and only if Λ_{i} is indecomposable.

1.5.1 Theorem (Idempotent Refinement)

Let N be a nilpotent ideal in Λ, and let e be an idempotent in Λ / N. Then there is an idempotent f in Λ with $e=\bar{f}$.

Proof

We define idempotents $e_{i} \varepsilon \Lambda / N^{i}$ inductively as follows. Let $e_{1}=e$. For $i>1$, let a be any element of Λ / N^{i} with image e_{i-1} in Λ / N^{i-1}. Then $a^{2}-a \varepsilon N^{i-1} / N^{i}$, and so $\left(a^{2}-a\right)^{2}=0$. Let $e_{i}=3 a^{2}-2 a^{3}$. Then e_{i} has image e_{1-1} in Λ / N^{1-1}, and

$$
\begin{aligned}
e_{1}^{2}-e_{i} & =\left(3 a^{2}-2 a^{3}\right)\left(3 a^{2}-2 a^{3}-1\right) \\
& =-(3-2 a)(1+2 a)\left(a^{2}-a\right)^{2}=0 .
\end{aligned}
$$

If $N^{r}=0$, we take $f=e_{r}$.

1.5.2 Corollary

Let N be a nilpotent ideal in Λ. Let $1=e_{1}+\ldots+e_{n}$ with the e_{i} primitive orthogonal idempotents in Λ / N. Then we can write $l=f_{1}+\ldots+f_{n}$ with the f_{i} primitive orthogonal idempotents in Λ and $\bar{f}_{1}=e_{i}$.

Proof
Define f_{1}^{\prime} Inductively as follows. $f_{1}^{\prime}=1$, and for $i>1, f_{i}^{\prime}$ is any lift of $e_{i}+e_{i+1}+\ldots+e_{n}$ to an idempotent in the ring $f_{i-1}^{\prime} \Lambda f_{i-1}^{\prime}$. Then $f_{i}^{\prime} f_{i+1}^{\prime}=f_{i+1}^{\prime}=f_{i+1}^{\prime} f_{i}^{\prime}$. Let $f_{i}=f_{i}^{\prime}-f_{i+1}^{\prime}$. Clearly $\bar{f}_{i}=e_{i}$. If $j>1, f_{j}=f_{i+1}^{\prime} f_{j} f_{i+1}^{\prime}$, and so $f_{1} f_{j}=\left(f_{i}^{\prime}-f_{i+1}^{\prime}\right) f_{i+1}^{\prime} f_{j} f_{i+1}^{\prime}=0$. Similarly $f_{j} f_{i}=0$. \quad.

Now for the rest of section l.5, suppose Λ satisfies D.C.C. Then by the Wedderburn-Artin structure theorem (1.2.4), we may write $\Lambda / J(\Lambda)=\underset{1=1}{r} \Lambda_{1}, \Lambda_{1} \cong \operatorname{Mat}_{n_{i}}\left(\Delta_{1}\right)$. Let V_{i} be the irreducible
Λ-module corresponding to Λ_{i}, so that V_{i} is an n_{i}-dimensional module for Δ_{i}. Then $\Delta_{i}=V_{i l} \oplus \ldots \oplus V_{i n_{i}}$ with $V_{i j} \cong V_{i}$. Corresponding to this decomposition of $\Lambda / J(\Lambda)$ we have a primitive orthogonal idempotent decomposition $l=e_{1}+\ldots+e_{n}$. By l.5.2 we may lift this to a primitive orthogonal idempotent decomposition $1=f_{1}+\ldots+f_{n}$ in Δ, since $J(\Lambda)$ is nilpotent by l.l.6. Letting $\Xi_{1}=f_{i} \Lambda$, we have $\Lambda_{\Lambda}=\Xi_{1} \oplus \ldots \Xi_{n}$. By the Krull-Schmidt theorem (1.3.5) and 1.4.l, every projective indecomposable module is isomorphic to one of the Ξ_{1}. We say that the Ξ_{i} are the principal indecomposable modules for Λ (PIMs for short).

From this description, we see that $\Xi_{i} / \Xi_{i} J(\Lambda)$ is an irreducible module, and so Ξ_{1} has a unique maximal submodule. Moreover, the definition of a projective module ensures that any isomorphism $\Xi_{i} / \Xi_{i} J(\Lambda) \cong \Xi_{j} / \Xi_{j} J(\Lambda)$ lifts to a pair of maps $\Xi_{i} \rightarrow \Xi_{j}$ and $\Xi_{j} \rightarrow \Xi_{i}$. The composite is not nilpotent, so by Fitting's lemma (1.3.2) 1t is an isomorphism. Thus there are as many non-isomorphic PIMs as there are irreducible modules. If V_{i} are the irreducibles, write P_{i} for the corresponding PIMs. Thus we have shown that

$$
\Delta_{\Lambda} \cong \stackrel{r}{\oplus} \underset{i=1}{\oplus} n_{i} P_{i} .
$$

In particular, we have shown that if Λ satisfies D.C.C. then Λ is semiperfect, and so every module has a projective cover (see 1.4.3), namely the unique projective module with isomorphic head.

We say that two primitive idempotents e and e^{\prime} in Λ
are equivalent if they lie in the same Wedderburn component of $\Lambda / J(\Lambda)$, or equivalently if e_{Λ} and $e^{\prime} \Lambda$ are isomorphic PIMs.

1.5.3 Lemma

$$
\operatorname{Hom}_{\Lambda}\left(P_{i}, V_{j}\right)=\left\{\begin{array}{ll}
\Delta_{i} & \text { if } 1=j \\
0 & \text { otherwise }
\end{array} .\right.
$$

Proof

Every homomorphism from P_{1} to a simple module factors through $V_{i} . \quad$ o

1.5.4 Lemma

$\operatorname{Dim}_{\Delta_{i}}$ Hom $_{\Lambda}\left(P_{1}, V\right)$ is the multiplicity of V_{1} as a composition factor of V.

Proof

Use 1.5.3 and induction on the composition length of V. An exact sequence $0 \rightarrow V^{\prime} \rightarrow V \rightarrow V_{j} \rightarrow 0$ induces an exact sequence $0 \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{i}, V^{\prime}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{i}, V\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{1}, V_{j}\right) \rightarrow 0 . \quad$.

The Cartan invariants of Λ are defined as

$$
\begin{aligned}
c_{i j} & =\operatorname{dim}_{\Delta_{1}} \operatorname{Hom}_{\Lambda}\left(P_{i}, P_{j}\right) \\
& =\text { multiplicity of } V_{i} \text { as a composition factor } \\
& \quad \text { of } P_{j} .
\end{aligned}
$$

The matrix $c_{i j}$ is called the Cartan matrix of the ring Λ. In general, the matrix $c_{i j}$ may be singular (e.g. $\Lambda=\mathbb{F}_{3} S_{3} / J\left(\mathbb{F}_{3} S_{3}\right)^{2}$). We shall see in section 2.ll, however, that this never happens for group algebras of finite groups. In fact, in 2.16 .5 we shall show that the determinant of the Cartan matrix of a group algebra over a field of characteristic $p>0$ is a power of p.

Finally, we shall need the following result.

```
1.5.5 Lemma (Rosenberg)
Suppose \(e\) is a primitive idempotent in a ring \(\Lambda\) satisfying
``` D.C.C., and \(e \varepsilon I_{1}+\ldots+I_{r}\) with the \(I_{j}\) two-sided ideals. Then for some \(j\), e \(\varepsilon I_{j}\).

\section*{Proof}

By 1.2.2, \(e_{\Lambda} e \cong \operatorname{End}_{\Lambda}(e \Lambda) . \quad B y 1.1 .6\) and 1.3 .3 this is a local ring. Each \(e I_{j} e\) is an ideal in \(e \Lambda e\), and so for some \(j\), e \(\varepsilon e I_{j}\) e \(\subseteq I_{j}\). \(\quad\)

\section*{Exercise}

Suppose \(\Lambda\) is a symmetric algebra. Let \(e\) be a primitive idempotent in \(\Lambda\) and let \(P=\) e \(\Lambda\) be the corresponding PIM. Thus \(V=P / \operatorname{Rad}(P)\) and \(W=\operatorname{Soc}(P)\) are simple. Use the map \(\lambda\) to show that We \(\neq 0\). Show that there is a non-zero homomorphism from \(P\) to \(W\). Deduce that \(V \cong W\).

Using the dual of lemma 1.5.4, show that if \(\Lambda\) is a symmetric algebra and \(k\) is a splitting field, then the Cartan matrix for \(\Lambda\) is symmetric.

\subsection*{1.6 Blocks and Central Idempotents}

A central idempotent in \(\Lambda\) is an idempotent in the centre of \(\Lambda\). A primitive central idempotent is a central idempotent not expressible as the sum of two orthogonal central idempotents. There is a one-one correspondence between expressions \(l=e_{1}+\ldots+e_{s}\) with \(e_{i}\) orthogonal central idempotents and direct sum decompositions \(\begin{aligned} \Lambda= & B_{1} \oplus \ldots \mathrm{~B}_{\mathrm{S}} \text { of } \Lambda \text { as two-sided ideals, given by } \mathrm{B}_{1}=\Delta \mathrm{e}_{\mathrm{i}} . \\ & \text { Now suppose } \Lambda \text { satisfies D.C.C. Then we can write }\end{aligned}\)
\(\Lambda=B_{l} \oplus \ldots \oplus B_{S}\) with the \(B_{i}\) Indecomposable as two-sided ideals.
1.6.1 Lemma

This decomposition is unique; i.e. if
\(\Lambda=B_{1} \oplus \ldots \oplus B_{s}=B_{l}^{\prime} \oplus \ldots \oplus B_{t}^{\prime}\) then \(s=t\) and for some permutation \(\sigma\) of \(\{1, \cdots, s\}, B_{i}=B_{\sigma(i)}^{1}\).

Proof
Write \(1=e_{1}+\ldots+e_{s}=e_{1}^{\prime}+\ldots+e_{t}^{\prime}\). Then \(e_{i} e_{j}^{\prime}\) is also a central idempotent (or zero) for each \(i, j\). Thus \(e_{i}=e_{i} e_{i}^{\prime}+\ldots+e_{i} e_{t}^{\prime}\), so that for a unique \(j, e_{i}=e_{i} e_{j}^{\prime}=e_{j}^{\prime}\).

The indecomposable two-sided ideals in this decomposition are called the blocks of \(\Delta\).

Suppose \(V\) is indecomposable. Then \(V=V e_{1} \oplus \ldots \oplus \mathrm{Ve}_{\mathrm{s}}\) shows that for some \(i, V e_{i}=V\), and \(V e_{j}=0\) for \(j \neq 1\). We then say that \(V\) belongs to the block \(B_{i}\). Thus the simples and PIMs are classified into blocks. Clearly if a module is in a certain block, then so are all its composition factors. Thus if \(V_{1}\) and \(V_{j}\) are in different blocks, then \(c_{1 j}=0\).

The central primitive idempotents are thus also called the block idempotents.

If \(\Delta\) is a finite dimensional algebra over a splitting field \(k\), the algebra homomorphisms \(\omega: Z(\Lambda) \rightarrow k\) are called the central homomorphisms.
1.6.2 Proposition
(i) Let \(Z(\Lambda)\) be the centre of \(\Lambda\). Then
\[
z(\Lambda)=Z(\Lambda) e_{1} \oplus \ldots \oplus Z(\Lambda) e_{S}
\]
is the block decomposition of \(Z(\Lambda)\). Each \(Z(\Lambda) e_{1}\) is a local ring, and we have an inclusion map
\[
Z(\Lambda) e_{i} / J\left(Z(\Lambda) e_{i}\right) \hookrightarrow \operatorname{End}_{\Lambda}(V)
\]
for each irreducible \(\Lambda\)-module \(V\) in \(B_{i}\).
(ii) Suppose \(\Lambda\) is a finite dimensional algebra over a splitting field \(k\). Then \(k\) is also a splitting field for \(Z(\Lambda)\), and in particular
\[
Z(\Delta) e_{i} / J\left(Z(\Lambda) e_{i}\right) \cong k
\]

There is a one-one correspondence between central homomorphisms \(\omega_{1}\) and blocks \(B_{i}\), with the property that \(\omega_{i}\left(e_{j}\right)=\delta_{i j}\).

Proof
(i) A decomposition of \(l\) as a sum of central idempotents in \(\Delta\)
and in \(Z(\Lambda)\) are the same thing, so that
\[
Z(\Lambda)=Z(\Lambda) e_{1} \oplus \ldots \oplus Z(\Lambda) e_{S}
\]
is the block decomposition of \(Z(\Lambda)\). By 1.2.2(ii) and 1.3.3, since \(Z(\Lambda)\) is commutative, we have that \(Z(\Lambda) e_{i} \cong \operatorname{End}_{Z(\Lambda)}\left(Z(\Lambda) e_{i}\right)\) is a local ring.

If \(V\) is an irreducible \(\Lambda\)-module in \(B_{i}\), then \(Z(\Lambda) e_{i}\) acts non-trivially on \(V\) as endomorphisms, since \(e_{i}\) acts as the identity element. Thus we have a non-trivial map
\[
\mathrm{Z}(\Lambda) \mathrm{e}_{i} \rightarrow \operatorname{End}_{\Lambda}(V)
\]

Since \(Z(\Lambda) e_{i}\) is a local ring and \(E_{\Lambda}(V)\) is a division ring, this induces an injection
\[
Z(\Lambda) e_{i} / J\left(Z(\Lambda) e_{i}\right) \leftrightarrow \operatorname{End}_{\Lambda}(V)
\]
(ii) If \(k\) is a splitting field for \(\Lambda\), then we have maps
\[
k c Z(\Lambda) e_{i} / J\left(Z(\Lambda) e_{i}\right) c \operatorname{End}_{\Lambda}(V)=k
\]
whose composite is the identity. Thus \(Z(\Lambda) / J(Z(\Lambda))\) is a direct sum of \(s\) copies of \(k\), and the central homomorphisms \(\omega_{i}\) are simply the \(s\) projection maps. Hence \(\omega_{i}\left(e_{j}\right)=\delta_{i j}\). Exercise.

Show that every commutative algebra satisfying D.C.C. is a direct sum of local rings.

\subsection*{1.7 Algebras over a Valuation Ring}

Let \(R\) be a complete rank one discrete valuation ring in characteristic zero (e.g. a p-adic completion of an algebraic number ring) and let (\(\pi\)) be its maximal ideal. Let \(R\) denote the field of fractions of \(R\), and let \(\bar{R}=R /(\pi)\) be a field of characteristic \(p \neq 0\). We then say that \((\hat{R}, R, \bar{R})\) is a p-modular system. Let \(\Lambda\) be an algebra over \(R\), which as an \(R-m o d u l e ~ i s ~ f r e e ~ a n d ~ o f ~ f i n i t e ~ r a n k . ~\) Let \(\hat{\Lambda}=\Lambda \underset{R}{\otimes} \hat{R}\) and \(\bar{\Lambda}=\Lambda \underset{R}{N}=\Lambda / \Lambda(\pi)\), and suppose \(\hat{\Lambda}\) is semisimple. From now on, when we talk of \(\Lambda\)-modules, we shall mean finitely generated R-free \(\Lambda\)-modules. Similarly, we only consider finitely generated \(\hat{\Lambda}\)-modules and \(\bar{\Lambda}\)-modules, which are respectively called ordinary and modular representations. If \(V\) is a \(\Lambda\)-module, we let \(\hat{V}=V \otimes \hat{R}\) as a \(\hat{\Lambda}\)-module, and \(\bar{V}=V \quad \otimes \bar{R}=V / V(\pi)\) as a \(\bar{\Lambda}\)-module. If \(\hat{\hat{R}}\) is a splitting field for \(\hat{\Lambda}\) and \(\bar{R}\) is a splitting field for \(\bar{\Lambda}\), we say that \((R, R, \bar{R})\) is a splitting p-modular system
for \(\Lambda\).
1.7.1 Lemma

If \(W\) is a \(\hat{\Lambda}\)-module, there is a \(\Lambda\)-module \(X\) with \(\hat{X} \cong W\).
Proof
Choose a basis \(w_{1}, \ldots, w_{n}\) for \(W\) over \(\hat{R}\) and let \(X=w_{1} \Lambda+\ldots+w_{n} \Lambda . X\) is torsion free, and hence free. Choose a free basis \(x_{1}, \cdots, x_{m}\). Then the \(x_{i}\) span \(W\) and are \(\hat{R}\) independent, and hence \(m=n\), and \(W=X \neq R\). \(\quad\).

Such a \(\Lambda\)-module \(X\) is called an \(\underline{R-f o r m}\) of \(W\). In general, R-forms are not unique.
1.7.2 Theorem (Idempotent Refinement)
(i) Let \(e\) be an idempotent in \(\bar{\Lambda}\). Then there is an idempotent \(f\) in \(\Lambda\) with \(e=\bar{f}\).
(ii) Let \(1=e_{1}+\ldots+e_{n}\) with the \(e_{i}\) primitive orthogonal idempotents in \(\bar{\Delta}\). Then we can write \(l=f_{1}+\ldots+f_{n}\) with the \(f_{i}\) primitive orthogonal idempotents in \(\Lambda\), and \(\bar{f}_{i}=e_{i}\).
(iii) Let \(l=e_{1}+\ldots+e_{s}\) with the \(e_{i}\) primitive central idempotents in \(\bar{\Lambda}\). Then we can write \(l=f_{l}+\ldots+f_{s}\) with the \(f_{i}\) primitive central idempotents in \(\Lambda\), and \(\bar{f}_{i}=e_{i}\).

\section*{Proof}
(1) We may apply 1.5 .1 to \(\Lambda / \Lambda\left(\pi^{n}\right)\) to obtain elements \(f_{i} \varepsilon \Lambda\) whose image in \(\Lambda / \Lambda\left(\pi^{i}\right)\) is a lift of \(f_{i-1}\) to an idempotent. Then the \(f_{1}\) form a Cauchy sequence, and we can take \(f\) as their limit.
(ii) Apply the same argument to 1.5.2.
(iii) Apply (ii) to the centre of \(\Lambda\).

Thus the decomposition of \(\bar{\Lambda}-\bar{\Lambda}\) as a sum of PIMs lifts to a decomposition of \(\Lambda_{\Lambda}\). So given an irreducible \(\bar{\Lambda}\)-module \(V_{j}\), it has a projective cover \(P_{j}=\bar{Q}_{\mathbf{j}}\) for some projective \(\Lambda\)-module \(Q_{j}\). We define the decomposition numbers \(d_{i j}\) as follows. Let \(W_{1}, \ldots, W_{t}\) be the irreducible \(\hat{\Lambda}\)-modules, \(X_{1}, \cdots, X_{t}\) be \(R\)-forms of them, and \(V_{1}, \ldots, V_{r}\) be the irreducible \(\frac{1}{\Lambda}\)-modules. We define
\[
\begin{aligned}
& \hat{\mu}_{i}=\operatorname{dim}_{\hat{R}} \operatorname{End}_{\Lambda}\left(W_{1}\right) \\
& \vec{\mu}_{i}=\operatorname{dim}_{\bar{R}} \operatorname{End}-\left(V_{i}\right) \\
& d_{i j} / \hat{\mu}_{i}=\text { multiplicity of } W_{i} \text { as a summand of } \hat{Q}_{j} .
\end{aligned}
\]

\section*{Remark}

Note that when \((\hat{R}, R, \bar{R})\) is a splitting p-modular system, all the \(\hat{\mu}_{1}\) and \(\bar{\mu}_{i}\) are one.
\[
\text { Then } \begin{aligned}
& d_{i j}\left.=\operatorname{dim}_{R} \hat{R}_{\Lambda}^{\operatorname{Hom}}\left(\hat{Q}_{j}, W_{i}\right) \quad \text { (see exercise } 3\right) \\
&= \operatorname{rank}_{R} \operatorname{Hom}_{\Lambda}\left(Q_{j}, X_{i}\right) \quad \text { since } \operatorname{Hom}_{\Lambda}\left(Q_{j}, X_{i}\right) \text { is an R-form for } \\
& \operatorname{Hom}_{\Lambda}\left(\hat{Q}_{j}, W_{i}\right) \\
&\left.=\operatorname{dim}_{\bar{R}^{H o m}-\left(P_{j}\right.}, \bar{X}_{i}\right) \text { since } Q_{j} \text { is projective, and so } \\
& d_{i j} / \bar{\mu}_{j}=\operatorname{multiplicity~of~} V_{j} \text { as a composition factor of } \bar{X}_{i} .
\end{aligned}
\]

In particular
\[
c_{i j}=\sum_{k} d_{k i} d_{k, j} / \hat{\mu}_{k} \bar{\mu}_{i}
\]
and if (\(\hat{R}, R, \bar{R}\)) is a splitting system then the Cartan matrix is symmetric.

Note carefully what the above is saying in case (\(\hat{R}, R, \bar{R}\)) is a splitting system. It is saying that the decomposition matrix (\(\mathrm{d}_{\mathrm{ij}}\)) may be read two different ways up. The columns give the ordinary composition factors of a projective indecomposable (tensored with \(\hat{R}\)), and the rows give the modular composition factors of the reduction modulo (\(\pi\)) of an R-form of the ordinary irreducible. Exercise 3 shows that the decomposition numbers are well-defined, and so in particular the modular composition factors of an ordinary irreducible do not depend upon the R-form chosen.

By l.7.2(iii), there is a one-one correspondence between blocks of \(\Lambda\) and blocks of \(\bar{\Lambda}\), having the property that if \(V\) is an indecomposable \(\Lambda\)-module, then all summands of \(\vec{V}\) are in the block corresponding to \(V\). We shall identify corresponding blocks, so that we regard all indecomposable \(\hat{\Lambda}, \Lambda\) and \(\bar{\Lambda}\)-modules as falling into blocks of \(\Lambda\). It is clear that if \(W_{i}\) is in a different block from \(V_{j}\) then \(d_{i j}=0\).

If \((\hat{R}, R, \bar{R})\) is a splitting p-modular system for \(\Lambda\), then given an irreducible \(\hat{\Lambda}\)-module \(W_{i}\) with central homomorphism \(\omega_{i}: Z(\hat{\Lambda}) \rightarrow \hat{R}\), \(\omega_{i}(Z(\Lambda)) \subseteq R \quad\) (since any subring of \(R\) which is finitely generated as an R-module is contained in \(R\)), and so we get a central homomorphism \(\bar{\omega}_{i}: Z(\bar{\Lambda}) \rightarrow \bar{R}\). This central homomorphism determines the block to which \(W_{i}\) belongs.

\section*{Exercises}
1. (1) Let \(V\) be a \(\Delta\)-module and \(f \varepsilon \operatorname{End}_{\Lambda}(V)\). Write \(\operatorname{Im}\left(f^{\infty}\right)=\)
\(\stackrel{\infty}{n} \operatorname{Im}\left(f^{n}\right)\) and \(\operatorname{Ker}\left(f^{\infty}\right)=\left\{x \varepsilon V: \forall n \geq 0 \exists m \geq 0\right.\) s.t. \(\left.x f^{m} \varepsilon V . J(\Lambda)^{n}\right\}\). n=1
Using Fitting's lemma (1.3.2) show that \(V=\operatorname{Im}\left(f^{\infty}\right) \oplus \operatorname{Ker}\left(f^{\infty}\right)\).
(ii) Modify the argument of 1.3 .3 to show that if \(V\) is an
indecomposable \(\Lambda\)-module then \(E_{\Lambda}(V)\) is a local ring.
(iii) Apply l.3.1 to deduce that \(\Lambda\) has the unique decomposition property.
2. Check that lemma 1.5 .5 holds for primitive idempotents in \(\Lambda\).
3. If \(P\) is a PIM for \(\bar{\Lambda}\), show that any two lifts \(Q_{1}\) and \(Q_{2}\) of \(P\) to a \(\Lambda\)-module are isomorphic (Hint: use exercise l). Deduce that the decomposition numbers are well defined.

\subsection*{1.8 A Little Commutative Algebra}

We shall occasionally need a little commutative algebra, and so I have collected here, for easy reference, all the results that will be used.

The following is a version of the 'going-up' theorem, and will be needed in section 2.9 .

\subsection*{1.8.1 Proposition}

Suppose \(A\) is a commutative algebra over an algebraically closed field \(k\), and \(B\) is integral over \(A\). If \(\lambda: A \rightarrow k\) is an algebra homomorphism, then there exists an algebra homomorphism \(\mu: B \rightarrow k\) such that the restriction of \(\mu\) to \(A\) is equal to \(\lambda\) (\(\mu\) is not necessarily unique).

Proof
We extend \(\lambda\) a bit at a time. Choose \(b \varepsilon B \backslash A\), and let the minimal equation of \(b\) be \(b^{n}+a_{n-1} b^{n-1}+\ldots+a_{0}=0, a_{i} \varepsilon A\). Since \(k\) is algebraically closed, the equation \(x^{n}+\left(a_{n-1}\right)^{n} x^{n-1}+\) \(\ldots+\left(a_{0} \lambda\right)=0\) has a solution \(x=\zeta\) in \(k\). We may then send \(<A, b>\) to \(k\) by sending \(b\) to \(\zeta\). By Zorn's lemma, we may continue until we have a homomorphism \(\mu\) extending \(\lambda\). \(\quad\) a

When we come to study Poincaré series in sections 2.22 and 2.25 (see the paragraph before 2.25.17), we shall need the following proposition, whose proof I have lifted from Atiyah and Macdonald, 'Commutative Algebra'.
1.8.2 Proposition

Suppose A is a commutative graded Noetherian ring over a field \(k\), with each \(A_{i}\) finite dimensional over \(k\), and \(M\) is a finitely generated graded A-module. Then the Poincaré series \({ }_{\mathrm{s}}\) \(P(M, t)=\sum_{i} t^{i} \operatorname{dim}_{k}\left(M_{i}\right)\) is of the form \(\left.p(t) /{\underset{j=1}{S}(1-t}^{j} k_{j}\right)\), where \(p(t)\) is a polynomial with integer coefficients and \(k_{1}\), .. , \(k_{s}\) are the degrees of a set of homogeneous generators of \(A\) over \(A_{o}\).

\section*{Proof}

Suppose \(A\) is generated over \(A_{o}\) by homogeneous elements \(x_{1}, \ldots, x_{s}\) of degrees \(k_{1}, \ldots, k_{s}\), and work by induction on \(s\). If \(s=0\), then \(\operatorname{dim}\left(M_{n}\right)=0\) for all large \(n\), and so \(P(M, t)\) is a polynomial with integer coefficients.

Now suppose \(s>0\). Multiplication by \(x_{s}\) gives an exact sequence
\[
0 \longrightarrow \mathrm{~K}_{\mathrm{n}} \longrightarrow \mathrm{M}_{\mathrm{n}} \xrightarrow{\mathrm{x}_{\mathrm{s}}} M_{\mathrm{n}+\mathrm{k}_{\mathrm{s}}} \longrightarrow \mathrm{~L}_{\mathrm{n}+\mathrm{k}_{\mathrm{s}}} \longrightarrow 0,
\]
where \(K\) and \(L\) are the kernel and cokernel of multiplication by \(X_{S}\), and are hence finitely generated graded \(A_{0}\left[x_{1}, \ldots, x_{S-1}\right]\)-modules. Taking Poincaré series, we obtain
\[
\left(1-t^{k}\right) P(M, t)=P(L, t)-t^{k} S_{P(K, t)}+g(t)
\]
where \(g(t)\) is a polynomial with integer coefficients. The result now follows from the inductive hypothesis. a

\section*{Remark}

This result also holds, without change in the proof, if \(A\) is 'graded commutative', in the sense that for homogeneous elements \(x\) and \(y\), we have
\[
x y=(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)} y x
\]

This will be the form in which we shall use the proposition.
Suppose \(A\) is a commutative graded Noetherian ring and \(M\) is a finitely generated graded A-module. Then we write \(\gamma(M)\) for the degree of the pole of \(P(M, t)\) at \(t=1\). The following proposition relates \(r(M)\) to the rate of growth of the coefficients dim(\(\left.M_{i}\right)\) of \(P(M, t)\). This will be used in section 2.31.
1.8.3 Proposition

Let \(f(t)\) be a rational function of the form \(p(t) / \prod_{j=1}^{s}\left(1-t^{k}\right)\) \(=\sum_{i=0}^{\infty} a_{i} t^{i}\), where the \(a_{i}\) are non-negative integers. Let \(c\) be the order of the pole of \(f(t)\) at \(t=l\). Then
(i) There is a positive number \(\lambda\) such that for all large enough \(n\), \(a_{n} \leq \lambda n^{c-1}\), but there is no positive number \(\mu\) such that \(a_{n} \leq \mu n^{c-2}\) for all large enough \(n\).
(ii) The value of the analytic function \(\left(\underset{i}{ } k_{i}\right) \cdot f(t)(1-t)^{c}\) at \(t=1\) is a positive integer.

\section*{Proof}

The hypotheses and conclusion remain unaltered if we replace \(f(t)\) by \(f(t)\left(1+t+\ldots+t^{k} j^{-1}\right)\), and so without loss of generality we may assume that each \(k_{j}\) is one. We may thus assume that \(f(t)=p(t) /(1-t)^{c}\), where \(p(t)=a_{m} t^{m}+\ldots+a_{o}\) satisfies \(p(1) \neq 0\), 1.e. \(a_{m}+\ldots+a_{o} \neq 0\). Thus
\[
a_{n}=a_{o}\binom{n+c-1}{c-1}+a_{1}\binom{n+c-2}{c-1}+\ldots+a_{m}\binom{n+c-m+1}{c-1}
\]

Is a polynomial in \(n\) of degree \(c-1\), thus proving (1). If \(p(1)\) were negative, then for large \(n, a_{n}\) would also be negative, and so (11) is proved. a

Finally, we shall need 1.8.6 in the proof of 2.24.4(xi).

\subsection*{1.8.4 Lemma}

Let \(A\) be a commutative graded ring, \(I\) a homogeneous ideal, and \(P^{(1)}, \ldots, P^{(r)}\) homogeneous prime 1deals. If I \(f P^{(1)}\) for each \(1 \leq 1 \leq r\), then there is a homogeneous element in \(I\) which is not in any of the \(P^{(1)}\).

Proof
We shall proceed by induction on \(r\). The case \(r=1\) is clear. Suppose first that \(r=2\). Suppose every homogeneous element of \(I\) is in \(P^{(1)} U P^{(2)}\). Choose a homogeneous element \(x\) of degree \(j\) in \(I \mathbb{P}^{(1)}\) and \(y\) of degree \(k\) in \(I \backslash P^{(2)}\). Then \(x \varepsilon P^{(2)}\) and \(y_{\varepsilon} P^{(1)}\), and so \(x^{k}+y^{j}\) is a homogeneous element of \(I\) which is not in \(P^{(1)}\) or \(P^{(2)}\).

Now suppose \(r>2\). If \(P^{(1)} \subseteq P^{(r)}\) for some \(1<r\), we may delete \(P^{(1)}\) and the result follows by induction, so we may assume \(P^{(1)} \pm P^{(r)}\) for \(1<r\). Hence \(I P^{(1)} \ldots P^{(r-1)} \not P^{(r)}\), so by the result for \(r=1\), there is a homogeneous element \(x\) of degree \(j\) in \(I P^{(1)} \ldots P^{(r-1)} _{P}^{(r)}\). By the inductive hypothesis, there is a homogeneous element \(y\) of degree \(k\) in \(I \backslash\left(P^{(1)} \ldots P^{(r-l)}\right)\). Suppose every homogeneous element of \(I\) is in \(P(1) U \ldots P^{(r)}\). Then \(y \varepsilon P^{(r)}\), and so \(x^{k}+y^{j}\) is a homogeneous element which is in \(I\) but not in any of the \(P^{(1)}\).

\section*{Notation}

If \(M\) is a graded module for a graded ring \(A\), we write \(M(r)\) for the 'twisted' module with \(M(r)_{1}=M_{i+r}\), and the same A-action.

\subsection*{1.8.5 Lemma}

Let \(A\) be a commutative graded Noetherian ring and \(M\) a
finitely generated graded A-module. Then \(M\) has a filtration
\[
M=M^{(t)} \supset M^{(t-1)} \supset \ldots \supset M^{(0)}=0
\]
with \(M^{(i)} / M^{(i-1)} \cong\left(A / P^{(i)}\right)\left(r_{i}\right)\) and \(P^{(i)}\) (not necessarily distinct) homogeneous prime ideals.

Proof
Let \(\mathrm{P}^{(1)}\) be a maximal element of the set of annihilators of nonzero homogeneous elements \(x \varepsilon M\). Then \(P^{(1)}\) is a homogeneous ideal. If \(a\) and \(b\) are homogeneous, \(a b \varepsilon P^{(1)}\), and \(a \notin P^{(1)}\), then \(x a \neq 0\) and \(x a b=0\). Since \(P^{(1)}=\operatorname{Ann}(x) \leq \operatorname{Ann}(x a)\), maximality of \(P^{(1)}\) implies that \(P^{(1)}=\operatorname{Ann}(x a)\), and so \(\bar{b} \varepsilon P^{(1)}\). Thus \(P^{(1)}\) is prime. If \(\operatorname{deg}(x)=r_{1}\), then the map \(a \rightarrow\) xa is an injection of \(\left(A / P^{(1)}\right)\left(r_{1}\right)\) into M. Let its image be \(M^{(1)}\). Proceeding in the same way for \(M / M^{(1)}\), we obtain an injection of (\(A / P(2)\) (\(r_{2}\)) into \(M / M^{(1)}\). Let \(M^{(2)} / M^{(1)}\) be its image. Continuing in this way, we obtain an ascending chain of submodules \(0=M^{(0)} \subset M^{(1)} \subset M^{(2)} \subset \ldots\). Since \(M\) satisfies A.C.C., for some \(t\) we have \(M^{(t)}=M\). \(\quad\)

\subsection*{1.8.6 Proposition}

Let \(A\) be a commutative graded Noetherian ring, and \(M\) a finitely generated graded A-module. Then there is a homogeneous element \(x\) of positive degree \(j\) in \(A\) such that for all \(n\) sufficiently large, multiplication by \(x\) induces an injective map \(M_{n} \rightarrow M_{n+j}\).

> Proof

By 1.8.5, \(M\) has a filtration \(M=M^{(t)} \supset M^{(t-1)} \supset \ldots M^{(0)}=0\), with \(M^{(i)} / M^{(i-1)} \cong\left(A / P^{(i)}\right)\left(r_{i}\right)\) and \(P^{(i)}\) homogeneous prime ideals. Denote by \(I\) the ideal of \(A\) generated by the elements of positive degree. By I. 8.4 , we may choose an element \(x\) of degree \(j\) which lies in \(I\), but does not lie in any of those \(P^{(i)}\) not containing \(I\). For \(n>\max \left(r_{i}\right)\), suppose \(u \varepsilon M_{n}\). Suppose \(u\) lies in \(M^{(i)}\) but not in \(M^{(i-1)}\). Then \(u\) has non-zero image \(\bar{u}\) in \(M^{(i)} / M^{(i-l)}\) \(\cong(A / P(i))\left(r_{i}\right)\), and since \(n>r_{i}\), this implies that \(P^{(i)} \nsubseteq I\), and so \(\bar{u} x \neq 0\). Hence \(u x \neq 0\), and so multiplication by \(x\) induces an injection \(M_{n} \rightarrow M_{n+j}\).

\subsection*{1.8.7 Proposition}

Let \(A\) be a commutative graded Noetherian ring with \(A_{0}=k\), and \(M\) a finitely generated graded \(A-m o d u l e . ~ T h e n ~ r(M)\) is equal to the Krull dimension of \(A / a n n(M)\), i.e. the maximal length \(n\) of a chain of homogeneous prime ideals
\[
A \supset P^{(0)} \supset P^{(1)} \supset \ldots \supset P^{(n)} \supset \operatorname{ann}(M)
\]
(geometrically, this is the dimension of \(\operatorname{Spec}(A / a n n(M)\)) as a variety; namely one more than the dimension of \(\operatorname{Proj}(A / a n n(M))\)).

\section*{Proof}

By 1.8.5, we may assume that \(M=A / P\) with \(P\) prime, and without loss of generality \(P=0\).

We first show that \(\operatorname{dim}(A) \leq Y(A)\), by induction on \(r(A)\). If \(r(A)=0\), then \(P(A, t)\) is a polynomial, and so \(A\) is finite dimensional over \(k\). Thus all elements of positive degree are nilpotent, and hence form the only prime ideal (which is hence zero). Now suppose \(r(A)>0\), and suppose \(A \supset P^{(0)} \supset \ldots \partial^{(n)}=0\) is a chain of prime ideals. Let \(x\) be a homogeneous element of degree \(d\) in \(P^{(n-l)}\), and let \((x)\) be the principal ideal of A generated by \(x\). Then by the inductive hypothesis, \(n-l \leq \gamma(A /(x))\). But \(x\) is not a zero divisor, and so the exact sequence
\(0 \longrightarrow \mathrm{~A} \xrightarrow{\mathrm{X}} \mathrm{A} \longrightarrow \mathrm{A} /(\mathrm{x}) \longrightarrow 0\) shows that \(P(A /(x), t)=\left(1-t^{d}\right) P(A, t)\). Thus \(\quad r(A /(x))=r(A)-1\).

Conversely, we now show that \(\quad \gamma(A) \leq \operatorname{dim}(A)\). This time we proceed by induction on \(\operatorname{dim}(A)\), which we may since we now know that it is finite. If \(\operatorname{dim}(A)=0\), the only prime ideal is the one consisting of the elements of positive degree. But zero is a prime ideal, and so \(A\) is one dimensional, and \(\gamma(A)=0\). Now suppose \(\operatorname{dim}(A)>0\). Let \(x\) be a non-zero homogeneous element of positive degree. As before, we have \(\gamma(A /(x))=\gamma(A)-1\). By the inductive hypothesis, there is a chain \(A \supset P^{(0)} \supset \ldots \supset P^{(n-1)} \geq A /(x)\), where \(n=r(A)\). Thus \(A \supset P^{(0)} \supset \ldots \supset P^{(n-l)} \supset P^{(n)}=0\) is a chain of length \(n\) in \(A\), and so \(\operatorname{dim}(A) \geq n\). \(\quad\).

Section 2. Modules for Group Algebras
Throughout section 2, \(G\) will denote a finite group, \((\hat{R}, R, \bar{R})\) will be a p-modular system (see section l.7), \(k\) will be an arbitrary field of characteristic \(p\), and \(\Gamma\) will be an arbitrary commutative ring with the property that \(\Gamma G\) has the unique decomposition property (see section 1.3); e.g. \(\Gamma \varepsilon\{\hat{R}, R, \bar{R}\}\).

\subsection*{2.1 Tensors and Homs; Induction and Restriction}

We define the group algebra \(\Gamma G\) to be the free \(\Gamma\)-module on the elements of \(G\), with multiplication defined as the linear extension of the multiplication in \(G\).

Maschke's theorem [51, p. 91] shows that \(\hat{R} G\) is semisimple, and so the theory of 1.7 gives us decomposition numbers and Cartan invariants, relating the projective indecomposables, the ordinary (i.e. characteristic 0) irreducibles and the modular (i.e. characteristic \(p\)) irreducibles.

Note that \(k G\) is a symmetric algebra (see remark after 1.4.4). Thus projective modules are the same thing as injective modules, and the unique irreducible submodule of a projective indecomposable is isomorphic to its unique irreducible quotient (1.4.4 and the exercise to 1.5).

Recall our convention (see 1.7) that all \(\Gamma G-m o d u l e s\) are finitely generated and \(\Gamma\)-free. If \(V\) and \(W\) are \(\Gamma G-m o d u l e s\), we define \(\Gamma\)-module structures on \(V \underset{\Gamma}{\otimes} \mathrm{~W}\) and \(\operatorname{Hom}_{\Gamma}(\mathrm{V}, \mathrm{W})\) in the usual way:
\[
\begin{gathered}
(\mathrm{v} \otimes \mathrm{w}) \mathrm{g}=\mathrm{vg} \otimes \mathrm{wg} \\
\mathrm{v}(\lambda \mathrm{~g})=\left(\left(\mathrm{vg}^{-1}\right) \lambda\right) \mathrm{g} \\
\left(\mathrm{v} \varepsilon \mathrm{~V}, \mathrm{w} \varepsilon \mathrm{~W}, \mathrm{~g} \varepsilon \mathrm{G}, \lambda \varepsilon \operatorname{Hom}_{\Gamma}(\mathrm{V}, \mathrm{~W})\right) .
\end{gathered}
\]

We let \(\Gamma\) be the trivial \(\Gamma G-m o d u l e\), and define \(V^{*}=\operatorname{Hom}_{\Gamma}(V, \Gamma)\). The following facts are elementary.

\subsection*{2.1.1 Lemma}

There are natural FG -module isomorphisms
(i) \(V \otimes W \cong W \otimes V\)
(ii) \(V \otimes\left(W_{1} \oplus W_{2}\right) \cong V \otimes W_{1} \oplus V \otimes W_{2}\)
(iii) \((U \otimes V) \otimes W \cong U \otimes(V \otimes W)\)
(iv) \(\mathrm{V}^{*} \otimes \mathrm{~W} \cong \operatorname{Hom}_{\Gamma}(\mathrm{V}, \mathrm{W})\)
(this is also an \(\operatorname{End}_{\Gamma G}(V)-\operatorname{End}_{\Gamma G}(W)\) bimodule isomorphism)
(v) \(\left(\mathrm{V}^{*}\right)^{*} \cong \mathrm{~V}\). \(\quad\) -

If \(H\) is a subgroup of \(G\), and \(V\) is a \(\Gamma G\)-module, we write
\(V t_{H}\) for the restriction of \(V\) as a rH-module. If \(W\) is a \(\Gamma H-m o d u l e\), we write \(W \dagger^{G}\) for the induced module \(W \underset{\Gamma}{\infty} \Gamma\). The following lemmas contain the elementary facts on restriction and induction.

\subsection*{2.1.2 Lemma}

Let \(V, V_{1}\) and \(V_{2}\) be \(\Gamma G-m o d u l e s\) and \(W, W_{1}\) and \(W_{2}\) be「H-modules. There are natural isomorphisms
(i) \(\left(V_{1} \oplus V_{2}\right) \downarrow_{H} \cong V_{1} \downarrow_{H} \oplus V_{2} \downarrow_{H}\)
(ii) \(\left(V_{1} \otimes V_{2}\right) \psi_{H} \cong V_{1} \psi_{H} \otimes V_{2} \psi_{H}\)
(iii) \(\left(W_{1} \oplus W_{2}\right) \uparrow^{G} \cong W_{1} \uparrow^{G} \oplus W_{2} \uparrow^{G}\)
(iv) \(V \otimes W \uparrow^{G} \cong\left(V \psi_{H} \otimes W\right) \uparrow^{G}\)
(v) \(\quad\left(\operatorname{Hom}_{\Gamma}\left(V \psi_{H}, W\right)\right) \uparrow^{G} \cong \operatorname{Hom}_{\Gamma}\left(V, W \uparrow^{G}\right)\)
(vi) \(\left(\operatorname{Hom}_{\Gamma}\left(W, V \psi_{H}\right)\right) \uparrow^{G} \cong \operatorname{Hom}_{\Gamma}\left(W \uparrow^{G}, V\right)\). ם

We write \((V, W)^{G}\) for \(\operatorname{Hom}_{\Gamma G}(V, W)\) and \(W^{G}\) for \(\operatorname{Hom}_{\Gamma G}(\Gamma, W)\), the set of fixed points of \(G\) on \(W\).
2.1.3 Lemma (Frobenius Reciprocity)

There are natural isomorphisms
(i) \(F r_{H, G}:\left(V \psi_{H}, W\right)^{H} \cong\left(V, W 4^{G}\right)^{G}\) given by \(v . \operatorname{Fr}_{H, G}(a)=\Sigma\left(\operatorname{vg}_{i}^{-1} a\right) \otimes g_{i}\) (here, the \(g_{i}\) run over a set of right coset representatives of \(H\) in \(G\), and the resulting map is independent of choice of coset representatives)
(ii) \(\mathrm{Fr}_{H, G}^{\prime}:\left(W, V \psi_{H}\right)^{H} \cong\left(W \dagger^{G}, V\right)^{G}\) given by \((w) \operatorname{Frg}_{H, G}^{\prime}(\beta)=(w \beta) \mathrm{g}\). \(\quad\).

Note that this may be interpreted as saying that induction is both left and right adjoint to restriction.
2.1.4 Lemma (Mackey Decomposition)

Suppose \(H\) and \(K\) are subgroups of \(G, V\) is a \(\Gamma H\)-module and W is a rK -module.
 set of \(H-K\) double coset representatives in \(G\), and \(V^{g}\) denotes the \(H^{g}\) module conjugate to \(V\) by \(g\).

```

2.1.5 Lemma
If $V_{1}$ and $V_{2}$ are $\Gamma G-m o d u l e s$ and $V_{l}$ is projective, then so is $V_{1} \otimes V_{2}$.

```

Proof
Use 1.4.1 (i1i). \(\quad\)

\subsection*{2.1.6 Lemma}
(1) \((V, W)^{G} \cong\left(\Gamma, \operatorname{Hom}_{\Gamma}(V, W)\right)^{G} \cong\left(\Gamma, V^{*} \otimes W\right)^{G}\)
\(\cong\left(\operatorname{Hom}_{\Gamma}(W, V), \Gamma\right)^{G} \cong\left(V \otimes W^{*}, \Gamma\right)^{G}\)
(ii) \((U \otimes V, W)^{G} \cong\left(U, V^{*} \otimes W\right)^{G}\). \(\quad\)

\section*{Exercises}
1. Let \(G\) be a p-group and \(k\) a field of characteristic \(p\). Let \(V\) be a kG-module. Show that \(G\) fixes pointwise some nontrivial subspace of V. (Hint: first do the case where \(G\) is abelian, and then use the fact that every proper subgroup of \(G\) is properly contained in its normalizer). Deduce that there is only one irreducible kG-module, and that the regular representation of the group algebra is indecomposable. What do the decomposition matrix and the Cartan matrix look like?
2. Let \(G\) be \(S_{3}\), the group of all permutations of three objects, and \(R\) be the ring of 2-adic integers. Write down the character table for \(\hat{R} G\). Find \(R\)-forms for each of the irreducible \(\hat{R} G\)-modules (cf. l.7.1). Examine their reductions modulo (2). What are the 2 -modular irreducible representations (i.e. the irreducible \(\bar{R} G\)-modules)? Write down the decomposition matrix and Cartan matrix. Deduce that \(\bar{R} G\) is isomorphic to the direct sum of \(\operatorname{Mat}_{2}(\bar{R})\) and \(\bar{R} H\), where \(H\) is a cyclic group of order 2 .

\subsection*{2.2 Representation Rings}

Since \(\Gamma G\) has the unique decomposition property (see section 2.1), we may define \(a(G)=a_{\Gamma}(G)\) to be the free abelian group on the set of indecomposable \(\Gamma G-m o d u l e s\), with multiplication defined on the generators by the tensor product, and then extended bilinearly to \(a(G) \quad\left(\right.\) see 2.1.1). We then let \(A(G)=A_{\Gamma}(G)=a_{\Gamma}(G) \quad \mathbb{C} \quad A(G)\) is called the representation ring or Green ring (after J.A. Green) of \(\Gamma\). It is a commutative and associative algebra over \(\mathbb{C}\), and the identity element is the trivial \(\Gamma\)-module \(\Gamma\), which we henceforth write as 1. As we shall see later, the ring \(A(G)\) is in general infinite dimensional, and for \(\Gamma \varepsilon\{R, \bar{R}\}\) it is finite dimensional if and only if
the Sylow p-subgroups of \(G \quad(p=\operatorname{char}(\bar{R}))\) are cyclic. If \(H\) is a subgroup of \(G\), we define \(A_{o}(G, H)\) to be the linear span in \(A(G)\) of the elements of the form \(X-X^{\prime}-X^{\prime \prime}\), where \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) is a short exact sequence which splits on restriction to \(H\) (an H-split sequence). Then \(A_{o}(G, H)\) is an ideal of \(A(G)\), and \(A(G) / A_{o}(G, I)\) is the Grothendieck ring of \(F G\).

We shall be interested in studying the representation theory of \(G\) via the study of the structure of \(a(G)\) and \(A(G)\). We want to look at various subrings and ideals in these rings, and see how they reflect the structure of the group. Each subring or ideal which we define will have an integral version denoted by a small letter \(a(-)\), a p-local version \(a(-) \underset{Z}{\otimes} \mathbf{Z}\left(\frac{l}{p}\right)=\hat{a}(-)\), and a complex version \(\mathrm{a}(-) \underset{\neq}{\otimes} \mathbb{C}=\mathrm{A}(-)\).

The first question we may wish to ask is, how are the elements of \(G\) reflected in the structure of \(A(G)\) ? Over a splitting field of characteristic zero, the answer to this question is easy; the columns of the ordinary character table are in one-one correspondence with the conjugacy classes of elements of \(G\). Over a field of characteristic \(p\), the answer is a little more difficult. Brauer discovered that there were certain algebra homomorphisms (see section 2.11), from A(G) to \(\mathbb{C}\) which correspond to the conjugacy classes of p'-elements of \(G\). This motivates the following definition.

If \(A\) is a subalgebra or 1deal of \(A(G)\), a species of \(A\) is an algebra homomorphism \(A \rightarrow \mathbb{C}\). If \(s\) is a species and \(X \varepsilon A\), we write (\(s, x\)) for the value of \(s\) on \(x\).

\subsection*{2.2.1 Lemma}

Any set of distinct species of \(A\) is linearly independent.

\section*{Proof}

Suppose \(\underset{i=1}{\sum} a_{1} s_{i}=0\) is a linear relation among the species of
A with \(r\) minimal. Choose \(y \in A\) such that \(\left(s_{1}, y\right) \neq\left(s_{2}, y\right)\). Then \(0=\sum_{i=1}^{r} a_{i}\left(s_{i}, x, y\right)=\sum_{i=1}^{\sum} a_{i}\left(s_{i}, y\right)\left(s_{i}, x\right) \quad\) and so
\(\sum_{i=2}^{r} a_{i}\left(\left(s_{1}, y\right)-\left(s_{1}, y\right)\right) s_{i}=0\). This contradicts the minimality of r. \(\quad\) a

If \(A^{\prime}\) is a finite dimensional semisimple subalgebra of \(A\) with species \(s_{1}, \cdots, s_{r}\), lemma 2.2 .1 tells us that we may find elements \(e_{1}, \ldots, e_{r}\) such that \(\left(s_{i}, e_{j}\right)=\delta_{i j}\). Then every species has the same
value on \(e_{i}{ }^{2}\) as on \(e_{i}\), and zero on \(e_{i} e_{j}\), and so the \(e_{i}\) are primitive orthogonal idempotents. This gives a direct sum decomposition
\[
A=\stackrel{r}{i=1} \mathrm{Ae}{ }_{i}
\]

Thus every species of \(A\) is a species of some \(A e_{i}\) and is zero on the \(A e_{j}, j \neq i\).

If \(H\) is a subgroup of \(G\), we get a ring homomorphism \(r_{G, H}: A(G) \rightarrow A(H)\) by restriction of representations, and a linear map (which is not a ring homomorphism in general) \(i_{H, G}: A(H) \rightarrow A(G)\) given by induction of representations.

\subsection*{2.2.2 Theorem}

If \(H\) is a subgroup of \(G\), then
(i) \(A(G)=\operatorname{Im}\left(i_{H, G}\right) \oplus \operatorname{Ker}\left(r_{G, H}\right)\)
as a direct sum of ideals.
(ii) \(A(H)=\operatorname{Im}\left(r_{G, H}\right) \oplus \operatorname{Ker}\left(i_{H, G}\right)\)
as a direct sum of vector spaces.
Proof
(i) It follows from 2.l.2 that \(\operatorname{Im}\left(1_{H, G}\right)\) and \(\operatorname{Ker}\left(r_{G, H}\right)\) are ideals. We proceed by induction on \(|H| \cdot \operatorname{If}|H|=1\), then \(\operatorname{codim}\left(\operatorname{Ker}\left(r_{G, l}\right)\right)=\operatorname{dim}\left(\operatorname{Im}\left(i_{l, G}\right)\right)=1\). Since \(i_{l, G}(l) \notin \operatorname{Ker}\left(r_{G, l}\right)\) the result follows. So suppose \(|\mathrm{H}|>l\), and that for any \(K<H\), \(A(G)=\operatorname{Im}\left(i_{K, G}\right)+\operatorname{Ker}\left(r_{G, K}\right) . \operatorname{Then} A(G)=\sum_{K<H} \operatorname{Im}\left(i_{K, G}\right)+\bigcap_{K<H} \operatorname{Ker}\left(r_{G, K}\right)\), and so \(\operatorname{Im}\left(r_{G, H}\right)=r_{G, H}\left(\sum_{K<H} \operatorname{Im}\left(i_{K, G}\right)\right)+\bigcap_{K<H} \operatorname{Ker}_{\operatorname{Im}\left(r_{G, H}\right)}\left(r_{H, K}\right)\). Let \(1=a+b\) in this decomposition. Then since \(b=1-a\) is invariant under \(N_{G}(H)\), we have, by the Mackey decomposition theorem (2.1.4), \(b \uparrow^{G}{ }_{\psi_{H}}=\left|N_{G}(H): H\right| \cdot b\), and so \(b \varepsilon r_{G, H}\left(\operatorname{Im}\left(i_{H}, G\right)\right)\). Hence \(\operatorname{Im}\left(r_{G, H}\right)=r_{G, H}\left(\operatorname{Im}\left(i_{H, G}\right)\right)\). Now if \(x \in A(G)\), choose \(y \in \operatorname{Im}\left(i_{H, G}\right)\) with \(\quad x \downarrow_{H}=y \downarrow_{H}\). Then \(x=y+(x-y) \varepsilon \operatorname{Im}\left(i_{H, G}\right)+\operatorname{Ker}\left(r_{G, H}\right)\).

Now write \(l=a^{\prime}+b^{\prime}\) in this decomposition. If \(x \varepsilon \operatorname{Im}\left(i_{H, G}\right) \cap \operatorname{Ker}\left(r_{G, H}\right)\), then \(x=x a^{\prime}+x^{\prime}=0\).
(ii) Write \(A_{1}=\operatorname{Im}\left(r_{G, H}\right)\) and \(A_{2}=\operatorname{Ker}\left(i_{H, G}\right)\). We show by induction on \(|K|\), for subgroups \(K \leq H\), that if \(M\) is a \(\Gamma K\) module, then \(\mathrm{Mr}^{\mathrm{H}} \varepsilon \mathrm{A}_{1}+\mathrm{A}_{2}\). By the Mackey theorem,
\[
M t^{G} \psi_{H}=\sum_{K g H} M^{g} g_{K^{g}} g_{\cap H} \uparrow^{H}
\]

If \(K^{\mathrm{E}} \neq \mathrm{H}\), then \(\mathrm{M}_{\downarrow}^{\mathrm{g}} \mathrm{K}_{\mathrm{K}}^{\mathrm{g}}{ }^{4}{ }^{\mathrm{H}} \varepsilon \mathrm{A}_{1}+A_{2}\) by the inductive hypothesis. Since \(M \dagger^{G}{ }_{\downarrow_{H}} \in A_{1}\), some positive multiple of \(M \dagger^{H}\) is in \(A_{1}+A_{2}\), and hence so is \(\mathrm{M}^{\mathrm{H}}\).

Now suppose \(x \varepsilon A_{1} \cap A_{2}\), with \(x=u \downarrow_{H}\). By (i), we may assume that \(u \varepsilon \operatorname{Im}\left(1_{H, G}\right)\). Let \(e \uparrow^{G}\) be the idempotent generator of \(\operatorname{Im}\left(1_{H, G}\right)\). Then \(u=u . e \uparrow^{G}=\left(u \psi_{H} \cdot e\right) \uparrow^{G}=(x . e) \uparrow^{G}\). Write \(e=v t_{H}+w \quad\) with \({ }^{v}{ }_{H} \varepsilon A_{1}\) and \(w \varepsilon A_{2}\). Then
\[
u=\left(x \cdot v \downarrow_{H}\right) \uparrow^{G}+(x \cdot w) \uparrow^{G}=x \uparrow^{G} \cdot v+u \cdot w \uparrow^{G}=0 . \quad 0
\]

\subsection*{2.2.3 Corollary}

Let \(H \leq G\) and let \(V_{1}\) and \(V_{2}\) be \(\Gamma H\)-modules, and \(W_{1}\) and \(W_{2}\) be \(\Gamma G\)-modules.
(i) If \(\mathrm{V}_{1} \uparrow^{G}{ }_{\mathrm{H}} \cong \mathrm{V}_{2} \uparrow^{G} \downarrow_{\mathrm{H}}\) then \(\mathrm{V}_{1} \uparrow^{G} \cong \mathrm{~V}_{2} \uparrow^{G}\).
(1i) If \(W_{1} \downarrow_{H} t^{G} \cong W_{2} \downarrow_{H} \dagger^{G}\) then \(W_{1} \downarrow_{H} \cong W_{2}{ }_{H}\).

\section*{Proof}
(i) \(V_{1} \uparrow^{G}-V_{2} \uparrow^{G} \varepsilon \operatorname{Im}\left(i_{H, G}\right) \cap \operatorname{Ker}\left(r_{G, H}\right)=0\) by 2.2.2(i).
(1i) \(W_{1} \downarrow_{H}-W_{2} \downarrow_{H} \varepsilon \operatorname{Im}\left(r_{G, H}\right) \cap \operatorname{Ker}\left(i_{H, G}\right)=0\) by 2.2.2(1i).

\section*{Exercises}
1. Let \(G\) be cyclic of order \(p^{n}\), and \(k\) a field of characteristic p. Show that there are \(p^{n}\) isomorphism classes of indecomposable kG-modules \(V_{1}, \ldots, V_{p} n\) with \(\operatorname{dim}\left(V_{i}\right)=i\), and
\(\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V_{i}, V_{j}\right)=\min (i, j)\). If \(x=\Sigma a_{i} V_{i}\) and \(y=\Sigma b_{i} V_{i}\), define \((x, y)=\Sigma a_{i} b_{j} \operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V_{i}, V_{j}\right)\). For \(x \varepsilon(a(G) \otimes \mathbb{R}) \backslash\{0\}\), show that \((x, x)>0\). Deduce that \(a(G) \otimes R\) is semisimple, and hence that \(A(G)\) is semisimple. (See also exercise 3 of 2.18). 2. Now let \(G\) be cyclic of order \(p\). Then
\[
v_{2} \otimes v_{i} \cong \begin{cases}v_{1+1} \oplus v_{i-l} & \text { if } i \neq p \\ v_{p} \oplus v_{p} & \text { if } 1=p\end{cases}
\]

Find the species of \(A(G)\).
3. Let \(G\) be \(S_{3}\), the symmetric group on 3 letters, and let \(k\) be a field of characteristic 3. What are the simple kG-modules? What are the indecomposable kG-modules? Draw up a table of tensor
products of indecomposable modules, and find all species of \(A(G)\). Display the answer in the form of a 'representation table', with rows indexed by the indecomposable modules and columns indexed by the species. Deduce that \(A(G)\) is semisimple. For each subgroup \(H\) of \(G\), identify \(\operatorname{Im}\left(1_{H, G}\right)\) and \(\operatorname{Ker}\left(r_{G, H}\right)\). For each species \(s\), find the minimal subgroups \(H\) with \(\operatorname{Ker}\left(r_{G, H}\right) \leq \operatorname{Ker}(s)\). Show that there are numbers \(\quad \lambda_{i} \in \mathbb{C}\) corresponding to the species \(s_{i}\), with the property that for any representations \(V\) and \(W\), we have
\[
\operatorname{dim}_{k} \operatorname{Hom}_{k G}(V, W)=\sum_{1}\left(s_{i}, V\right)\left(s_{i}, W^{*}\right) / \lambda_{i}
\]

For each indecomposable module \(V_{j}\), find an element \(H_{j} \varepsilon A(G)\) with
\[
\underset{i}{\Sigma}\left(s_{i}, V_{j}\right)\left(s_{i}, H_{k}^{*}\right) / \lambda_{i}=\delta_{j k} .
\]

Show that each \(H_{j}\) is of the form \(X-X^{\prime}-X^{\prime \prime}\), for some short exact sequence \(0 \rightarrow X^{\dagger} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) of \(k G-m o d u l e s\).
4. Let \(k_{l}\) be an algebraic extension of \(k\). Show that the natural \(\operatorname{map} A_{k}(G) \rightarrow A_{k_{1}}(G)\) given by \(V \mapsto V{ }_{k}^{\otimes} k_{l}\) is an injection. (This is a special case of the Noether-Deuring theorem, see for example Curtis and Reiner[38,p.l39].We shall give an unusual proof of this theorem In section 2.18).
5. Let \(G\) be a finite group. Define \(b(G)\) to be the Burnside Ring of \(G\), namely the free abelian group on the set of transitive permutation representations, with multiplication defined by forming the Cartesian product and decomposing into orbits. Let \(B(G)=b(G) \underset{\mathbb{Z}}{\mathbb{Z}} \mathbf{c}\).
(i) For each conjugacy class of subgroup \(H\) of \(G\), find a species \(s_{H}: B(G) \rightarrow \mathbb{C}\) (Hint: look at fixed points). Deduce that \(B(G)\) is semisimple and that every species is of the form \(s_{H}\) for some \(H \leq G\).
(ii) Show that for every \(H, S_{H}(b(G))\) lies in \(\mathbb{Z}\).
(iii) Show that \(\underset{(\mathrm{H})}{\Pi} \mathrm{s}_{\mathrm{H}}: \mathrm{b}(\mathrm{G}) \rightarrow \underset{(\mathrm{H})}{\boldsymbol{\Pi}} \boldsymbol{Z}\) (the products are taken
over conjugacy classes of subgroups \(H\)) is an injection whose image is a subgroup of index \(\underset{(H)}{\square}\left|N_{G}(H): H\right|\).
(iv) Show that the primitive idempotents in \(b(G)\) are in oneone correspondence with the perfect subgroups of \(G\). In particular \(G\) is solvable if and only if \(l\) is the only idempotent in \(b(G)\).

\subsection*{2.3 Relative Projectivity and the Trace Map}

Let \(H\) be a subgroup of \(G\). Let \(\left\{g_{i}: i \varepsilon I\right\}\) denote a set of right coset representatives of \(H\) in \(G\). Suppose \(U\) and \(V\) are rG-modules. Then we define the trace map
\[
\begin{aligned}
& \operatorname{Tr}_{H, G}:(U, V)^{H} \rightarrow(U, V)^{G} \text { via } \\
& \quad u \cdot \operatorname{Tr}_{H, G}(\varphi)=\underset{i \& I}{\Sigma}\left(\left(u g_{i}^{-1}\right) \varphi\right) g_{i} .
\end{aligned}
\]

It is clear that the map \(\operatorname{Tr}_{H, G}\) is independent of the choice of coset representatives. If we consider \((U, V)^{H}\) and \((U, V){ }^{G}\) as \(\operatorname{End}_{\Gamma G}(U)-E^{E n d}(V)\) bimodules, then \(\operatorname{Tr}_{H, G}\) is a bimodule homomorphism (see 2.3.1(1) \({ }_{\&}(i 1)\)). We write (\(\left.U, V\right)_{H}^{G}\) for the image of \(\operatorname{Tr}_{H, G}\) and \((U, V)^{H, G}\) for the cokernel. If \(\mathcal{H}\) is a collection of subgroups, then we write \((U, V)_{\mathbb{H}}^{G}\) for the sum of the images of \(\mathrm{Tr}_{H, G}, H \varepsilon \mathbb{H}\), and \((U, V)^{H, G}\) for \((U, V)^{G} /(U, V)_{G}^{G}\). We also write \(V_{H}^{G}\), \(V^{H, G}, V_{H}^{G}\) and \(V^{H, G}\) for \((\Gamma, V)_{H}^{G},(\Gamma, V)^{H, G},(\Gamma, V)_{H}^{G}\) and \((\Gamma, V)^{H, G}\) respectively.

\subsection*{2.3.1 Lemma}
(i) If \(\quad \alpha \varepsilon(\mathrm{U}, \mathrm{V})^{\mathrm{H}}\) and \(\beta \varepsilon(\mathrm{V}, \mathrm{W})^{\mathrm{G}}\) then \(\operatorname{Tr}_{H, G}(\alpha) \beta=\operatorname{Tr}_{H, G}(\alpha \beta)\).
(ii) If \(\quad a \varepsilon(U, V)^{G}\) and \(\beta \varepsilon(V, W)^{H}\) then
\(\alpha \operatorname{Tr}_{H, G}(\beta)=\operatorname{Tr}_{H, G}(\alpha \beta)\).
(iii) In particular \((U, U)_{H}^{G}\) is an ideal in \(\operatorname{End}_{\Gamma G}(U)\).
(iv) If \(U\) and \(W\) are \(\Gamma G\)-modules and \(V\) is a \(\Gamma H\)-module,
then for \(a \varepsilon(U, V)^{H}\) and \(\beta \varepsilon(V, W)^{H}\),
\[
\mathrm{Fr}_{\mathrm{H}, \mathrm{G}}(\alpha) \mathrm{Fr}_{\mathrm{H}, \mathrm{G}}^{\prime}(\beta)=\operatorname{Tr}_{\mathrm{H}, \mathrm{G}}(\alpha \beta) .
\]
(v) If \(L \leq H \leq G\), then \(\operatorname{Tr}_{H, G}\left(\operatorname{Tr}_{L, H}(\alpha)\right)=\operatorname{Tr}_{L, G}(\alpha)\).
(vi) If \(H\) and \(K\) are two subgroups of \(G\), then for
\(\alpha \in \operatorname{Hom}_{\Gamma H}(U, V), \operatorname{Tr}_{H, G}(\alpha)=\underset{H g K}{\Sigma} \operatorname{Tr}_{H} g_{\cap K}, K(\alpha g)\).
(vii) If \(\alpha \in\) End \(_{\Gamma H}(U)\) and \(\beta \in\) End \(_{\Gamma K}(U)\), then
\[
\operatorname{Tr}_{H, G}(\alpha) \operatorname{Tr}_{K, G}(\beta)=\sum_{H g K}^{\Sigma} \operatorname{Tr}_{H} \delta_{\cap K, G}(\alpha g \beta) .
\]

Proof
(1) - (v) are clear from the definition.
(vi) For each double coset Hg , let \(\lambda(g)\) be a set of right coset representatives of \(H^{\mathrm{g}} \cap \mathrm{K}\) in K . Then \(\underset{\mathrm{HgK}}{\mathrm{U}}\{\mathrm{gk}: \mathrm{k} \varepsilon \lambda(\mathrm{g})\}\) is a set of right coset representatives of \(H\) in \(G\).
(vii)
\[
\begin{aligned}
& \operatorname{Tr}_{H, G}(\alpha) \operatorname{Tr}_{K, G}(\beta)=\operatorname{Tr}_{K, G}\left(\operatorname{Tr}_{H, G}(\alpha) \beta\right) \text { by (1i) }
\end{aligned}
\]
\[
\begin{aligned}
& =\operatorname{Tr}_{K, G}\left(\underset{\mathrm{HgK}}{\Sigma} \mathrm{Tr}_{\mathrm{H} \mathrm{~g}_{\mathrm{O}, \mathrm{~K}, \mathrm{~K}}}^{(\mathrm{ag} \beta)) \text { by (i) }}\right. \\
& =\Sigma \operatorname{Tr} \quad \text { (agß) by (v). a } \\
& \mathrm{HgK} \quad \mathrm{H}^{\mathrm{E}} \mathrm{~K} \mathrm{~K}, \mathrm{G}
\end{aligned}
\]

A module \(V\) is said to be H-projective or projective relative to \(\underline{H}\) if whenever we have a map \(\lambda: V \rightarrow X\), and a surjection \(\mu: W \rightarrow X\) such that as \(\Gamma H\)-modules there is a map \(\quad v: V \rightarrow W\) and \(\lambda=\nu \mu\), then there is also a \(\Gamma G-m o d u l e\) homomorphism \(\quad \nu^{\prime}\) with \(\lambda=\nu^{\prime} \mu\).

2.3.2 Proposition (D. G. Higman's lemma)

Let \(V\) be a \(\Gamma G\)-module and \(H\) a subgroup of \(G\). The following are equivalent.
(i) \(V\) is H-projective.
(ii) \(V\) is a summand of \(V{ }_{H}{ }^{+}{ }^{G}\).
(1ii) \(V\) is a summand of \(U \dagger^{G}\) for some rH-module \(U\).
(iv) \(1_{V} \varepsilon \operatorname{Im}\left(\operatorname{Tr}_{H, G}: \operatorname{End}_{\Gamma H}(V) \rightarrow \operatorname{End}_{\Gamma G}(V)\right)\).

Proof
(1) (1i): The defining condition implies that the natural
surjection \(\mathrm{Fr}_{\mathrm{H}, \mathrm{G}}^{\prime}\left(\mathrm{l}_{\mathrm{V} t_{\mathrm{H}}}\right): \mathrm{V} \dagger_{\mathrm{H}} \dagger^{\mathrm{G}} \rightarrow \mathrm{V}\) splits.
\((1 i)=(11 i)\) is clear.
(1i1) \(\Rightarrow\) (iv): Let \(\rho=\operatorname{Fr}_{H, G}^{-1}\left(l_{U \uparrow}^{G}\right) \cdot \operatorname{Fr}_{H, G}^{\prime-1}\left(l_{U \uparrow}^{G}\right) \varepsilon E n d_{\Gamma H}\left(U t^{G} \downarrow_{H}\right)\).
Then by 2.3.1(1v), \(\quad \operatorname{Tr}_{H, G}(\rho)=1_{U \uparrow} G\). Thus if
\[
\theta: V t_{H} \hookrightarrow U \uparrow^{G} \downarrow_{H} \underset{\rho}{ } U \uparrow^{G} \downarrow_{H} \rightarrow V \downarrow_{H}
\]
then \(\operatorname{Tr}_{H, G}(\theta)=l_{V}\) by \(2.3 .1(1) \&(1 i)\).
\((1 v)=(1): L e t \quad \lambda: V \rightarrow X\) and \(\mu: W \rightarrow X\) and \(\nu: V \rightarrow W\)
as in the definition of H-projective. Let \(\theta \varepsilon \operatorname{End}_{\Gamma H}(V)\) with \(\operatorname{Tr}_{H, G}(\theta)=l_{V}\), and let \(v^{\prime}=\operatorname{Tr}_{H, G}(\theta v)\). Then
\[
\nu^{\prime} \mu=\operatorname{Tr}_{H, G}(\theta \nu) \mu=\operatorname{Tr}_{H, G}(\theta \nu \mu)=\operatorname{Tr}_{H, G}(\theta \lambda)=\operatorname{Tr}_{H, G}(\theta) \lambda=\lambda . \quad \square
\]
```

2.3.3 Corollary
Suppose \Gamma\varepsilon {R,R,\overline{R}}. If P \& Syl_p
V is P-projective.

```

\section*{Proof}

For each of \(\Gamma=\hat{R}, R\) or \(\bar{R}, \frac{l}{|G: P|}\) exists in \(\Gamma\), and so \(I_{V}=\operatorname{Tr}_{P, G}\left(\frac{1}{|G: P|} \cdot 1_{V}\right) . \quad \square\)

\subsection*{2.3.4 Corollary}

Let \(a \varepsilon(U, V)^{G}\). Then the following are equivalent.
(i) \(\quad \alpha \varepsilon(U, V)_{H}^{G}\)
(1i) There are an H-projective module \(W\) and maps \(\beta: U \rightarrow W\) and \(\quad r: W \rightarrow V\) such that \(\alpha=\beta \gamma\).

Proof
(i) \(=\) (ii): Take \(W=V{ }_{H} H^{+}\), and let \(a=\operatorname{Tr}_{H, G}\left(a^{\prime}\right)\).

Let \(\beta=\operatorname{Fr}_{H, G}\left(\alpha^{\prime}\right)\) and \(\gamma=\operatorname{Fr}_{H, G}^{\prime}\left(1_{V t_{H}}\right)\). Then
\[
\beta r=\operatorname{Fr}_{H, G}\left(\alpha^{\prime}\right) \operatorname{Fr}_{H, G}^{\prime}\left(1_{V \downarrow_{H}}\right)=\operatorname{Tr}_{H, G}\left(a^{\prime}\right) \text {. }
\]
(ii) \(\Rightarrow\) (1) : Suppose \(W\) is a summand of \(X t^{G}\). Let \(\beta^{\prime}: \mathrm{U}_{\beta} \rightarrow \mathrm{W} \leftrightarrow \mathrm{X} \uparrow^{\mathrm{G}}\) and \(r^{\prime}: \mathrm{X}^{\mathrm{G}} \rightarrow>{ }^{\mathrm{G}} \underset{\gamma}{ } \mathrm{V}\). Then \(\operatorname{Tr}_{H, G}\left(\operatorname{Fr}_{H, G}^{-1}\left(\beta^{\prime}\right) \operatorname{Fr}_{H, G}^{\prime-1}\left(\gamma^{\prime}\right)\right)=\beta^{\prime} r^{\prime}={ }_{\alpha}^{\gamma}\) by 2.3.1(iv). o

\subsection*{2.3.5 Corollary}

If \(V, W\) are \(\Gamma G-m o d u l e s\) and \(V\) is H-projective then so is V \& W .

Proof
Suppose \(V\) is a summand of \(X \psi^{G}\). Then \(V \otimes W\) is a summand of \(X \uparrow^{G} \otimes W=\left(X \otimes W t_{H}\right) \uparrow^{G} . \quad \square\)
Remark
Suppose \(W\) is a submodule of \(V\), and \(W\) and \(V / W\) are projective. Then \(V\) is also projective, since it is isomorphic to a direct sum of \(W\) and \(V / W\). However, the same is not true if the word projective is replaced by H-projective. For example, let \(G\) be the cyclic group of order four, and let \(H\) be the subgroup of order two. Then there are four isomorphism classes \(V_{1}, V_{2}, V_{3}\) and \(V_{4}\) of indecomposable kG-modules, for \(k\) the fleld of two elements. Their dimensions are \(1,2,3\) and 4 respectively. \(V_{2}\) and \(V_{4}\) are H-projective, while \(V_{1}\) and \(V_{3}\) are not. However, there is a short exact sequence
\[
0 \longrightarrow \mathrm{v}_{2} \longrightarrow \mathrm{v}_{1} \oplus \mathrm{v}_{3} \longrightarrow \mathrm{v}_{2} \longrightarrow 0
\]

Now let \(G\) act as permutations on a finite set \(S\), and denote by \(S^{G}\) the set of fixed points of \(G\) on \(S\). Let
\(\mathrm{Fix}_{G}(\mathrm{~S})=\left\{\mathrm{H} \leq \mathrm{G}: S^{H} \neq \varnothing\right\}\), and denote by IS the rG-permutation
module corresponding to \(S\). An exact sequence \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) is said to be S-split if the sequence
\[
0 \rightarrow X^{\prime} \otimes \Gamma S \rightarrow X \otimes \Gamma S \rightarrow X^{\prime \prime} \otimes \Gamma S \rightarrow 0 \text { splits. }
\]

\subsection*{2.3.6 Lemma}

A sequence \(0 \rightarrow X^{\prime} \rightarrow X \xrightarrow{\mu} X^{\prime \prime} \rightarrow 0\) is \(S-s p l i t\) if and only if it splits on restriction to every \(H \varepsilon \mathrm{Fix}_{\mathrm{G}}(\mathrm{S})\).

\section*{Proof}

If we write \(S=\dot{U} S_{1}\) as a sum of orbits of \(G\), then the sequence is S-split if and only if it is \(S_{i}-s p l i t\) for each 1 , so we may restrict our attention to the transitive case. Let \(H\) be the stabilizer of a point \(z_{0}\) in \(S\). If the sequence splits on restriction to \(H\), then it is clearly S-split since \(X \otimes \Gamma S=X{ }_{H} H^{\dagger}{ }^{G}\). Conversely suppose \(f: X^{\prime \prime} \otimes \Gamma S \rightarrow X \otimes \Gamma S\) is an S-splitting. For \(x \varepsilon X^{\prime \prime}\), write \(\left(x \otimes z_{0}\right) f=\sum_{z_{i} \in S}^{\sum} y_{i} z_{i}\), and let \(x f_{0}=y_{o}\). Then \(f_{0}: X^{\prime \prime} \rightarrow X\) is an H-splitting, since \(f_{0}{ }^{\mu}=1\) and \((x h) f_{0}=\left(x h \otimes z_{0}\right) f=\left(\left(x \otimes z_{0}\right) h\right) f=y_{0} h=\left(x f_{0}\right) h . \quad \square\)

We say that a module \(V\) is S-projective or projective relative to \(S\) if whenever we have a homomorphism \(W \rightarrow V \rightarrow 0\) which is S-split, then \(\mu\) is split. Thus if \(S\) is transitive with stabilizer \(H\), then \(V\) is S-projective if and only if it is H-projective. In general, \(V\) is S-projective if and only if it is a sum of H-projective modules for \(H \varepsilon \mathrm{Fix}_{\mathrm{G}}(\mathrm{S})\), which by 2.3 .2 happens if and only if it is a direct summand of \(V \otimes \Gamma S\).
```

2.3.7 Lemma
If }V\mathrm{ and }W\mathrm{ are rG-modules and V is S-projective then so
is }V\otimesW

```
 Proof
 This follows from 2.3.5. \(\quad\).
 We denote by \(A(G, H)\) the ideal of \(A(G)\) spanned by the H-projective
modules (see 2.3.5), \(A(G, S)\) the ideal spanned by the S-projective
modules (see 2.3 .7), and \(A_{0}(G, H)\) (resp. \(A_{o}(G, S)\)) the ideal spanned
by the elements of the form \(X-X^{\prime}-X^{\prime \prime}\) where \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\)
is an H-split (resp. S-split) sequence. If \(H\) is a collection of
subgroups, we write \(A(G, H)\) for the ideal spanned by the \(A(G, H)\)
for \(H \in H\), and \(A_{0}(G, H)\) for the intersection of the \(A_{0}(G, H)\) for
\(H \in H\). Then clearly \(A(G, S)=A\left(G, F_{i x}(S)\right)\) and
\(A_{0}(G, S)=A_{0}\left(G, F_{i x}(S)\right)\). We also write \(A^{\prime}(G, H)\) for \(A(G, H)\) where
H is the set of proper subgroups of \(H\).

\subsection*{2.3.8 Lemma}

Suppose \(H\) is a subgroup of \(G\) and \(G\) acts as permutations on S. We let \(H\) act on \(S\) by restriction of the action of \(G\). Then
(1) \(i_{H, G}(A(H, S)) \subseteq A(G, S)\)
(ii) \(i_{H, G}\left(A_{0}(H, S)\right) \subseteq A_{0}(G, S)\)
(1ii) \(r_{G, H}(A(G, S)) \subseteq A(H, S)\)
(1v) \(r_{G, H}\left(A_{0}(G, S)\right) \subseteq A_{0}(H, S)\)
The Proof is an easy exercise. o
We shall see in section 2.15 that in fact for any permutation representation \(S\) of \(G\),
\[
A(G)=A(G, S) \oplus A_{O}(G, S)
\]

\section*{Exercise}
 is projective. Deduce that \(V \otimes W\) is projective if and only if \(V^{*} \otimes W\) is projective. [Hint: reduce to a sylow p-subgroup and use 2.3.2].
2.4 The Inner Products on A(G)

We define two different bilinear forms (,) and \(<,>\)
on \(A(G)\) as follows.
If \(V\) and \(W\) are \(\Gamma G-m o d u l e s\), we let
\((V, W)=\operatorname{rank}_{\Gamma} \mathrm{Hom}_{\Gamma G}(V, W)=\operatorname{rank}_{\Gamma} \mathrm{Hom}_{\Gamma G}\left(1, V^{*} \otimes W\right)\) by 2.1.1(iv).
We then extend (,) bilinearly to give a (not necessarlly
symmetric) bilinear form on the whole of \(A(G)\).
Note that \((x y, z)=\left(x, y^{*} z\right)\), by 2.1 .6 (ii).
For \(\Gamma=\hat{R}\) or \(\Gamma=R\), the bilinear form (,) is symmetric. However, for a field \(k\) of characteristic \(p\), (, is not necessarily symmetric. We thus introduce another inner product
\[
\begin{aligned}
<V, W\rangle & =\operatorname{dim}_{k}(V, W)_{l}^{G} \quad(\text { see } 2.3) \\
& =\operatorname{dim}_{k}\left(1, V^{*} \otimes W\right)_{l}^{G} \quad \text { by } \quad 2.1 .1(i v)
\end{aligned}
\]
and extend bilinearly to the whole of \(A_{k}(G)\).
Note that \(\langle x y, z\rangle=\left\langle x, y^{*} z>\right.\). The relationship between the two inner products (,) and \(<,>\) is given in 2.4.3.

Let \(P_{1}=\left(P_{1}\right)_{k G}\) be the projective cover of the trivial \(k G-m o d u l e \quad l\), and let
\[
\begin{aligned}
& u=u_{k G}=P_{l}-\Omega^{-l}(1) \\
& v=v_{k G}=P_{l}-\Omega(l)
\end{aligned}
\]
as elements of \(A(G)\) (note that \(u^{*}=v\)).
2.4.1 Lemma

The following expressions are equal.
(i) \(<V, W\rangle\).
(ii) The multiplicity of \(\left(\mathrm{P}_{\mathrm{I}}\right)_{\mathrm{kG}}\) as a direct summand of
\(\operatorname{Hom}_{k}(V, W)=V^{*} \otimes W\).
(iii) (u, \(\left.\operatorname{Hom}_{k}(V, W)\right)\).
(iv) The rank of \(\quad \Sigma \quad g\) in the matrix representation of \(k G\) \(\mathrm{g} \varepsilon \mathrm{G}\)
on \(\operatorname{Hom}_{k}(V, W)\).
In particular, \(<,>\) is symmetric.

\section*{Proof}

Since each of these expressions is unaffected by replacing \(V\) by \(l\) and \(W\) by \(\operatorname{Hom}_{k}(V, W)\), we may assume that \(V=1\). Also, since each expression is additive in \(W\), we may suppose that \(W\) is indecomposable. We shall now show that each of these expressions is 1 when \(W \cong P_{1}\) and zero otherwise.
(i) If \(<1, W>\neq 0\), then there is an element \(a \varepsilon W\) with
\(\Sigma a g \neq 0\). Let \(\lambda: P \rightarrow W\) be the projective cover of \(W\), and \(\mathrm{g} \varepsilon \mathrm{G}\)
write \(P=n P_{l} \oplus P^{\prime}\), where \(P^{\prime}\) has no direct summands isomorphic to \(P_{1}\). Choose an element \(\alpha_{1}+a_{2} \varepsilon n P_{1} \oplus P^{\prime}\) with \(\left(\alpha_{1}+\alpha_{2}\right) \lambda=\alpha\). Then \(\quad \sum_{\varepsilon G}\left(a_{1}+\alpha_{2}\right) g \neq 0\). But \(\underset{g_{\varepsilon G}}{\sum_{2}} a_{2} g=0\), since \(P^{\prime}\) has no invariant elements, and so \(\left.\underset{g \varepsilon G}{\sum} a_{1} g\right) \lambda \neq 0\). Thus the submodule spanned by \(a_{l}\) is a copy of \(P_{l}\) whose socle \(\underset{\varepsilon}{\sum}{ }_{\varepsilon}{ }_{G} a_{1} g\) is not killed by \(\lambda\). Since \(P_{1}\) is injective, this means that \(P_{1}\) is a direct summand of \(W\), and since \(W\) is indecomposable, \(P_{1} \cong W\). clearly \(\left\langle 1, P_{l}\right\rangle=1\).
(ii) This is clear.
(iii) A homomorphism from \(P_{1}\) to \(W\) factors through \(\Omega^{-l}(1)\) unless \(W \cong P_{1}\), since \(P_{1}\) is injective. Thus if \(W \not P_{1},(u, W)=0\). On the other hand, if \(W \cong P_{1}\), then any homomorphism \(P_{1} \rightarrow W\) is equivalent modulo a multiple of this isomorphism to a homomorphism factoring through \(\Omega^{-1}(1)\), and so \((u, W)=1\).
(iv) This is clearly the same as (i).

The symmetry of \(<,>\) follows since \(P_{1} \cong P_{1}^{*}\). o

\subsection*{2.4.2 Proposition}

Let \(V\) be an indecomposable kG-module with projective cover \(P_{V}\) and injective hull \(I_{V}\). Then we have the following :
(1) \(\Omega^{-l}(1) \otimes \Omega(V) \cong V \oplus\) projectives.
\[
\begin{equation*}
u \cdot\left(\mathrm{P}_{\mathrm{V}}-\Omega(\mathrm{V})\right)=\mathrm{V}=\mathrm{V} \cdot\left(I_{\mathrm{V}}-\Omega^{-l}(\mathrm{~V})\right) \tag{ii}
\end{equation*}
\]
and in particular \(u \cdot v=1\).
(iii) \(u \cdot V=I_{V}-\Omega^{-1}(V)\)
\(v . V=P_{V}-\Omega(V)\).
Proof
We have short exact sequences \(0 \rightarrow 1 \rightarrow P_{1} \rightarrow \Omega^{-1}(1) \rightarrow 0\) and \(0 \rightarrow \Omega(V) \rightarrow P_{V} \rightarrow V \rightarrow 0\). Tensor the first of these with \(V\), and the second with \(\Omega^{-1}(1)\). Then applying Schanuel's lemma (1.4.2), we get
(*) \(\quad \Omega^{-1}(1) \otimes \Omega(\mathrm{V}) \oplus \mathrm{P}_{1} \otimes \mathrm{~V} \cong \Omega^{-1}(1) \otimes \mathrm{P}_{\mathrm{V}} \oplus \mathrm{V}\), which proves (i).

Thus as elements of \(A(G)\), we get
\[
\begin{aligned}
u \cdot\left(P_{V}-\Omega(V)\right)=P_{1} \cdot P_{V} & -\left(P_{1} \cdot P_{V}-P_{1} \cdot V\right) \\
& -\Omega^{-1}(1) \cdot P_{V}+\Omega^{-1}(1) \cdot \Omega(V)
\end{aligned}
\]
(note that \(P_{1} \cdot \Omega(V)=P_{1} \cdot P_{V}-P_{1} \cdot V\) since \(P_{I} \cdot V\) is projective by 2.1.5)
\(=\mathrm{V}\), by (*) above.
This statement and its dual prove (1i), and (iii) follows
immediately. \(\quad\) :
2.4.3 Corollary

Let \(V\) and \(W\) be kG-modules. Then
(i) \((V, W)=\langle v . V, W\rangle=\left\langle v, \operatorname{Hom}_{k}(V, W)\right\rangle\) \(=\langle V, u, W\rangle=\left\langle\operatorname{Hom}_{k}(W, V), u\right\rangle\).
(ii) \(\langle V, W\rangle=(u, V, W)=\left(u, H_{i} m_{k}(V, W)\right)\)
\(=(V, v, W)=\left(\operatorname{Hom}_{k}(W, V), v\right)\).
(iii) \((V, W)=\left(W, v^{2}, V\right)\).

Proof
\(<\mathrm{V}, \mathrm{W}\rangle=\left(\mathrm{u}, \operatorname{Hom}_{\mathrm{k}}(\mathrm{V}, \mathrm{W})\right)\) by 2.4.1(iii)
\(=\) (u.V,W) by 2.1.6(i).
The rest follow similarly from 2.1 .6 and the fact that \(u . v=1\) (2.4.2(ii)). ם
2.4.4 Corollary

Let \(V\) and \(W\) be kG-modules.
If \(V\) is indecomposable and \(W\) is irreducible, then
\[
<V, W\rangle= \begin{cases}d i m_{k} \operatorname{End}_{k G}(W) & \text { if } V \cong P_{W} \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Proof}
\(<\mathrm{V}, \mathrm{W}\rangle=(\mathrm{V}, \mathrm{V}, \mathrm{W})=\left(\mathrm{V}, \mathrm{P}_{\mathrm{W}}-\Omega(\mathrm{W})\right.\)) by 2.4.3 and 2.4.2(iii). Since \(V\) is indecomposable and \(P_{W}\) is projective, any homomorphic image of \(V\) in \(P_{W}\) lies in \(\Omega(W)\) unless \(V \cong P_{W}\).

\subsection*{2.4.5 Proposition}

If \(H \leq G\), then
(i) \(u_{k G}{ }^{\dagger}{ }_{H}=u_{k H}\)
(ii) \(\mathrm{v}_{\mathrm{k} \mathrm{G}^{\downarrow} \mathrm{H}}=\mathrm{v}_{\mathrm{kH}}\).

Proof
We have short exact sequences \(0 \rightarrow \Omega(1)_{\mathrm{kH}} \rightarrow\left(\mathrm{P}_{\mathrm{I}}\right)_{\mathrm{kH}} \rightarrow \mathrm{I}_{\mathrm{kH}} \rightarrow 0\)
 Schanuel's lemma (1.4.2) and (i) is proved dually. a
2.4.6 Corollary

If \(V\) is a \(k H\)-module and \(W\) is a \(k G-m o d u l e\), then
\[
\begin{aligned}
<\mathrm{V}, \mathrm{~W} \psi_{\mathrm{H}}> & =<\mathrm{V} \uparrow^{G}, \mathrm{~W}> \\
& (\text { cf. } \quad 2.1 .3, \text { Frobenius Reciprocity })
\end{aligned}
\]

Proof
\[
\begin{aligned}
<V, W \psi_{H}> & =\left(u_{k H}, \operatorname{Hom}_{k}\left(V, W \downarrow_{H}\right)\right) \quad \text { by } 2.4 .1 \\
& =\left(u_{k G \not}{ }_{H}, \operatorname{Hom}_{k}\left(V, W \downarrow_{H}\right)\right) \text { by } 2.4 .5(i) \\
& =\left(u_{k G},\left(\operatorname{Hom}_{k}\left(V, W \psi_{H}\right)\right) \uparrow^{G}\right) \text { by } 2.1 .3(i) \\
& =\left(u_{k G}, \operatorname{Hom}_{k}\left(V \uparrow^{G}, W\right)\right) \quad \text { by } 2.1 .2(v i) \\
& \left.=<V \uparrow^{G}, W\right\rangle \quad \text { by } 2.4 .1 . \quad \text { a }
\end{aligned}
\]

\subsection*{2.5 Vertices and Sources}
 of \(V\) if \(V\) is D-projective, but not \(D^{\prime}\)-projective for any proper subgroup \(D^{\prime}\) of \(D\). A source of \(V\) is an indecomposable rD-module \(W\), where \(D\) is a vertex of \(V\), such that \(V\) is a direct summand of \(W_{T}{ }^{G}\) (c.f.2.3.2).

\subsection*{2.5.1 Proposition}

Suppose \(\Gamma \varepsilon\{R, \bar{R}\}\).
Let \(V\) be an indecomposable rG-module.
(i) The vertices of \(V\) are conjugate p-subgroups of \(G\).
(ii) Let \(W_{1}\) and \(W_{2}\) be two \(\Gamma D\)-modules which are sources of V. Then there is an element \(g \varepsilon N_{G}(D)\) with \(W_{1} \cong W_{2}{ }^{g}\).
\[
\begin{aligned}
& \text { Proof } \\
& \text { (i) Let } D_{1} \text { and } D_{2} \text { be vertices of } V \text {. Write } \\
& I_{V}=I_{V}{ }^{2}=\operatorname{Tr}_{D_{1}}, G(a) \operatorname{Tr}_{D_{2}},{ }_{G}(\beta) \text { by } 2.3 .2 \\
& =\sum_{D_{1} g D_{2}}^{\sum} \mathrm{Tr}_{\mathrm{D}_{1}} \mathrm{~g} \mathrm{MD}_{2}, \mathrm{G}^{(\mathrm{ag} \beta)} \text { by 2.3.1 (vii) } \\
& \varepsilon \quad \sum_{1} \sum_{1} \mathrm{gD}_{2} \quad(\mathrm{~V}, \mathrm{~V})_{\mathrm{D}_{1}^{\mathrm{G}}}^{\mathrm{g}} \mathrm{~g} \mathrm{D}_{2} \quad .
\end{aligned}
\]

Thus by Rosenberg's lemma (1.5.5) and minimality of \(D_{1}\) and \(D_{2}\), for some \(g \in G\) we have \(D_{1} g=D_{2}\). By 2.3.3, the vertices are p-groups.
(ii) Let \(W\) be an indecomposable summand of \(V \psi_{D}\) which is a source of \(V\) (cf. 2.3.2). Then \(W\) is also a summand of \(W_{1} \uparrow^{G}{ }_{D}=\underset{D G D}{\oplus} W_{1} g_{\downarrow}{ }_{D} g_{\cap D} \uparrow^{D}\). Thus for some \(g \varepsilon N_{G}(D), W \cong W_{1}{ }^{g}\). a

If \(s\) is a species of \(A_{\Gamma}(G)\), we define a vertex of \(s\) to be a vertex of minimal size over indecomposable modules \(V\) for which \((s, V) \neq 0\).

\subsection*{2.5.2 Proposition}

Suppose \(\Gamma \varepsilon\{R, \bar{R}\}\).
(i) If \(W\) is an indecomposable module with (s,W) \(\neq 0\) then every vertex of \(s\) is contained in a vertex of \(W\).
(ii) The vertices of \(s\) are conjugate p-subgroups of \(G\).

\section*{Proof}
(i) Suppose \(D\) is a vertex of \(s\), and of \(V\) with (\(s, V\)) \(\neq 0\). If \((s, W) \neq 0\), then \((s, V \otimes W) \neq 0\), and so \((s, X) \neq 0\) for some indecomposable direct summand \(X\) of \(V \otimes W\). But every vertex of \(X\) is contained in both a vertex of \(V\) and a vertex of \(W\), by 2.3.5. By minimality, \(D\) is a vertex of \(X\) and is contained in a vertex of \(W\).
(ii) follows immediately from (i). 口

\section*{Exercises}

An algebra has finite representation type if there are only finitely many isomorphism classes of indecomposable modules; otherwise
it has infinite representation type.
1. Show that the group algebra \(k P\) of a group \(P\) isomorphic to the direct product of two copies of the cyclic group of order \(p\) has infinite representation type (hint: for \(k\) infinite, construct an infinite family of non-isomorphic indecomposable two-dimensional representations; then pass down to \(k\) finite).
2. (Harder) Show that the group algebra described in exercise l has indecomposable representations of arbitrarily large dimension (hint: form an amalgamated sum of copies of \(k P / J^{2}(k P)\), or look at \(\Omega^{n}(k)\)). 3. Use the theory of vertices and sources to show that the group algebra \(k G\) of a general finite group \(G\) has finite representation type if and only if the Sylow p-subgroups of \(G\) are cyclic (hint: if a p-group is non-cyclic then it has a quotient isomorphic to the group \(P\) of exercise 1). See also 2.12.9.

\section*{Remark}

The algebras of infinite representation type split further into tame and wild. Roughly speaking, tame representation type means that the representations are classifiable, whilst a classification of the representations of an algebra of wild representation type would imply a classification of pairs of (non-commuting) matrices up to conjugacy. For a more precise definition, see Ringel's article 'Tame algebras' in 'Representation Theory I', Springer Lecture Notes in Mathematics no. 831, p. 155. For modular group algebras of infinite representation type, it turns out that if \(\operatorname{char}(k) \neq 2\), they are all of wild representation type. For \(\operatorname{char}(k)=2\), tame representation type occurs exactly when the Sylow 2-subgroups of \(G\) are dihedral, semidihedral, quaternion or generalized quaternion [97].

\subsection*{2.6 Trivial Source Modules}

A module \(V\) is a trivial source module if each indecomposable direct summand has the trivial module as a source.

\subsection*{2.6.1 Lemma}

An indecomposable module has trivial source if and only if it is a direct summand of a permutation module.

Proof
If \(V\) is a summand of \(1_{H}{ }^{\dagger}{ }^{G}, D\) is a vertex of \(V\), and the rD-module \(W\) is a source, then \(W\) is a summand of \(I_{H} \uparrow^{G} \downarrow_{D}=\underset{H g D}{\oplus} I_{H^{G} \cap D} \uparrow^{D}\). Since \(D\) is a vertex, \(W \cong I_{D}\). o

We denote by \(A(G, T r i v)\) the subring of \(A(G)\) spanned by the trivial source modules. It turns out that this subring controls many properties of species. We shall investigate this in section 2.14. In this section we shall study the endomorphism ring of a trivial source module, as an example of the theory set up in section 1.7 .
2.6.2 Proposition (Scott)

Let \(V_{1}\) and \(V_{2}\) be the RG-permutation modules on the cosets of \(H_{1}\) and \(H_{2}\). Then the natural map from \(\operatorname{Hom}_{R G}\left(V_{1}, V_{2}\right)\) to \(\operatorname{Hom}_{\bar{R} G}\left(\bar{V}_{1}, \bar{V}_{2}\right)\) given by reduction modulo (\(\pi\)) is a surjection.

Proof
By the Mackey decomposition theorem, \(\operatorname{Hom}_{R G}\left(V_{1}, V_{2}\right)\) and \(\operatorname{Hom}_{\bar{R} G}\left(\overline{\mathrm{~V}}_{1}, \overline{\mathrm{~V}}_{2}\right)\) have the same rank, namely the number of double cosets \(\mathrm{H}_{1} \mathrm{gH}_{2}\).

\subsection*{2.6.3 Corollary}
(i) Any trivial source \(\bar{R} G-m o d u l e ~ l i f t s ~(u n i q u e l y) ~ t o ~ a ~ t r i v i a l ~\) source RG-module.
(1i) If \(V_{1}\) and \(V_{2}\) are trivial source RG-modules, then the natural map \(\operatorname{Hom}_{R G}\left(V_{1}, V_{2}\right) \rightarrow \operatorname{Hom}_{\bar{R} G}\left(\bar{V}_{1}, \bar{V}_{2}\right)\) given by reduction modulo (\(\pi\)) is a surjection.

Proof
Suppose \(U\) is a direct summand of an \(\vec{R} G\)-permutation module \(\bar{V}\).
 by the idempotent refinement theorem (1.7.2), the idempotent corresponding to \(U\) lifts to an idempotent in End \(R_{G}(V)\), and \(U\) is thus the reduction modulo (\(\pi\)) of the corresponding direct summand of \(V\).

It now follows from 2.6.2 that homomorphisms between trivial source \(\overline{\mathrm{R}}\)-modules lift to homomorphisms between their lifts.

It remains to prove uniqueness of the lift. Suppose \(W_{1}\) and \(W_{2}\) are two trivial source lifts of \(U\). Then the identity automorphism of \(U\) lifts to maps \(W_{1} \rightleftarrows W_{2}\) whose composite either way reduces mod (\(\pi\)) to the identity map. Thus by l.l.3 the composites are automorphisms, and the maps are hence isomorphisms. o Remark
2.6.3 may be interpreted as saying that the natural map \(A_{R}(G, T r i v) \rightarrow A_{\bar{R}}(G, T r i v)\) is an isomorphism.

For the remainder of 2.6 , we assume that \((\hat{R}, R, \bar{R})\) is a splitting p-modular system for RG.

Let \(G\) act as permutations on a set \(S\), and let \(\hat{R S}\), \(R S\) and \(\bar{R} S\) be the corresponding \(\hat{R} G, R G\) and \(\bar{R} G\) permutation modules on \(S\). Let \(\hat{E}=\hat{E}(S), E=E(S)\) and \(\bar{E}=\bar{E}(S)\) denote the endomorphism rings \(E_{\Gamma G}(S)\) for \(\Gamma=\hat{R}, \quad R\) and \(\bar{R}\) respectively.

Now 1.2 .3 tells us that \(\hat{E}(S)\) is semisimple, so that by 2.6 .2 , \(\hat{E}, E\) and \(\bar{E}\) satisfy the conditions required in section 1.7 . Also, by 1.2 .3 , since \((\hat{R}, R, \bar{R})\) is a splitting system for \(R G\), it is also a splitting system for \(E\), and so we have as \(\hat{E}\)-modules, \(\hat{\mathrm{R}} \mathrm{S}=\underset{\mathrm{e}}{\oplus} \operatorname{dim}\left(\mathrm{V}_{e}\right) \cdot \mathrm{X}_{e} \quad\) where e runs over a set of primitive central idempotents in \(\hat{E}, \quad V_{e}\) is the corresponding irreducible \(\hat{R} G-m o d u l e\), and \(X_{e}\) is the corresponding irreducible \(\hat{E}\)-module. As \(\hat{R} G\)-modules, we have \(\hat{R} S . e=\operatorname{dim}\left(X_{e}\right) \cdot V_{e}\). Indeed, by 1.2 .3 , as modules for \(\hat{E} \underset{\hat{R}}{\neq} \hat{R} G\),
(1)
\[
\hat{R S}=\underset{e}{\oplus}\left(X_{e} \otimes V_{e}\right)
\]

Now let \(G\) act on \(S \times S\) via the diagonal action \((x, y) g=(x g, y g)\), and write \(S \times S=\dot{U} S_{i}^{2}\) as G-orbits. Let \(k_{i}=\left|S_{i}^{2}\right|\), and let \(A^{(i)}\) denote the suborbit map on \(\mathbb{Z} S\)
\[
A^{(1)}: x \rightarrow \sum_{(x, y) \varepsilon S_{1}^{2}}^{y}
\]

Then the \(A^{(1)}\) form a \(\mathbb{Z}\)-basis for \(\operatorname{End}_{\mathbb{Z} G}(\mathbb{Z S})\), and a \(\Gamma\)-basis for \(E_{\Gamma G}(S)\) for \(\Gamma=\hat{R}, R\) or \(\vec{R}\). We define a pairing of the suborbits \(i \leftrightarrow 1^{\prime}\) via
\[
(x, y) \varepsilon S_{i}^{2} \Leftrightarrow(y, x) \varepsilon S_{i}^{2}
\]

Then it is clear that
\[
\begin{equation*}
\operatorname{Tr}_{\Gamma S}\left(A^{\left(i^{\prime}\right)} A^{(j)}\right)=k_{i} \delta_{i j} \tag{2}
\end{equation*}
\]

The following theorem gives the idempotent \(e\) in terms of the \(A^{(1)}\), an expression for \(\operatorname{dim}\left(V_{e}\right)\) and an orthogonality relation. 2.6.4 Theorem
(1) \(\quad e=\operatorname{dim}\left(X_{e}\right)\).
\[
\frac{\sum_{i} \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right) A^{(i)} / k_{i}}{\sum_{i} \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right) \operatorname{Tr} X_{e}\left(A^{(i)}\right) / k_{i}}
\]
(ii) \(\quad \operatorname{dim}\left(V_{e}\right)=\)
\[
\frac{\operatorname{dim}\left(X_{e}\right)}{\sum_{i} \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right) \operatorname{Tr}_{X_{e}}\left(A^{(i)}\right) / k_{i}}
\]
(111) If \(e \neq e^{\prime}\) then
\[
\sum_{i} \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right) \operatorname{Tr}_{X_{e}}\left(A^{(1)}\right) / k_{1}=0
\]

Proof
Let \(e=\Sigma e_{i} A^{(i)}\). Then by (2),
\[
\operatorname{Tr}_{R S}\left(A^{\left(i^{\prime}\right)} e\right)=k_{i} e_{i} .
\]

On the other hand, (1) gives
\[
\operatorname{Tr}_{\hat{R S}}\left(A^{\left(i^{\prime}\right)} e\right)=\operatorname{dim}\left(V_{e}\right) \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right)
\]

Hence
(3)
\[
e_{i}=\operatorname{dim}\left(V_{e}\right) \operatorname{Tr}_{X_{e}}\left(A^{\left(i^{\prime}\right)}\right) / k_{i}
\]

But \(\operatorname{Tr}_{X_{e}}(e)=\operatorname{dim}\left(X_{e}\right)\), and so
\[
\operatorname{dim}\left(V_{e}\right) \cdot \Sigma \operatorname{Tr}_{i} X_{e}\left(A^{\left(i^{\prime}\right)}\right) \operatorname{Tr}_{X_{e}}\left(A^{(1)}\right) / k_{1}=\operatorname{dim}\left(X_{e}\right) .
\]

This proves (ii), and substituting back in (3) gives (i). The relation (iii) follows since \(\operatorname{Tr}_{X_{e}}\left(e^{\prime}\right)=0\). \(\quad\).

A central component of \(\bar{R} S\) is a direct summand of the form \(\bar{R} S\).e where \(e\) is a central idempotent in \(\bar{E}\). A component of \(\bar{R} S\) is an indecomposable direct summand, and corresponds to a primitive idempotent in \(\bar{E}\). The central homomorphism \(\omega_{e}: Z(E) \rightarrow R\) determined by \(X_{e}\) is clearly just
\[
\omega_{e}: \sum_{1}^{\Sigma} a_{i} A^{(i)} \mapsto \sum_{i}^{\Sigma} a_{i} \operatorname{Tr}_{X_{e}}\left(A^{(i)}\right) / \operatorname{dim}\left(X_{e}\right) .
\]

Thus two summands of \(\hat{R} S\) lie in the same central component of \(\bar{R} S\) if and only if the values of the corresponding \(\omega_{e}\) are congruent modulo (\(\pi\)) on \(Z(E)\). To calculate the components, however, we need information about the decomposition numbers of \(E\).

\section*{Example}

\section*{\(A_{5}\) acting on the vertices of a dodecahedron}

Suborbit maps:

Matrices for the adjoint representation of \(E\)

\(\hat{E}\) has four one-dimensional representations and a two-dimensional one. The following table gives the matrices for these representations, and the associated characters of \(A_{5}\).
\[
\begin{aligned}
& \text { Matrix on } V_{e} \quad \text { Character of } X_{e} \\
& A^{(1)} A^{(2)} A^{(3)} A^{(4)} \quad A(5) \quad A(6) A^{(7)} A^{(8)} \quad 1 A \quad 2 A \quad 3 A \quad 5 A \quad A^{*} \\
& \begin{array}{lllllllllllllll}
e_{1} & 1 & 3 & 3 & 3 & 3 & 3 & 3 & 1 & 1 & 1 & 1 & 1 & 1 \\
e_{2} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 5 & 1 & -1 & 0 & 0 \\
e_{3} & 1 & \sqrt{5} & 1 & 1 & -1 & -1 & -\sqrt{5} & -1 & 3 & -1 & 0 & -b 5 & * \\
e_{4} & 1 & -\sqrt{2} & 1 & 1 & -1 & -1 & \sqrt{5} & -1 & 3 & -1 & 0 & * & -b 5 \\
e_{5}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
-3 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -3 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) & 4 & 0 & 1 & -1 & -1
\end{array} \\
& \left(\mathrm{~b} 5=\frac{-1+\sqrt{ } 5}{2}\right) \\
& \text { A Z-basis for } Z(E) \text { is given by } z_{1}=A^{(1)}, z_{2}=A^{(2)}+A^{(8)} \text {, } \\
& z_{3}=A^{(3)}+A^{(4)}-2 A^{(8)}, z_{4}=A^{(5)}+A^{(6)}+A^{(8)} \text { and } \\
& z_{5}=A^{(7)}+A^{(8)} \text {. }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Central characters} & \multicolumn{4}{|c|}{p-blocks} \\
\hline & \(\mathrm{z}_{1}\) & \(z_{2}\) & \(z_{3}\) & \(z_{4}\) & \(z_{5}\) & \(p=2\) & \(p=3\) & \(p=5\) \\
\hline \(\omega_{1}\) & 1 & 4 & 4 & 7 & 4 & a & a & a \\
\hline \(\omega_{2}\) & 1 & 2 & -4 & -1 & 2 & a & b & b \\
\hline \(\omega_{3}\) & 1 & 2 b 5 & 4 & -3 & * & a & c & a \\
\hline \(\omega_{4}\) & 1 & * & 4 & -3 & 2 b 5 & a & d & a \\
\hline \(\omega_{5}\) & 1 & -1 & -1 & 2 & -1 & b & b & a \\
\hline
\end{tabular}

\section*{Decomposition numbers}
\begin{tabular}{ccccccccc}
& \(\mathrm{p}=2\) & \(\mathrm{p}=3\) & & & \multicolumn{2}{c}{\(\mathrm{p}=5\)} \\
& \(\mathrm{~W}_{1}\) & \(\mathrm{~W}_{2}\) & \(\mathrm{~W}_{1}\) & \(\mathrm{~W}_{2}\) & \(\mathrm{~W}_{3}\) & \(\mathrm{~W}_{4}\) & \(\mathrm{~W}_{1}\) & \(\mathrm{~W}_{2}\) \\
\(\mathrm{~V}_{1}\) & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\(\mathrm{~V}_{2}\) & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{~V}_{3}\) & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\(\mathrm{~V}_{4}\) & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\(\mathrm{~V}_{5}\) & 0 & 1 & 0 & 2 & 0 & 0 & 2 & 0
\end{tabular}

See also exercise 2 for an example with E commutative.

\section*{Exercises}
1. Use the argument of 2.2 .2 to show that if \(H\) is a subgroup of \(G\) then
\[
A(G, \operatorname{Triv})=i_{H, G}(A(H, \operatorname{Triv})) \oplus \operatorname{Ker}_{A(G, \operatorname{Triv})}\left(r_{G, H}\right)
\]
2. Let \(G=S_{8}\), the symmetric group on eight letters, let \(H=S_{5} \times S_{3}\) be the subgroup fixing an unordered triple of letters, and let \(R\) be the 2-adic integers. Let \(S\) be the set of right cosets of \(H\) in \(G\), so that \(S\) may be thought of as the set of unordered triples from the eight letters.
(i) Show that there are four orbits \(S_{i}^{2}\) of \(G\) on \(S \times S\), with \(k_{\mathbf{i}} /|G: H|=1,15,30\) and 10 , for \(i=1,2,3\) and 4 respectively.
(ii) Using the basis \(A^{(1)}, A^{(2)}, A^{(3)}, A^{(4)}\) for \(E\), show that in the regular representation of \(E, A(2)\) is represented as the matrix
\[
\alpha=\left(\begin{array}{rrrr}
0 & 15 & & \\
1 & 6 & 8 & \\
& 4 & 8 & 3 \\
& & 9 & 6
\end{array}\right)
\]
(iii) Find the eigenvalues of \(a\). Deduce that \(A^{(2)}\) generates \(\hat{E}\), and \(E\) is commutative. Thus the irreducible representations of \(\hat{E}\) are the central homomorphisms, and the components of \(\overline{\mathrm{R}}\) are the central components.
(1v) Deduce that the representations of \(\hat{E}\) are as follows:
\begin{tabular}{ccccc}
& \(A^{(1)}\) & \(A^{(2)}\) & \(A^{(3)}\) & \(A^{(4)}\) \\
\(\omega_{1}\) & 1 & 15 & 30 & 10 \\
\(\omega_{2}\) & 1 & 7 & -2 & -6 \\
\(\omega_{3}\) & 1 & 1 & -5 & 3 \\
\(\omega_{4}\) & 1 & -3 & 3 & -1.
\end{tabular}
(v) Use 2.6.4(ii) to calculate the dimension of the ordinary representation \(V_{i}\) corresponding to each \(\omega_{i}\).
(vi) Show that \(\bar{R} S\) is the direct sum of two indecomposable modules, of dimensions 8 and 48. What is the dimension of the endomorphism ring of each direct summand?

See also [11] for further information.

\subsection*{2.7 Defect Groups}

As in section 2.6, we let \(G\) act on a set \(S\), and we let \(A^{(i)}\) be the standard basis elements of \(\bar{E}(S)\) corresponding to \(S \times S={\underset{i}{u}}_{i} S_{i}^{2}\). We define a defect group of \(S_{i}^{2}\) to be a Sylow p-subgroup of the stabilizer of a point in \(S_{i}^{2}\). This is well defined up to conjugacy in \(G\).

\subsection*{2.7.1 Lemma}

If \(D\) is a p-subgroup of \(G\), then \((\overline{R S}, \overline{R S})_{D}^{G}\) is the linear span in \(\bar{E}(S)\) of the \(A^{(i)}\) for which \(D\) contains a defect group of \(s_{i}^{2}\).
```

            Proof
            If (x,y) &S N S, let a be the basis element of
    E
of E}\mp@subsup{E}{\overline{R}D}{D}(S)\mathrm{ corresponding to the D-orbit of ( }x,y\mathrm{ ), and let }\mp@subsup{S}{i}{2}\mathrm{ be

```
the G-orbit of (\(x, y\)). Then
\[
\begin{aligned}
\operatorname{Tr}_{D, G}(\beta) & =\operatorname{Tr}_{\operatorname{Stab}_{D}(x, y), G}(\alpha) \\
& =\operatorname{Tr}_{\operatorname{Stab}_{G}(x, y), G}\left(\left|\operatorname{Stab}_{G}(x, y): \operatorname{Stab}_{D}(x, y)\right|, \alpha\right) \\
& = \begin{cases}A & \text { non-zeromultiple of } A(i) \quad \text { if } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
\]

Thus precisely those \(A^{(i)}\) for which \(D\) contains a defect group of \(S_{1}^{2}\) appear as traces of basis elements of \(E_{\vec{R} D}(S)\). o

Now suppose \(e\) is an idempotent in \(\bar{E}(S)\). Then a defect group of \(e\) is a minimal subgroup \(D\) such that \(e \varepsilon(\overline{R S}, \overline{R S})_{D}^{G}\). By 2.3 .2 and the definition of vertex, if \(e\) is primitive, a defect group of \(e\) is the same as a vertex of \(\overline{\mathrm{R}} . \mathrm{e}\). In particular, the defect groups of a primitive idempotent are conjugate in \(G\) by 2.5.1.

\subsection*{2.7.2 Proposition}

Suppose \(e=\Sigma e_{1} A^{(1)}\) is a primitive idempotent in \(\bar{E}(S)\) with defect group \(D\).
(i) \(D\) contains a defect group of each \(S_{1}^{2}\) such that \(e_{i} \neq 0\).
(1i) There is an 1 with \(e_{i} \neq 0\) such that \(D\) is a defect group of \(S_{i}^{2}\).
(iii) Suppose \(e \varepsilon Z(\bar{E}(S))\) and \(\bar{R}\) is a splitting field. Let \(\omega\) be the corresponding central homomorphism. If \(\omega\left(A^{(i)}\right) \neq 0\) then \(D\) is contained in a defect group of \(A^{(i)}\). Thus the defect groups of \(e\) are the defect groups of each suborbit for which \(e_{i} \neq 0\) and \(\omega\left(A^{(i)}\right) \neq 0\) (there are some since \(\omega(e)=1\)).

Proof
(i) This follows from 2.7.1 and the definition of defect group .
(ii) Since \(e\) is in the sum of the \((\overline{\mathrm{R}}, \overline{\mathrm{R} S})_{D^{\prime}}^{G}\), as \(D^{\text {, }}\) runs over the set of defect groups of the \(S_{i}^{2}\) for which \(e_{i} \neq 0\), Rosenberg's lemma (1.5.5) implies that for some such \(D^{\prime},(\overline{R S}, \overline{R S})_{D^{\prime}}^{G}=(\bar{R} S, \overline{R S})_{D}^{G}\). By (1), \(D\) contains a conjugate of \(D^{\prime}\), and the result follows by minimality of \(D\).
(i1i) \(\quad \omega\left(A^{(i)} e\right)=\omega\left(A^{(i)}\right) \omega(e) \neq 0\), so \(A^{(i)} e \notin \operatorname{Rad}(\mathrm{e} \overline{\mathrm{E}})\). But \(e \bar{E}\) is a local ring, so e \(\varepsilon A^{(i)} e \bar{E} \subseteq(\bar{R} S, \bar{R} S)_{D_{i}}^{G}\), where \(D_{i}\) is a defect group of \(A^{(1)}\). Thus \(D_{i}\) contains a conjugate of \(D\). The Classical Case

We have an action of \(G \times G\) on \(S=\{g \varepsilon G\}\) via
\((x, y): g \rightarrow x^{-1} g y\). Then \(\operatorname{End}_{\bar{R}(G X G)}(\bar{R} S) \cong Z(\bar{R} G)\), and the primitive 1dempotents correspond to the blocks of \(\bar{R} G\). Each orbit of \(G \times G\) on \(S \times S\) (note carefully how \(G \times G\) acts on \(S \times S!\)) contains an element of the form \((1, g)\), and \(\operatorname{Stab}_{G \times G}(1, g)=\operatorname{diag}\left(C_{G}(g)\right)\). We then say that \(D\) is a defect group of the block \(B\) of \(\bar{R} G\) if diag(D) is a defect group of the corresponding idempotent in \(\operatorname{End}_{\bar{R}(G X G)}(\bar{R} S) ;\) namely the vertex of \(B\) as a \(G \times G\)-module.

Thus if we define the defect group of a conjugacy class of elements \(g \varepsilon G\) to be a Sylow p-subgroup of \(C_{G}(g)\), then by 2.7.2 the defect group of a block \(B\) is a maximal defect group over conjugacy classes whose sum is involved in the idempotent e. Moreover, if \(\bar{R}\) is a splitting field and \(\omega_{e}\) is the central homomorphism corresponding to \(e\), then the minimal defect groups of conjugacy classes of \(g \varepsilon G\) for which \(\omega_{e}(\underset{g \varepsilon G}{\Sigma} g) \neq 0\) are the defect groups of B. If \(|D|=p^{d}\), we say that \(B\) is a block of defect \(d\). It turns out that the defect of a block gives some measure of how complicated the representation theory of the block is. Thus as we shall see in 2.7 .5 and 2.12 .9 , a block has defect zero if and only if there is only one indecomposable module in the block, and it has cyclic defect groups if and only if there are only finitely many indecomposable modules in the block.

We refer to the above case as the classical case, since it was the original case investigated by Brauer.

\subsection*{2.7.3 Proposition (Green)}

Let \(B\) be a block of \(\bar{R} G\). Let \(P \varepsilon S y l_{p}(G)\). Then there is an element \(g \varepsilon G\) such that \(P \cap P^{g}\) is a defect group of \(B\).

\section*{Proof}

Regard \(B\) as an indecomposable trivial source \(\bar{R}(G \times G)\)-module with vertex \(\operatorname{diag}(D)\) as above. Then \(P \times P \varepsilon S y l_{p}(G \times G)\), and so by 2.3.3, \(B \psi_{P x P}\) has an indecomposable trivial source summand with vertex diag(D). But by the Mackey decomposition theorem,
\[
\begin{aligned}
& (\bar{R} G) \psi_{P x P}=l_{\operatorname{diag}(G)} t^{G x G} t_{P x P}
\end{aligned}
\]
\[
\begin{aligned}
& \text { of elts. } g \varepsilon G \\
& =\Sigma \quad{ }^{1} \underset{\operatorname{diag}\left(P \cap P^{g}\right)}{ }(1, g)^{P^{P x P}} \text {. }
\end{aligned}
\]

Now every transitive permutation module for a p-group is indecomposable,
since Frobenius reciprocity shows that it has a simple socle. Thus \(D\) is conjugate to some \(P \cap P^{g}\). a

Remaining in the classical case, we have the following proposition relating defect groups to modules.

\subsection*{2.7.4 Proposition (Green)}
(i) Let \(V\) be an \(\bar{R} G-m o d u l e . ~ L e t ~ D ~ b e ~ a ~ p-s u b g r o u p ~ o f ~ H \leq G, ~\) and let \(e\) be an idempotent in \((\bar{R} S, \bar{R} S) \underset{\operatorname{diag}(D)}{G x H} \xlongequal[(\bar{R} S]{ }, \bar{R} S)^{G x l} \cong \bar{R} G\). Then \(V \psi_{H} . e\) is an \(\bar{R} H-m o d u l e ~ w h i c h ~ i s ~ D-p r o j e c t i v e . ~\)
(ii) Suppose \(B\) is a block of \(\bar{R} G\) with defect group \(D\). Then every indecomposable \(\bar{R} G\)-module \(V\) in \(B\) is D-projective.

\section*{Proof}
(i) Since \(e\) is \(H\)-invariant, \(V \psi_{H}\).e is an \(\bar{R} H\)-module, which is a direct summand of \({ }^{V t_{H}}\). Let \(X=(\bar{R} S)\).e as a trivial source \(\bar{R}(G x H)-\) module. Then \(X\) is diag(D)-projective, and so by the Mackey decomposition theorem, \({ }^{X} \downarrow\) diag(H) is diag(D)-projective. Write a for the identity endomorphism of \(X\), and write \(\alpha=\operatorname{Tr} \operatorname{diag}(D), \operatorname{diag}(H)(\beta)\) with \(\beta \in\) End \(\operatorname{diag}(D)(X)\). Thus for \(v \varepsilon V\),
\[
v=v(e \alpha)=v \underset{g}{\sum} g^{-1}\left(\left(\operatorname{geg}^{-1}\right) \beta\right) g=\sum_{g}\left(\left(v g^{-1}\right)(e \beta)\right) g
\]
where \(g\) runs over a set of right coset representatives of \(D\) in \(H\).
Thus e \(\beta\) acts on \(V\) as an \(\bar{R} D\)-module endomorphism and
\(\operatorname{Tr}_{D, H}(e \beta)=l_{V}\). The result now follows from 2.3.2.
(ii) This is the case \(G=H\) of (i). \(\quad\) (

Remark
We shall show in section 2.12 that in fact there is always an indecomposable module in \(B\) whose vertex is exactly the defect group \(D\) of \(B\).
2.7.5 Corollary (Blocks of Defect 0).

Suppose B is a block of defect 0 . Then there is only one indecomposable module in \(B\), and it is both irreducible and projective. \(B\) is a complete matrix algebra over a division ring.

\section*{Proof}

By 2.7.4(ii), \(B / J(B)\) is a projective \(B\)-module, and so as a \(B\)-module, we have \(B \cong B / J(B) \oplus J(B)\). Thus \(J(B) / J^{2}(B)=0\), and so by Nakayama's lemma (1.1.4) \(J(B)=0\). The result now follows from the Wedderburn-Artin structure theorem (1.2.4). \(\quad\).

We shall see in the next section that some questions about blocks may be reduced to questions about blocks of defect 0 (extended first main theorem).

There is also a large body of information available on the structure of blocks with cyclic defect group, see [51].

\section*{Exercise}

Find the vertices of the summands in exercise 2 of section 2.6 .

\subsection*{2.8 The Brauer Homomorphism}

Let \(D \leq H \leq N_{G}(D) \leq G\), with \(D\) a p-group. Let \(S^{D}\) be the fixed points of \(D\) on \(S\). Then \(S^{D}\) is invariant under \(H\), and hence forms a permutation representation of \(H / D\).

We have a natural map
\[
\operatorname{Br}_{\mathrm{H}, \mathrm{H}}^{\mathrm{D}}: \operatorname{End}_{\bar{R} H}(S) \rightarrow \operatorname{End}_{\overline{\mathrm{R}} \mathrm{H}}\left(S^{D}\right)=\operatorname{End}_{\bar{R}(H / D)}\left(S^{D}\right)
\]
sending a basis element of \(\operatorname{End}_{\bar{R}_{H}}(S)\) to the same basis element of End \(\bar{R} H_{H}\left(S^{D}\right)\) if the corresponding H-orbit on \(S \times S\) is in \(S^{D} \times S^{D}\) and to zero otherwise. We define
\[
\operatorname{Br}_{G, H}^{D}: \operatorname{End}_{\bar{R} G}(S) \rightarrow \operatorname{End}_{\bar{R} H}\left(S^{D}\right)=\operatorname{End}_{\bar{R}(H / D)}\left(S^{D}\right)
\]
to be the composite of the inclusion End \(\bar{R}_{G}(S) \subset \operatorname{End}_{\bar{R} H}(S)\) with \(\operatorname{Br}_{H} \mathrm{D}_{\mathrm{H}}, \mathrm{H}\). Then \(\operatorname{Br}_{G, H}^{D}\) is called the Brauer map.
\[
\text { 2.8.1 } \frac{\text { Lemma }}{\mathrm{Br}_{\mathrm{G}, \mathrm{H}}^{\mathrm{D}}} \text { is a ring homomorphism, with kernel }(\overline{\mathrm{R} S}, \overline{\mathrm{R} S})_{*}^{G} \text {, where }
\]
* \(=\{p-s u b g r o u p s\) of \(G\) not conjugate to a subgroup containing \(D\}\).
\(\Sigma c_{i} A^{(i)} \varepsilon \operatorname{Proof} \operatorname{Ker}\left(\operatorname{Br}_{G, H}^{D}\right) \Leftrightarrow S_{i}^{2} \quad \cap\left(S^{D} \times S^{D}\right)=\varnothing\) whenever \(c_{i} \neq 0\)
\(\therefore D\) is not conjugate to a subgroup of a defect group of \(S_{i}^{2}\) whenever \(c_{i} \neq 0\)
\(\Leftrightarrow \Sigma c_{i} A^{(i)} \varepsilon(\bar{R} S, \bar{R} S)^{G}\) by 2.7.1.
In particular, if we regard End \(\bar{R} H\left(\bar{R}\left(S^{D}\right)\right)\) as a subring of End \(\bar{R} H(\bar{R} S)\), we have
\[
\operatorname{End}_{\bar{R} H}(\bar{R} S)=(\overline{\mathrm{R}} S, \overline{\mathrm{R}} S)_{*}^{H} \oplus \text { End }_{\overline{\mathrm{R}} H}\left(\overline{\mathrm{R}}\left(S^{D}\right)\right)
\]
as vector spaces, and the map \(B r_{H, H}^{D}\) is the projection onto the second factor, and is a homomorphism, since \((\bar{R} S, \bar{R} S)_{X}^{H}\) is an ideal. o

Returning to the classical case, suppose \(C_{G}(D) \leq K \leq N_{G}(D)\). Then \(S^{d l a g(D)}\) is the set of elements of \(C_{G}(D)\), and we have an inclusion \(\operatorname{End} \overline{\operatorname{Rdiag}\left(N_{G}(D)\right)}\left(\bar{R}\left(S^{\operatorname{diag}(D)}\right)\right) \subseteq \operatorname{End}_{\bar{R} d ı \operatorname{dig}\left(C_{G}(D)\right)}\left(\bar{R}\left(S^{\operatorname{diag}(D)}\right)\right) \cong Z\left(\bar{R} C_{G}(D)\right)\) \(\subseteq \quad Z(\bar{R} K)\). Composing this with \(\operatorname{Br}_{G x G, d i a g\left(N_{G}(D)\right)}^{\operatorname{diag}(D)}\) gives a
homomorphism \(\mathrm{br}_{\mathrm{G}, \mathrm{K}}^{\mathrm{D}}: Z(\overline{\mathrm{R}} \mathrm{G}) \rightarrow Z(\overline{\mathrm{R}} \mathrm{K})\), which is also called the Brauer map. This is the map sending a class sum to the sum of those elements of the class lying in \(C_{G}(D)\). By 2.8.1, \(b r_{G, K}^{D}\) is a ring homomorphism whose kernel is the 1deal (\(\bar{R} G, \bar{R} G)_{X}^{G X G} \subseteq(\bar{R} G, \bar{R} G)^{G x G} \cong Z(\bar{R} G) \quad\) with \(X=\{p-s u b g r o u p s\) of \(G \times G\) not conjugate to a subgroup containing diag(D)\}. Moreover by 2.7.1, this is the linear span in \(Z(\bar{R} G)\) of those conjugacy class sums for elements \(g \varepsilon G\) for which a Sylow p-subgroup of \(C_{G}(g)\) does not contain a conjugate of \(D\).

\section*{Notation}

If \(X\) is a collection of subgroups of \(G\), we denote by \(Z_{X}(\bar{R} G)\) the subspace of \(Z(\bar{R} G)\) spanned by those class sums for conjugacy classes with a defect group contained in an element of \(\quad\).

We have thus proved the following theorem.

\subsection*{2.8.2 Theorem}

Let \(D\) be a p-subgroup of \(G\), and let \(C_{G}(D) \leq K \leq N_{G}(D)\). Then the map \(b r_{G, K}^{D}: Z(\bar{R} G) \rightarrow Z(\bar{R} K)\) given by sending each class sum to the sum of these elements lying in \(C_{G}(D)\), is a ring homomorphism with kernel \(Z_{X}(\bar{R} G)\), where \(X\) is the set of p-subgroups of \(G\) not conjugate to a subgroup containing D. a

Now let \(l=e_{1}+\ldots+e_{s}\) be the idempotent decomposition in \(Z(\bar{R} G)\) corresponding to the block decomposition \(\bar{R} G=B_{I} \oplus \ldots \oplus B_{S}\). Suppose \(e\) is a primitive idempotent in \(Z(\vec{R} K)\). Then
\[
e=e \cdot b r_{G, K}^{D}(1)=e \cdot b r_{G, K}^{D}\left(e_{1}\right)+\ldots+e \cdot b r_{G, K}^{D}\left(e_{S}\right) .
\]

Since \(e\) is primitive, there is one and only one 1 with \(e=e \cdot b r_{G, K}^{D}\left(e_{i}\right)\), and \(e \cdot b r_{G, K}^{D}\left(e_{j}\right)=0\) for \(j \neq 1\). If e corresponds to the block \(b\) of \(\bar{R} K\), we write \(b^{G}=B_{1}\), and we say \(B_{i}\) is the Brauer correspondent of \(b\). If \(\bar{R}\) is a splitting field, then we may reformulate this in terms of central homomorphisms as follows. If \(\omega\) is the central homomorphism corresponding to \(b\), then \(\operatorname{br}_{\mathrm{G}, \mathrm{K}}^{\mathrm{D}} \mathrm{D}^{\omega}: \mathrm{Z}(\bar{R} G) \rightarrow \bar{R}\) is a central homomorphism, and \(\mathrm{b}^{\mathrm{G}}\) is the block of \(G\) corresponding to it.

We now prove the classical and permutation versions of Brauer's first main theorem.

\subsection*{2.8.3 Lemma}

Let \(N=N_{G}(D)\). If the G-orbit \(S_{1}^{2}\) has defect group \(D\), then
\(S_{1}^{2} \cap\left(S^{D} \times S^{D}\right)\) is a single \(N\)-orbit with defect group D. Each N-orbit on \(S^{D} \times S^{D}\) with defect group. \(D\) is of this form.

\section*{Proof}

Let \((x, y)\) and \(\left(x^{\prime}, y^{\prime}\right)\) be elements of \(S_{1}^{2} \cap\left(S^{D} \times S^{D}\right)\), and choose \(g e G\) with \((x, y) g=\left(x^{\prime}, y^{\prime}\right)\). Then \(D\) and \(D^{g}\) are Sylow p-subgroups of \(\operatorname{Stab}_{G}\left(x^{\prime}, y^{\prime}\right)\) and so we may choose an element \(h \varepsilon \operatorname{Stab}_{G}\left(x^{\prime}, y^{\prime}\right)\) with \(D^{h}=D^{g}\). Thus \(g^{-1} \varepsilon N_{G}(D)\), and \(\left(x^{\prime}, y^{\prime}\right)=(x, y) \mathrm{gh}^{-1}\).

Conversely, if \((x, y)\) is in an N-orbit on \(S^{D} \times S^{D}\) with defect group \(D\), then \(D \varepsilon S y l_{p}\left(\operatorname{Stab}_{N}(x, y)\right)\). If \(D<D_{l} \varepsilon \operatorname{Syl}_{p}\left(\operatorname{Stab}_{G}(x, y)\right)\) then \(D<N_{D_{1}}(D) \leq N \cap \operatorname{Stab}_{G}(x, y)=S t a b_{N}(x, y)\). This contradiction proves the last statement. व
2.8.4 Proposition

Let \(N=N_{G}(D)\). Then \(\operatorname{Br}_{G, N}^{D}\) induces an isomorphism \((\bar{R} S, \bar{R} S)_{D}^{G} \int_{D^{\prime}<D}^{\Sigma}(\overline{\mathrm{R}} S, \bar{R} S)_{D^{\prime}}^{G} \cong\left(\bar{R} S^{D}, \bar{R} S^{D}\right)_{D}^{N} \cong\left(\bar{R} S^{D}, \bar{R} S^{D}\right)_{l}^{N / D}\)

\section*{Proof}

By 2.8.1 and 2.3.1(vi), the kernel of \(\mathrm{Br}_{\mathrm{G}, \mathrm{N}}^{\mathrm{D}}\) on \((\bar{R} \mathrm{~S}, \bar{R} S)_{\mathrm{D}}^{\mathrm{G}}\) is \(D^{\prime} \sum_{D}(\bar{R} S, \bar{R} S)_{D^{\prime}}^{G}\). By 2.8.3, the 1mage is exactly \(\left(\bar{R} S^{D}, \bar{R} S^{D}\right)_{D}^{N}\). (Notice that \(D\) is contained in every defect group for End \(\bar{R} N\left(\overline{R S} S^{D}\right)\)). a 2.8.5 Brauer's First Main Theorem (permutation version)
\(B r_{G, N}^{D}\) establishes a one-one correspondence between equivalence classes of primitive idempotents of \((\bar{R} S, \bar{R} S)^{G}\) with defect group \(D\) (recall that two primitive idempotents are equivalent if they lie in the same Wedderburn component of \(\left.(\bar{R} S, \bar{R} S)^{G} / J\left((\bar{R} S, \bar{R} S)^{G}\right)\right)\) and equivalence classes of primitive idempotents of \(\left(\bar{R} S^{D}, \bar{R} S^{D}\right)^{N}\) with defect group \(D\) (or equivalently with equivalence classes of primitive 1dempotents of \(\left(\bar{R} S^{D}, \bar{R} S{ }_{D}^{D}\right)_{l}^{N / D}\)). In particular if \((\bar{R} S, \bar{R} S)_{D}^{G}\) is commutative, then \(\operatorname{Br}_{\mathrm{G}, \mathrm{N}}^{\mathrm{D}}\) establishes a one-one correspondence between primitive idempotents of \((\bar{R} S, \bar{R} S)^{G}\) with defect group \(D\) and primitive idempotents of \(\left(\bar{R} S^{D}, \bar{R} S^{D}\right)^{N}\) with defect group \(D\).

\section*{Proof}

This follows immediately from 2.8 .4 and the idempotent refinement theorem (1.5.1). ם

\subsection*{2.8.6 Brauer's First Main Theorem (classical version)}

Let \(N=N_{G}(D)\). Then \(b \rightarrow b^{G}\) gives a one-one correspondence between blocks of \(\bar{R} N\) with defect group \(D\) and blocks of \(\bar{R} G\) with defect group \(D\).

\section*{Proof}

This follows immediately by applying 2.8.5 to the classical case. \(\quad\)

Warning
The blocks of \(\bar{R} N\) with defect group \(D\) are not in general in one-one correspondence with blocks of \(\bar{R}(N / D)\) of defect zero.

To reduce the case of blocks of defect zero, we have the following extension of 2.8 .6 , whose proof we shall omit (see [65]).

\subsection*{2.8.6a The Extended First Main Theorem}

The following are in natural one-one correspondence.
(i) Blocks of \(G\) with defect group \(D\).
(ii) Blocks of \(N_{G}(D)\) with defect group \(D\).
(iii) \(N_{G}(D)\)-conjugacy classes of blocks of \(C_{G}(D)\) with \(D\) as defect group in \(N_{G}(D)\), (here, we have \(N_{G}(D) \times N_{G}(D)\) acting on the set of elements of \(\left.C_{G}(D)\right)\).
(iv) (assuming \(\bar{R}\) is a splitting field for \(\bar{R} C_{G}(D)\)), \(N_{G}(D)-\) conjugacy classes of blocks \(b\) of \(C_{G}(D)\) with \(D\) as defect group in \(D C_{G}(D)\) and \(\left|N_{G}(b): D C_{G}(D)\right|\) coprime to \(p\).
(v) (assuming \(\bar{R}\) is a splitting field for \(\left.\bar{R} C_{G}(D)\right), \quad N_{G}(D)-\) conjugacy classes of blocks \(b\) of defect zero of \(D C_{G}(D) / D\) with \(\left|N_{G}(b): D C_{G}(D)\right|\) coprime to p. a

\section*{Examples}

Let \(G\) be a simple group of Lie type (see [28]) in characteristic p. Then \(G\) has two p-blocks, namely the principal block (i.e. the block with the trivial representation in it) and a block of defect zero consisting of the Steinberg representation, whose degree is equal to the order of the Sylow p-subgroup.

Now let \(M\) denote the Monster simple group (sometimes denoted \(F_{1}\)). Then there is an elementary abelian subgroup \(D\) of order four whose normalizer has shape \(2^{2} .{ }^{2} E_{6}(2) . S_{3}\). From the above, we know that in characteristic two, \(C_{G}(D) / D\) has exactly one block \(b\) of defect zero, and that therefore \(N_{G}(D)=N_{G}(b)\). Theorem 2.8 .6 a now tells us that \(M\) has a single block with defect group \(D\).

The following is Nagao's module theoretic version of Brauer's second main theorem.

\subsection*{2.8.7 Theorem (Nagao)}

Let \(e\) be a central idempotent in \(\bar{R} G\), let \(D\) be a p-subgroup of \(G\), and let \(C_{G}(D) \leq K \leq N_{G}(D)\). Let \(H=\{p-s u b g r o u p s \quad Q \leq K\) : \(Q \neq D\}\). If \(V . e=V\) then \(V \downarrow_{K}-V \downarrow_{K} \cdot b r_{G . K}^{D}(e) \varepsilon a(K, H)\).

\section*{Proof}

Embed \(\bar{R} K\) in \((\bar{R} S, \bar{R} S)^{G x K}\) in the obvious way, and let \(f=e-b r_{G, K}^{D}(e)\) as an element of \((\bar{R} S, \bar{R} S)^{G x K}\). Then by 2.8.2, \(f_{\varepsilon}(\bar{R} S, \bar{R} S)_{\operatorname{diag}(\tilde{H})}^{\mathrm{GxK}}\). Let \(f=\Sigma f_{i}\) be a decomposition of \(f\) as a sum of primitive orthogonal idempotents in \((\bar{R} S, \bar{R} S)_{\text {diag }}^{\mathrm{GxK}}(\boldsymbol{H})\). Then by Rosenberg's lemma (1.5.5), each \(f_{i}\) is in (\(\bar{R} S, \bar{R} S\)) \({ }_{\mathrm{diag}}^{\mathrm{Giag}}(\mathrm{Q})\) for some Q \(\varepsilon\) H, and so by 2.7.4(i), \(V{ }_{H} . f_{i}\) is Q-projective. Thus
\[
\begin{aligned}
V \downarrow_{H}=V \downarrow_{H} \cdot e & =V \downarrow_{H} \cdot b r_{G, K}^{D}(e) \oplus V \downarrow_{H} \cdot f \\
& =V \downarrow_{H} \cdot b r_{G, K}^{D}(e) \oplus\left(\underset{i}{\oplus} V \downarrow_{H} \cdot f_{i}\right)
\end{aligned}
\]
and the theorem is proved.

\subsection*{2.9 Origins of Species}

Before we define the origins of a species, we need an integrality theorem.

\subsection*{2.9.1 Theorem}

Let \(H \leq G\). Then \(A(H)\) is integral as an extension of \(\operatorname{Im}\left(r_{G, H}\right)\). (c.f. 2.2.2(ii)).

Proof
If \(a \varepsilon A(H)\) then \(a\) has only finitely many images \(a_{1}, \ldots, a_{r}\) under the action of \(N_{G}(H)\). Thus a satisfies \(\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{r}\right)=0\), and so \(a\) is integral over \(A(H)^{N(H)}\), the fixed points of \(N_{G}(H)\) on \(A(H)\). Thus we only need show that \(A(H)^{N(H)}\) is integral over \(\operatorname{Im}\left(r_{G, H}\right)\).

Let \(\quad \alpha \varepsilon A(H)^{N(H)}\). For any \(K<H\) we set
\[
X_{K}=\left\{r_{H} g, K\left(a^{g}\right): K<H^{g}\right\}
\]

Denote by \(U_{K}\) the subring of \(A(K)\) generated by \(\operatorname{Im}\left(r_{G, K}\right)\) and \(X_{K}\). We may assume inductively that \(U_{K}\) is finitely generated as a module for \(\operatorname{Im}\left(r_{G, K}\right)\). We claim that
\[
\operatorname{Im}\left(r_{G, H}\right)+\sum_{K<H} i_{K, H}\left(U_{K}\right)
\]
is a subring of \(A(H)\), finitely generated as a module for \(\operatorname{Im}\left(r_{G, H}\right)\), and containing the element \(a\).
(i) We first show that it is a ring. It is clear that
\(\operatorname{Im}\left(r_{G, H}\right) \cdot i_{K, H}\left(U_{K}\right) \subseteq i_{K, H}\left(U_{K}\right)\) by 2.l.2(iv). If \(K<H\) and \(L<H\), then
by the Mackey decomposition theorem. But
(ii) It is finitely generated as a module for \(\operatorname{Im}\left(r_{G, H}\right)\). By induction, for any \(K<H\), we have
\[
U_{K}=\sum_{b \varepsilon Y_{K}} \operatorname{Im}\left(r_{G, K}\right) \cdot b
\]
with \(Y_{K}\) a finite set. So
\[
i_{K, H}\left(U_{K}\right)=\sum_{b}^{\Sigma} Y_{K} \operatorname{Im}\left(r_{G, H}\right) \cdot i_{K, H}(b) .
\]
(iii) It contains \(a\). Since \(\alpha\) is invariant under \(N_{G}(H)\), we have

\subsection*{2.9.2 Proposition}

Let \(s\) be a species of \(A(G)\). The following conditions on a subgroup \(H\) are equivalent.
(i) \(\operatorname{Ker}(s) \geq \operatorname{Ker}\left(r_{G, H}\right)\)
(ii) \(\operatorname{Ker}(s) \neq \operatorname{Im}\left(i_{H, G}\right)\)
(iii) There is a species \(t\) of \(A(H)\) such that for all \(x \varepsilon A(G)\) \((s, x)=\left(t, x \downarrow_{H}\right)\).

Proof
(i) \(\Leftrightarrow\) (ii) by 2.2 .2
(ii) \(\omega\) (iii) by 2.9.1 and l.8.1. \(\quad\)

Note that in 2.9 .2 (iii) the species \(t\) need not be unique. We write \(t \sim s\), and say \(t\) fuses to \(s\) if (iii) is satisfied.

We say \(s\) factors through \(H\) if the equivalent conditions of 2.9.2 are satisfied. An origin of \(s\) is a subgroup minimal among those through which \(s\) factors. Thus if \(H\) is an origin of \(s\) and \(K<H\) then \(s\) vanishes on all modules induced from \(K\).

\subsection*{2.9.3 Proposition}

Let \(s\) be a species of \(A(G)\). Then the origins of \(s\) form a single conjugacy class of subgroups.

Proof
Let \(H_{1}\) and \(H_{2}\) be two origins of \(s\). Then since \(\operatorname{Ker}(s)\) is a prime ideal,
\[
\operatorname{Ker}(s) \neq \operatorname{Im}\left(1_{H_{1}, G}\right) \cdot \operatorname{Im}\left(i_{H_{2}, G}\right) \leq \sum_{x \varepsilon G}^{\varepsilon} \operatorname{Im}\left(1_{H_{1} \cap H_{2}^{X}, G}\right) .
\]

So for some \(\mathrm{X} \in \mathrm{G}, \operatorname{Ker}(\mathrm{s}) \neq \underset{\mathrm{H}_{1} \cap \mathrm{H}_{2}^{\mathrm{x}}}{\operatorname{Im}\left(\mathrm{I}_{2}\right.}\). Hence by minimality \(H_{1}=H_{2}^{x}\).

In section 2.14 we shall clarify the structures of origins and their relationships to vertices of the species.

\subsection*{2.10 The Induction Formula}

Let \(s\) be a species of \(A(G)\) with origin \(H\), and let \(V\) be a module for a subgroup \(K\) of \(G\). We want a formula for (\(\mathrm{s}, \mathrm{V} \uparrow^{\mathrm{G}}\)) in terms of the species of \(K\).

Let \(t\) be a species of \(H\) fusing to \(s\). Then
\[
\begin{aligned}
& \left(s, V t^{G}\right)=\left(t, V t^{G}{ }_{\mathrm{H}}\right. \text {) } \\
& =\sum_{H g K}^{\Sigma}(t, V^{g} \underbrace{}_{H \cap K^{g}} t^{\text {H }}) \text { by the Mackey theorem. }
\end{aligned}
\]

Now if \(H \neq K^{g}\), then \(\left(t, V^{\mathrm{g}}{ }_{\mathrm{H} \cap \mathrm{K}^{\mathrm{g}^{1^{H}}}}\right.\)) is zero by 2.9 .2 , since \(H\) is an origin of \(t\). Thus we have the following formula.
\[
\begin{equation*}
\left(\mathrm{s}, \mathrm{~V} \uparrow^{\mathrm{G}}\right)={\underset{H^{g}}{\mathrm{~g}} \leq K}_{\sum}\left|N_{G}\left(H^{g}\right): N_{K}\left(H^{g}\right)\right|\left(t^{g}, V \downarrow_{H^{g}}\right) \tag{1}
\end{equation*}
\]

The sum runs over K-conjugacy classes of G-conjugates of \(H\) contained in \(K\).

In order to convert this into a formula involving species of \(K\), we must examine the number of species of \(K\) fusing to \(s\).

\subsection*{2.10.1 Theorem}

Let \(s\) be a species of \(A(G)\) with origin \(H\). Regard \(s\) as a species of \(\operatorname{Im}\left(r_{G, H}\right)\). Then \(s\) extends uniquely to a species \(t\) of \(A(H)^{N(H)}\), and \(N_{G}(H)\) is transitive on the extensions \(t_{1}, \ldots, t_{r}\) of \(t\) to a species of \(A(H)\). The number of extensions is \(r=\left|N_{G}(H): \operatorname{Stab}_{G}\left(t_{1}\right)\right|\).

Proof
By 2.9.2(1i1), \(s\) certainly extends to a species of \(A(H)^{N(H)}\) and a species of \(A(H)\). Let \(t\) be an extension of \(s\) to \(A(H)^{N(H)}\).

Then for \(x \in A(H)^{N(H)}\), the Mackey theorem and the fact that \(H\) is an origin for \(s\) imply that \(\left(t, x t^{G}{ }_{H}\right)=\left|N_{G}(H): H\right|(t, x)\). Thus \((t, x)=\left(s, x t^{G}\right) /\left|N_{G}(H): H\right|\) is uniquely determined by \(s\).

Now suppose that \(t_{1}\) and \(t_{2}\) are two extensions of \(t\) to \(A(H)\), and that \(t_{1} \neq t_{2}^{g}\) for all \(g \varepsilon N_{G}(H)\). Then by 2.2.l there is an element \(x_{\varepsilon} A(H)\) such that \(\left(t_{1}, x\right)=0\) and \(\left(t_{2}, x^{g}\right)=\left(t_{2}^{g^{-1}}, x\right)=1\) for all \(g \varepsilon N_{G}(H)\). Let \(y=\underset{\operatorname{geN}(H)}{\Pi} x^{g}\). Then \(0=\left(t_{1}, y\right)=(t, y)=\prod_{g \in N(H)}\left(t_{2}, x^{g}\right)=l\). This contradiction proves the theorem. The formula for the number of extensions is clear.

By 2.lo.l, the contribution in (1) from a particular conjugate \(H^{g}\) is
\[
t_{t^{g}}^{\Sigma} \sim_{s}\left|\operatorname{Stab}_{G}\left(t^{g}\right): N_{K}\left(H^{g}\right)\right|\left(t^{g}, V \not{ }_{H} g^{g}\right)
\]

In this expression, \(t^{g}\) runs over the species of \(H^{g}\) fusing to \(s\). If \(s_{o}\) is a species for \(K\) fusing to \(s\), and with origin \(H^{g}\), then by 2.10.1, the number of \(t^{g}\) fusing to \(s_{o}\) is
\[
\left|N_{K}\left(H^{\mathrm{g}}\right): \operatorname{Stab}_{K}\left(t^{\mathrm{g}}\right)\right|=\left|N_{G}\left(H^{\mathrm{g}}\right) \cap \operatorname{Stab}_{G}\left(\mathrm{~s}_{0}\right): \operatorname{Stab}_{G}\left(t^{\mathrm{g}}\right)\right| .
\]

Thus
\[
t^{\mathrm{E}_{\sim S_{O}}^{\Sigma}}\left|\operatorname{Stab}_{G}\left(t^{g}\right): N_{K}\left(H^{g}\right)\right|\left(t^{g}, V \downarrow_{H^{g}}\right)=\left|N_{G}\left(H^{g}\right) \cap S t a b_{G}\left(s_{o}\right): N_{K}\left(H^{g}\right)\right|\left(s_{O}, V\right)
\]

Hence we can rewrite (1) as follows.
(2.10.2) \(\left(s, V \dagger^{G}\right)=\underset{s_{o}}{\sum_{\sim}}\left|N_{G}\left(\operatorname{Orig}\left(s_{o}\right)\right) \cap \operatorname{Stab}_{G}\left(s_{o}\right): N_{K}\left(\operatorname{Orig}\left(s_{o}\right)\right)\right|\left(s_{o}, V\right)\).

In this expression, \(s_{o}\) runs over the species of \(K\) fusing to \(s\), and Orig(\(s_{0}\)) is any origin of \(s_{0}\).

The expression 2.10 .2 is called the induction formula, and it is a generalization of the usual formula for an induced character.

\subsection*{2.11 Brauer Species}

A species \(s\) of \(A_{k}(G)\) is called a Brauer species if its origins have order coprime to p. By Maschke's theorem, the Brauer species vanish on \(A_{o}(G, l)\), and may thus be thought of as species of \(A(G) / A_{o}(G, l)\). We shall first construct some Brauer species, and
then show that we have constructed them all. It will turn out that if \(k\) is a splitting field, then there are as many Brauer species as there are p-regular conjugacy classes of \(G\).

Let \(\hat{k}\) be the algebraic closure of \(k\), and let \(r\) be the p'-part of the exponent of \(G\). Then the \(r \underline{t h}\) roots of unity in \(\hat{k}\) and in \(\mathbb{C}\) both form a cyclic group of order \(\gamma\). Choose an isomorphism between these cyclic groups. Let \(g\) be a p'-element of \(G\). Given an kG-module \(V\), we restrict it to \(<g>\) and extend the field to \(\hat{k}\). Then each eigenvalue of \(g\) is a \(r\) th root of unity in \(\hat{k}\), and we define \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{V}\right)\) to be the sum of the corresponding roots of unity in \(\boldsymbol{C}\). It is clear that \(b_{g}\) is a Brauer species with <g> as an origin.

\subsection*{2.11.1 Lemma \\ Let \(b_{g}\) be as above. Then there is an element \(y \varepsilon A(G, l)\) with \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{y}\right) \neq 0\) and \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{y}\right)=0\) for every \(\mathrm{b}_{\mathrm{g}}, \neq \mathrm{b}_{\mathrm{g}}\).}

\section*{Proof}

This is clear if \(G=<g\rangle\), since \(A(<g\rangle)=A(<g\rangle, 1)\) and the \(b_{g}\) are linearly independent (2.2.1). Let \(x \varepsilon A(<g>, 1)\) with this property, and let \(y=x \uparrow^{G}\). Then the induction formula 2.10.2 (which is much easier for the \(b_{g}\) than for the general species) shows that \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{y}\right) \neq 0\) and \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{y}\right)=0\) whenever \(\mathrm{b}_{\mathrm{g}}, \neq \mathrm{b}_{\mathrm{g}}\) 2.11.2 Proposition \({ }^{-}\)

If \(\left(b_{g}, W_{1}\right)=\left(b_{g}, W_{2}\right)\) for all \(p^{\prime}\)-elements \(g\) then \(W_{1}\) and \(W_{2}\) have the same composition factors.

\section*{Proof}

We may replace \(W_{1}\) and \(W_{2}\) by completely reducible representations with the same composition factors, without affecting the values of \(\left(b_{g}, W_{1}\right)\) and \(\left(b_{g}, W_{2}\right)\). Let the irreducible \(k G-m o d u l e s ~ b e ~\) \(V_{1}, \ldots, V_{r}\) and let the multiplicity of \(V_{i}\) in \(W_{1}\) be \(a_{i}\) and in \(W_{2}\) be \(b_{i}\). By the Wedderburn-Artin structure theorem (1.2.4), we may choose elements \(x_{i} \varepsilon k G\) with trace \(\delta_{i j}\) on \(V_{j}\).

Since the trace of an element of \(G\) is equal to the trace of its p'-part, the hypothesis tells us that every element of \(k G\) has the same trace on \(W_{1}\) as on \(W_{2}\). In particular, the elements \(x_{i}\) do, and so \(a_{i} \equiv b_{i} \bmod p\). Thus we may strip off some common direct summands, divide every multiplicity by \(p\), and start again. The result now follows by induction. a

\subsection*{2.11.3 Theorem}
\(A(G)=A(G, l) \oplus A_{0}(G, l)\), and \(A(G, l)\) is semisimple. The
following are equivalent.
(i) \(s\) is a Brauer species
(ii) \(s\) vanishes on \(A_{o}(G, l)\)
(iii) \(s\) is of the form \(b_{g}\) for some \(p^{\prime}\)-element \(g \varepsilon G\).

\section*{Proof}

By 2.ll.2, the number of different \(b_{g}\) is at least
\(\operatorname{dim}\left(A(G) / A_{0}(G, l)\right)\). But each species \(b_{g}\) is a species of \(A(G) / A_{0}(G, l)\), and by 2.2.1 they are all linearly independent. Thus we have equality, and it follows that \(A(G) / A_{0}(G, l)\) is semisimple, and its species are precisely the \(\mathrm{b}_{\mathrm{g}}\). This proves the equivalence of (i), (ii) and (iii).

Now consider the Cartan homomorphism
\[
c: A(G, l) \leftrightarrow A(G) \rightarrow>A(G) / A_{0}(G, l) .
\]

By 2.ll.l, this is surjective. By the arguments of section 1.5 , \(\operatorname{dim}(A(G, l))=\operatorname{dim}\left(A(G) / A_{0}(G, l)\right)\), and so \(c\) is an isomorphism. Letting \(e=c^{-1}(I)\), we have \(A(G, I)=e \cdot A(G)\) and \(A_{0}(G, I)=(1-e) A(G)\). \(\quad\) a

Note that if \(k\) is a splitting field then the number of different \(b_{g}\) is equal to the number of p-regular conjugacy classes of \(G\), by an argument similar to 2.ll.l. Thus in this case, the number of pregular conjugacy classes is equal to the number of irreducible modules.

\section*{Exercises}
l. Suppose \((\hat{R}, R, \bar{R})\) is a splitting p-modular system for \(G\). Let \(X\) denote the ordinary character table of \(\hat{R} G\)-modules, with the columns corresponding to p-singular elements (i.e. elements of order divisible by \(p\)) deleted. Let \(D\) denote the decomposition matrix, and \(C\) the Cartan matrix. Denote by \(T\) the Brauer character table of irreducible modules (i.e. the table whose columns are labelled by the p-regular conjugacy classes, rows are labelled by the irreducible modules, and entries \(\left(b_{g}, V\right)\)) and \(U\) the Brauer character table of projective indecomposable modules. Show that the following relations hold.
\[
\mathrm{X}=\mathrm{DT} ; \mathrm{U}=\mathrm{D}^{\mathrm{t}} \mathrm{X} ; \quad \mathrm{C}=\mathrm{D}^{\mathrm{t}} \mathrm{D} ; \quad \mathrm{U}=\mathrm{CT} .
\]
(see section l.7)
These are sometimes called the modular orthogonality relations. We shall introduce a generalized form of these relations in section 2.21.
2. Write down the ordinary character table of \(A_{5}\). Find the central homomorphism associated with each ordinary character, and hence find the blocks of \(A_{5}\) in characteristic two. What are the defect groups
of the blocks? Using the isomorphism \(A_{5} \cong L_{2}(4)\), show that there are two isomorphism classes of two-dimensional irreducible modules over a large enough field \(\bar{R}\) of characteristic two. Write down the decomposition matrix, Cartan matrix and Brauer character tables of irreducible and projective indecomposable modules.

Denote the simple \(\bar{R} G\)-modules by \(I, 2,2^{\prime}\) and 4 (the numbers refer to the dimensions). Use the action of \(A_{5}\) on the cosets of a Sylow 5-normalizer to construct a module whose structure is

I
\(2 \oplus 2^{\prime}\)

I
(i.e. the socle has dimension one, and is contained in the radical which has codimension one, the quotient being isomorphic to the direct sum of 2 and \(2^{\prime}\)) Hint: use the results of section 2.6.

Show that \(\operatorname{dim} \operatorname{Ext}_{G}^{1}(I, I)=0\), using the fact that \(A_{5}\) has no subgroup of index two. Deduce that \(P_{1}\) has structure as follows.

I
\begin{tabular}{lll}
2 & & \(2^{\prime}\) \\
\(I\) & \(\oplus\) & \(I\) \\
\(2^{\prime}\) & & 2
\end{tabular}

I
Find the structures of the remaining projective indecomposables. 3. Repeat exercise two for \(\mathrm{L}_{3}(2)\), and for any other groups that take your fancy. Some large examples are worked out in [11] and [12]; see also the appendix.

\section*{Remark}

One of the most difficult problems in modular representation theory is to find the decomposition matrices for particular groups modulo particular primes. This problem has not even been solved in general for the symmetric groups (although Lusztig's conjecture in characteristic p, if proved, would give an answer in terms of the so-called Kazhdan-Lusztig polynomials), despite the fact that so much is known about the ordinary representation theory. A remarkable fact about the representation theory of the symmetric groups is that every field is a splitting field!

\subsection*{2.12 Green Correspondence and the Burry-Carlson Theorem}

For this section we assume our ring \(\quad \Gamma \varepsilon\{R, \bar{R}\}\).
Let \(D\) be a fixed p-subgroup of \(G\) and let \(H\) be a subgroup of \(G\) containing \(N_{G}(D)\). We shall investigate the modules with vertex \(D\), by means of restriction and induction between \(H\) and \(G\). Our main tool is, of course, the Mackey decomposition theorem.

Let
\[
\left.\begin{array}{l}
x=\left\{X \leq G: X \leq D^{g} \cap D \quad \text { for some } g \varepsilon G \backslash H\right\} \\
y=\left\{Y \leq G: Y \leq D^{g} \cap H\right.
\end{array} \text { for some } g \varepsilon G \backslash H\right\} .
\]

Note that \(x \subseteq y\) and \(D x y\).

\subsection*{2.12.1 Lemma}

Let \(W\) be an indecomposable D-projective \(\Gamma\) H-module.
(i) Let \(W \uparrow^{G}{ }_{{ }^{\prime}}{ }_{H} \cong W \oplus W^{\top}\). Then \(W^{\dagger} \varepsilon a(H, y)\).
(ii) Let \(W \uparrow^{G} \cong V \oplus V^{\prime}\) with \(W\) a summand of \(V \downarrow_{H}\) and \(V\) Indecomposable. Then \(V^{\prime} \varepsilon a(G, x)\).

Proof
(i) Let \(U\) be an indecomposable D-module with \(U \uparrow^{H} \cong W \oplus W_{O}\).

Then
\[
U \uparrow^{G} \downarrow_{H} \cong W \uparrow^{G} \downarrow_{H} \oplus W_{o} \uparrow^{G} \downarrow_{H} .
\]

But by the Mackey decomposition theorem,
\[
U \uparrow^{G} \downarrow_{H} \cong U \psi^{H} \oplus U^{\prime} \quad \text { with } \quad U^{\prime} \varepsilon a(H, y) .
\]

Thus
\[
W \uparrow^{G} t_{H} \oplus W_{O} \uparrow^{G} t_{H} \cong W \oplus W_{O} \oplus U^{\prime}
\]
and so by the Krull-Schmidt theorem, \(W \uparrow^{G} \downarrow_{H} \cong W \oplus W^{\prime}\) with \(W^{\prime} \varepsilon a(H, \quad, \quad\)).
(ii) \(V^{\prime}\) is D-projective. Suppose \(V^{\prime}\) is not X-projective. Choosen an indecomposable summand \(V_{l}\) of \(V^{\prime}\) which is not \(x\)-projective, and suppose \(D_{1} \leq D\) is a vertex of \(V_{1}\). Let \(U_{1}\) be a source of \(V_{1}\). Then \(U_{1}\) is a summand of \(V_{1} \downarrow_{D_{1}}\), and so for some indecomposable summand \(W_{1}\) of \(V_{1}{ }_{H}, U_{1}\) is a summand of \(W_{1}{ }^{\downarrow} D_{1}\). Thus \(W_{1}\) is not \(y\)-projective, and hence \(V^{\prime} \downarrow_{H}\) is not \(y\)-projective, contradicting
(i). \(\quad\) a

\subsection*{2.12.2 Theorem (Green Correspondence)}

There is a one-one correspondence between indecomposable \(\Gamma\) Gmodules with vertex \(D\) and indecomposable rH-modules with vertex \(D\) given as follows.
(i) If \(V\) is an indecomposable \(\Gamma G-m o d u l e\) with vertex \(D\), then \(V{ }_{H}\) has a unique indecomposable summand \(f(V)\) with vertex \(D\), and \(V \psi_{H}-f(V) \varepsilon a(H, y)\).
(ii) If \(W\) is an indecomposable \(\Gamma H\)-module with vertex \(D, ~ t h e n\) \(W \uparrow^{G}\) has a unique indecomposable summand \(g(W)\) with vertex \(D\), and \(W \uparrow^{G}-g(W) \varepsilon a(G, *)\).
(iii) \(f(g(W))=W\) and \(g(f(V))=V\).
(iv) \(f\) and \(g\) take trivial source modules to trivial source modules.

\section*{Proof}
(1) Let \(S\) be a source of \(V\) and let \(S \uparrow^{H} \cong W \oplus W^{\prime}\) with \(W\) an indecomposable module such that \(V\) is a summand of \(W T^{G}\). By lemma 2.12.1(i), \(W\) is the only summand of \(W{ }^{G}{ }^{G}{ }_{H}\) with \(D\) as vertex, and the rest lie in \(a(H, y)\). But some summand of \(V \downarrow_{H}\) has vertex \(D\), since \(V\) is a summand of \(V \psi_{H} \uparrow^{G}\), and so we take \(W=f(V)\).
(ii) Choose an indecomposable summand \(V\) of \(W{ }^{G}{ }^{G}\) such that \(W\) is a summand of \(V \psi_{H}\). Then by 2.l2.l(ii), \(W \uparrow^{G} \cong V \oplus V^{\dagger}\) with \(V^{\prime} \varepsilon \quad a(G, *)\). We take \(V=g(W)\).
(iii) and (iv) are clear from (i) and (ii). a

The following remarkable theorem gives us more information about induction and restriction in this situation.
2.12.3 Theorem (D. Burry and J. Carlson)

Let \(V\) be an indecomposable \(\Gamma G-m o d u l e\) such that \(V \downarrow_{H}\) has a direct summand \(W\) with vertex \(D\). Then \(V\) has vertex \(D\), and \(V\) is the Green correspondent \(g(W)\).

Proof
Let \(e=\operatorname{Tr}_{D, H}(a) \varepsilon(V, V)_{D}^{H}\) be the idempotent corresponding to the summand \(W\) of \(V \downarrow_{H}\). By 2.3.l(vi), we have
\[
\begin{aligned}
& \operatorname{Tr}_{D, G}(a)=\sum_{D g H} \operatorname{Tr}_{D} g_{\cap H, H}(a g) \\
& =e+\sum_{\substack{D \operatorname{gH} \\
g \& H}} \operatorname{Tr}_{D^{\prime} g_{\cap H}, H}(a g) \\
& \equiv e \bmod (V, V)_{y}^{H} \text {. }
\end{aligned}
\]

Since \(W\) is not \(y\)-projective, e \(\ell(V, V)_{y}^{H}\), and so \(\operatorname{Tr}_{D, G}(\alpha)\) is an 1dempotent in \((V, V)^{G} /\left((V, V)^{G} \cap(V, V)_{\mathrm{H}}^{\mathrm{H}}\right)\). Since \((\mathrm{V}, \mathrm{V})^{\mathrm{G}}\) is a local ring, this means \((V, V)^{G}=(V, V)^{G} \cdot \operatorname{Tr}_{D, G}(a) \subseteq(V, V)_{D}^{G}\), and so \(V\) is D-projective. Hence \(V\) has vertex \(D\) and \(W\) is its Green correspondent. \(\quad\)

We shall now reinterpret the Green correspondence in terms of the structure of \(A(G)\). Recall that \(A(G, H)\) is the ideal of \(A(G)\) spanned by the H-projective modules, \(A^{\prime}(G, H)\) is the ideal spanned by the \(A(G, K)\) for all \(K<H\), and \(A_{o}(G, H)\) is the ideal spanned by elements of the form \(X-X^{\prime}-X^{\prime \prime}\) where \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) is a short exact sequence of \(\Gamma\) G-modules which splits on restriction to \(H\).
2.12.4 Lemma

If \(H \unlhd G\) then
\[
A(G)=A(G, H) \oplus A_{0}(G, H) .
\]

The idempotent generators of \(A(G, H)\) and \(A_{0}(G, H)\) lie in \(A(G, T r i v)\). Proof
By 2.11.3,
\[
A(G / H)=A(G / H, 1) \oplus A_{0}(G / H, l) .
\]

Identifying \(A(G / H)\) with its image under the natural inclusion \(A(G / H) \subset A(G)\), we have
\[
\begin{aligned}
A(G)=A(G) \cdot A(G / H) & =A(G) \cdot A(G / H, l)+A(G) \cdot A_{0}(G / H, l) \\
& =A(G, H)+A_{0}(G, H) .
\end{aligned}
\]

Since clearly \(A(G, H) . A_{0}(G, H)=0\), this proves the direct sum decomposition. Since \(A(G / H, 1) \subseteq A(G, T r i v)\), the idempotent generators are in \(A(G, T r i v)\). a

\subsection*{2.12.5 Lemma}

Suppose \(H\) is a subgroup of \(G\) containing the normalizer of the p-subgroup \(D\). Then \(r_{G, H}\) and \(1_{H, G}\) induce inverse isomorphisms
\[
a(G, D) / a^{\prime}(G, D) \cong a(H, D) / a^{\prime}(H, D) .
\]

These isomorphisms send trivial source modules to trivial source modules.

\section*{Proof}

This is clear from 2.12.2. \(\quad\)

\subsection*{2.12.6 Theorem (Conlon)}
(1) \(A(G, H)\) is a direct summand of \(A(G)\), whose idempotent generator lies in \(A(G, T r i v)\).
(1i) \(A(G, H)\) has a canonical direct summand \(A^{\prime \prime}(G, H)\) with
\[
A(G, H)=A^{\prime}(G, H) \oplus A^{\prime \prime}(G, H) .
\]
(1ii) \(A(G, H)=\underset{D \leq H}{\oplus} A^{\prime \prime}(G, D)\), where \(D\) runs over one representative of each G-confugacy class of p-subgroups of \(G\) contained in \(H\).

\section*{Proof}

We prove these results by induction on \(|H|\). By 2.11.3, they are true for \(H=1\), since \(A^{\prime}(G, l)=0\).

Suppose the theorem is true for all \(K<H\). Let \(e_{K}\) be the 1dempotent generator for \(A(G, K)\). Then \(e_{H}^{\prime}=1-\prod_{K<H}\left(1-e_{K}\right)\) is the idempotent generator for \(A^{\prime}(G, H)\), so that \(e_{H}^{\prime}\) lies in \(A(G, \operatorname{Triv})\). Put
\[
A^{\prime \prime}(G, H)=A(G, H) \cdot\left(1-e_{H}^{\prime}\right) .
\]

Then by 2.12.5,
\[
A\left(N_{G}(H), H\right) / A^{\prime}\left(N_{G}(H), H\right) \cong A(G, H) / A^{\prime}(G, H) \cong A^{\prime \prime}(G, H)
\]
is an isomorphism sending trivial source modules to trivial source modules. In particular, by 2.12 .4 , \(A^{\prime \prime}(G, H)\) has an idempotent generator lying in \(A(G, T r i v)\). Thus (i) and (ii) are proved. (iii) follows since each \(A^{\prime \prime}(G, D)\) has a basis consisting of modules with vertex \(D\), modulo \(A^{\prime}(G, D)\). \(\quad\)

We now have a theorem relating the Green correspondence to the Brauer homomorphism.

\subsection*{2.12.7 Theorem}

Let \(D\) be a p-subgroup of \(G\), and let \(N=N_{G}(D)\). Denote by \(f\) and \(g\) the Green correspondence between modules for \(G\) and \(N\) with vertex \(D\), as in 2.12.2. If \(V\) is an indecomposable \(\bar{R} G\)-module with vertex \(D\), and \(e\) is the block idempotent for \(\bar{R} G\) with \(V=V . e\), then \(f(V)=f(V) \cdot b r_{G, N}^{D}(e)\).

\section*{Proof}

By 2.8.7, \(V \downarrow_{N}-V \downarrow_{N} \cdot b r_{G, N}^{D}(e)\) does not have \(f(V)\) as a summand. The result thus follows from 2.12.2. a

This together with the following theorem shows how to reduce questions about the representation theory of a block to questions about representations of the defect group.

\subsection*{2.12.8 Theorem}

Let \(D\) be a normal p-subgroup of \(G\), and let \(B\) be a block of \(\overline{\mathrm{R}} \mathrm{G}\) with defect group D and block idempotent e . Then every
indecomposable \(\bar{R} D\)-module that is not induced from a proper subgroup is the source of some indecomposable module in \(B\).

Proof
The only simple \(\bar{R} D\)-module is the trivial module \(l_{D}\). So if \(l_{G}{ }^{\dagger^{G}}\).e \(=0\) then it would follow that for every \(\bar{R} D\)-module \(v\) we have \(V \uparrow{ }_{\mathrm{G}} \mathrm{D}\).e \(=0\). Since \(\bar{R} D \uparrow^{G} . e=B\), this is not the case. So \(l_{D}{ }^{\dagger} G . e \neq 0\), and for every \(\bar{R} D\)-module \(V\) we have \(V_{\uparrow}{ }^{G}\).e \(\neq 0\). Since \(V_{\uparrow}{ }^{G}{ }_{\mathrm{D}}\) is a direct sum of conjugates of \(V\), it follows that if \(V\) has vertex \(D\) then so does every indecomposable summand of \(\mathrm{Vt}^{\mathrm{G}}\).e.

\subsection*{2.12.9 Corollary (representation types of blocks)}

A block \(B\) of \(\bar{R} G\) has finite representation type (i.e. there are only finitely many isomorphism classes of indecomposable modules in \(B\)) if and only if a defect group \(D\) of \(B\) is cyclic.

Proof
By 2.12.7 and Brauer's first main theorem (2.8.6) it suffices to prove the result in the case where \(D \subseteq G\).

If \(D\) is cyclic, all modules in \(B\) are D-projective by 2.7.4, and there are only finitely many indecomposable D-modules by 2.2 exercise 1 .

If \(D\) is non-cyclic, then by 2.5 exercise 1 , there are infinitely many isomorphism classes of indecomposable modules for \(D\) and so the result follows from 2.12.7 and 2.12.8. a

\section*{Exercise}

Suppose a Sylow p-subgroup \(P\) of \(G\) is a t.1. set (i.e. for \(g \varepsilon G\), either \(P^{G}=P\) or \(P \cap P^{G}=1\)), with normalizer N. Show that Green correspondence gives a one-one correspondence between non-
 \(\Gamma \mathrm{N}\)-modules.

\subsection*{2.13 Semisimplicity of \(A(G, T r i v)\).}

We are still concerned with representation theory over \(\Gamma \varepsilon\{R, \bar{R}\}\).

In order to show that \(A(G, T r i v)\) is semisimple, we shall first construct some species for it, and then demonstrate that the elements of \(A(G, T r i v)\) are separated by the species we have constructed.

A group \(H\) is said to be p-hypoelementary if \(H / O_{p}(H)\) is cyclic
(recall that \(O_{p}(H)\) denotes the largest normal p-subgroup of a group H). Let \(\operatorname{Hyp}_{\mathrm{p}}(\mathrm{G})\) be the collection of all p-hypoelementary subgroups of \(G\).

Let \(V\) be a trivial source \(\Gamma G-m o d u l e\), and suppose \(H \varepsilon H_{p}(G)\).
Let \(V \downarrow_{H}=V_{1} \oplus V_{2}\), where \(V_{1}\) is a direct sum of indecomposable modules with vertex \(O_{p}(H)\) and \(V_{2}\) is a direct sum of indecomposable modules with vertex properly contained in \(O_{p}(H)\). Then \(O_{p}(H)\) acts trivially on \(V_{1}\), and so \(V_{1}\) is a module for \(H / O_{p}(H)\). Let \(b\) be a Brauer species of \(H / O_{p}(H)\), and define \(\left(s_{H, b}, V\right)=\left(b, V_{l}\right)\). Then clearly \(s_{H, b}\) is a species of \(A(G, T r i v)\).

\subsection*{2.13.1 Proposition}

Suppose \(V\) and \(W\) are trivial source \(\Gamma G\)-modules and
\(\left(s_{H, b}, V\right)=\left(s_{H, b}, W\right)\) for all pairs \((H, b)\). Then \(V \cong W\).
Proof
Suppose without loss of generality that \(V\) and \(W\) have no direct summands in common. Let \(D\) be a maximal element of the set of vertices of summands of \(V\) and \(W\). Suppose \(V \psi_{N_{G}}(D)=V^{\prime} \oplus V^{\prime \prime}\) and \({ }^{W} \psi_{N_{G}}(D)=W^{\prime} \oplus W^{\prime \prime}\), where \(V^{\prime}, W^{\prime}\) are sums of modules with vertex \(D\), and \(V^{\prime \prime}, W^{\prime \prime}\) are sums of modules whose vertex does not contain \(D\).

Since \(\left(s_{H, b}, V^{\prime}\right)=\left(s_{H, b}, W^{\prime}\right)\) for each pair (\(\left.H, b\right)\) with \(O_{p}(H)=D, V^{\prime}\) and \(W^{\prime}\) are projective representations of \(N_{G}(D) / D\), and all Brauer species of \(N_{G}(D) / D\) have the same value on each. Thus by 2.ll.3, we have \(V^{\prime} \cong W^{\prime}\). Let \(V_{o}^{\prime}\) and \(W_{o}^{\prime}\) be isomorphic indecomposable direct summands of \(V^{\prime}\) and \(W^{\prime}\). Thus by 2.12.2, the Green correspondents \(g\left(V_{0}^{\prime}\right)\) and \(g\left(W_{o}^{\prime}\right)\) are isomorphic direct summands of \(V\) and \(W\). This contradiction completes the proof of the proposition.

\subsection*{2.13.2 Corollary}

A(G,Triv) is semisimple, and the \(s_{H, b}\) are its species. \(\quad\)
Thus by 2.2 .1 and the discussion following it, we have idempotents \(\mathrm{e}_{\mathrm{H}, \mathrm{b}} \varepsilon \mathrm{A}(\mathrm{G}, \operatorname{Triv})\) with the property that
\[
\left(s_{H, b}, e_{H^{\prime}, b^{\prime}}\right) \quad\left\{\begin{array}{l}
\text { if }(H, b) \text { is conjugate to } \\
\left(H^{\prime}, b^{\prime}\right) \\
0 \\
\text { otherwise. }
\end{array}\right.
\]

There is a corresponding direct sum decomposition of \(A(G)\)
\[
A(G)=\underset{H, b}{\oplus} A(G) \cdot e_{H, b}
\]

In this decomposition, \(H\) and \(b\) run over conjugacy classes of pairs
(\(\mathrm{H}, \mathrm{b}\)) with \(\mathrm{H} \varepsilon \operatorname{Hyp}_{\mathrm{p}}(\mathrm{G})\) and b a Brauer species of \(\mathrm{H} / \mathrm{O}_{\mathrm{p}}(\mathrm{H})\) with origin \(H / O_{p}(H)\).
2.13.3 Proposition
(i) \(e_{D}={ }_{O_{p}(H)}^{\Sigma} \leq D \quad e_{H, b} \quad\) is the idempotent generator for \(A(G, D)\).
(ii) \(e_{D}^{\prime \prime}={\underset{O}{p}}^{\sum}(H)=D \quad e_{H, b}\) is the idempotent generator for A" (G,D) (see 2.12.6).

\section*{Proof}

By 2.l2.6(i), the idempotent generator for \(A(G, D)\) is the sum of the \(e_{H, b}\) lying in it, namely the \(e_{H, b}\) for which \(O_{p}(H) \leq D\). Similarly, the idempotent generator for \(A^{\prime}(G, D)\) is the sum of the \(e_{H, b}\) for which \(O_{p}(H)<D\).
2.13.4 Proposition
(i) \(\mathrm{A}(\mathrm{G})=\sum_{\mathrm{H}_{\varepsilon} \operatorname{Hyp}_{\mathrm{p}}(\mathrm{G})} \operatorname{Im}\left(\mathrm{i}_{\mathrm{H}, \mathrm{G}}\right)\)
(ii) \(\prod_{H_{\varepsilon} H y p_{p}(G)} \operatorname{Ker}\left(r_{G, H}\right)=0\)

\section*{Proof}

By 2.13.1, \(\quad \bigcap_{H \in H y p_{p}(G)} \operatorname{Ker}_{A(G, T r i v)}\left(r_{G, H}\right)=0\). Thus by Exercise
l of 2.6, \(A(G, \operatorname{Triv})=\sum_{H_{\varepsilon} \operatorname{Hyp}_{p}(G)}^{i_{H, G}}(A(H, \operatorname{Triv}))\). Thus
\(\underset{H \& \operatorname{Hyp}_{p}(G)}{\operatorname{Im}\left(1_{H, G}\right)}\) is an ideal of \(A(G)\) containing the identity
element, proving (i). Then (ii) follows by 2.2.2. a
2.13.5 Proposition

Let \(H \leq G\). Then
(i) The idempotent generator of \(\operatorname{Im}\left(i_{H, G}\right)\) is \(\underset{(K, b)}{\Sigma} e_{K, b}\). \(\operatorname{KeHyp}_{\mathrm{p}}(\mathrm{G})\) \(K \leq H\)
(ii) The idempotent generator for \(\operatorname{Ker}\left(r_{G, H}\right)\) is \(\underset{(K, b)}{\sum} e_{K, b}\).
(the sums run over G-conjugacy classes of pairs (\(K, b\)).)

\section*{Proof}

This follows immediately from 2.13 .4 and exercise 1 of 2.6 .

Finally, we prove Conlon's induction theorem.
2.13.6 Theorem (Conlon)

There exist rational numbers \(\lambda_{H} \varepsilon \mathbb{Q}\) for each conjugacy class of p-hypoelementary subgroup \(H\) such that
\[
l_{G}=\sum_{H_{\varepsilon} \operatorname{Hyp}_{p}(G)^{\lambda_{H}}{ }^{l} H^{\uparrow^{G}}}
\]
(the sum runs over a set of representatives of conjugacy classes of p-hypoelementary subgroups).

Proof
Let \(\theta_{G}\) be the \(Q\)-linear span in \(A(G, T r i v)\) of the permutation modules \(l_{H}{ }^{G}\). Then exactly as in 2.2.2, for any subgroup \(H\) we have
\[
\theta_{G}=i_{H, G}\left(\theta_{H}\right) \oplus \operatorname{Ker}_{\Theta_{G}}\left(r_{G, H}\right)
\]

Now by 2.13.4,
\[
\prod_{\operatorname{He}_{\varepsilon} \operatorname{Hyp}_{p}(G)} \operatorname{Ker}_{\Theta_{G}}\left(r_{G, H}\right)=0
\]
and so
\[
\sum_{H_{\varepsilon} \operatorname{Hyp}_{p}(G)}{ }^{i_{H}, G}\left(\Theta_{H}\right)=\theta_{G}
\]
as required. \(\quad\) o

\section*{Exercise}

Use 2.13 .3 and 2.13 .5 to show that if \(N \& G\) has index \(p^{n}\), then \(A(G, N)=\operatorname{Im}\left(i_{N, G}\right)\). Deduce that \(a(G, N) / i_{N, G}(a(N))\) is a possibly infinite) p-group of exponent dividing \(p^{n}\).

In fact, Green has shown [54] that if \(k\) is algebraically closed then \(a(G, N)=i_{N, G}(a(N))\).

\subsection*{2.14 Structure Theorem for Vertices and Origins}

This section consists of just one theorem describing the nature of the vertices and origins of a species. The proof of the theorem is a good illustration of the influence which the subring \(A(G, T r i v)\) exerts on the structure of \(A(G)\).

\subsection*{2.14.1 Theorem}

Let \(s\) be a species of \(A_{\Gamma}(G), \Gamma \varepsilon\{R, \bar{R}\}\). Then
(i) All origins of \(s\) are conjugate.
(ii) All the vertices of \(s\) are conjugate.

Let \(H\) be an origin of \(s\). Then
(iii) \(H\) is p-hypoelementary.
(iv) \(O_{p}(H)\) is a vertex of \(s\).

Proof
(i) is proved in 2.9.3.
(ii) is proved in 2.5.2(ii).
(iii) Suppose \(H\) is an origin of \(s\). By 2.l3.4, we have
\[
\begin{aligned}
& \operatorname{Im}\left(i_{H, G}\right)= \sum_{K_{\varepsilon H y p}^{p}}(G) \\
& K \leq H
\end{aligned} \quad \operatorname{Im}\left(i_{K, G}\right) .
\]

By 2.9.2, \(\operatorname{Ker}(\mathrm{s}) \notin \operatorname{Im}\left(\mathrm{i}_{\mathrm{H}, \mathrm{G}}\right)\), and so for some \(K \varepsilon \operatorname{Hyp}_{\mathrm{p}}(\mathrm{G})\) with \(K \leq H\), \(\operatorname{Ker}(\mathrm{s}) \nexists \operatorname{Im}\left(i_{K, G}\right)\). By minimality of \(H, K=H\).
(iv) Since \(H\) is an origin of \(s\), by 2.13 .5 s does not vanish on \(\underset{(K, b)}{\Sigma} e_{K, b}\), but does vanish on \(\underset{(K, b)}{\Sigma} e_{K, b}\). Thus \(s\) does
\(K \varepsilon \operatorname{Hyp}_{p}(G)\)
\(K \varepsilon \operatorname{Hyp}_{p}(G)\)
\(K \leq H\)
\(K<H\)
not vanish on some \(e_{H, b}\), and so by 2.13.3, \(s\) does not vanish on \(e_{O_{p}}^{\prime \prime}(H)\). Thus \(s\) does not vanish on \(e_{O_{p}}(H)\), but does vanish on \(e_{D^{\prime}}\) for every \(D^{\prime}<O_{p}(H)\). Hence \(O_{p}(H)\) is a vertex of \(s\).

\subsection*{2.15 Tensor Induction, and Yet Another Decomposition of \(A(G)\)}

In this section, we introduce the notion of tensor induction, and use it to prove that for any permutation representation \(S\) of a group \(G\), we have the decomposition \(A(G)=A(G, S) \oplus A_{0}(G, S)\) (see Theorem 2.15.6), as promised in section 2.3. The proof of this theorem is another good illustration of the influence which \(A(G, T r i v)\) exerts on the structure of \(A(G)\).

Suppose \(H \leq G\) and \(V\) is a \(\Gamma H\)-module. Then \(V \underset{\Gamma H}{\otimes G}\) splits naturally (as a vector space) as a direct sum of blocks \(V g_{i}\), for \(g_{1}\) a set of right coset representatives of \(H\) in \(G\), and \(G\) permutes these blocks in the same way as it permutes the right cosets of \(H\). Thus \({ }_{i}\left(V 8 \mathrm{~g}_{\mathrm{i}}\right)\) has a natural structure as a \(\Gamma \mathrm{G}\)-module, and is written \(V \neq G\), and called \(\quad\), tensor induced up to \(G\) '. The basic properties of tensor induction are as follows.
2.15.1 Lemma

(iii) If \(H^{+} \leq H\) and \(W\) is a \(\Gamma H^{\prime}\)-module, then
\[
\begin{aligned}
& W \uparrow{ }^{H} \stackrel{\gamma^{G}}{ } \quad \underset{K \leq G}{\sum} \quad \operatorname{Im}\left(i_{K, G}\right) . \\
& \mathrm{K} \cap \mathrm{H} \leq \mathrm{H}^{\mathrm{t}}
\end{aligned}
\]
(iv) \(\star\) induces a ring homomorphism
\[
\left.i_{H, G}^{\otimes}: A(H) / \sum_{K<H} \operatorname{Im}\left(i_{K, H}\right) \rightarrow A(G) / \sum_{K<G} \operatorname{Im}^{\left(i_{K, G}\right.}\right)
\]
which takes the identity element to the identity element.
(v) If \(0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0\) is an \(S-s p l i t\) short exact sequence of \(\Gamma \mathrm{H}-\mathrm{modules}\), then
\[
V \not{ }^{G} \otimes \Gamma S \cong\left(V^{\prime} \oplus V^{\prime \prime}\right) \not{ }^{G} \otimes \Gamma S .
\]

Proof
(i) is clear from the definition.
(ii) \(\left(V_{1} \oplus V_{2}\right) \stackrel{\AA}{G}=\underset{i}{\otimes}\left(\left(V_{1} \oplus V_{2}\right) \otimes g_{i}\right)\)
\[
=\underset{i}{\otimes}\left(V_{1} \otimes g_{i}\right) \oplus \underset{i}{\infty}\left(V_{2} \otimes g_{i}\right) \oplus X
\]
where \(X=\underset{j_{i}=1,2}{\oplus}\left(\underset{i}{\otimes}\left(V_{j_{i}} \otimes g_{i}\right)\right)\). \(\underset{\text { equal }}{\operatorname{not}} \mathrm{j}_{\mathbf{i}}\)
 corresponding to the G-orbits of ways of choosing the \(j_{i}{ }^{\prime}\) s. Each such summand is a module induced from the stabilizer of such a choice.
(iii) Let \(g_{i}\) be coset representatives of \(H\) in \(G\), and \(h_{j}\) be coset representatives of \(H^{\prime}\) in \(H\). Then
\[
\begin{aligned}
& W \uparrow^{H} \stackrel{A}{\mathrm{~B}}=\underset{i}{\otimes}\left(\left(\underset{j}{\oplus}\left(W \geqslant \mathrm{~h}_{\mathrm{j}}\right)\right) \geqslant \mathrm{g}_{\mathrm{i}}\right) \\
& =\underset{\text { possible }}{\oplus}\left(\underset{i}{*}\left(W \mathrm{~N}_{\mathrm{j}} \mathrm{~g}_{\mathrm{i}}\right)\right) . \\
& \text { choices of } \\
& \text { one } h_{j_{i}} \text { for } \\
& \text { each i }
\end{aligned}
\]

Thus as a \(\Gamma\) - module, \(W_{\uparrow}{ }^{H} \neq G\) splits as a direct sum of submodules corresponding to the G-orbits of ways of choosing the \(j_{i}\) 's. Each such summand is a module induced from the stabilizer of such a choice, and the elements of \(H\) stabilizing such a choice are contained in an H-conjugate of \(H^{\prime}\).
\[
\begin{aligned}
& \text { (iv) This follows immediately from (i), (ii) and (iii). } \\
& \text { (v) As a } \Gamma G \text {-module, } V \stackrel{\AA}{~}^{G} \text { has a natural filtration } \\
& V^{\prime} \oiint^{G}=U_{0} \leq U_{1} \leq \ldots \leq U_{n}=V \Phi^{G} \quad(n=|G: H|) \text { where } \\
& U_{j}=<\left(\underset{i \notin J}{\otimes} v_{i}^{\prime} \otimes g_{i}\right) \otimes\left(\underset{i \& J}{\otimes} v_{i} \otimes g_{i}\right) \text {, for } J \text { a subset of } \\
& \text { size } j \text { of the right cosets of } H \text { in } G \text {, and } V_{i}^{\prime} \varepsilon V^{\prime} \text {, } \\
& \mathrm{v}_{\mathrm{i}} \varepsilon \mathrm{~V}>\text {. }
\end{aligned}
\]

It is easily seen that

Thus we must show that tensoring with \(\Gamma S\) splits the filtration
 \(\Psi_{j}\) for the natural map
\[
\Phi_{j}: U_{j} \otimes \Gamma S \rightarrow\left(U_{j} \otimes \Gamma S\right) /\left(U_{j-1} \otimes \Gamma S\right) \cong\left(U_{j} / U_{j-1}\right) \otimes \Gamma S
\]

Suppose \(f: V^{\prime \prime} \otimes \Gamma S \rightarrow V \otimes \Gamma S\) is an S-splitting for
\(0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0\), and let
\[
\left(\sum_{x} \sum_{\varepsilon S} v_{x}^{\prime \prime} \otimes x\right) f=\sum_{x} \sum_{S}\left(v_{x}^{\prime \prime} f_{x}\right) \otimes x
\]
with the \(f_{x}\) linear maps from \(V^{\prime \prime}\) to \(V\). Since \(f\) is a rH-module homomorphism, we get \(f_{x} h=h f_{x h}\) for \(h \varepsilon H\).

The typical generator for \(\left(U_{j} \otimes \Gamma S\right) /\left(U_{j-1} \otimes \Gamma S\right)\) is \(\left(\left(\underset{i \notin J}{\otimes}\left(v_{i}^{\prime} \otimes g_{i}\right)\right) \otimes\left(\underset{i \in J}{\otimes}\left(v_{i} \otimes g_{i}\right)\right)\right) \otimes x\). We define \(\Psi_{j}\) to be the map sending this generator to \(\left.\left(\left(\underset{i}{\otimes} \otimes J_{i}^{\prime} \otimes g_{i}\right)\right) \otimes\left(\operatorname{i}_{\varepsilon J}^{\otimes}\left(v_{i}^{\prime \prime} f_{i g}^{-1} \otimes g_{i}\right)\right)\right) \otimes x\).

It is easily checked that \(\Psi_{j}\) is a \(\Gamma\)-module homomorphism left inverse to \(\Phi_{j}\).

\section*{Remark}

When trying to prove, for a group \(G\), that \(A(G)=A(G, S) \oplus A_{0}(G, S)\), we only have to show that \(1=\alpha+\beta \varepsilon A(G, S)+A_{0}(G, S)\). This is because \(A(G, S)\) and \(A_{0}(G, S)\) are ideals of \(A(G)\) whose product is zero, and so if \(X \in A(G, S) \cap A_{O}(G, S)\) then
\[
x=x \cdot l=x \cdot \alpha+x \cdot \beta=0
\]

\subsection*{2.15.2 Lemma}

Suppose \(D\) is a p-group and \(S\) is a permutation representation of \(D\) with \(D \in \mathcal{F I X}_{D}(S)\). Then
\[
A(D)=A_{O}(D, S)+\sum_{K<D}^{\Sigma} \operatorname{Im}\left(i_{K, D}\right)
\]

\section*{Proof}

Without loss of generality \(D\) acts transitively on \(S\). Let \(D^{\prime}\) be the stabilizer of a point in \(S\), and \(D^{\prime \prime}\) a maximal subgroup of \(D\) containing \(D^{\prime}\). Then \(A_{o}(D, S) \geq A_{o}\left(D, D^{\prime \prime}\right)\). Since the group algebra of \(D / D^{\prime \prime}\) is indecomposable (see 2.1 exercise \(l\)), \(A\left(D / D^{\prime \prime}, l\right)=\operatorname{Im}\left(i_{1, D / D ")}\right)\) is one-dimensional. Thus
\[
\begin{aligned}
I_{A(D)} \varepsilon A\left(D / D^{\prime \prime}\right) & =A_{0}\left(D / D^{\prime \prime}, I\right) \oplus A\left(D / D^{\prime \prime}, I\right) \text { by } 2.11 .3 \\
& =A_{0}\left(D / D^{\prime \prime}, 1\right) \oplus \operatorname{Im}\left(i_{1}, D / D^{\prime \prime}\right) \\
& \subseteq A_{0}\left(D / D^{\prime \prime}\right)+\operatorname{Im}\left(i_{D^{\prime \prime}, D}\right) \\
& \subseteq A_{0}(D, S)+\sum_{K<H} \operatorname{Im}\left(i_{K, D}\right) .
\end{aligned}
\]

\subsection*{2.15.3 Lemma}

Suppose \(H \leq G\) and \(O_{p}(H) \notin \operatorname{Fix}_{G}(S)\). Then
\[
A(H)=A_{O}(H, S)+\sum_{K<H} \operatorname{Im}\left(i_{K, H}\right)
\]

\section*{Proof}

Let \(D=O_{p}(H) \mathrm{Fix}_{\mathrm{G}}(\mathrm{S})\). Then by 2.15 .1 and 2.15.2
\[
i_{D, H}^{\otimes}: A(D) / \sum_{K<D} \operatorname{Im}\left(i_{K, D}\right)=\frac{A_{o}(D, S)+\sum_{K<D} \operatorname{Im}\left(i_{K, D}\right)}{\sum \operatorname{Im}_{K<D}\left(i_{K, D}\right)} \rightarrow \frac{A(H)}{\sum_{K<H} \operatorname{Im}\left(i_{K, H}\right)}
\]
takes the identity element to the identity element. But it also takes \(A_{o}(D, S)\) into \(A_{o}(H, S)+\sum_{K<H}^{\sum} \operatorname{Im}\left(i_{K, H}\right)\) by \(2.15 .1(v)\) and (ii), and so
\[
I_{A(H)} \varepsilon A_{0}(H, S)+\sum_{K<H} \operatorname{Im}\left(i_{K, H}\right)
\]

\subsection*{2.15.4 Lemma}

If \(H \in \operatorname{Hyp}_{p}(G)\) then \(A(H)=A(H, S) \oplus A_{o}(H, S)\).
Proof
If \(O_{p}(H) \varepsilon \operatorname{Fix}_{H}(S)\) then \(A(H)=A(H, S)\), by 2.3.3. If \(O_{p}(H) \ell \operatorname{Fix}_{H}(S)\), then by 2.15.3, \(A(H)=A_{o}(H, S)+\underset{K<H}{\Sigma} \operatorname{Im}\left(\mathbf{i}_{K, H}\right) \cdot\) By induction, for each \(K<H, A(K)=A(K, S) \notin A_{O}(K, S)\), and so by 2.3.8, \(\operatorname{Im}\left(i_{K, H}\right) \subseteq A(H, S)+A_{O}(H, S) . \quad \square\)
2.15.5 Theorem

For any group \(G\) and permutation representation \(S\), we have
\(A(G)=A(G, S) \oplus A_{0}(G, S)\).
Proof
By 2.13.4(i), \(A(G)=\underset{H_{\varepsilon} \operatorname{Hyp}_{p}(G)}{\Sigma} \operatorname{Im}\left(i_{H, G}\right) . \quad\) By 2.15.4 \(\quad\) and 2.3.8,
\(\operatorname{Im}\left(i_{H, G}\right) \subseteq A(G, S)+A_{o}(G, S)\) for \(H \in H_{p y p}(G)\). \(\quad\).
2.15.6 Corollary

If \(H \leq G\) then \(A(G)=A(G, H) \oplus A_{0}(G, H)\).
2.15.7 Corollary

If \(s\) is a species of \(A(G)\), then \(D\) contains a vertex of \(s\) if and only if for every D-split short exact sequence \(\mathrm{O} \rightarrow \mathrm{V}^{\prime} \rightarrow \mathrm{V} \rightarrow \mathrm{V}^{\prime \prime} \rightarrow \mathrm{O}\) we have
\[
(s, V)=\left(s, V^{\prime}\right)+\left(s, V^{\prime \prime}\right)
\]

\section*{Remark}

Dress [45] has shown that in fact \(\hat{a}(G)=\hat{a}(G, H) \oplus \hat{a}_{0}(G, H)\); i.e. \(A(G) /\left(a(G, H)+a_{0}(G, H)\right)\) is a p-torsion group, cf. 2.16.5.

\subsection*{2.16 Power Maps on \(A(G)\)}

In this section we construct maps \(\psi^{n}: a_{k}(G) \rightarrow a_{k}(G)\) called the power maps. These are ring homomorphisms, and have the property that if \(b_{g}\) is a Brauer species then \(\left(b_{g}, x\right)=\left(b_{g}, \psi^{n}(x)\right)\). These are the modular analogues of what are called the Adams operations in ordinary representation theory. We shall use these maps to construct the powers of a general species, and we shall investigate the origins and vertices of the powers of a species.

We begin by constructing the operators \(\psi^{n}\) in the case where \(n\) is coprime to \(p\). Let \(n\) be a natural number coprime to \(p\), and let \(T=<a: a^{n}=l>\) be a cyclic group of order \(n\). Let \(\varepsilon\) be a primitive \(n\)th root of unity in the algebraic closure of \(k\) and let \(\eta\) be a primitive \(n \frac{\text { th }}{}\) root of unity in \(\boldsymbol{C}\). If \(X\) is a module for \(T \times G\), then we denote by \(X_{\varepsilon}{ }_{i}\) the eigenspace of \(a\) on \(X\) with eigenvalue \(\varepsilon_{n}^{i}\). Then \(X_{\varepsilon}{ }_{i}{ }^{\varepsilon}\) is a \(T \times G\)-invariant direct summand of

Now let \(V\) be an \(k G\) module. Then \(\left[V \oint^{T \times G}\right]_{i}\) restricts to a
 as \(k G-m o d u l e s . ~ W e ~ d e f i n e ~\)
\[
\psi^{n}(V)=\sum_{i=1}^{n} \eta^{1}\left[V \psi^{T \times G}\right]_{\varepsilon^{i}} \varepsilon A(G) .
\]

\subsection*{2.16.1 Proposition}

If \(V_{1}\) and \(V_{2}\) are \(k G\) modules then
(i) \(\psi^{n}\left(V_{1} \oplus V_{2}\right)=\psi^{n}\left(V_{1}\right)+\psi^{n}\left(V_{2}\right)\)
(i1) \(\psi^{n}\left(V_{1} \otimes V_{2}\right)=\psi^{n}\left(V_{1}\right) \psi^{n}\left(V_{2}\right)\).
Proof
(i) As a module for \(G\), we have
\[
\begin{aligned}
& \otimes^{n}\left(V_{1} \oplus V_{2}\right)= \underset{i_{1}=1,2}{\oplus}\left(V_{1_{1}} \otimes \ldots \otimes V_{i_{n}}\right) . \\
& \vdots \\
& i_{n}=1,2
\end{aligned}
\]

Under the action of \(T\), there are two fixed summands, \(x^{n}\left(V_{1}\right)\) and \(s^{n}\left(V_{2}\right)\). Apart from these, each orbit forms a module for \(T \times G\) of the form \(Y \otimes Z\), where \(Y\) is a permutation module for \(T\) on the cosets of a proper subgroup. Thus as an element of \(A(G)\),
\[
\sum_{i=1}^{n} \eta^{i}[Y \otimes Z]_{\varepsilon}^{i}=0
\]

Hence the result.
\[
\text { (ii) } \otimes^{n}\left(V_{1} \otimes V_{2}\right)=\otimes^{n}\left(V_{1}\right) \otimes \otimes^{n}\left(V_{2}\right) \text {. }
\]

Hence
\[
\left[\otimes^{n}\left(V_{1} \otimes V_{2}\right)\right]_{\varepsilon}^{i}=\sum_{j=1}^{n}\left[\otimes^{n}\left(V_{1}\right)\right]_{\varepsilon}{ }^{n}\left[\otimes^{n}\left(V_{2}\right)\right]_{\varepsilon} i-j
\]

Thus we have
\[
\begin{aligned}
\psi^{n}\left(V_{1} \otimes V_{2}\right) & =\sum_{i=1}^{n} \eta^{i}\left[\otimes^{n}\left(V_{1} \otimes V_{2}\right)\right]_{\varepsilon}^{i} \\
& =\sum_{i, j=1}^{n} \eta^{j}\left[\otimes^{n}\left(V_{1}\right)\right]_{\varepsilon}{ }^{j} \cdot \eta^{1-j}\left[\otimes^{n}\left(v_{2}\right)\right]_{\varepsilon}^{i-j} \\
& =\psi^{n}\left(v_{1}\right) \psi^{n}\left(V_{2}\right)
\end{aligned}
\]

By 2.16.1, we may extend \(\psi^{n}\) linearly to give a ring endomorphism of \(A(G)\). In fact, the image under \(\psi^{n}\) of an element of \(a(G)\) is in \(a(G)\), as the following proposition shows.

\subsection*{2.16.2 Proposition}

For \(d\) dividing \(n\), let \(\varepsilon_{d}\) be a primitive \(d \frac{t h}{}\) root of unity in the algebraic closure of \(k\). Then
\[
\psi^{n}(V)=\sum_{d \mid n} \mu(d)\left[V \phi^{T \times G^{\prime}}\right]_{\varepsilon_{d}}
\]
(Here, \(\mu\) is the Mobius function of multiplicative number theory)
\[
\begin{aligned}
& \text { Proof }
\end{aligned}
\]
\[
\begin{aligned}
& \psi^{n}(V)=\sum_{1=1}^{n} \quad \eta^{i}\left[V \not \phi^{T} \times G\right]_{\varepsilon} 1 \\
& =\sum_{d \mid n}\left(\sum_{(i, d)=1} \varepsilon_{d}^{i}\right)\left[V \Phi^{T T} \times G\right]_{\varepsilon_{d}} \\
& 1 \leq i \leq d \\
& =\sum_{d \mid n} \mu(d)\left[V \oiint^{T \times G^{G}}\right]_{d} . \quad \square
\end{aligned}
\]

\section*{Example}

If \(p \neq 2\), we have
\[
\psi^{2}(V)=s^{2}(V)-n^{2}(V)
\]

Thus, in particular, if \(V\) is irreducible then the FrobeniusSchur indicator is defined by
\[
\text { Ind }(V)=\left(1, \psi^{2}(V)\right)= \begin{cases}+1 & \text { if } V \text { is orthogonal } \\ -1 & \text { if } V \text { is symplectic } \\ 0 & \text { otherwise }\end{cases}
\]
(Recall that (,) is the inner product on \(A(G)\) given by bilinearly extending \(\left.(U, V)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}(U, V)\right)\).
2.16.3 Definition

We define the \(n^{\text {th }}\) power of a species \(s\) of \(A(G)\), for \(n \in \mathbb{N} \backslash \mathbb{N}, \mathrm{via}\)
\[
\left(s^{n}, x\right)=\left(s, \psi^{n}(x)\right) .
\]

Proposition 2.16.1 shows that \(s^{n}\) is again a species of \(A(G)\). 2.16.4 Proposition

If \(b\) is a Brauer species of \(A(G)\) (see section 2.11) corresponding to a p'-element \(g\), then \(b^{n}\) is the Brauer species corresponding to \(\mathrm{g}^{\mathrm{n}}\).

\section*{Proof}

Let \(V\) be a kG-module, and let \(b^{\prime}\) be the Brauer species corresponding to \(g^{n}\). We may choose a basis \(v_{1}, \ldots, v_{r}\) of \(V\) consisting of eigenvectors of \(g\). Let \(v_{i} g=\lambda_{i} v_{i}\). Then as \(k<g>\)-modules, \(V=\Theta<v_{i}>\), and so
\[
\begin{aligned}
\left(b^{n}, V\right)=\left(b, \psi^{n}(v)\right) & =\left(b, \sum_{i=1}^{r} \psi^{n}\left(\left\langle v_{i}>\right)\right)=\sum_{i=1}^{r}\left(b, \psi^{n}\left(k v_{i}>\right)\right)\right. \\
& =\sum_{i=1}^{r} \lambda_{i}^{n}=\left(b^{\prime}, v\right) .
\end{aligned}
\]

As our flrst application, we give Kervaire's proof of a theorem of Brauer.

\subsection*{2.16.5 Theorem}

The determinant of the Cartan matrix is a power of \(p\).

\section*{Proof}

This is the same as saying that the cokernel of the Cartan homomorphism
\[
c: a(G, 1) \rightarrow a(G) \rightarrow a(G) / a_{0}(G, 1)
\]
is a p-group.
Let \(m\) be the \(p^{\prime}\)-part of the exponent of \(G\). If \(x \varepsilon a(G, I)\) then \(\psi^{m}(x)\) is an element of \(a(G, 1)\) by 2.16 .2 , and any Brauer species has value \(\operatorname{dim}(x)\) on \(\psi^{m}(x)\) by 2.16.4. Thus by 2.11.3, if \(x \in a(G, I)\) then \(\operatorname{dim}(x) . l \varepsilon \operatorname{Im}(c)\).

For each prime \(q \neq p\) dividing \(|G|\), let \(Q\) be a Sylow \(q-s u b g r o u p\) of \(G\). Then \(l_{Q}{ }^{G}{ }_{\varepsilon} a(G, l)\) since it is induced from a projective \(k Q\)-module. Thus \(|G: Q| .1 \varepsilon \operatorname{Im}(c)\). It now follows from the Chinese remainder theorem that \(|G|_{p} . I \varepsilon \operatorname{Im}(c)\), where \(|G|_{p}\) is the p-part of the order of \(G\). Hence if \(x \varepsilon a(G) / a_{o}(G, 1)\) then \(|G|_{p} \cdot x \varepsilon \operatorname{Im}(c)\), and the theorem is proved. \(\quad\)

\section*{Remark}

This could be rephrased as saying that \(a(G) /\left(a(G, I)+a_{0}(G, I)\right)\)
is a p-torsion group; see the remark after 2.15.7.
We now wish to prove that \(\psi^{m^{n}}=\psi^{m n}\). We start off with a lemma.
2.16.6 Lemma

Let \(S_{n}\) denote the symmetric group on \(n\) letters. Then there is a subgroup \(\mathrm{T}_{\mathrm{n}}\) of \(\mathrm{S}_{\mathrm{n}}\) having the following properties.
(i) \(T_{n}\) contains a cyclic group of order \(n\) which is transitive on the \(n\) letters.
(ii) If \(n=n_{1} n_{2}\) then \(T_{n}\) contains the direct product of the cyclic groups of orders \(n_{1}\) and \(n_{2}\), in its direct product action on the \(n\) letters.
(iii) If a prime \(q\) divides \(\left|T_{n}\right|\) then \(q\) also divides \(n\).

Let \(n=\Pi p_{i}{ }_{i}\). Then we have a subgroup
\[
\Pi s_{p_{i}} \leq s_{n}
\]
with direct product action on the \(n\) points. Let \(P_{i}\) be a Sylow
\(p_{i}\)-subgroup of \(\mathrm{p}_{\mathrm{i}}^{\alpha_{i}}\), and let
\[
T_{n}=\Pi P_{i} \leq \Pi S_{p_{i}}^{a_{i}}
\]

Then properties (i) and (iii) are clearly satisfied. To check property (i1), let \(n=n_{1} n_{2}\) with \(n_{1}=\Pi p_{i}^{\beta_{i}}, n_{2}=\Pi p_{i}^{\gamma_{i}}\), and \(\beta_{i}+\gamma_{i}=\alpha_{i}\).

with \(Q_{i} \times R_{i} \leq P_{i}\). Then \(\Pi Q_{i} \times \Pi R_{i} \leq S_{n_{1}} \times S_{n_{2}}\) contains the appropriate direct product of cyclic groups. a

\subsection*{2.16.7 Theorem}
\[
\psi^{m} \psi^{n}=\psi^{m n}
\]

\section*{Proof}

Without loss of generality, we may assume that \(k\) is a splitting field for \(T_{m n}\) (see 2.2 exercise 4). Thus by property (iii), \(p\) does not divide \(\left|T_{m n}\right|\), and so the representation theory \(f f \quad k T_{m n}\) is the same as the representation theory of \(\mathbb{C T} \mathrm{Tn}\). In particular, the central idempotents of \(\mathrm{kT}_{\mathrm{mn}}\) are in natural one-one correspondence with the central idempotents of \(\mathbb{C T}_{m n}\), and \(k T_{m n}\) is semisimple.

By properties (i) and (ii) of \(T_{m n}\), and the definition of the \(\psi\) operators, \(\psi^{m} \psi^{n}(V)\) and \(\psi^{m n}(V)\) are of the form \(\Sigma \lambda_{i}\left(\otimes^{m n}(V) \cdot e_{i}\right)\) and \(\Sigma \lambda_{i}\left(\otimes^{m n}(V) \cdot e_{i}\right)\), where the \(e_{i}\) are the primitive central idempotents of \(T_{m n}\), and the \(\lambda_{i}\) and \(\lambda_{i}\) are independent of \(V\). Moreover, the \(\lambda_{i}\) and \(\lambda_{i}\) may both be expressed in terms of induced characters from the subgroups of \(T_{m n}\) given in the definition, and hence if we keep \(m\) and \(n\) constant and vary \(p\) over primes not dividing \(m n\), the \(\lambda_{i}\) and \(\lambda_{i}^{\prime}\) do not vary. Thus it. is sufficient to prove the result in the case where \(p\) divides neither mn nor \(|G|\). In this case, every species is a Brauer species, and modules are characterized by the values of Brauer species. By 2.16.4, we have
\[
\begin{aligned}
\left(b, \psi^{m} \psi^{n}(V)\right) & =\left(b^{m}, \psi^{n}(V)\right. \\
& =\left(\left(b^{m}\right)^{n}, V\right) \\
& =\left(b^{m n}, V\right) \\
& =\left(b, \psi^{m n}(V)\right) .
\end{aligned}
\]

Thus the \(\lambda_{i}\) and \(\lambda_{i}^{\prime}\) are equal, and the result is proved. a

We now extend the definition of \(\psi^{n}\) to include all \(n \varepsilon \mathbb{N}\) as follows. Let \(F\) denote the Frobenius map on \(a(G)\) or \(A(G)\). Thus if \(V\) is a module, \(F(V)\) is the module with the same addition and same group action, but with scalar multiplication defined by first raising the field element to the \(p\) th power, and then applying the old scalar multiplication. The map \(F\) commutes with \(\psi^{n}\) for \(n\) coprime to \(p\), and so we may define, for any \(n \varepsilon \mathbb{N}\) with \(n=p^{a} \cdot n_{0}\) and \(n_{0}\) coprime to \(p\),
\[
\psi^{n}(V)=F^{a} \psi^{n}(V)
\]

It is easy to check that propositions 2.16.1 and 2.16.4, and theorem 2.16.7 remain valid with the definition, and so we extend definition 2.16.3 appropriately.

Remark
If we define
\[
\lambda^{n}(x)=\frac{1}{n}!\left|\begin{array}{ccccc}
\psi^{1}(x) & 1 & & \\
\psi^{2}(x) & \psi^{1}(x) & 2 & \\
\psi^{3}(x) & \psi^{2}(x) & \psi^{1}(x) & 3 & \\
\cdot & & & \cdot \\
\cdot & & & n-1 \\
\psi^{n}(x) & \cdot & \cdot & \cdot & \psi^{1}(x)
\end{array}\right|
\]
then these \(\lambda\)-operations make \(A(G)\) into a special \(\lambda\)-ring (see [62]). In fact the subring \(\hat{a}(G)=a(G) \quad \underset{Z}{\mathbb{Z}}\left(\frac{1}{\mathrm{p}}\right) \quad\) is stable under the e operations, see [14].

Next, we examine the effects of \(\psi^{n}\) on origins and vertices of species.

\subsection*{2.16.8 Definition}

If \(H\) is a p-hypoelementary group and \(n=p^{a} . n_{o}\) with \(n_{0}\) coprime to \(p\), we let \(H^{[n]}\) denote the unique subgroup of index \(\left(|H|, n_{0}\right)\) in \(H\). 2.16.9 Lemma

Let \(s_{H, b}\) be as in section 2.13. Then
\[
\left(s_{H, b}\right)^{n}=s_{H}[n], b^{n}
\]

\section*{Proof}

Let \(V\) be a trivial source \(\bar{R} G-m o d u l e ~ a n d ~ l e t ~ V t_{H}=W_{1} \oplus W_{2}\), where, \(W_{1}\) is a direct sum of modules with vertex \(O_{p}(H)\) and \(W_{2} \in A^{\prime}(G, H)\). Then by 2.16.1, \(\psi^{n}(V) \psi_{H}=\psi^{n}\left(V \psi_{H}\right)=\psi^{n}\left(W_{1}\right)+\psi^{n}\left(W_{2}\right)\), \(\psi^{n}\left(W_{1}\right)\) is a linear combination of trivial source modules with vertex \(O_{p}(H)\), and \(\psi^{n}\left(W_{2}\right) \in A^{\prime}(G, H)\). Thus
\[
\begin{aligned}
\left(\left(s_{H, b}\right)^{n}, v\right) & =\left(s_{H, b}, \psi^{n}(v)\right) \\
& =\left(b, \psi^{n}\left(w_{1}\right)\right) \\
& =\left(b^{n}, W_{1}\right) \\
& =\left(s_{H}[n], b^{n}, V\right)
\end{aligned}
\]

\subsection*{2.16.10 Lemma}
\[
\psi^{n}\left(e_{H, b}\right)=\Sigma e_{H^{\prime}, b^{\prime}},
\]
where the sum runs over one representative of each G-conjugacy class of pairs (\(H^{\prime}, b^{\prime}\)) with \(\left(H^{\prime}\right)^{[n]}=H\) and \(\left(b^{\prime}\right)^{n}=b\).

\section*{Proof}
\[
\psi^{n}\left(e_{H, b}\right)={\underset{\text { all }}{\left(H^{\prime}, b^{\prime}\right)}}_{\Sigma}^{\left(s_{H^{\prime}, b^{\prime}}^{\prime}, \psi^{n}\left(e_{H, b^{\prime}}\right)\right) \cdot e_{H^{\prime}, b^{\prime}}^{\prime} .}
\]
(Here, the sum runs over one representative of each \(G\)-conjugacy class of pairs (\(\mathrm{H}^{\prime}, \mathrm{b}^{\prime}\)).)
\[
=\Sigma{\left.\underset{\left(H^{\prime}\right)}{[n]},\left(b^{\prime}\right)^{n}, e_{H, b}\right) \cdot e_{H^{\prime}}, b^{\prime}}^{(s)}
\]
by lemma 2.16.9.
Thus the coefficient of \(e_{H^{\prime}, b^{\prime}}\) is one if \(\left(\left(H^{\prime}\right)^{[n]},\left(b^{\prime}\right)^{n}\right)\) is G-conjugate to (\(\mathrm{H}, \mathrm{b}\)) and zero otherwise. a

\subsection*{2.16.11 Theorem}
(1) If \(H\) is an origin of \(s\), then \(H^{[n]}\) is an origin of \(s^{n}\).
(1i) If \(D\) is a vertex of \(s\), then \(D\) is also a vertex of \(s^{n}\).
Proof
(i) If \(H\) is an origin of \(s\), then for some Brauer species \(b\) of \(H / O_{p}(H)\) with origin \(H / O_{p}(H),\left(s, e_{H, b}\right)=1\). Thus by lemma 2.16.10,
\[
\left(s^{n}, e_{H}^{[n]}, b^{n}\right)=\left(s, \psi^{n}\left(e_{H^{[n]}, b^{n}}\right)\right)=1 .
\]

Hence \(H^{[n]}\) is an origin for \(s^{n}\).
(1i) By 2.14.1, we may take \(D=O_{p}(H)\), and the result follows from (1). \(\quad\) -

\subsection*{2.17 Almost Split Sequences}

In this section, we construct certain short exact sequences, called almost split sequences, of modules for the group algebra kG. These were first constructed by Auslander and Reiten [5] in the more general context of modules for an Artin algebra. We shall restrict our attention to group algebras, since this makes the arguments easier to follow. It turns out that the existence of these sequences depends upon an interesting identity, namely Theorem 2.17.5. The reader happy with abstract categorical arguments should also see Gabriel's impressively short proof of the existence of almost split sequences for arbitrary Artin algebras in [53]. See also the remark at the end of 2.17 .

In the next section we shall see that these short exact sequences play an important role in the structure of \(A(G)\), namely they give us certain 'dual elements' under the inner products investigated in section 2.4, to the basis of \(A(G)\) consisting of indecomposable modules.

\subsection*{2.17.1 Lemma}

Let \(U\) and \(V\) be kG-modules. Then there is a natural duality \(\left((U, V)^{l, G}\right)^{\#} \cong(V, \Omega U)^{l, G}\)

\section*{Proof}

By 2.l.l(1v), we have
and
\[
\begin{aligned}
& (U, V)^{l, G} \cong\left(V^{*} \otimes U, k\right)^{l, G} \\
& (V, \Omega U)^{l, G} \cong\left(k, V^{*} \otimes \Omega U\right)^{l, G} .
\end{aligned}
\]

By Schanuel's lemma, \(V^{*} \otimes \Omega U \cong \Omega\left(V^{*} \otimes U\right) \oplus P\) for some projective module \(P\), and so by 2.3 .4 ,
\[
\left(k, V^{*} \otimes \Omega U\right)^{l, G} \cong\left(k, \Omega\left(V^{*} \otimes U\right)\right)^{l, G}
\]

Thus we must show that
\[
\left(k, \Omega\left(V^{*} \otimes U\right)\right)^{l, G} \cong\left(\left(V^{*} \otimes U, k\right)^{l}, G\right)^{*}
\]

In fact we shall show that for any module \(X\),
\[
(k, \Omega X)^{l, G} \cong\left((X, k)^{l, G}\right)^{*} .
\]

Without loss of generality, \(X\) has no projective direct summands. Let \(P_{X}\) be the projective cover of \(X\). Then since \(k G\) is a symmetric algebra, there are as many copies of the trivial module in the head as in the socle of \(P_{X}\), and there is a natural isomorphism between the spaces given by multiplication by \(\Sigma g\).
Thus \((k, \Omega X)^{l, G} \cong\left(k, P_{X}\right)^{G} \cong\left(\left(P_{X}, k\right)^{G}\right)^{\# g \varepsilon G} \cong\left((X, k)^{l}, G\right)^{*}\). \(\quad\). Applying 2.17.1 twice, we get

\subsection*{2.17.2 Corollary (Feit)}
\((\mathrm{U}, \mathrm{V})^{\mathrm{l}, \mathrm{G}} \cong(\Omega \mathrm{U}, \Omega \mathrm{V})^{l, G} . \quad \square\)
The isomorphism of 2.17 .2 may be given the following interpretation. Let \(P_{U}\) and \(P_{V}\) be the projective covers of \(U\) and \(V\). Then any map from \(U\) to \(V\) lifts to a map from \(P_{U}\) to \(P_{V}\), and the image of \(\Omega \mathrm{U}\) lies in \(\Omega V\). Thus we obtain a (not necessarily unique) map from \(\Omega U\) to \(\Omega V\). However, if a map from \(U\) to \(V\) factors through a projective module, then so does the induced map from \(\Omega U\) to \(\Omega V\), and vice-versa. Thus we get a well defined injection, and since the spaces are of equal dimension, this is an isomorphism.

In particular, when \(U=V\), we write \(\operatorname{End}_{k G}(U)\) for \((U, U)^{l, G}\). The above map from End \({ }_{k G}(U)\) to \(E_{k}{ }_{k G}(\Omega U)\) clearly preserves composition of endomorphisms, and so we have the following result.

\subsection*{2.17.3 Proposition}

There is a natural ring isomorphism
\[
\text { End }_{k G}(U) \cong \text { End }_{k G}(\Omega U)
\]

But this means that both sides of 2.17.1 are End EGG \(^{(V)-\text { End }_{k G}(U), ~(U)}\) bimodules. Is the given isomorphism a bimodule isomorphism? Clearly the first two isomorphisms given in the proof are bimodule isomorphisms. So we simply need the following proposition.

\subsection*{2.17.4 Proposition}

There is an End \({ }_{k G}(V)-\) End \(_{k G}(U)\) bimodule isomorphism
\[
\left(V^{*} \otimes U, k\right)^{l, G} \cong\left(\left(V^{*} \otimes \Omega U\right)^{l, G}\right)^{*}
\]
namely the map induced by the map
\[
r:\left(V^{*} \otimes U, k\right)^{G} \rightarrow\left(\left(V^{*} \otimes \Omega U\right)^{l, G}\right)^{*}
\]
given as follows. For \(y^{*} \varepsilon V^{*}, \mathrm{x} \varepsilon \mathrm{P}_{\mathrm{U}}\) and \(\varphi \in\left(\mathrm{V}^{*} \otimes \mathrm{U}, \mathrm{k}\right)^{\mathrm{G}}\),
\[
\left(\left(y^{*} \otimes x\right)(\underset{g \varepsilon G}{\Sigma} g)+\left(V^{*} \otimes \Omega U\right)_{l}^{G}\right)(\varphi r)=\left(y^{*} \otimes x+V^{*} \otimes \Omega U\right) \varphi .
\]
```

    Proof
    $\left(V^{*} \otimes \Omega U\right)^{G}$ is spanned by elements of the form $\left(y^{*} \otimes x\right)\left(\Sigma_{g \in G} g\right)$

```
with \(y^{y^{*}} \otimes x \varepsilon V^{*} \otimes P_{U}\). To see that \(r{ }^{\text {is well }}\) defined, let \(a_{1}\), \(a_{2} \varepsilon V^{*} \otimes P_{U}\) with \(\left(a_{1}-a_{2}\right)\left(\Sigma_{\varepsilon G} g\right) \varepsilon\left(V^{*} \otimes \Omega U\right)_{1}^{G}\). Then any homomorphism from \(V^{*} \otimes P_{U}\) to \(k\) with \(V^{*} \otimes \Omega U\) in its kernel has \(a_{1}-a_{2}\) in its kernel. \(r\) is clearly surjective, and \(\left(V^{*} \otimes U, k\right)_{1}^{G} \subseteq \operatorname{Ker}(r)\). By 2.17.1, \(\left.\operatorname{dim}\left(V^{*} \otimes \Omega U\right)^{l}, G\right)^{*}=\operatorname{dim}\left(V^{*} \otimes U, k\right)^{l, G}\), and so \(\gamma\) induces an isomorphism, which clearly preserves the bimodule structure. a

\subsection*{2.17.5 Theorem}

There are End \(_{\mathrm{kG}}(\mathrm{V})\)-End \({ }_{\mathrm{KG}}(\mathrm{U})\) bimodule isomorphisms
\[
\left((U, V)^{l, G}\right)^{*} \cong(V, \Omega U)^{1, G} \cong \operatorname{Ext}_{G}^{1}\left(V, \Omega^{2} U\right)
\]

Proof
We have already proved the first isomorphism. To prove the second, we have a short exact sequence
\[
0 \rightarrow \Omega^{2} U \rightarrow P_{\Omega U} \rightarrow \Omega U \rightarrow 0
\]
which gives rise to a long exact sequence (see l.4)
\[
\frac{0 \rightarrow\left(\mathrm{~V}, \Omega^{2} \mathrm{U}\right)^{\mathrm{G}} \rightarrow\left(\mathrm{~V}, \mathrm{P}_{\Omega \mathrm{U}}\right)^{\mathrm{G}} \rightarrow(\mathrm{~V}, \Omega \mathrm{U})^{\mathrm{G}} \longrightarrow}{\rightarrow \operatorname{Ext}_{\mathrm{G}}^{1}\left(\mathrm{~V}, \Omega^{2} \mathrm{U}\right)^{\mathrm{G}} \rightarrow \operatorname{Ext}_{G}^{1}\left(\mathrm{~V}, \mathrm{P}_{\Omega U}\right)^{\mathrm{G}}=0}
\]

Since the image of \(\left(V, P_{\Omega U}\right)^{G}\) in \((V, \Omega U)^{G}\) is exactly \((V, \Omega U)_{1}^{G}\), the second isomorphism follows. The naturality of the long exact sequence means that this is a bimodule isomorphism. \(\quad\)

We are now ready to examine the almost split sequences.

\subsection*{2.17.6 Definition}

An almost split sequence or Auslander-Reiten sequence is a short exact sequence of modules \(0 \rightarrow A \rightarrow B \xrightarrow{\sigma} C \rightarrow 0\) satisfying the following conditions.
(i) A and C are indecomposable.
(ii) \(\sigma\) does not split.
(iii) If \(\rho: D \rightarrow C\) is not a split epimorphism (i.e. unless \(C\) is isomorphic to a direct summand of \(D\) and \(\rho\) is the projection) then \(\rho\) factors through \(\sigma\).

Auslander and Reiten proved for a general Artin algebra that for each non-projective \(C\) there is a unique almost split sequence terminating in \(C\), and gave a recipe for obtaining the module \(A\). It turns out that for group algebras \(A \cong \Omega^{2} C\), as is seen in the
following theorem.

\subsection*{2.17.7 Theorem}

Let \(C\) be a non-projective indecomposable kG-module. Then there exists an almost split sequence terminating in \(C\). This sequence is unique up to isomorphism of short exact sequences, and its first term is isomorphic to \(\Omega^{2} \mathrm{C}\).

Proof
(i) We first prove existence. By 2.17.5, we have
\[
\left((C, C)^{l, G}\right)^{*} \cong \operatorname{Ext}_{G}^{1}\left(C, \Omega^{2} C\right)
\]

If \(C\) is not projective, then \((C, C)^{l, G}\) is a local ring by 1.3.3, since \((C, C)_{l}^{G}\) is not the whole of \((C, C)^{G}\). Thus as an End \(_{k G}(C)-\) End \(_{k G}(C)\) bimodule, or even as a one sided module, Ext \({ }_{G}^{1}\left(C, \Omega^{2} C\right)\) has an irreducible socle, and any two extensions generating this socle are equivalent under an automorphism of \(C\), and hence give rise to equivalent short exact sequences. We claim that a generator \(0 \rightarrow \Omega^{2} C \rightarrow X_{C} \xrightarrow{\sigma} C \rightarrow 0\) for \(\operatorname{SocExt}_{\mathrm{G}}^{1}\left(\mathrm{C}, \Omega^{2} \mathrm{C}\right)\) has the desired properties. Clearly properties (i) and (ii) are satisfied, so we must check (iii).

Let \(\quad r: \Omega C \rightarrow \Omega^{2} C\) with image in \(\left(\Omega C, \Omega^{2} C\right)^{l, G} \cong E x t{ }_{G}^{l}\left(C, \Omega^{2} C\right)\) our generator for \(\operatorname{SocExt}{ }_{G}^{1}\left(C, \Omega^{2} C\right)\). Thus our short exact sequence is a pushout of the form

by construction. Given \(\rho: D \rightarrow C\) we get a diagram

Then
\[
\begin{aligned}
& \rho: D \rightarrow C \text { is a split epimorphism } \\
\Leftrightarrow & \rho_{*}:(C, D)^{l, G} \rightarrow(C, C)^{I}, G \text { has } l_{C} \text { in its image } \\
\Leftrightarrow & \rho_{*} \text { is surjective } \\
\Rightarrow & \rho^{\#}: \operatorname{Ext}_{G}^{1}\left(C, \Omega^{2} C\right)\left(\cong\left(\Omega C, \Omega^{2} C\right)^{I}, G\right) \rightarrow \operatorname{Ext}_{G}^{l}\left(D, \Omega^{2} C\right)\left(\cong\left(\Omega D, \Omega^{2} C\right)^{l}, G\right)
\end{aligned}
\]
is injective
where \(\rho^{\#}\) is the adjoint of \(\rho_{*}\) under the duality given in theorem 2.17.5.
\(\Leftrightarrow \rho_{1}^{\#}\) does not have \(r\) in its kernel
\(\Leftrightarrow \quad \rho^{\prime} r \in\left(\Omega D, \Omega^{2} C\right)_{I}^{G}\)
\(\Leftrightarrow \rho r\) does not factor through \(i_{D}\)
\(\Leftrightarrow \rho\) does not factor through \(\sigma\).
For if \(\lambda: P_{D} \rightarrow \Omega^{2} C\) with \(i_{D} \lambda=\rho^{\prime} r\) and \(\mu: P_{D} \rightarrow P_{C} \rightarrow X_{C}\) then \(\mu-\lambda \sigma^{\prime}\) vanishes on \(\Omega D\), and so gives a map from \(D\) to \(X_{C}\) whose composite with \(\sigma\) is \(\rho\).
(ii) We now prove uniqueness. Suppose \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0\) is another almost split sequence terminating in \(C\). Then we get a diagram

The map \(a_{1} a_{2}\) is not nilpotent, and is hence an isomorphism by 1.3.3. Hence by the five-lemma, the two sequences are isomorphic. a 2.17.8 Proposition

If \(0 \rightarrow A \stackrel{\sigma}{\prime}^{\prime} \mathrm{B} \rightarrow \mathrm{C} \rightarrow 0\) is an almost split sequence and \(\rho: A \rightarrow D\) is not a split monomorphism (i.e. unless \(A\) is isomorphic to a direct summand of \(D\) and \(\rho\) is the injection) then \(\rho\) factors through \(\sigma^{\prime}\).

Proof
Suppose \(\rho\) does not factor through \(\sigma^{\prime}\). Then in the pushout

the second sequence does not split. Thus we may complete a diagram

Since \(\rho \rho^{\prime}\) is not nilpotent it is an isomorphism, and so \(\rho\) is a split monomorphism. o

\subsection*{2.17.9 Corollary}

If \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0\) is an almost split sequence then so is
\(0 \rightarrow C^{*} \rightarrow B^{*} \rightarrow A^{*} \rightarrow 0 . \quad \square\)

\subsection*{2.17.10 Proposition}

An almost split sequence \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0\) splits on restriction to a subgroup \(H\) if and only if \(H\) does not contain a vertex of \(C\) (or equivalently a vertex of \(A\))

Proof
Suppose the sequence splits on restriction to \(H\). Then for any H -module V ,
\[
\operatorname{dim}_{k} \operatorname{Hom}_{k H}\left(V, B \downarrow_{H}\right)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V, A \downarrow_{H}\right)+\operatorname{dim}_{k} \operatorname{Hom}_{k H}\left(V, C \downarrow_{H}\right)
\]
and so by Frobenius reciprocity (2.1.3)
\[
\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V \uparrow{ }^{G}, B\right)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V \uparrow^{G}, A\right)+\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V \uparrow{ }^{G}, C\right)
\]

This means that
\[
0 \rightarrow \operatorname{Hom}_{\mathrm{kG}}(\mathrm{~V} \uparrow \mathrm{G}, \mathrm{~A}) \rightarrow \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{~V} \uparrow^{\mathrm{G}}, \mathrm{~B}\right) \xrightarrow{\phi} \operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{~V} \uparrow^{\mathrm{G}}, \mathrm{C}\right) \rightarrow 0
\]
is exact (cf. 1.3). Thus \(C\) is not a direct summand of \(V^{G}{ }^{G}\), since otherwise by definition of almost split sequence, the projection \(\mathrm{V}^{\mathrm{G}} \rightarrow \mathrm{C}\) would not be in \(\operatorname{Im}(\phi)\).

Conversely if the sequence does not split on restriction to \(H\) then the identity map on \(C \downarrow_{H}\) is not in the image of
 the image of \(\mathrm{Hom}_{\mathrm{kGG}}\left(\mathrm{C} \psi_{\mathrm{H}}{ }^{\mathrm{G}}, \mathrm{B}\right) \rightarrow \operatorname{Hom}_{\mathrm{KG}}\left(\mathrm{C} \psi_{\mathrm{H}} \uparrow^{\mathrm{G}}, \mathrm{C}\right)(2.1 .3)\). Thus the natural map \(\operatorname{Fr}_{\mathrm{H}, \mathrm{G}}^{\prime}\left(\mathrm{I}_{\mathrm{C} \psi_{\mathrm{H}}}\right): \mathrm{C} \psi_{\mathrm{H}}{ }^{\mathrm{G}} \rightarrow \mathrm{C}\) does not lift to a map from \(C \psi_{H} \uparrow^{G}\) to \(B\), and so by definition of almost split sequence, it is a split epimorphism. Thus \(H\) contains a vertex of \(C\) (2.3.2). \(\square\)

\section*{Remark}

In fact, almost split sequences also exist for lattices over an
R-order (see [6], [76], [80], [81]) and hence for RG-modules (recall the convention introduced in 1.7 that \(R G\) module means finitely generated R-free RG-module). The construction, however, is very different, so that for kG-modules \(A \cong \Omega^{2} C\) while for RG-modules \(A \cong \Omega C\). In some sense, this corresponds to the fact that for \(k G-m o d u l e s\) \(\left((\mathrm{U}, \mathrm{V})^{l}, \mathrm{G}\right)^{*} \cong(\mathrm{~V}, \Omega \mathrm{U})^{l}, \mathrm{G} \quad\) (see 2.17 .1 and 2.17.5) while for RG-modules, \(\left((U, V)^{G}\right)^{*} \cong(V, U)^{G}\).

The existence of almost split sequences for \(R G-m o d u l e s\) does not seem to lead naturally to non-singularity results of the type proved in 2.18, but most of the theory developed in sections 2.28-2.32 applies with not much change, to modules for RG (see [92]).

\subsection*{2.18 Non-singularity of the Inner Products on A(G)}

In this section we use the almost split sequences, constructed in the last section, to investigate the inner products (.) and \(<,>\) on \(A(G)\).
2.18.1 Lemma

If \(C\) and \(D\) are indecomposable \(k G-m o d u l e s\), and
\[
0 \longrightarrow \Omega^{2} \mathrm{C} \longrightarrow \mathrm{X}_{\mathrm{C}} \longrightarrow \mathrm{C} \longrightarrow 0
\]
is the almost split sequence terminating in \(C\), then the following hold.
(i) If \(C \not \equiv D\) then
\[
0 \rightarrow\left(D, \Omega^{2} C\right)^{G} \rightarrow\left(D, X_{C}\right)^{G} \rightarrow(D, C)^{G} \rightarrow 0
\]
is exact.
(ii) The sequence
\[
0 \rightarrow\left(C, \Omega^{2} C\right)^{G} \rightarrow\left(C, X_{C}\right)^{G} \rightarrow(C, C)^{G} \rightarrow \operatorname{SocExt}_{G}^{1}\left(C, \Omega^{2} C\right) \rightarrow 0
\]
is exact, where this is the truncation of the long exact Ext sequence.
Proof
This follows immediately from the proof of 2.17.7. a
2.18.2 Definition

If \(V\) is an indecomposable \(k G-m o d u l e, ~ l e t\)
\[
d_{V}=\operatorname{dim}_{k}\left(E n d_{k G}(V) / J\left(E n d_{k G}(V)\right)\right)
\]

Note that if \(k\) is algebraically closed then \(d_{V}=l\) for all modules V.

Let \(\quad \tau(V)=\left\{\begin{array}{l}\operatorname{Soc}(V) \text { if } V \text { is projective } \\ X_{O_{V}}-\Omega V-\text { OV otherwise }\end{array}\right.\)
as an element of \(A(G)\), where
\[
0 \longrightarrow \Omega \mathrm{~V} \longrightarrow \mathrm{X}_{\text {OV }} \longrightarrow 2 \mathrm{~V} \longrightarrow 0
\]
is the almost split sequence terminating in \(\quad \mathrm{V}\). Then \(\tau(\mathrm{V})\) is called the atom corresponding to \(V\). We extend \(\tau\) to a semilinear map on \(A(G)\) by setting
\[
\tau\left(\Sigma a_{i} v_{i}\right)=\Sigma \bar{a}_{i} \tau\left(v_{i}\right)
\]

The reasons for these definitions will become apparent.

\subsection*{2.18.3 Lemma}
\[
V \cdot \tau(V)=\left\{\begin{array}{l}
V-\operatorname{Rad}(V) \text { if } V \text { is projective } \\
V+\Omega^{2} V-X_{V} \text { otherwise }
\end{array}\right.
\]
where
\[
0 \rightarrow \Omega^{2} \mathrm{~V} \rightarrow \mathrm{X}_{\mathrm{V}} \rightarrow \mathrm{~V} \rightarrow 0
\]
is the almost split sequence terminating in \(V\).
\[
\text { (Recall } \left.\quad v=P_{1}-\Omega(l)\right)
\]

\section*{Proof}

If \(V\) is projective, this is 2.4.2(iii). If \(V\) is not projective, then 2.4.2(iii) shows that \(v . \tau(V) \equiv-\Omega(\tau(V))=V+\Omega^{2} V-X_{V}\) modulo projectives. But by 2.ll.3, \(A(G)=A(G, l) \oplus A_{0}(G, l)\). Since \(\tau(V) \varepsilon A_{o}(G, l)\), so is \(V . \tau(V)\). Since \(V+\Omega^{2}(V)-X_{V}\) is also in \(A_{0}(G, l)\), this proves the lemma. \(\quad\).
2.18.4 Theorem:
\(\left(V, \overline{V \cdot \tau(W))}=<V, \tau(W)>= \begin{cases}d_{V} & \text { if } V \cong W \\ 0 & \text { otherwise } .\end{cases}\right.\)
Proof
If \(W\) is projective, this follows from 2.4.4. Otherwise,
\(\langle V, \tau(W)\rangle=(V, V \cdot \tau(W))\) by 2.4 .3
\(=\left(\mathrm{V}, \mathrm{W}+\Omega^{2} \mathrm{~W}-\mathrm{X}_{\mathrm{W}}\right)\) by 2.18 .3
\(=\left\{\begin{array}{ll}d_{V} & \text { if } V \cong W \\ 0 & \text { otherwise }\end{array} \quad\right.\) by 2.18.1. \(\quad\)
2.18.5 Corollary
\(<,>\) and (,) are non-singular on \(A(G)\), in the sense that given \(x \neq 0\) in \(A(G)\), there is a \(y \in A(G)\) such that \(<x, y>\neq 0\) and \(a \quad z \in A(G)\) such that \((x, z) \neq 0\).

Proof
If \(x=\Sigma a_{i} V_{i}\) then \(\tau(x)=\Sigma \bar{a}_{i} \tau\left(V_{i}\right)\), and so
\[
<x, \tau(x)>=\Sigma\left|a_{i}\right|^{2} d_{V_{i}} \geq 0
\]
with equality if and only if \(x=0\). Thus we may take \(y=\tau(x)\)
and \(z=v . y . \quad 0\)
2.18.6 Corollary

Suppose \(U\) and \(V\) are two kG-modules, and for every kG-module \(X\),
\[
\operatorname{dim}_{k} \operatorname{Hom}_{k G}(U, X)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}(V, X)
\]

Then \(U \cong V\).
Proof
This follows immediately from 2.18.5. a
2.18.7 Corollary

Suppose \(A(G)=A_{1} \oplus A_{2}\) is an ideal direct sum decomposition of
\(A(G)\), and suppose \(A_{1}\) and \(A_{2}\) are closed under the automorphism * of \(A(G)\) given by taking dual modules. Then \(<,>\) and (,) are non-singular on \(A_{1}\) and \(A_{2}\), and in \(A(G), A_{1}^{\perp}=A_{2}\) and \(A_{2}^{\perp}=A_{1}\) with respect to either inner product.

Proof
Let \(\pi_{1}\) and \(\pi_{2}\) be the projections of \(A(G)\) onto \(A_{1}\) and \(A_{2}\). Then given \(x \& A_{1}\) and \(y \in A_{2}\), we have
\[
\langle\mathrm{x}, \mathrm{y}\rangle=\left\langle 1, \mathrm{x}^{*} \cdot \mathrm{y}\right\rangle=\langle 1,0\rangle=0
\]
since \(A_{1} \cdot A_{2}=0\). Thus if \(x \neq 0,\left\langle x, \pi_{1}(\tau(x))\right\rangle=\langle x, \tau(x)\rangle \neq 0\). Thus \(<,>\) is non-singular on \(A_{1}\) and \(A_{1}^{\perp}=A_{2}\). The same argument works for (,), with v. \(\tau(x)\) in place of \(\tau(x)\). o
2.18.8 Corollary
(i) \(\operatorname{Im}\left(1_{H, G}\right)=\operatorname{Ker}\left(r_{G, H}\right)^{\perp}\)
(ii) \(\operatorname{Ker}\left(r_{G, H}\right)=\operatorname{Im}\left(1_{H, G}\right)^{\perp}\)
(iii) \(A(G, H)=A_{O}(G, H)^{\perp}\)
(iv) \(A_{0}(G, H)=A(G, H)^{\perp}\).

\section*{Proof}
(i) and (ii) follows from 2.18.7 and 2.2.2(i), while (iii) and (iv) follow from 2.18.7 and 2.15.6.

\subsection*{2.18.9 Corollary}

The following are equivalent condition on an indecomposable \(k G-m o d u l e \quad V\).
(i) \(V\) is \(H\)-projective.
(ii) \(\tau(V) \psi_{H} \neq 0\).
(iii) Tensoring with \(V\) splits every \(H-s p l i t\) short exact
sequence.

\section*{Proof}
(i) \(\Leftrightarrow\) (ii) follows from 2.17.10, while (i) \(\Leftrightarrow\) (iii) follows from 2.18.8 (iii).

\subsection*{2.18.10 Definitions}

The glue for a short exact sequence \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) is the element \(X-X^{\prime}-X^{\prime \prime}\) of \(A(G)\). Thus if \(V\) is a non-projective indecomposable then \(\tau(V)\) is a glue.

A glue is irreducible if it is non-zero, and is not the sum of two non-zero glues as an element of \(A(G)\). 2.18.11 Lemma

If \(X-X^{\prime}-X^{\prime \prime}\) is the glue for \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) then for any module \(V,\left\langle X-X^{\prime}-X^{\prime \prime}, V\right\rangle \geq 0\).

Proof
The number of copies of \(P_{I}\) in the direct sum decomposition of \(X \otimes V\) is at least the sum of the number of copies in \(X^{\prime} \otimes V\) and the number of copies in \(X^{\prime \prime} \otimes V\) since \(P_{1}\) is both projective and injective. \(\quad\) 2.18.12 Theorem
(1) Every non-zero glue can be written as the sum of an atom and a glue. Thus every irreducible glue is an atom.
(ii) The atoms are precisely the simple modules and the irreducible glues.

\section*{Proof}

First we note that the sum of two glues is a glue, since we can add the exact sequences term by term as a direct sum.
(i) Suppose \(0 \rightarrow Y^{\prime} \rightarrow Y{ }^{\pi} Y^{\prime \prime} \rightarrow 0\) is an exact sequence with \(Y-Y^{\prime}-Y^{\prime \prime} \neq 0\) its glue. If \(Y^{\prime \prime}\) is decomposable, \(Y^{\prime \prime}=W^{\prime \prime} \oplus Z^{\prime \prime}\), then \(Y-Y^{\prime}-Y^{\prime \prime}\) is the sum of the glues for
\[
0 \rightarrow \pi^{-1}\left(W^{\prime \prime}\right) \rightarrow Y \rightarrow Z^{\prime \prime} \rightarrow 0
\]
and
\[
0 \rightarrow Y\left(\rightarrow \pi^{-1}\left(W^{\prime \prime}\right) \rightarrow W^{\prime \prime} \rightarrow 0\right.
\]

At least one of these is non-zero, and so we may assume by induction that \(Y^{\prime \prime}\) is indecomposable. Thus \(\pi\) is not a split epimorphism. Letting \(0 \rightarrow \Omega^{2}\left(Y^{\prime \prime}\right) \rightarrow X_{Y^{\prime \prime}} \rightarrow Y^{\prime \prime} \rightarrow 0\) be the almost split sequence terminating in \(Y^{\prime \prime}\), we have the following commutative diagram.

The left-hand square is a pushout diagram, and so we get an exact sequence
\[
0 \longrightarrow Y^{\prime} \longrightarrow Y^{\prime} \oplus \Omega^{2} Y^{\prime \prime} \longrightarrow X_{Y}{ }^{\prime \prime} \longrightarrow 0 .
\]

The given glue is the sum of the glue for this sequence and the atom corresponding to the almost split sequence terminating in \(Y^{\prime \prime}\).
(1i) If \(V\) is a projective indecomposable module, then \(\tau\) (V) is a simple module. If \(V\) is a non-projective indecomposable, then \(\tau\) (V) is a glue. Suppose it is not irreducible. Then by (i) it is the sum of another atom, say \(\tau(W)\), and a glue. But \(<\tau(V)-\tau(W), W\rangle=-d_{W}\) by 2.18.4, contradicting 2.18.11. Conversely by (i), every irreducible glue is an atom, and clearly every simple module is an atom \(\left(V=\tau\left(P_{V}\right)\right)\). a

If \(k\) is algebraically closed, we formally think of each representation \(V\) as consisting of (possibly infinitely many) atoms, namely the simple composition factors and some irreducible glues holding them together.
\[
\begin{aligned}
& V= \Sigma<V, W>\tau(W) \\
& \\
& \text { indec. }
\end{aligned}
\]

This formal expression has the right inner product with each indecomposable module \(Y\), because each \(d_{Y}\) is one, and so
\[
\begin{aligned}
<(\Sigma<V, W>\tau(W)), Y> & =\Sigma \ll V, W\rangle \tau(W), Y\rangle \\
& =\langle V, Y>\text { by } 2.18 .4
\end{aligned}
\]

Thus the expression has the right inner product with any element of \(A(G)\), and so since the inner products are non-singular, this is a reasonable formal sum to write down.

We consider atoms to be in the same block as the corresponding indecomposable modules. Then in the formal sum above, an indecomposable module can only involve atoms from the same block.

\section*{Exercises}
1. Suppose \(k_{l}\) is an extension of \(k\). Show that the natural \(\operatorname{map} A_{k}(G) \rightarrow A_{k_{l}}(G)\) preserves the inner products (,) and \(<,>\). Use 2.18.5 to deduce that this map is injective. This is called the Noether-Deuring theorem, and a more conventional proof is given in [37], p. 200-202.

Now suppose \(k_{l}\) is a separable algebraic extension of \(k\). Show that \(A_{k_{1}}(G)\) is integral as an extension of \(A_{k}(G)\).
2. (1) Show that a short exact sequence \(0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0\) splits if and only if the glue \(X-X^{\dagger}-X^{\prime \prime}\) is zero, namely if and only if \(X \cong X^{\prime} \oplus X^{\prime \prime}\) (hint: examine the long exact sequence
associated with \(\operatorname{Hom}_{\mathrm{kG}}\left(\mathrm{X}^{\prime \prime},-\right)\) and count dimensions).
(1i) Show that a sequence \(0 \rightarrow \Omega^{2} U \rightarrow X \rightarrow U \rightarrow 0\) (with \(U\) indecomposable) is almost split if and only if its glue is irreducible.
(iii) Trying to generalize (i) and (ii), we might conjecture that whenever we have two short exact sequences \(0 \rightarrow X_{1}^{\prime} \rightarrow X_{1 \prime} X_{1} \rightarrow X_{1 \prime \prime}^{\prime \prime} \rightarrow 0\) and \(0 \rightarrow X_{2}^{\prime} \rightarrow X_{2} \rightarrow X_{2}^{\prime \prime} \rightarrow 0\) with \(X_{1}^{\prime} \cong X_{2}^{\prime}, X_{1} \cong X_{2}\) and \(X_{1}^{\prime \prime} \cong X_{2}^{\prime \prime}\), there is an isomorphism of short exact sequences. The following is a counterexample. Let \(G\) be the fours group (a direct product of two copies of the cyclic group of order two), and \(k\) a field of characteristic two. Let \(X_{1}=X_{2}=\Omega^{2}(k)\). Then there are isomorphic one dimensional submodules \(X_{1}^{\prime}\) and \(X_{2}^{\prime}\) with \(X_{1} / X_{1}^{\prime} \cong X_{2} / X_{1}^{\prime} \cong k \oplus \Omega(k)\), but there is no automorphism of \(X_{1}\) taking \(X_{1}\) to \(X_{2}\).
3. (i) Show that there is an almost split sequence
\[
0 \rightarrow \Omega^{2}(k) \rightarrow \Omega\left(\operatorname{Rad}\left(P_{1}\right) / \operatorname{Soc}\left(P_{1}\right)\right) \rightarrow k \rightarrow 0
\]
(1i) Let \(U\) and \(V\) be indecomposable modules and suppose \(k\) is algebraically closed. Show that \(U^{*} \otimes V\) has the trivial module as a direct summand if and only if the following two conditions are satisfied
(a) \(U \cong V\) and
(b) \(\mathrm{p} \nmid \mathrm{dim}(\mathrm{U})\)
(hint: consider the composite map \(\operatorname{Hom}_{k G}(U, V) \rightarrow U \otimes V^{*} \rightarrow\left(\operatorname{Hom}_{k G}(V, U)\right)^{*}\); the corresponding map \(\operatorname{Hom}_{k G}(U, V) \otimes \operatorname{Hom}_{k G}(V, U) \rightarrow k\) is given by \(a \otimes b \rightarrow \operatorname{Tr}(a b)\). This factors as
\(\operatorname{Hom}_{k G}(U, V) \otimes \operatorname{Hom}_{k G}(V, U) \rightarrow \operatorname{End}_{k G}(U) \rightarrow k\). Now use 1.3.3.)
(iii) Let \(U\) be an indecomposable kG-module. Tensoring the sequence of (i) with \(U\) and using the fact that \(\Omega^{2}(k) \otimes U \cong \Omega^{2}(U) \oplus\) projective (Schanuel's lemma), we obtain a short exact sequence
\[
0 \rightarrow \Omega^{2}(U) \rightarrow X \rightarrow U \rightarrow 0
\]

Show that this sequence is always either split or almost split, and is almost split if and only if pXdim(U). (Hint: let \(x=k+\Omega^{2}(k)-\Omega\left(\operatorname{Rad}\left(P_{l}\right) / \operatorname{Soc}\left(P_{l}\right)\right)\); use the identity \(\left(U^{*} \cdot V, x\right)=(V, U, x)\), together with (ii) and question 2).
(1v) Show that the linear span \(A(G ; p)\) in \(A(G)\) of the indecomposable modules whose dimension is divisible by \(p\) is an ideal, and that \(A(G) / A(G ; p)\) has no non-zero nilpotent elements.
(v) Suppose \(H\) is p-hypoelementary with \(O_{p}(H)\) cyclic. Show that \(A(H ; p)\) consists of induced modules. Use 2.2.2 and induction to show that \(A(H)\) is semisimple.
(vi) Using the results of 2.13 , show that for any group \(G\),
\(A(G, C y c)\), the linear span of the modules whose vertex is cyclic, is semisimple.
4. Let \(G\) be an elementary abelian group of order eight, \(k \quad a\) field of characteristic two, and \(V=\operatorname{Rad}\left(P_{1}\right) / \operatorname{Soc}\left(P_{1}\right)\).
(i) Show that if \(W\) is a submodule of \(V\) then either \(\operatorname{dim}(W)=1\) or \(\operatorname{dim}(W \cap \operatorname{Soc}(V))>1\). Deduce that \(V\) is indecomposable.
(ii) Using 3 (iii), show that \(V \otimes V \cong \Omega(V) \oplus \geqslant(V)\). Thus \(V\) is self-dual, but \(V \otimes V\) has no self-dual indecomposable summands.

\subsection*{2.19 The Radical of \(\operatorname{dim}_{k}\) Ext \(_{G}^{n}\)}

We define bilinear forms (, \()_{n}\) for \(n \geq 1\) as follows. If \(U\) and \(V\) are \(k G-m o d u l e s\), we let
\[
(U, V)_{n}=\operatorname{dim}_{k} \operatorname{Ext}_{G}^{n}(U, V)
\]

We extend this bilinearly to give (not necessarily symmetric) bilinear forms on the whole of \(A(G)\). The purpose of this section is to use the results of the last section to obtain information about the radicals of these forms, which in fact turn out all to be the same.

\subsection*{2.19.1 Lemma}
(i) There is a natural isomorphism \(\operatorname{Ext}_{\mathrm{G}}^{\mathrm{n}}(\mathrm{U}, \mathrm{V}) \cong\left(\Omega_{\mathrm{U}} \mathrm{n}_{\mathrm{U}}, \mathrm{V}\right)^{l}, \mathrm{G}\)
(ii) \((U, V)_{n}=\left(\Omega^{n} U, V\right)-<\Omega^{n} U, V>=\left((1-u) \Omega^{n} U, V\right)\).

Proof
(i) The short exact sequence
\[
0 \rightarrow \Omega \mathrm{U} \rightarrow \mathrm{P}_{\mathrm{U}} \rightarrow \mathrm{U} \rightarrow 0
\]
gives rise to a long exact sequence
\[
\begin{gathered}
0 \rightarrow(U, V)^{G} \rightarrow\left(P_{U}, V\right)^{G} \xrightarrow{\sigma}(\Omega U, V)^{G} \longrightarrow \\
\rightarrow \operatorname{Ext}_{G}^{I}(U, V) \rightarrow \operatorname{Ext}_{G}^{I}\left(P_{U}, V\right) \rightarrow \operatorname{Ext}_{G}^{I}(\Omega U, V) \\
=\operatorname{Ext}_{G}^{2}(U, V) \rightarrow \operatorname{Ext}_{G}^{2}\left(P_{U}, V\right) \rightarrow \ldots \\
=0
\end{gathered}
\]

Thus \(\operatorname{Ext}{ }_{G}^{I}(U, V) \cong(\Omega U, V)^{G} / I_{m}(\sigma)=(\Omega U, V)^{I}, G\), and for \(n \geq 2\), \(\operatorname{Ext}_{G}^{n}(U, V) \cong \operatorname{Ext}_{G}^{n-1}(\Omega U, V)\).
\[
\begin{align*}
\operatorname{dim}\left(\Omega^{n_{U}}, V\right)^{\perp, G} & =\left(\Omega^{n_{U}}, V\right)-<\Omega^{n_{U}}, V>\text { by (i) } \tag{ii}\\
& =\left((1-u) \Omega^{n_{U}}, V\right) \text { by } 2.4 .3 .
\end{align*}
\]
\(\square\)

\subsection*{2.19.2 Definition}
\[
\operatorname{Rad}(,)_{n}=\left\{x \in A(G):(x, y)_{n}=0 \text { for all } y \varepsilon A(G)\right\}
\]

Since 2.4.3 implies that \((x, y)=\left(u^{2} y, x\right)\) we have
\(\operatorname{Rad}(,)_{n}=\left\{x \in A(G):(y, x)_{n}=0\right.\) for all \(\left.y \in A(G)\right\}\).

\subsection*{2.19.3 Lemma}

Suppose \(U\) is a periodic kG-module with even period 2 s, i.e. \(\Omega^{2 \mathrm{~S}}(\mathrm{U}) \cong \mathrm{U}\). Then as elements of \(A(G)\),
\[
\mathrm{U}=u^{2 \mathrm{~s}} . \mathrm{U} .
\]

\section*{Proof}

By 2.4.2(ii), we have the following congruences modulo \(A(G, 1)\).
\[
U \equiv-u \cdot \Omega(U) \equiv u^{2} \cdot \Omega^{2}(U) \equiv \ldots \equiv u^{2 s} \cdot \Omega^{2 s} U=u^{2 s} \cdot U
\]

Now \(u \equiv 1\) modulo \(A_{o}(G, I)\), and so \(U \equiv u^{2 s} \cdot U\) modulo \(A_{o}(G, I)\). The result now follows from 2.ll.3 a

\subsection*{2.19.4 Theorem}

Rad (, \()_{n}\) is the linear span in \(A(G)\) of the projective modules and elements of the form
\[
\sum_{i=1}^{2 s}(-1)^{i} \Omega^{i}(U)
\]
for \(U\) a periodic module of even period \(2 s\).
Proof
Suppose \(x=\Sigma a_{i} V_{i} \varepsilon \operatorname{Rad}(,)_{n}\). Then for \(V_{i}\) non-projective we have
\[
\begin{aligned}
0 & =\left(x, \tau\left(\Omega^{n_{1}} V_{i}\right)\right)_{n} \\
& =\left(\Omega^{n} x, \tau\left(\Omega^{n_{1}} V_{i}\right)\right)-<\Omega^{n} x, \tau\left(\Omega^{n^{n}} V_{i}\right)>\quad \text { by } 2.19 \cdot 1 \\
& =\left(x, \tau\left(V_{i}\right)\right)-<x, \tau\left(V_{i}\right)> \\
& \left.=-\left(x, v \cdot \tau\left(\Omega V_{i}\right)\right)-<x, \tau\left(V_{i}\right)\right\rangle
\end{aligned}
\]
(since by 2.18 .3 if \(V_{i}\) is non-projective \(\tau\left(V_{i}\right)=-v . \tau\left(\approx V_{i}\right)\))
\[
\begin{aligned}
& =-\left\langle x, \tau\left(\mho V_{i}\right)\right\rangle-\left\langle x, \tau\left(V_{i}\right)\right\rangle \\
& =-\left(\operatorname{coefficient~of~} W_{i}\right)-\left(\text { coefficient of } V_{i}\right)
\end{aligned}
\]

Hence
\[
\text { (coefficient of } \left.V_{i}\right)=-\left(\text { coefficient of } \quad \Omega V_{1}\right)
\]

Thus if \(a_{i} \neq 0, V_{i}\) is projective or periodic of even period. Conversely, if \(V\) is periodic of even period 2 s , then by 2.19.3 we have
\[
(1-u)\left(1+u+\ldots+u^{2 s-1}\right) v=0
\]
and so \(\left(1+u+\ldots+u^{2 s-1}\right) v \varepsilon \operatorname{Rad}(,)_{n}\) by 2.19.1. But \(\left(1+u+\ldots+u^{2 s-1}\right) V \equiv \sum_{i=1}^{2 s}(-1)^{i} \Omega^{i} V\) modulo projectives by 2.4.2(111).

\subsection*{2.20 The Atom Copying Theorem}

This is a very short section in which we use the Burry-Carlson Theorem to investigate the behaviour of atoms under induction. For simplicity we assume \(k\) is algebraically closed.
2.20.1 Theorem (Atom Copying by Induction)

Let \(D\) be a p-subgroup of \(G\), and let \(H\) be a subgroup of \(G\) with \(N_{G}(D) \leq H\). Let \(V\) be an indecomposable kG-module with vertex \(D\) and Green correspondent \(W\). Denote by \(\tau\) the map given in 2.18.2 both for \(G\) and for \(H\). Then
\[
\tau(W) \uparrow^{G}=\tau(V) .
\]

\section*{Proof}

By the Burry-Carlson theorem (2.12.3), if \(U\) is an indecomposable \(k G\)-module, then \(U \psi_{H}\) has \(W\) as a direct summand if and only if \(U \cong V\), and then only once. Hence
\[
\begin{aligned}
<U, \tau(W) \uparrow^{G}-\tau(V)> & \left.=<U \psi_{H}, \tau(W)\right\rangle-<U, \tau(V)>\text { by } 2.4 .6 \\
& =0 \text { by } 2.18 .4,
\end{aligned}
\]
since all the \(d_{V}\) 's are 1 . Hence by 2.18.5 \(\tau(W) \uparrow^{G}-\tau(V)=0\). \(\quad\) Exercise

Suppose \(V\) is a \(k G\)-module with a Sylow p-subgroup \(P\) as vertex, and \(W\) is the Green correspondent of \(V\) as a \(k N_{G}(P)\)-module. Show that \(\quad \tau(V) \psi_{N_{G}}(P)=\tau(W)\).

\subsection*{2.21 The Discrete Spectrum of \(A(G)\)}

In this section, we investigate what happens when we project the information we have obtained onto a finite dimensional direct summand of \(A(G)\) satisfying certain natural conditions (2.21.1). We obtain a pair of dual tables \(T_{i j}\) and \(U_{i j}\) analogous to the tables of values of Brauer species on the set of irreducible modules and the set of projective indecomposable modules. Indeed, the Brauer summand \(A(G, l)\)
turns out to be the unique minimal case (2.21.9). The set of species of all such summands forms the 'discrete spectrum' of \(A(G)\).

\subsection*{2.21.1 Hypothesis}
\(A(G)=A \oplus B\) is an ideal direct sum decomposition, with projections \(\pi_{1}: A(G) \rightarrow A\) and \(\pi_{2}: A(G) \rightarrow B\). The summand \(A\) satisfies the following conđitions.
(i) A is finite dimensional
(ii) A is semisimple as a ring
(iii) A is freely spanned as a vector space by indecomposable
modules
(iv) A is closed under taking dual modules.

\section*{Remarks}
(i) Any finite dimensional semisimple ideal \(I\) is a direct summand, since
\[
A(G)=I \oplus \cap_{S} \operatorname{Ker}(s)
\]
where \(s\) runs over the set of species of \(A(G)\) not vanishing on \(I\). (Note that if \(I\) as an ideal of \(A(G)\) then any species \(s\) of \(I\) extends uniquely to a species of \(A(G)\). For let \(X \varepsilon I\) with \((s, x)=1\). Then for any \(y \in A(G)\), and any extension \(t\) of \(s\) to \(A(G)\), we have \((t, y)=(t, y)(s, x)=(t, y)(t, x)=(t, x y)=(s, x y)\). Moreover, it is easy to check that \((t, y)=(s, x y)\) does indeed define a species of \(A(G)\).
(ii) If \(A\) satisfies 2.21 .1 (i), (ii) and (iii) then the span in \(A(G)\) of \(A\) and the duals of modules in \(A\) form a summand satisfying (i), (ii), (iii) and (iv). Thus (iv) is not a very severe restriction.

If \(A_{1}\) and \(A_{2}\) are summands both satisfying 2.21.1 then so are \(A_{1}+A_{2}\) and \(A_{1} \cap A_{2}\). We define \(A(G, D i s c r e t e)\) to be the sum of all A satisfying 2.21.l. Any element of \(A(G, D i s c r e t e)\) lies in some summand \(A\) satisfying 2.21.l.

We write \(A_{o}\) (G,Discrete) for the intersection of the B's given in 2.21.1. Note that \(A(G, D i s c r e t e) ~ \oplus A_{0}\) (G,Discrete) is not necessarily the whole of \(A(G)\) (the fours group is a counterexample). 2.21.2 Conjecture

Let \(H \leq G\). Then
(i) \(\quad r_{G, H}(A(G, D i s c r e t e)) \subseteq A(H, D i s c r e t e)\)
(ii) \(i_{H, G}(A(H, D i s c r e t e)) \subseteq A(G, D i s c r e t e)\)

\subsection*{2.21.3 Examples}
(i) By 2.11.3, \(A=A(G, 1), B=A_{0}(G, l)\) satisfy 2.21.1. We shall call this case the Brauer case.
(ii) It is shown in [M.F. O'Reilly, 'On the Semisimplicity of the modular representation algebra of a finite group', Ill. J. Math. 9 (1965), 261-276] that the ideal \(A(G, C y c)\), spanned by all the \(A(G, H)\) for \(H\) cyclic, is a finite dimensional semisimple ideal (see also exercise 3 to 2.18). We write \(A(G)=A(G, C y c) \oplus A_{0}(G, C y c)\). Thus \(A=A(G, C y c)\) and \(B=A_{0}(G, C y c)\) satisfy 2.2l.l. We shall call this case the cyclic vertex case, since \(A(G, C y c)\) has a basis consisting of the modules with cyclic vertex.
(iii) Let \(G\) be the Klein fours group and \(k\) an algebraically closed field of characteristic 2. Then \(A_{k}(G)\) has infinitely many summands satisfying 2.21.1. Thus \(A(G, D i s c r e t e)\) is infinite dimensional. It turns out that \(A_{o}\) (G,Discrete) is isomorphic to the ideal of \(\mathbb{C}\left[X, X^{-1}\right]\) consisting of those functions which vanish at \(X=1\) (for more information see the appendix). Thus the set of species of \(A(G)\) breaks up naturally into a discrete part and a continuous part. Is there a general theorem along these lines?

\subsection*{2.21.4 Lemma}

Suppose \(A(G)=A \oplus B\) as in hypothesis 2.21.1. Then \(<,>\) and (,) are non-singular on A.

\section*{Proof}

This is a special case of 2.18.7. a

\subsection*{2.21.5 Definitions}

Let \(s_{1}, \ldots, s_{n}\) be the species of \(A\), and \(V_{1}, \ldots, V_{n}\) the indecomposable modules freely spanning \(A\). Let \(G_{i}=\tau\left(V_{i}\right)\) (see 2.18.2).

The atom table of \(A\) is the matrix
\[
T_{i j}=\left(s_{j}, G_{i}\right)=\left(s_{j}, \pi_{1}\left(G_{i}\right)\right) .
\]

The representation table of \(A\) is the matrix
\[
u_{i j}=\left(s_{j}, v_{i}\right)
\]

Let \(\Lambda=\pi_{1}(a(G))\) and \(\Lambda_{0}=A \cap a(G)\).

\subsection*{2.21 .6 Lemma}
\(\Lambda\) and \(\Lambda_{0}\) are lattices in \(A\), and \(\left|\Lambda / \Lambda_{0}\right|=\operatorname{det}\left(\left\langle V_{i}, V_{j}\right\rangle\right)\) if \(k\) is algebraically closed.

\section*{Proof}

For \(x \in a(G),\left\langle\pi_{1}(x), V_{1}\right\rangle=\left\langle x, V_{i}\right\rangle \in \mathbf{Z}\). Moreover, \(<G_{j}, V_{i}>=\delta_{i j}\) if \(k\) is algebraically closed. \(\quad\).

\subsection*{2.21.7 Lemma}

If \(\quad x \in a(G)\) then \(\left(s_{i}, x\right)\) is an algebraic integer.
Proof
The \(\mathbb{Z}\)-span in \(A\) of the tensor powers of \(\pi_{1}(x)\) form a sublattice of \(A\). Since this lattice satisfies A.C.C., this implies that for some \(m\),
\[
\left(\pi_{1}(x)\right)^{m} \varepsilon \not Z-\operatorname{span}\left(1, \pi_{1}(x), \ldots,\left(\pi_{1}(x)\right)^{m-1}\right) .
\]

This gives a monic equation with integer coefficients satisfied by the value of every species of \(A\) on \(x\). a
2.21.8 Open Questions
(i) For \(x \in a(G)\), is (\(\left.s_{i}, x\right)\) always a cyclotomic integer?
(ii) Is \(A / A_{o}\) always a p-torsion group?
2.21.9 Lemma
\[
\begin{equation*}
A(G, 1) \subseteq A \tag{!}
\end{equation*}
\]

\section*{Proof}

Since \(\pi_{1}(1)\) is the identity element of \(A\), it is non-zero, and hence by 2.21 .4 , for some \(f,\left\langle V_{j}, l\right\rangle=\left\langle V_{j}, \pi_{l}(1)\right\rangle \neq 0\). Thus by 2.18.4, some \(V_{j}\) is equal to \(P_{1}\).

Now look at the set of values \(\left(\mathrm{b}_{\mathrm{g}}, \mathrm{P}_{1}\right)\) of Brauer species on \(\mathrm{P}_{1}\). Suppose there are \(m\) different values \(\left(b_{g_{l}}, P_{l}\right), \ldots,\left(b_{g_{m}}, P_{1}\right)\).

Let \(N\) be the kernel of the action of \(G\) on \(P_{1}\). This has order prime to \(p\) since \(P_{1}\) is projective. (In fact \(N=O_{p},(G)\) but we shall not need to know that). Then the \(\mathrm{b}_{\mathrm{g}}{ }^{\prime} \mathrm{s}\) for which \(\left(b_{g}, P_{1}\right)=\operatorname{dim}\left(P_{1}\right)\) are precisely those \(b_{g}\) with \(g \varepsilon N\) (how can \(\operatorname{dim}\left(P_{l}\right)\) be written as a sum of \(\operatorname{dim}\left(P_{1}\right)\) roots of unity?). Since the Vandermonde matrix \(\left(\mathrm{b}_{\mathrm{g}_{i}}, \otimes^{j}\left(\mathrm{P}_{1}\right)\right)\) is non-singular, some polynomial in \(P_{l}\) (which is hence an element of \(A\)) has value \(|G / N|\) on those \(b_{g}\) for which \(\left(b_{g}, P_{l}\right)=\operatorname{dim}\left(P_{l}\right)\) and zero on the rest. By 2.ll.3, this element must be the group algebra of \(G / N\). Now since A is closed under taking direct summands, every projective module for \(G / N\) lies in \(A\). But the idempotent generator e for \(A(G / N, l)\) lies in \(A(G, 1)\) since \(N\) has order prime to \(p\), and every Brauer species of \(G\) has value \(l\) on \(e\). Thus \(e\) is the idempotent generator of \(A(G, I)\), and so \(A(G, 1) \subseteq A\).

Since \(P_{1} \varepsilon A\), we may choose our notation so that \(P_{1}=V_{1}\). By 2.2.l, the matrix \(U_{i j}\) is invertible. We define
\[
m_{i}=\left(U^{-1}\right)_{i l}=\sum_{j}\left(U^{-1}\right)_{i j}\left\langle 1, V_{j}\right\rangle
\]

Thus \(<l, V_{i}>=\sum_{j} U_{i j} m_{j}\), and so for any \(x \in A(G)\) and \(y \varepsilon A\) we have the following equations.
\[
\begin{aligned}
& <l, y>=\sum_{j}\left(s_{j}, y\right) m_{j} \\
& <x, y><1, x^{*} y>=\sum_{j}\left(s_{j}, x^{*}\right)\left(s_{j}, y\right) m_{j} .
\end{aligned}
\]

But now by 2.21 .4 , this means the \(m_{j}\) are non-zero, and so we may define

Thus we have, for \(x \varepsilon A(G), y \varepsilon A\),
2.21 .10
\[
\langle x, y\rangle=\sum_{j} \frac{\left(s_{j}, x^{*}\right)\left(s_{j}, y\right)}{c_{j}}
\]

Now let \(p_{i}=\left(s_{i}, u\right)=\left(s_{i}, \pi_{1}(u)\right)\). By 2.4.3, for \(x \varepsilon A(G)\) and \(y \in A\), we have \((x, y)=\langle x, u . y\rangle\), and so by 2.21 .10 we have
2.21.11
\[
(x, y)=\sum_{j} \frac{p_{j}\left(s_{j}, x^{*}\right)\left(s_{j}, y\right)}{c_{j}}
\]

Now let \(U^{\#}\) be the matrix obtained from \(U\) by transposing and replacing each representation by its dual. Let \(C\) be the diagonal matrix of \(c_{i} ' s\). The orthogonality relations 2.21 .10 can be written in the form \(\mathrm{TC}^{-1} \mathrm{U}^{\#}=1\), i.e. \(\mathrm{U}^{\#} \mathrm{~T}=\mathrm{C}\).
2.21.12 Question

Is it true in general that \(U^{\#}=U^{+}\), the Hermitian adjoint of \(U\) ? In other words, is it true that \(\left(s, x^{*}\right)=\overline{(s, x)}\) ? This would imply that the \(c_{j}\) are real algebraic numbers. Are they algebraic integers? 2.21.13 Proposition

Suppose \(H \leq G\), \(A\) satisfies 2.21 .1 , and \(r_{G, H}(A) \subseteq A^{\prime}\) with \(A^{\prime}\) satisfying 2.21.1 (e.g. in the examples of 2.21 .3 (i) and (i1), we could let \(A^{\prime}\) be \(A(H, l)\) and \(A(H, C y c)\) respectively) Suppose \(s\) is a species of \(A\) which factors through \(H\), and \(t\) is a species of \(A^{\prime}\) fusing to \(s\). Then
\[
c_{G}(s)=\left|N_{G}(\operatorname{Orig}(t)) \cap \operatorname{Stab}_{G}(t): N_{H}(\operatorname{Orig}(t))\right| \cdot c_{H}(t)
\]

\section*{Proof}

Choose an element \(x \in A\) such that \(s\) has value \(l\) on \(x\) and all other species of \(A\) have value zero on \(x\), and an element y, \(\varepsilon A^{\prime}\) such that \(t\) has value 1 on \(y^{*}\) and all other species of \(A^{\prime}\) have value zero on \(y^{*}\). Then by 2.4.6, \(\left\langle y \uparrow^{G}, x\right\rangle=\left\langle y, x t_{H}\right\rangle\), and so
\[
\sum_{i} \frac{\left(s_{i}, y^{*}+^{G}\right)\left(s_{i}, x\right)}{c_{G}\left(s_{i}\right)}=\sum_{j} \frac{\left(t_{j}, y^{*}\right)\left(t_{j}, x_{H}\right)}{c_{H}\left(t_{j}\right)} .
\]

Thus by the choice of \(x\) and \(y\),
\[
\begin{aligned}
\frac{\left(s, y^{*}{ }_{\uparrow}^{G}\right)}{c_{G}(s)} & =\frac{\left(t, x \downarrow_{H}\right)}{c_{H}(t)} \\
& =\frac{(s, x)}{c_{H}(t)}=\frac{1}{c_{H}(t)}
\end{aligned}
\]

But the induction formula 2.10.2 gives
\[
\left(s, y{ }^{*}{ }^{G}\right)=\left|N_{G}(\operatorname{Orig}(t)) \cap \operatorname{Stab}_{G}(t): N_{H}(\operatorname{Orig}(t))\right|
\]
thus proving the desired formula. व
2.21.14 Corollary

Suppose \(s\) is a species of two different summands \(A_{1}\) and \(A_{2}\) of \(A(G)\) both satisfying 2.21.l. Then the two definitions of \(c_{G}(s)\) coincide.

\section*{Proof}

Take \(G=H, A=A_{1}\) and \(A^{\prime}=A_{1}+A_{2}\) in the proposition to conclude that the values of \(C_{G}(s)\) as species of \(A_{1}\) and of \(A_{1}+A_{2}\) coincide. \(\quad\)
2.21.15 Corollary

Let \(H \leq G\) and \(V\) be an H-module, and \(A, A^{\prime}\) as in 2.21.13. Then
\[
\left(s, V \uparrow^{G}\right)=\sum_{s_{o} \sim s} \frac{c_{G}(s)}{c_{H}\left(s_{o}\right)} \quad\left(s_{o}, V\right)
\]
where \(s_{o}\) runs over those species of \(A\) ' fusing to \(s\).

\section*{Proof}

This follows from 2.21.13 and the induction formula 2.10.2. 2.21.16 Corollary

Let \(A=A(G, 1)\). Then \(c_{G}\left(b_{g}\right)=\left|C_{G}(g)\right|\).
Proof
If \(G=\langle g\rangle\) this is an easy exercise. For the general case apply 2.21 .13 with \(H=\langle g\rangle, s=b_{g}\) and \(t=b_{g}\). Then \(N_{G}(\operatorname{Orig}(t)) \cap \operatorname{Stab}_{G}(t)=C_{G}(g)\), and \(N_{H}(\operatorname{Orig}(t))=\langle g\rangle\). Thus
\[
c_{G}\left(b_{g}\right)=\left|C_{G}(g):<g>|\cdot|<g>\left|=\left|C_{G}(g)\right|\right.\right.
\]
2.22 Group Cohomology and the Lyndon-Hochschild-Serre Spectral Sequence \(H^{p}\left(G / N, H^{q}(N, V)\right) \Rightarrow H^{p+q}(G, V)\).

In this chapter I attempt to provide a brief description of the tools from group cohomology theory necessary for the study of complexity theory and varieties for modules (see sections 2.24-2.27). I have made no attempt at completeness.

A free resolution of as a \(\mathbf{Z}\)-module is an exact sequence
\[
0<-Z<-X_{0} \ll X_{1}<\partial_{1}<\partial_{2} \quad .
\]
with the \(X_{i}\) free \(Z G\)-modules. The map \(\varepsilon\) is called the augmentation map. It is easy to see that given two free resolutions we can find maps

and that any two such sets of maps are chain homotopic, namely given \(\lambda_{i}\) and \(\lambda_{i}^{i}\) there are maps \(h_{i}: X_{i} \rightarrow X_{i+1}^{\prime}\) such that \(\lambda_{i}-\lambda_{i}^{\prime}=\partial_{i} h_{i-1}+h_{i} \partial_{i+1}^{\prime}\) (in fact this depends only on the \(X_{i}\) being free).
 \(V\) gives a cochain complex
\[
\mathrm{V}^{\mathrm{O}} \xrightarrow[\delta^{0}]{ } \mathrm{V}^{1} \xrightarrow[\delta^{1}]{ } \mathrm{V}^{2} \xrightarrow[\delta^{2}]{ } \cdots
\]
with
\[
\begin{aligned}
& V^{i}=\operatorname{Hom}_{Z G}\left(X_{i}, V\right) \\
& \delta^{i}=\operatorname{Hom}_{Z G}\left(\partial_{i+1}, V\right) \quad \text { (i.e. the map obtained by } \\
& \text { composition with } \left.\partial_{i+1}\right)
\end{aligned}
\]

We define cohomology groups
\[
\begin{array}{ll}
H^{i}(X, V)=\operatorname{Ker}\left(\delta^{i}\right) / \operatorname{Im}\left(\delta^{i+l}\right) & i>0 \\
H^{\circ}(X, V)=\operatorname{Ker}\left(\delta^{o}\right) \cong V^{G} . &
\end{array}
\]

Given two free resolutions \(X_{i}\) and \(X_{i}\), a map of resolutions \(\lambda_{i}\) gives rise to a map \(\lambda_{i}^{\mu}: H^{i}\left(X^{\prime}, V\right) \rightarrow H^{i}(X, V)\), and since any two \(\lambda_{i}\) are homotopic, they give rise to the same \(\lambda_{i}^{*}\). In particular, if \(\mu_{i}: X_{i}^{\prime} \rightarrow X_{i}\) then \(\lambda_{i} \mu_{i}\) is homotopic to the identity map, and so \(\mu_{i}^{*} \lambda_{i}^{*}=1\). Thus we have a natural isomorphism \(H^{i}(X, V) \cong H^{i}\left(X^{\prime}, V\right)\), and so the cohomology groups are independent of choice of free resolution.

Thus we may simply write \(H^{i}(G, V)\).
The bar resolution is the free resolution given by letting \(X_{i}\) be the free \(\mathbb{Z} G\)-module on symbols \(\left[g_{l}|\ldots| g_{i}\right], g_{j} \varepsilon G\), and
\[
\begin{aligned}
{\left[g_{1}|\ldots| g_{n}\right] \partial_{n}=\left[g_{1} \mid \ldots\right.} & \left.\mid g_{n-1}\right] g_{n}+\sum_{i=1}^{n-1}(-1)^{i}\left[g_{1}|\ldots|\right. \\
& +(-1)^{n}\left[g_{2}|\ldots| g_{n-i} g_{n-i+1} \mid\right. \\
& \left.\ldots \mid g_{n}\right]
\end{aligned}
\]
[]\(\varepsilon=1\).
The submodules of \(X_{i}\) generated by those \(\left[g_{1}|\ldots| g_{n}\right]\) with some \(g_{i}=1\) form a free subcomplex which we may quotient out to obtain the normalized bar resolution \(\left(\tilde{X}_{i}(G), \tilde{\partial}_{i}\right)\).

Remark
The bar resolution becomes more transparent if we write it in terms of the \(\mathbb{Z}\)-basis
\[
\begin{aligned}
& \left(g_{0}, \ldots, g_{n}\right)=\left[g_{0} g_{1}^{-1}\left|g_{1} g_{2}^{-1}\right| \ldots \mid g_{n-1} g_{n}^{-1}\right] g_{n} \\
& \left(g_{0}, \ldots, g_{n}\right) g=\left(g_{0} g, \ldots, g_{n} g\right) \\
& \left(g_{0}, \ldots, g_{n}\right) \partial_{n}=\sum_{i=0}^{n}(-1)^{n-i}\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right)
\end{aligned}
\]

In particular, this makes it easier to check that it is indeed a resolution.

If \(X_{i}\) and \(Y_{i}\) are resolutions of \(\mathbb{Z}\), then so is
\((X \otimes Y)_{i}=\underset{p+q=i}{\sum} X_{p} \otimes Y_{q}\), with boundary homomorphism
(*) \(\quad(x \otimes y) a=x \otimes y \partial+(-1)^{\operatorname{deg}(y)} x \neq y\).
Thus there is a map of resolutions \(\Delta: X_{i} \rightarrow(X \otimes X)_{i}\), and any two such are homotopic. Such a map is called a diagonal approximation. For the (normalized) bar resolution, we use a particular diagonal approximation called the Alexander-Whitney map
\[
\left[g_{1}|\ldots| g_{n}\right] \Delta=\sum_{j=0}^{n}\left[g_{l}|\ldots| g_{j}\right] g_{j+1} \ldots g_{n} \otimes\left[g_{j+1}|\ldots| g_{n}\right]
\]

A diagonal approximation gives rise to a cup product on the cochain level as follows. If \(f_{1} \varepsilon U^{i}\) and \(f_{2} \varepsilon V^{j}\) then \(f_{1} \cup f_{2} \varepsilon(J \otimes V)^{i+j}\) is given by \(x\left(f_{1} \cup f_{2}\right)=(x \Delta)\left(f_{1} \otimes f_{2}\right)\). For example, the Alexander Whitney map gives
\[
\begin{aligned}
{\left[g_{1}|\cdots| g_{i+j}\right]\left(f_{1} \cup f_{2}\right)=} & {\left[g_{1}|\cdots| g_{i}\right] g_{i+1} \cdots g_{i+j} f_{1} } \\
& \otimes\left[g_{i+1}|\cdots| g_{i+j}\right] f_{2}
\end{aligned}
\]

Since \(\left(f_{1} \cup f_{2}\right) \delta=f_{1} \cup f_{2} \delta+(-1)^{\operatorname{deg}\left(f_{2}\right)} f_{f_{1}} \delta \cup f_{2}\) by (*), the cup product of two cocycles is a cocycle, and the cup product of a cocycle and a coboundary, either way round, is a coboundary. Thus we get a cup product structure
\[
u: H^{i}(G, U) \otimes H^{j}(G, V) \rightarrow H^{i+j}(G, U \otimes V),
\]
and it is easily checked that since any two diagonal approximations are homotopic, all diagonal approximations give rise to the same cup product structure at the level of cohomology. The following properties of the cup product are easy to verify.

\subsection*{2.22.1 Lemma}
(i) (\(x \cup y) \cup z=x \cup(y \cup z)\)
(ii) Let \(t: U \otimes V \rightarrow V \otimes U\) be the natural isomorphism. Then

\section*{Remark}

We shall often denote cup product operations simply by juxtaposition.

The main properties of the cohomology groups \(H^{i}(G, V)\) are as follows.
(i) A short exact sequence \(0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0\) gives rise to a long exact sequence in cohomology:
\(0 \rightarrow H^{O}\left(G, V_{1}\right) \rightarrow H^{\circ}\left(G, V_{2}\right) \rightarrow H^{O}\left(G, V_{3}\right) \rightarrow H^{\mathrm{l}}\left(G, V_{1}\right) \rightarrow H^{\mathrm{l}}\left(G, V_{2}\right) \rightarrow \ldots\)
(ii) Universal Coefficient Theorem

Suppose \(G\) acts trivially on \(V\). Then there is a short exact sequence
\[
0 \rightarrow H^{n}(G, Z) \otimes V \rightarrow H^{n}(G, V) \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(H^{n+1}(G, \mathbb{Z}), V\right) \rightarrow 0
\]
which splits, but not naturally.
(iii) A map of groups \(G_{1} \rightarrow G_{2}\) gives rise to a map of cohomology \(H^{i}\left(G_{2}, V\right) \rightarrow H^{i}\left(G_{1}, V\right)\) for each \(i\), and these maps commute with cup products.
(iv) Künneth Formula

Suppose \(G\) acts trivially on \(V\). Then there is a short exact sequence
\[
\begin{aligned}
0 \rightarrow \underset{i+j=n}{\Sigma} H^{i}\left(G_{1}, Z Z\right) \otimes H^{j}\left(G_{2}, V\right) \rightarrow H^{n}\left(G_{1} \times G_{2}, V\right) \longrightarrow \\
\longrightarrow \underset{i+j=n+1}{\sum} \operatorname{Tor}_{1}^{Z Z}\left(H^{i}\left(G_{1}, \mathbb{Z}\right), H^{j}\left(G_{2}, V\right)\right) \rightarrow 0
\end{aligned}
\]
which also splits, but not naturally.

If \(k\) is a field, then
\[
H^{*}\left(G_{1} \times G_{2}, k\right) \cong H^{*}\left(G_{1}, k\right) \geqslant H^{*}\left(G_{2}, k\right) \text { as graded rings, }
\]
and if \(U\) and \(V\) are \(k G_{1}-\) and \(k G_{2}\)-modules
\[
H^{*}\left(G_{1} \times G_{2}, U \otimes V\right) \cong H^{*}\left(G_{1}, U\right) \otimes H^{*}\left(G_{2}, V\right)
\]

Note that the Küneth Formula depends on \(G_{1}\) and \(G_{2}\) being finite, whereas most of this section does not.
(v) If \(V\) is an \(k G-m o d u l e\), we may regard \(V\) as a \(\mathbb{Z G}\)-module. Then \(V^{i}\), and hence \(H^{i}(G, V)\), have natural \(k\)-module structures, and for \(i>0, H^{i}(G, V) \cong \operatorname{Ext}_{G}^{i}(k, V)\).
(vi) Suppose \(G_{1}\) is a subgroup of the group of units of \(k G\), whose elements are of the form \(\Sigma a_{i} g_{i}\) with \(\Sigma a_{i}=1\). Then since the concepts of resolution and diagonal approximation are purely module theoretic constructions, we get a homomorphism of cohomology \(H^{i}(G, V) \rightarrow H^{i}\left(G_{1}, V\right)\) commuting with cup products, in the sense that

commutes. Beware that this makes no sense with \(k\) replaced by an arbitrary module \(U\), since the action of \(k G\) on \(U V\) does not commute with the inclusion \(\mathrm{KG}_{1} \hookrightarrow \mathrm{kG}\).
(vii) In [48] it is shown that if \(\Lambda\) is a commutative ring satisfying A.C.C. then \(H^{*}(G, \Lambda)\) (regarding \(\Lambda\) as a ZG-module with trivial action) satisfies \(A . C . C .\), and that if \(V\) is a \(\Lambda G\)-module finitely generated over \(A\), then \(H^{*}(G, V)\) is a finitely generated module for \(H^{*}(G, \Lambda)\). By 2.21.1, \(H^{*}(G, \Lambda)\) is not necessarily commutative, but the subring \(H^{e v}(G, \Lambda)=\oplus H^{2 i}(G, \Lambda)\) is commutative.

Now suppose \(V\) is a \(k G-m o d u l e\). We form the Poincaréseries
\[
\xi_{V}(t)=\Sigma t^{n} \operatorname{dim}_{k}\left(H^{n}(G, V)\right)
\]

Then since \(H^{*}(G, V)\) is a finitely generated module over \(H^{*}(G, k)\), it follows from 1.8 .2 and the remark following it that \(\xi_{V}(t)\) is a rational function of the form \(f(t) /{ }_{i}{ }_{i=1}^{m}\left(l-t^{k_{i}}\right)\) where \(k_{l}, \ldots, k_{r}\) are the degrees of a set of homogeneous generators of \(H^{*}(G, k)\), and \(f(t)\) is a polynomial with integer coefficients.
(wiii) If \(H\) is a subgroup of \(G\), we have natural map \(s\)
\[
\begin{array}{r}
\operatorname{res}_{G, H}: H^{*}(G, V) \rightarrow H^{*}\left(H, V \downarrow_{H}\right) \\
\operatorname{tr}_{H, G}: H^{*}\left(H, V \downarrow_{H}\right) \rightarrow H^{*}(G, V) \\
\operatorname{norm}_{H, G}: H^{*}(H, V) \rightarrow H^{*}\left(G, V{ }^{*}\right)
\end{array}
\]
given as follows. A resolution of \(Z\) as a \(Z G\)-module is also a resolution as a \(Z H\)-module, and \(\operatorname{Hom}_{Z G}\left(X_{i}, V\right) \subseteq \operatorname{Hom}_{Z H}\left(X_{i}, V\right)\). Thus G-cocycles may be regarded as H-cocycles, and G-coboundaries are H-coboundaries. Thus we obtain a (not necessarily injective) map res \({ }_{G, H}: H^{1}(G, V) \rightarrow H^{1}\left(H, V \psi_{H}\right) \quad\) (this is the map induced by the inclusion \(H \leftrightarrow G)\). Similarly, let \(\left\{g_{j}\right\}\) be a set of right coset representatives of \(H\) in \(G\). Then \(\operatorname{Tr}_{H, G}(x)=\Sigma g_{j}^{-1} x_{j}\) is in \(\operatorname{Hom}_{2 G}\left(X_{i}, V\right)\), and \(\operatorname{Tr}_{H, G}\) commutes with \(\delta_{1}\). Thus we obtain a map \(\operatorname{tr}_{H, G}: H^{i}\left(H, V t_{H}\right) \rightarrow H^{i}(G, V)\).

Now if \(X=\left\{X_{i}, \partial_{i}, \varepsilon\right\}\) is a free resolution of \(V\) as a \(2 H\)-module, then we can form the tensor product of chain complexes \(\otimes_{j}\left(X \otimes g_{j}\right)\) as a complex of \(\mathbb{Z} G\)-modules, as in the tensor induction construction. If \(Y\) is a free resolution of \(V_{\otimes}^{\dagger} G\) as a \(Z G\)-module, we know that there exist chain maps \(Y \xrightarrow{\phi} \otimes_{j}\left(X \quad g_{j}\right)\), and that any two such are homotopic.
 and composing with \(\phi\) gives
\[
\operatorname{Norm}_{H, G}(x)=\phi \cdot \underset{j}{\otimes}\left(x \otimes g_{j}\right) \varepsilon \operatorname{Hom}_{Z G}\left(Y|G: H| i, W \delta^{G}\right)
\]

It is shown in Lemma 4.1.1 of Benson, Representations and Cohomology, II: Cohomology of groups and modules (CUP, 1991) [the original reasoning in these notes was incorrect at this point] that Norm \(H\), sends cocycles to cocycles and coboundaries to coboundaries, and hence induces a well defined map for \(i\) even
\[
\operatorname{norm}_{H, G}: \operatorname{Ext}_{\mathbf{k H}}{ }^{1}(\mathrm{~V}, \mathrm{~W})+\operatorname{Ext}_{\mathbf{k} G}|G: H| 1\left(V{ }_{\otimes}^{\dagger} G, W_{8}^{\uparrow} G\right)
\]

These maps satisfy the Mackey type formulae

(1x) Let \(P \in S y l_{p}(G)\). Then \(\operatorname{tr}_{P, G} \operatorname{res}_{G, P}(x)=|G: P| \cdot x\), and so res \(_{G, P}\) is injective.
(Warning: it is not in general true that norm \(_{H, G} \operatorname{res}_{G, H}(x)=x|G: H|\))
(x) Shapiro's lemma

If \(V\) is a \(2 H\)-module then there is a natural isomorphism \(H^{1}\left(G, V \uparrow^{G}\right) ¥ H^{1}(H, V)\); more generally, if \(U\) is a \(Z G\)-module and \(V\) is a \(Z \mathrm{ZH}\)-module then there are natural isomorphisms \(\operatorname{Ext}_{G}^{1}\left(U, V \psi^{G}\right) \cong \operatorname{Ext}_{H}^{1}\left(U t_{H}, V\right)\) and \(\operatorname{Ext}_{G}^{1}\left(V T^{G}, U\right) \cong \operatorname{Ext}_{H}^{1}\left(V, U \psi_{H}\right)\). These are
proved by induction on i, starting with Frobenius reciprocity and using the long exact sequence in cohomology.

Now suppose \(N \unlhd G\), and \(V\) is a \(Z G\) module. Our intention is to develop the Lyndon-Hochschild-Serre spectral sequence comparing \(H^{p+q}(G, V)\) with \(H^{p}\left(G / N, H^{q}(N, V)\right)\). We use the normalized bar resolution, and we let \(V^{i}=\operatorname{Hom}_{G}\left(\tilde{X}_{1}(G), V\right)\) for \(i \geq 0\) as above. We filter \(V^{i}\) by
\[
F^{p_{V} V^{i}=}\left\{\begin{array}{l}
V^{i} \quad p \leq 0 \\
\left\{f \varepsilon V^{i}:\left[g_{l}|\cdots| g_{i}\right] f=0\right. \text { whenever } \\
\text { at least i-p+l of the } g_{j} \text { are in } \\
N\}, 0<p \leq i \\
0 \\
i<p
\end{array}\right.
\]

It is easy to see that \(\left(F^{p} V^{i}\right) \delta^{i} \subseteq F^{p} V^{i+1}\) and \(F^{p} V^{i} \supseteq F^{p+1} V^{i}\), and that the cup product map takes \(F^{p_{U}^{1}} \otimes F^{q} V^{j}\) into \(F^{p+q_{(U)}} \|^{i+j}\). We also introduce a second filtration of \(\mathrm{V}^{i}\) as follows.
\[
\tilde{F}^{p} V^{i}=\left\{\begin{array}{l}
V^{i} \quad p \leq 0 \\
\left\{f \varepsilon V^{i}:\left[g_{l}|\ldots| g_{i}\right] f\right. \text { depends only on } \\
\text { the cosets } \left.\mathrm{Ng}_{j} \text { for } j \leq p\right\}, 0<p \leq i \\
0 \quad 1<p
\end{array}\right.
\]
 filtration has the disadvantage that it is not compatible with the cup product, but the advantage that it is easier to calculate with. The fact that they give rise to the same spectral sequence will follow from the following lemma.
2.22.2 Lemma
\[
H^{j}\left(\frac{F^{2}}{p^{i} / F^{i}} p_{V^{i}}^{i}, \delta\right)=0 .
\]

\section*{Proof}

This follows from an explicit calculation with cocycles and coboundaries. Note that \(\tilde{F}^{2} \mathrm{p}^{i} \subseteq \mathrm{~F}^{\mathrm{p}} \mathrm{V}^{i}\) since any subset of \(\{1, \ldots, 1\}\) of size at least i-p+l contains an element of \(\{1, \ldots, p\}\). a

\subsection*{2.22.3 Proposition}

The inclusion \(\tilde{F}^{p_{V}} V^{i} \subseteq F^{p} V^{i}\) induces isomorphisms
(i) \(T: H^{j}\left(F^{p} V^{i}, \delta\right) \cong H^{j}\left(\tilde{F}^{p} V^{i}, \delta\right)\)
(1i) \(\Phi: H^{j}\left(F^{p} V^{i} / F^{p+1} V^{i}, \delta\right) \cong H^{j}\left(\tilde{F}^{p} V^{i} / \tilde{F}^{p}+1 V^{i}, \delta\right)\)
Proof
(i) follows from 2.22 .2 and the long exact sequence of cohomology. (ii) follows from (i) and the five-lemma. \(\quad\).

We now construct the spectral sequence. Set
\[
\begin{aligned}
& { }_{D}^{p, q}=D_{o}^{p, q}(V)= \begin{cases}{ }_{o}^{p} p_{V}^{p+q} & p+q \geq 0 \\
0 & p+q<0\end{cases} \\
& E_{o}^{p, q}=E_{o}^{p, q}(V)=D_{o}^{p, q / D}{ }_{o}^{p+1, q-1} .
\end{aligned}
\]

Note that \(E_{0}^{p, q}=0\) whenever \(p<0\) or \(q<0\). Set
\[
\begin{aligned}
D_{1}^{p, q}=D_{1}^{p, q}(V) & =H^{p+q}\left(D_{o}^{p, q}(V), \delta\right) \\
& =\operatorname{Ker}\left(\left.\delta^{p+q}\right|_{D_{o}^{p, q}}\right) / \operatorname{Im}\left(\left.\delta^{p+q-1}\right|_{D_{o}^{p-1, q+1}}\right) \\
& =H^{p+q}\left(F^{p} V^{p+q}, \delta\right) \\
& \cong H^{p+q}\left(\tilde{F}^{p} V^{p+q}, \delta\right) \\
E_{1}^{p, q}=E_{1}^{p, q}(V) & =H^{p+q}\left(E_{o}^{p, q}, \delta\right) \\
& =H^{p+q}\left(F_{V}^{p} V^{p+q} / F^{p+1} V^{p+q}, \delta\right) \\
& \cong H^{p+q}\left(\tilde{F}^{p} V^{p+q} / \tilde{F}^{p+1} V^{p+q}, \delta\right) .
\end{aligned}
\]

Then the short exact sequence
\[
0 \rightarrow \mathrm{D}_{\mathrm{o}}^{\mathrm{p+1}, \mathrm{q}-1} \rightarrow \mathrm{D}_{\mathrm{o}}^{\mathrm{p}, \mathrm{q}} \rightarrow \mathrm{E}_{\mathrm{o}}^{\mathrm{p}, \mathrm{q}} \rightarrow 0
\]
gives rise to a long exact sequence
\[
\begin{aligned}
& 0 \rightarrow D_{1}^{p+1, q-1} \underset{1_{1}^{p, q}}{ } D_{1}^{p, q} \xrightarrow[j_{1}^{p, q}]{ } E_{1}^{p, q}
\end{aligned}
\]

Notice that by this stage it does not matter whether we started with \(\quad \underset{F}{\sim} p_{V} p+q\) or \({ }_{F} p_{V} p+q\).
\[
\begin{aligned}
\text { Setting } & D_{1}=D_{1}(V)=\underset{p, q}{\oplus} D_{1}^{p, q}(V) \\
\text { and } & E_{1}=E_{1}(V)=\underset{p, q}{\oplus} E_{1}^{p, q}(V)
\end{aligned}
\]
we fit these homomorphisms together to make an exact couple

1.e. each pair of consecutive maps is exact.

Every time we have an exact couple as above, we obtain a spectral sequence as follows. The spectral sequence arising from the particular exact couple we have described is called the Lyndon-Hochschild-Serre spectral sequence.

Since \(j_{1} k_{1}=0\), we have \(\left(k_{1} j_{1}\right)^{2}=0\). Thus setting \(d_{1}=k_{1} j_{1}\), \(\left(E_{1}, d_{1}\right)\) is a cochain complex. We define
\[
\begin{aligned}
& D_{2}=\operatorname{Im}\left(i_{1}\right) \\
& E_{2}=H\left(E_{1}, d_{1}\right) \\
& i_{2}=\left.i_{1}\right|_{D_{2}}: D_{2} \rightarrow D_{2}
\end{aligned}
\]

If \(x \in D_{2}\), write \(x=y i_{1}\) and define \(x j_{2}=y j_{1}+\operatorname{Im}\left(d_{1}\right)\) to obtain
\[
j_{2}: D_{2} \rightarrow E_{2}
\]

If \(z+\operatorname{Im}\left(d_{1}\right) \varepsilon E_{2}\), define \(\left(z+\operatorname{Im}\left(d_{1}\right)\right) k_{2}=z k_{1}\) to obtain \(k_{2}: E_{2} \rightarrow D_{2}\).
2.22.4 Lemma

The maps \(j_{2}\) and \(k_{2}\) are well defined, and

is an exact couple.

\section*{Proof}

Easy diagram chasing. a
The couple \(D_{2}, E_{2}, i_{2}, j_{2}, k_{2}\) is called the derived couple of \(D_{1}, E_{1}, i_{1}, j_{1}, k_{1}\). Continuing this way, we obtain exact couples \(D_{n}, E_{n}, i_{n}, j_{n}, k_{n}\) for each \(n \geq 1 . D_{n}\) and \(E_{n}\) are bigraded as follows. \(D_{n}^{p, q}=\operatorname{Im}\left(1_{n-1}: D_{n-1}^{p+1}, q-1 \rightarrow D_{n-1}^{p, q}\right)\)
\[
\left.\begin{array}{l}
\left.E_{n}^{p, q}=\frac{\operatorname{Ker}\left(d_{n-1}: E_{n-1}^{p, q} \rightarrow E_{n-1}^{p+n-1}, q-n+2\right.}{}\right) \\
\operatorname{Im}\left(d_{n-1}: E_{n-1}^{p-n+1, q+n-2} \rightarrow E_{n-1}^{p, q}\right)
\end{array}\right) .
\]

Each \(D_{n}^{p, q}\) is a submodule of \(D_{o}^{p, q}\), and we write \(D_{\infty}^{p, q}\) for \(\eta_{n} D_{n} p, q\). Since each \(E_{n}^{p, q}\) is a subquotient of \(E_{n-1}^{p, q}\) we may find subgroups \(D_{o}^{p, q}=z_{o}^{p, q} \supseteq z_{1}^{p, q} \supseteq z_{2}^{p, q} \supseteq \ldots \supseteq B_{2}^{p, q} \supseteq B_{1}^{p, q} \supseteq B_{o}^{p, q}\) \(=D_{o}^{p+1, q-1}\) such that \(E_{n}^{p, q}=Z_{n}^{p, q} / B_{n}^{p, q}\). We set \(Z_{\infty}^{p, q}=\eta_{n} z_{n}^{p, q}\), \(\mathrm{B}_{\infty}^{\mathrm{P}, \mathrm{q}}=\mathrm{U}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}\) and \(\mathrm{E}_{\infty}^{\mathrm{p}, \mathrm{q}}=\mathrm{Z}_{\infty}^{\mathrm{p}, \mathrm{q}} / \mathrm{B}_{\infty}^{\mathrm{P}, \mathrm{q}}\). Note that since \(\mathrm{E}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}=0\) whenever \(p<0\) or \(q<0\) and since \(d_{n}\) has bidegree (\(n,-n+1\)), it follows that for \(n>\max (p, q)+1, E_{n}^{p, q^{n}}=E_{n+1}^{p, q}=E_{\infty}^{p, q}\). (In fact it can be shown [50] that there exists a value of \(n\) independent of \(p\) and \(q\) such that \(E_{n}^{p, q}=E_{n+1}^{p, q}=E_{\infty}^{p, q}\)).

\section*{Remark}

The maps \(d_{n}: E_{n}^{o, n-l} \rightarrow E_{n}^{n, o}\) are called the transgressions or face maps.

\subsection*{2.22.5 Theorem}
(i) \(\quad \mathrm{E}_{1}^{\mathrm{P}, \mathrm{q}}(\mathrm{V}) \cong \operatorname{Hom}_{\mathrm{G} / \mathrm{N}}\left(\tilde{\mathrm{X}}_{\mathrm{p}}(\mathrm{G} / \mathrm{N}), \mathrm{H}^{\mathrm{q}}(\mathrm{N}, \mathrm{V})\right)\)
(ii) \(E_{2}^{p, q}(V) \cong H^{P}\left(G / N, H^{q}(N, V)\right)\)
(iii) \(H^{p+q}(G, V)\) has a filtration \(F^{P} H^{P+q}(G, V)\) such that
\[
F^{P}{ }_{H}{ }^{p+q}(G, V) / F^{P+1} H^{P+q}(G, V) \cong E_{\infty}^{p, q}(G, V) .
\]

\section*{Sketch of Proof}
(i) We have a homomorphism
\[
\rho^{\mathrm{p}, \mathrm{q}}: \quad \tilde{\mathrm{F}}_{\mathrm{V}} \mathrm{p}^{+q} \rightarrow \operatorname{Hom}_{\mathrm{G} / \mathrm{N}}\left(\tilde{\mathrm{x}}_{\mathrm{p}}(\mathrm{G} / \mathrm{N}), \operatorname{Hom}_{\mathrm{N}}\left(\tilde{\mathrm{x}}_{\mathrm{q}}(\mathrm{~N}), \mathrm{V}\right)\right)
\]
given as follows. If \(\varphi \in \tilde{F}^{\mathrm{P}} \mathrm{V}^{\mathrm{p}}{ }^{+\mathrm{q}}\),
\[
\left[n_{1}|\ldots| n_{q}\right]\left(\left[\bar{g}_{1}|\ldots| \bar{g}_{p}\right]\left(\varphi \rho^{p, q}\right)\right)=\left[g_{1}|\ldots| g_{p}\left|n_{1}\right| \ldots \mid n_{q}\right] \varphi
\]
\(\rho^{p, q}\) induces a map
\[
\rho_{1}^{p, q}: E_{1}^{p, q}(V) \rightarrow \operatorname{Hom}_{G / N}\left(\tilde{X}_{p}(G / N), H^{q}(N, V)\right)
\]
and a somewhat lengthy calculation shows that \(\rho_{1}^{p, q}\) is an isomorphism. (ii) A similar calculation shows that
\[
d_{1}^{p, q} \rho_{1}^{p, q}=(-1)^{q} \rho_{1}^{p-1, q} \delta
\]
where \(\delta\) is the coboundary homomorphism for the complex \(\operatorname{Hom}_{G / N}\left(\tilde{X}_{p}(G / N), H^{q}(N, V)\right)\). Thus \(\rho_{1}^{p}, q\) induces an isomorphism from \(E_{2}^{p, q}(V)=H\left(E_{1}^{p, q}(V), d_{1}\right)\) to \(\quad H^{p}\left(G / N, H^{q}(N, V)\right)\)
\(=H\left(\operatorname{Hom}_{G / N}\left(\tilde{X}_{p}(G / N), H^{q}(N, V)\right), \delta\right)\).
(iii) For \(n>\max (p, q)+1\), we have \(E_{n}^{p, q}=E_{\infty}^{p, q}\), and the exact sequence
\(\cdots \underset{k_{n}}{\longrightarrow} D_{n}^{p-n+2, q+n-2} \underset{i_{n}}{\longrightarrow} D_{n}^{p-n+1}, q+n-1 \underset{j_{n}}{\longrightarrow} E_{n}^{p, q} \underset{k_{n}}{\longrightarrow} D_{n}^{p+1, q} \longrightarrow\)
reduces to
\[
\begin{aligned}
0 \rightarrow \operatorname{Im}\left(H^{p+q}\left(\tilde{F}^{p+1} V^{p+q}\right)\right. & \left.\rightarrow H^{p+q}(G, V)\right) \rightarrow \\
& \rightarrow \operatorname{Im}\left(H^{p+q}\left(\tilde{F}^{p} V^{p+q}\right) \rightarrow H^{p+q}(G, V)\right) \rightarrow E_{\infty}^{p, q} \rightarrow 0
\end{aligned}
\]

Thus if we filter \(H^{p+q}(G, V)\) by letting
\[
{ }_{\mathrm{F}} \mathrm{P}_{\mathrm{H}}{ }^{\mathrm{p}+\mathrm{q}}(\mathrm{G}, \mathrm{~V})=\operatorname{Im}\left(\mathrm{H}^{\mathrm{p}+\mathrm{q}}\left(\tilde{\mathrm{~F}}^{\mathrm{p}} \mathrm{~V}^{\mathrm{p}+\mathrm{q}}\right) \rightarrow \mathrm{H}^{\mathrm{p}+\mathrm{q}}(\mathrm{G}, \mathrm{~V})\right)
\]
we have
\[
\begin{aligned}
& \mathrm{F}^{\mathrm{o}} \mathrm{H}^{\mathrm{P}+\mathrm{q}}(\mathrm{G}, \mathrm{~V})={ }_{H}{ }^{\mathrm{p}+\mathrm{q}}(\mathrm{G}, \mathrm{~V}) \\
& F^{P_{H}}{ }^{p+q}(G, V) / F^{p+1} H^{p+q}(G, V) \cong E_{\infty}^{p, q}(V) \\
& { }_{F}{ }^{\mathrm{p}+\mathrm{q}+1_{H} \mathrm{P}^{+\mathrm{q}}}(\mathrm{G}, \mathrm{~V})=0 . \quad \mathrm{o}
\end{aligned}
\]

We express the information given in the above theorem by writing
\[
H^{\mathrm{P}}\left(\mathrm{G} / \mathrm{N}, \mathrm{H}^{\mathrm{q}}(\mathrm{~N}, \mathrm{~V})\right) \Rightarrow \mathrm{H}^{\mathrm{P}+\mathrm{q}}(\mathrm{G}, \mathrm{~V})
\]

Another computation similar in nature to all the others we have avoided writing out shows that the natural cup-product structures on the two sides of 2.22 .5 (i) are related by
\[
(u \cup v) \rho_{1}^{p+p^{\prime}, q+q^{\prime}}=(-1)^{p^{\prime} q}\left(u \rho_{1}^{p, q} \cup v \rho_{1}^{p^{\prime}, q^{\prime}}\right)
\]
\(\left(u \varepsilon E_{1}^{p, q}(V), \quad v \varepsilon E_{1}^{p, q}(V), u \cup v \in E_{1}^{p, q}(U \otimes V)\right)\).
Since the cup product on \(E_{1}\) satisfies
\[
(u \cup v) d_{1}=u \vee v d_{1}+(-1)^{\operatorname{deg}(v)} u d_{1} \cup v
\]

product structure on \(E_{2}\) is induced, and so on, at each stage satisfying
\[
(u \cup v) d_{r}=u \cup v d_{r}+(-1)^{\operatorname{deg}(v)} u d_{r} \cup v
\]

The cup product structure at the \(E_{\infty}\) level is just the graded version of the cup product \(H^{*}(G, U) \otimes H^{*}(G, V) \rightarrow H^{*}(G, U \otimes V)\).

Setting \(V\) equal to the trivial module \(k\), we get maps
\[
\mathrm{E}_{\mathrm{r}}^{\mathrm{p}, \mathrm{q}}(\mathrm{U}) \otimes \mathrm{E}_{\mathrm{r}}^{\mathrm{p}^{\prime}, \mathrm{q}^{\prime}(\mathrm{k}) \rightarrow \mathrm{E}_{\mathrm{r}}^{\mathrm{p}^{+} \mathrm{p}^{\prime}, \mathrm{q}+\mathrm{q}^{\prime}}(\mathrm{U}), ~(}
\]
making \(\mathrm{E}_{\mathrm{r}}(\mathrm{U})\) into a module over \(\mathrm{E}_{\mathrm{r}}(\mathrm{k})\), and likewise \(\mathrm{E}_{\infty}(\mathrm{U})\) into a module over \(E_{\infty}(k)\).

As an example of an easy application of the spectral sequence we give the following.

\subsection*{2.22.6 Proposition}

There is a five term exact sequence
\(0 \rightarrow H^{1}\left(G / N, V^{N}\right) \rightarrow H^{1}(G, V) \rightarrow H^{1}(N, V)^{G / N} \rightarrow H^{2}\left(G / N, V^{N}\right) \rightarrow H^{2}(G, V)\)
Proof
By 2.22.5 we are looking for maps
\(\begin{aligned} & \text { By 2.22.5 we are looking for maps } \\
& 0 \rightarrow \mathrm{E}_{2}^{1,0} \rightarrow\)\begin{tabular}{|l|}
\hline \(\mathrm{E}_{\infty}^{0,1}\) \\
\hline \(\mathrm{E}_{\infty}^{1,0}\) \\
\hline
\end{tabular}\(\rightarrow \mathrm{E}_{2}^{0,1} \rightarrow \mathrm{E}_{2}^{2,0} \rightarrow\)\begin{tabular}{|c|}
\hline \(\mathrm{E}_{\infty}^{0,2}\) \\
\hline \(\mathrm{E}_{\infty}^{1,1}\) \\
\hline \(\mathrm{E}_{\infty}^{2,0}\) \\
\hline
\end{tabular}\end{aligned}
We have at the \(E_{2}\) level the following maps

Thus
\[
\begin{aligned}
& \mathrm{E}_{2}^{1,0} \cong \mathrm{E}_{\infty}^{1,0} \\
& \mathrm{E}_{\infty}^{0,1} \cong \operatorname{Ker}\left(\mathrm{~d}_{2}^{0,1}\right) \\
& \mathrm{E}_{\infty}^{2,0} \cong \operatorname{Coker}\left(\mathrm{~d}_{2}^{0,1}\right)
\end{aligned}
\]
and the proposition is proved. -

\subsection*{2.22.7 Corollary}

Suppose \(G\) is a p-group, and the map \(G \rightarrow G / \Phi(G)\) induces a monomorphism \(H^{2}(G / \Phi(G), \mathbf{Z} / \mathrm{p} Z) \rightarrow H^{2}(G, \mathbb{Z} / \mathrm{Z} \mathbf{Z})\). Then \(\Phi(G)=1\), i.e. \(G\) is elementary abelian.

\section*{Proof}

Since \(H^{1}(G / \Phi(G), \mathbb{Z} / \mathrm{pZ}) \cong H^{1}(G, \mathbb{Z} / \mathrm{P} Z) \quad\left(\cong[G / \Phi(G)]^{*}\right.\), see exercise 1\()\) the above exact sequence implies that \(H^{1}(\Phi(G), \mathbb{Z} / \mathrm{PZ}) \mathrm{G} / \Phi(\mathrm{G})=0\). Hence \(\Phi(G) / \Phi^{2}(G)=1\), and so \(\Phi(G)=1\). \(\quad\)

\section*{Exercises}
1. Let \(G\) be a p-group. Using the isomorphism \(H^{1}(G, \mathbb{Z} / \mathrm{p} \mathbb{Z}) \cong\) \(\operatorname{Ext}_{\mathrm{G}}^{1}(\mathbb{Z} / \mathrm{P} \mathbb{Z}, \mathbb{Z} / \mathrm{P} \mathbb{Z}) \quad\) show that \(H^{1}(\mathrm{G}, \mathbf{Z} / \mathrm{p} \mathbb{Z}) \cong[\mathrm{G} / \Phi(\mathrm{G})]^{*} \cong\) \(\left(J((\mathbb{Z} / \mathrm{p} \mathbb{Z}) G) / \mathrm{J}^{2}((\mathbb{Z} / \mathrm{p} \mathbb{Z}) G)\right)^{*} \quad\) (hint: look at matrices of shape
\(\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right) \quad\) over \(\left.\quad \mathbb{Z} / \mathrm{p} \mathbb{Z}\right)\).
2. Let \(G\) be a cyclic group of order \(P, G=<g>\), and let \(V\) be a 2G-module. Using the resolution
\[
0<-\mathbb{Z}<-\frac{\varepsilon}{}(\mathbb{Z} G)_{0}<{ }^{\partial_{1}}(\mathbb{Z})_{1}<\frac{\partial_{2}}{-}(\mathbb{Z})_{2}<\frac{\partial_{3}}{-} \ldots
\]
given by
\[
\begin{aligned}
& \varepsilon:(1)_{o} \rightarrow 1 \\
& \partial_{i}:(1)_{i} \rightarrow \begin{cases}\left(1+g+\ldots+g^{p-1}\right)_{i-1} & i \\
(1-g)_{i-1} & \text { even }\end{cases}
\end{aligned}
\]
calculate \(H^{i}(G, V)\) (it is clear that \(H^{i}(G, V)\) is a subquotient of \(V\) since each term in the free resolution above is a one-generator module). In particular, show that
\[
H^{i}(G, \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \mathbf{i}=0 \\ \mathbb{Z} / \mathrm{P} \mathbb{Z} & \mathbf{i} \text { even, } i \neq 0 \\ 0 & \mathbf{i} \text { odd }\end{cases}
\]
and
\[
\mathrm{H}^{\mathrm{i}}(\mathrm{G}, \mathbb{Z} / \mathrm{p} \mathbb{Z}) \cong \mathbb{Z} / \mathrm{p} \mathbb{Z} \quad \text { for all } \quad \text { i }
\]
(compare this with the universal coefficient theorem).
Write down the long exact sequence associated with the short exact sequence \(0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / \mathrm{P} \mathbb{Z} \rightarrow 0\) of coefficients.

Using the diagonal approximation
\[
\begin{aligned}
& \text { (1) }{ }_{q+r} \Delta=\Sigma(1)_{q+r} \Delta, r
\end{aligned}
\]
(check that this is indeed a diagonal approximation; you will need the identity
\[
\begin{aligned}
&(1 \otimes 1-g \otimes g)(0 \leq i<j \leq p-1 \\
&\left.g^{j} \otimes g^{i}\right) \\
&\left.=\left(1+g+\ldots+g^{p-1}\right) \otimes 1-1 \otimes\left(1+g+\ldots+g^{p-1}\right)\right)
\end{aligned}
\]
show that the ring structure of \(H^{*}(G, \mathbb{Z} / \mathrm{P} \mathbb{Z})\) is as follows.
(i) \(p \neq 2\) :
```

        generators u, v
        deg(u) = 1, }\quad\operatorname{deg}(v)=
        u}\mp@subsup{}{}{2}=0,uv=vu (i.e. E(u)\otimesP(v)
    ```
(ii) \(\mathrm{p}=2\) :
generator v
\(\operatorname{deg}(v)=1\)
no relations (i.e. P(v)).
Show that if \(a\) is a generator for \(H^{2}(G, \mathbb{Z} / \mathrm{P} \mathbb{Z})\) then for any G-module \(V\), multiplication by \(a\) yields an epimorphism \(H^{\circ}(G, V) \rightarrow H^{2}(G, V)\) and isomorphisms \(H^{q}(G, V) \rightarrow H^{q+2}(G, V)\) for \(q>0\).
3. Use the Künneth formula to calculate the cohomology ring of an arbitrary elementary abelian group.
4. Let \(P \in S y l_{p}(G)\), and let \(V\) be a \(k G\)-module. Suppose \(P\) is a t.i. subgroup of \(G\) (i.e. for \(g \in G\), either \(P^{g}=P\) or \(P \cap P^{g}=1\)), with normalizer \(N\). Show that res \(_{G}, N\) is an isomorphism between \(H^{*}(G, V)\) and \(H^{*}(N, V)\). (Hint: use \(t r_{N, G}\) and the Mackey formula).
5. Calculate \(H^{*}\left(A_{5}, k\right)\) for \(k\) an algebraically closed field of
(i) characteristic 2
(ii) characteristic 3
(iii) characteristic 5.
(Hint: use question 2 to calculate \(H^{*}(P, k)\) for \(P \varepsilon \operatorname{Syl}_{p}\left(A_{5}\right)\), then
use a spectral sequence to calculate \(H^{*}\left(N_{G}(P), k\right)\), and finally use question 4 to complete the calculation).
6. (P. Webb)

With the constants \(\lambda_{H}\) as in 2.13.6, show that if \(U\) and \(V\) are modules for \(G\) then
\[
\begin{equation*}
\xi_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{H} \in \operatorname{Hyp}_{\mathrm{p}}(\mathrm{G})}^{\lambda_{\mathrm{H}} \quad \xi_{\mathrm{V}}^{\mathrm{H}}}{ }_{\mathrm{H}}(\mathrm{t}) \tag{iii}
\end{equation*}
\]
(in these sums, \(H\) runs over a set of representatives of conjugacy classes of p-hypoelementary subgroups).
7. Let \(G\) be a p-group and \(V\) a kG-module. Using the long exact sequence of cohomology, show that
(i) \(|G|^{-1} \operatorname{dim}_{\mathrm{K}^{2}} \Omega(\mathrm{~V}) \leq \operatorname{dim}_{\mathrm{m}_{\mathrm{k}}} \mathrm{V} \leq|\mathrm{G}| \operatorname{dim}_{\mathrm{k}^{\Omega}}(\mathrm{V})\)
(ii) \(|G|^{-2} \operatorname{dim}_{k}(V) \leq|G|^{-1} \operatorname{dim}_{k} \mho(V) \leq \operatorname{dim}_{k} H^{l}(G, V)\)
\[
\leq \operatorname{dim}_{k} \Omega(V) \leq|G| \operatorname{dim}_{k} V
\]
(iii) Given \(n>0\),
\[
|G|^{-n-1} \operatorname{dim}_{k} V \leq \operatorname{dim}_{k} H^{n}(G, V) \leq|G|^{n} \operatorname{dim}_{k} V
\]
(use \(H^{n}(G, V) \cong H^{1}\left(G, \gamma^{n-1}(V)\right)\))
(iv) Given \(m, n>0\),
\[
\operatorname{dim}_{k} \mathrm{H}^{\mathrm{m}}(\mathrm{G}, \mathrm{~V}) \leq|\mathrm{G}|^{|\mathrm{m}-\mathrm{n}|+3} \operatorname{dim}_{\mathrm{k}} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{~V}) .
\]

\subsection*{2.23 Bockstein Operations and the Steenrod Algebra}

In this section we describe the operations in cohomology necessary for the study of complexity theory in section 2.24. We begin with the Bockstein operations.

The short exact sequence
\[
0 \rightarrow \mathbb{Z} \xrightarrow{\lambda} \mathbf{Z} \xrightarrow{\mu} \mathbb{Z} / \mathrm{p} \mathbb{Z} \rightarrow 0,
\]
where the left-hand map is given by multiplication by \(p\), gives a long exact sequence in cohomology
\(\ldots \xrightarrow{\lambda_{q}} H^{q}(G, \mathbf{Z}) \xrightarrow{\mu_{q}} H^{q}(G, \mathbb{Z} / \mathrm{pZ}) \xrightarrow{{ }^{\nu} \mathrm{q}^{(}} \mathrm{H}^{\mathrm{q}+1}(\mathrm{G}, \mathbb{Z}) \xrightarrow{\lambda_{\mathrm{q}+1}} \ldots\).
We define \(\quad \beta_{q}=\nu_{q^{\mu}}{ }_{q+1}: H^{q}(G, \mathbb{Z} / \mathrm{P} \mathbb{Z}) \rightarrow H^{q+1}(G, \mathbb{Z} / \mathrm{p} \mathbb{Z})\). This map \(\beta\) is called the Bockstein map. It is easy to verify that the following are satisfied.
(i) \(\beta^{2}=0\)
(ii) \(\quad(x y) \beta=x(y \beta)+(-1)^{\operatorname{deg}(y)}(x \beta) y\).

We shall also need the Steenrod operations on cohomology. These operations are in fact quite difficult to construct, and so we shall be content to list their properties and to take their existence for granted.

\subsection*{2.23.1 Theorem}

There exist unique operations \(\mathrm{P}^{\mathrm{i}}: \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathbb{Z} / \mathrm{p} \mathbb{Z}) \rightarrow \mathrm{H}^{\mathrm{n}+2 \mathrm{i}(\mathrm{p}-1)}(\mathrm{G}, \mathbb{Z} / \mathrm{P} \mathbf{Z})\) (called the Steenrod operations, or reduced power operations) satisfying axioms (i) - (v):
(i) \(\mathrm{P}^{\mathrm{i}}\) is a natural transformation of functors.
(ii) \(\mathrm{P}^{\mathrm{O}}=1\)

In case \(p=2\) we write \(\mathrm{Sq}^{2 i}\) for \(\mathrm{P}^{\mathrm{i}}\) and \(\mathrm{Sq}^{2 i+1}\) for \(\mathrm{P}^{i_{\beta}}\). The \(\mathrm{Sq}^{i}\) are called the Steenrod Squares.
(iii) (\(p \neq 2\)) If \(\operatorname{deg}(x)=2 n\) then \(x P^{n}=x^{p}\) \((p=2)\) If \(\operatorname{deg}(x)=n\) then \(x S q^{n}=x^{2}\)
(iv) \(\quad(p \neq 2)\) If \(\operatorname{deg}(x)<2 n\) then \(x P^{n}=0\)
\((\mathrm{p}=2)\) If \(\operatorname{deg}(\mathrm{x})<\mathrm{n}\) then \(\mathrm{xSq}^{\mathrm{n}}=0\)
(v) Cartan formula If \(p \neq 2,(x y) P^{n}=\sum_{i=0}^{n}\left(x P^{i}\right)\left(y P^{n-i}\right)\)
\[
\text { If } p=2, \quad(x y) S q^{n}=\sum_{i=0}^{n}\left(x S q^{i}\right)\left(y S q^{n-i}\right)
\]

The axioms (i) - (v) imply
(vi) Adem Relations, \(p \neq 2\)

If \(b<p a\) then
\[
P^{a} P^{b}=\underset{j=0}{[b / p]}(-1)^{b+j} \quad\binom{(p-1)(a-j)-1}{b-p j} \quad P^{j} P^{a+b-j}
\]

If \(b \leq a\) then
\[
\begin{aligned}
& P_{\beta}{ }_{\beta} P^{b}=\underset{\sum_{j=0}^{[b / P]}}{(-1)^{b+j}} \quad\binom{(p-1)(a-j)}{b-p j} \quad P^{j} P^{a+b-j_{\beta}} \\
& +\underset{\substack{[(b-1) / p] \\
=0}}{\substack{[-1)^{b+j-1}}}\binom{(p-1)(a-j)-1}{b-p j-1} \quad P^{j_{\beta} P^{a+b-j}}
\end{aligned}
\]
(vii) Adem relations , \(\mathrm{p}=2\)

If \(0<b<2 a\) then
\[
S Q^{a} S q^{b}=\underset{\sum_{j=0}^{[b / 2]}}{ } \quad\binom{a-1-j}{b-2 j} \quad S q^{j} S q^{a+b-j}
\]
(viii) For \(p \neq 2, \quad x \in H^{1}(G, \mathbb{Z} / p \mathbb{Z}) \Rightarrow x P^{i}=0\) for \(i>0\).
(ix) For \(p \neq 2, \quad x \in H^{2}(G, \mathbb{Z} / p Z Z) \Rightarrow x^{j} P^{i}=\binom{j}{i} \quad x^{j+(p-1) i}\)

\section*{Proof}

See [89] and [90]. See also exercises 1 and 2 for a sketch of the construction, and [99] for a more extensive discussion. \(\quad\) o

The algebra generated by the \(P^{i}\) and \(\beta\) subject to the Adem relations is called the Steenrod Algebra \(A(p)\). Thus \(A(p)\) has a natural action on \(H^{*}(G, \mathbf{Z} / \mathrm{PZ})\). See [68] for a discussion of \(A(p)\) and its dual.
\[
\text { Let } T=\sum_{i=0}^{\infty} P^{i} \text { if } p \neq 2 \text {, and } T=\sum_{i=0}^{\infty} S q^{i} \text { if } p=2 \text {. } B y
\]
axiom (iv), \(T\) has a well defined action on \(H^{*}(G, Z / P Z)\) since for given \(x\), only finitely many of the \(x P^{i}\) are non-zero. Moreover, the Cartan formula shows that \(T\) is an algebra homomorphism.
2.23.2 Lemma

Let \(\mathrm{x} \varepsilon \mathrm{H}^{2}(\mathrm{G}, \mathbb{Z} / \mathrm{P} \mathbb{Z})\). Then
\[
x T= \begin{cases}x+x^{p} & p \neq 2 \\ x+x^{p}+x \beta & p=2\end{cases}
\]

Proof
For \(p \neq 2\), this follows from 2.23.1(ix). For \(p=2\), it follows from (iii) and (iv). a

We are now ready to prove a theorem of Serre on Bocksteins for p-groups.
2.23.3 Theorem (Serre)

Suppose \(G\) is a p-group. If \(G\) is not elementary abelian, then there are elements \(x_{1}, \ldots, x_{r}\) of \([G / \Phi(G)]^{*} \cong H^{1}(G, \mathbb{Z} / P \mathbb{Z})\) such that \(\left(x_{1} \beta\right) \ldots\left(x_{r} \beta\right)=0\) as an element of \(H^{2 r}(G, \mathbf{z} / \mathrm{p} \mathbf{Z})\).

\section*{Proof}

If \(G\) is not elementary abelian, then 2.22 .7 tells us that the \(\operatorname{map} H^{2}(G / \Phi(G), \mathbb{Z} / P \mathbb{Z}) \rightarrow H^{2}(G, \mathbb{Z} / P \mathbb{Z})\) is not injective. By exercise 2 of 2.22 and the Künneth formula, if \(y_{1}, \ldots, y_{n}\) form a basis for \(H^{1}(G / \Phi(G), \mathbf{Z} / p \mathbf{Z})\) then \(\left\{y_{i} \beta\right\} \cup\left\{y_{i} y_{j}, i<j\right\}\) form a basis for \(H^{2}(G / \Phi(G), \mathbb{Z} / P \mathbb{Z})\). Thus there is a non-trivial linear relation
\[
\begin{equation*}
{ }_{i}^{\sum}{ }_{j} a_{i j} y_{i} y_{j}+\sum_{k} b_{k}\left(y_{k}^{\beta}\right)=0 \tag{*}
\end{equation*}
\]
as elements of \(H^{2}(G, Z / P Z)\). If all the \(a_{i j}\) are zero, take \(r=1\) and \(x_{1}=\Sigma b_{k} y_{k}\). Thus we may assume that some \(a_{i j}\) is non-zero. Applying the element \(\quad \beta \mathrm{P}^{1} \beta \varepsilon \mathrm{~A}(\mathrm{p})\) to the relation (\(*\)), and using the relations 2.23 .1 (v), (viii), (ix) and the relation \(\beta^{2}=0\), we obtain
\[
{ }_{i}^{\sum}{ }_{j} \quad a_{i j}\left(\left(y_{i}^{\beta}\right)^{p}\left(y_{j}^{\beta}\right)-\left(y_{i}^{\beta}\right)\left(y_{j}^{\beta}\right)^{p}\right)=0
\]

Note that by 2.22.1(iii), the \(y_{i}{ }^{\beta}\) commute.
Let \(\hat{k}\) be an algebraic closure of \(\mathbb{Z} / \mathrm{p} \mathbb{Z}\), and denote by \(a\) the (homogeneous) ideal of \(\hat{k}\left[X_{1}, \ldots, X_{n}\right]\) generated by the relations among \(y_{1} \beta, \ldots, y_{n}{ }^{\beta}\). Thus we have shown that \(\mathfrak{u} \neq 0\). Moreover, by 2.23.2, II is stable under the operation of replacing \(X_{i}\) by \(X_{i}+X_{i} p\) (since \(\left.\left(y_{i} \beta\right) \beta=0\right)\). Denote by \(v\) the variety in \(\hat{k}^{n}\) defined by \(U\), and denote by \(F\) the Frobenius map \(\left(\lambda_{1}, \ldots, \lambda_{n}\right) F=\left(\lambda_{1} p, \ldots, \lambda_{n}^{p}\right)\) on \(\hat{k}^{n}\). Then if \(v \varepsilon \hat{0}\), so is \(\lambda(v+v F)\) for any constant \(\lambda\).

We show by induction on \(i\) that the linear subspace \(W_{i}(v)\) spanned by \(v, ~ v F, \ldots, \mathrm{vF}^{\mathbf{i}}\) is in \(\mathfrak{y}\). Suppose true for \(\mathbf{i - 1 .}\)

Let \(\quad 0 \neq w=w_{1} v+w_{2}(v F)+\ldots+w_{i}\left(v F^{i}\right) \varepsilon W_{i}(v)\). Let \(\lambda\) be a solution of the algebraic equation
\[
\lambda^{p^{i-1}}\left(\frac{w_{i}}{\lambda}-\left(\frac{w_{i-1}}{\lambda}\right)^{p}+\ldots \pm\left(\frac{w_{1}}{\lambda}\right)^{p^{i-1}}\right)=0
\]
let \(u_{j}=\left(\frac{w_{j}}{\lambda}\right)-\left(\frac{w_{j}-1}{\lambda}\right)^{p}+\ldots \pm\left(\frac{w_{1}}{\lambda}\right)^{p^{j-1}}\) for \(1 \leq j \leq i-1\), and let
\[
\begin{aligned}
& u=\sum_{j=1}^{i-1} u_{j}\left(v F^{j}\right) \varepsilon W_{i-1}(v) \text {. Then it is easy to check that } \\
& w=x(u+u F) \varepsilon v . \text { Hence } W_{i}(v) \subseteq \cup \text { and so } W(v)=\bigcup_{i} W_{i}(v) \subseteq
\end{aligned}
\]

This means that \(v\) is a union of subspaces stable under \(F\), and hence \(\mathcal{v}\) is contained in the union of all hyperplanes stable under \(F\), of which there are only finitely many. These hyperplanes are defined
by the equations represented by \(x_{i} \beta=0\) for the non-zero elements \(x_{i} \varepsilon H^{1}(G, \mathbb{Z} / \mathrm{p} Z)\). Thus \(\prod_{i}\left(x_{i} \beta\right)\) represents an equation which vanishes on \(\cup\). Thus by Hilbert's Nullstellensatz, some power of \(\Pi\left(x_{i} \beta\right)\) is in 11 , thus proving the theorem.

Finally, we examine the relationship between the Bockstein operations and the Lynson-Hochschild-Serre spectral sequence.

\subsection*{2.23.4 Proposition (Quillen, Venkov)}

Let \(G\) be a p-group and \(V\) an \(k G\)-module. Let \(x \beta\) be the Bockstein of an element \(x\) of \(H^{1}(G, \mathbf{Z} / \mathrm{PZ}) \subseteq H^{1}(G, k)\). Regarding \(x\) as an element of \([G / \Phi(G)]^{\star}\), let \(H\) be the corresponding maximal subgroup of \(G\). Then
\[
\mathrm{F}^{\left.\mathrm{p}_{\mathrm{H}}{ }^{\mathrm{p}+\mathrm{q}}(\mathrm{G}, \mathrm{~V}) \cdot(\mathrm{x} \beta)=\mathrm{F}^{\mathrm{p}+2} \mathrm{H}^{\mathrm{p}+\mathrm{q}+2}(\mathrm{G}, \mathrm{~V}) .{ }^{2}\right)}
\]
in the filtration arising from the spectral sequence
\[
H^{p}\left(G / H, H^{q}(H, V)\right) \Rightarrow H^{p+q}(G, V) .
\]

Proof
Let \(\overline{\mathbf{x}} \varepsilon H^{1}(G / H, k)\) be the element corresponding to \(x\). Then \(\bar{x} \beta \varepsilon E_{2}^{2,0}(k)\), and since \(d_{i}^{2,0}=0\) for all \(i\), \(\bar{x} \beta\) has images \(y_{i}\) in \(E_{i}^{2,0}(k)\) for all i. If \(v \varepsilon E_{i}^{p, q}(V)\) then by 2.22.1(i),
\[
\left(v y_{i}\right) d_{i}=v\left(y_{i} d_{i}\right)+(-1)^{2}\left(v d_{i}\right) y_{i}=\left(v d_{i}\right) y_{i}
\]

Thus the map
\[
b_{i}^{p, q}: E_{i}^{p, q}(V) \rightarrow E_{i}^{p+2, q}(V)
\]
given by multiplication by \(y_{i}\) commutes with \(d_{i}\).
We shall prove by induction on \(i\) that
(a) \(b_{i}^{p}, q\) is an epimorphism for \(p \geq 0\)
(b) \(b_{i}^{p, q}\) is an isomorphism for \(p \geq i-1\) (see diagram).

Case \(1 \quad i=2\)
In this case we are looking at
\[
H^{\mathrm{p}}\left(\mathrm{G} / \mathrm{H}, \mathrm{H}^{\mathrm{q}}(\mathrm{H}, \mathrm{~V})\right) \rightarrow \mathrm{H}^{\mathrm{p}+2}\left(\mathrm{G} / \mathrm{H}, \mathrm{H}^{\mathrm{q}}(\mathrm{H}, \mathrm{~V})\right)
\]
and since \(G / H\) is cyclic of order \(p\), the result follows from exercise 2 of 2.22 .

Case 2 i \(>2\), and (a) and (b) are true up to i-1.
(a) Given \(\bar{v} \varepsilon E_{i}^{p+2, q}\), choose an inverse image \(v\) in \(E_{i-1}^{p+2, q}\) so that \(v d_{i-1}=0\). By the inductive hypothesis (a), we may write \(v=u b_{i-1}\), \(u \varepsilon E_{i-1}^{p, q}\). Then \(u d_{i-1} b_{i-1}=u b_{i-1} d_{i-1}=0\) and
\(u_{i-1} \varepsilon E_{i-1}^{p+i-1, q-i+2}\) and so by inductive hypothesis (b), \(\mathrm{ud}_{\mathrm{i}-1}=0\). Thus \(\overrightarrow{\mathrm{u}}_{\varepsilon} \mathrm{E}_{\mathrm{i}}^{\mathrm{p}}, \mathrm{q}\) is an element with \(\overline{\mathrm{u}}_{\mathrm{i}}=\overline{\mathrm{v}}\).

(b) Given \(\bar{u} \varepsilon E_{i}^{p, q}\) with \(p \geq i-1\), choose an inverse image \(u\) in \(E_{i-1}^{p, q}\) wuth \(u d_{i-1}=0\). Suppose \(\overline{u b}_{i}=0\). Then \(u b_{i-1}=y d_{i-1}\) for some \(y \in E_{i-1}^{p-i+3, q+i}\). Now \(p-i+3 \geq 2\), and so we may write \(y=z b_{i-1}, \quad z \in E_{i-1}^{p-i+1}, q+i \quad\) by the inductive hypothesis (a). Then
\[
\left(u-z d_{i-1}\right) b_{i-1}=y d_{i-1}-z b_{i-1} d_{i-1}=0
\]
and so by the inductive hypothesis (b), \(u=z_{i-1}\), and so \(\bar{u}=0\) in \(E_{i}^{p, q}\).

Having proved (a) and (b), it follows that
given by multiplication by \(x \beta\) is an epimorphism. The result follows immediately. a

\section*{Exercises}
1. (Construction of \(\mathrm{Sq}^{\mathrm{i}}\))

Let \(T=<t: t^{2}=1>\) be a cyclic group of order 2 and let
R be the resolution
\[
0<-\mathbb{Z} \longleftarrow \mathbb{Z} \mathrm{T}<-\frac{1-t}{} \mathbb{Z}<\stackrel{1+t}{ } \mathbb{Z}<\stackrel{1-t}{ } . .
\]
of \(\mathbb{Z}\) as a \(\mathbb{Z T}\)-module. Let \(\underline{X}\) be a resolution
\[
0<-\mathbb{Z}<\frac{\varepsilon}{} X_{0}<-\frac{\partial_{1}}{-} X_{1}<\frac{\partial_{2}}{-} X_{2}<\partial_{3} \ldots
\]
of \(\mathbb{Z}\) as a \(\mathbb{Z G}\)-module. Then \(\underline{X} \otimes \underline{X}\) (defined via the formula (*) in
section 2.22) is a (not necessarily free) \(\mathbf{Z}(G \times T)\)-resolution of \(\mathbf{Z}\), where \(t\) acts via \(\left(x_{1} \otimes x_{2}\right) t=(-1)^{\operatorname{deg}\left(x_{1}\right) \operatorname{deg}\left(x_{2}\right)}\left(x_{2} \otimes x_{1}\right) . \quad \underline{x} \otimes \underline{R}\) is a free \(\mathbb{Z}(G \times T)\)-resolution of \(Z\), by letting \(G\) act on \(\underline{X}\) and act on \(\underline{R}\). Use the existence and homotopy of maps from \(\underline{X}^{\otimes} \underline{R}\) to \(\underline{X} \otimes \underline{X}\) to show that
(i) There exists a sequence of chain maps \(\left\{D_{j}, j \geq 0\right\}\) of degree \(j\) from \(\underline{X}\) to \(\underline{X} \otimes \underline{X}\) such that \(D_{o}\) commutes with augmentation and for \(j>0, \partial D_{j}+D_{j} \partial=D_{j-1}+(-1)^{j} D_{j-1} t\).
(ii) If \(\left\{D_{j}, j \geq 0\right\}\) and \(\left\{D_{j}^{\prime}, j \geq 0\right\}\) are two such sequences then there exists a sequence \(\left\{E_{j}, j \geq 0\right\}\) of chain maps of degree \(j\) from \(\underline{X}\) to \(\underline{X} \otimes \underline{X}\) such that \(E_{0}=0\) and for \(j>0\), \(\partial E_{j}+(-1)^{j-1} E_{j} \partial=-E_{j-1}+(-1)^{j_{E-1}}{ }^{t}+\left(D_{j-1}-D_{j-1}^{\prime}\right)\).

Given a \(2 G\)-module \(V\), let \(D_{j}^{*}\) be the induced map of degree \(-j\) from \(\operatorname{Hom}_{\mathbb{Z} G}(\underline{X} \otimes \underline{X}, V)\) to \(\operatorname{Hom}_{\mathbb{Z} G}(\underline{X}, V)\). If \(u \varepsilon \operatorname{Hom}_{\mathbb{Z} G}\left(X_{m}, V\right)\) and \(v \varepsilon \operatorname{Hom}_{Z G}\left(X_{n}, V\right)\) define \(u u_{i} v=(u \otimes v) D_{i}^{*} \varepsilon \operatorname{Hom}_{Z G}\left(X_{m+n-i}, V\right)\).
Show that
\[
\begin{array}{rl}
\left(u u_{i} v\right) \delta & =(-1)^{i_{i}} u u_{i} v \delta+(-1)^{i+n} u \delta \quad u_{i} v \\
& -(-1)^{i} u \quad u_{i-1} v-(-1)^{m n} v \\
u_{i-1} & u
\end{array}
\]

If \(x \in \operatorname{Hom}_{\mathbb{Z} G}\left(X_{n}, \mathbb{Z} / 2 \mathbb{Z}\right)\) define
\[
x S q^{i}= \begin{cases}x & u_{n-i} x=(x \otimes x) D_{n-i}^{*} \\ 0 & \text { if } 0 \leq i \leq n \\ \text { if } i>n\end{cases}
\]

Show that
(i) If \(x \delta=0\) then \(\left(x S q^{i}\right) \delta=0\)
(ii) \(\left(x_{\delta}\right) S q^{i}=\left(\left(x \otimes x^{\delta}\right) D_{n-i}^{*}+\left(x^{\delta} \otimes x^{\delta}\right) D_{n-i-1}^{*}\right) \delta\)
(iii) \(\left(x_{1}+x_{2}\right) S q^{i}=x_{1} S q^{i}+x_{2} S q^{i}+\left(x_{1} \otimes x_{2}\right) D_{n-i+1}^{*}{ }^{*}\)
(iv) If \(S q_{i}^{\prime i}\) is defined using another sequence \(\left\{D_{j}^{\prime}, j \geq 0\right\}\) then \(x S q^{i}-x S q^{i}=(x \otimes x) E_{n-i-1}^{*} 6\).

Deduce that there are well defined operations
\[
S q^{i}: H^{n}(G, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{n+i}(G, \mathbb{Z} / 2 \mathbb{Z})
\]
(a) If \(\operatorname{deg}(x)=n\) then \(x S q^{n}=x^{2}\) since \(D_{0}\) is a diagonal approximation.
(b) If \(\operatorname{deg}(x)>n\) then \(x S q^{n}=0\) by definition.
(c) If \(x \in H^{n}(G, \mathbb{Z} / 2 \mathbb{Z})\), choose a cochain \(u \in \operatorname{Hom}_{\mathbb{Z} G}\left(X_{n}, \mathbb{Z} / 4 Z\right)\)
whose reduction mod 2 represents \(x\). Then \(u \delta\) is in
\(\operatorname{Hom}_{\mathbb{Z G}}\left(X_{\mathrm{n}+1}, 2 \mathbb{Z} / 4 \mathbb{Z}\right)\left(\cong \operatorname{Hom}_{\mathbf{Z G}}\left(\mathrm{X}_{\mathrm{n}+1}, \mathbb{Z} / 2 \mathbb{Z}\right)\right)\) and represents \(2 . x \beta\) in \(H^{n+1}(G, Z / 2 \mathbb{Z})\). By examining \(\left(u u_{n-2 j-1} u\right) \delta\) show that \(x S q^{2 j_{\beta}}\) is represented by the cocycle
\[
\left(x_{\beta}\right) u_{n-2 j-1} u+u u_{n-2 j-1}(x \beta)+u u_{n-2 j-2} u
\]

Hence \(S q^{2 j_{\beta}}=S q^{2 j+1}\) and \(\mathrm{Sq}^{2 j+1} \beta=0\).
(d) Construct a particular diagonal approximation for the resolution \(0+\mathbb{Z} / 2 \mathbb{Z}+(\mathbb{Z} / 2 \mathbb{Z}) T+(\mathbb{Z} / 2 \mathbb{Z}) T+\ldots\) and use it to show that \((x y) S q^{n}=\sum_{i=0}^{n}\left(x S q^{i}\right)\left(y S q^{n-i}\right)\).
(e) Using the bar resolution, show that the \(D_{j}\) may be chosen so that \(\left[x_{1}|\ldots| x_{j}\right] D_{j}=\left[x_{1}|\ldots| x_{j}\right] \otimes\left[x_{1}|\ldots| x_{j}\right]\). Deduce that \(S q^{\circ}=1\). Remark

Using the bar resolution of \(\mathbb{Z}\) as a \(\mathbb{Z}\)-module, we can give explicit maps \(D_{j}\) as follows.

If \(m\) is even, we set
\(\left[x_{1}|\ldots| x_{n}\right] D_{m}={ }_{0 \leq i_{o}<i_{1}<\ldots<i_{m} \leq n}^{\left[x_{1}|\ldots| x_{i_{0}}\left|x_{i_{o}+1} \ldots x_{i_{1}}\right| x_{i_{1}+1}|\ldots| x_{i_{2}} \mid\right.}\)
\(\left.x_{i_{2}+1} \cdots x_{i_{3}}|\cdot \cdot| x_{i_{m-1}+1}|\ldots| x_{i_{m}}\right] x_{i_{m}+1} \ldots x_{n} \otimes\left[x_{i_{o}+1}|\ldots| x_{i_{1}} \mid\right.\)
\(\left.x_{i_{1}+1} \ldots x_{i_{2}}\left|x_{i_{2}+1}\right| \ldots\left|x_{i_{3}}\right| \ldots\left|x_{i_{m}+1}\right| \ldots \mid x_{n}\right]\).
If \(m\) is odd, we set
\(\left[x_{1}|\ldots| x_{n}\right] D_{m}=\underset{0 \leq i_{0}<i_{1}<\ldots<i_{m} \leq n}{\left[x_{i_{0}}+1\right.}|\ldots| x_{i_{1}}\left|x_{i_{1}+1} \quad \ldots x_{i_{2}}\right|\)
\(\left.x_{i_{2}+1}|\ldots| x_{i_{3}}|\cdots| x_{i_{m-1}+1}|\ldots| x_{i_{m}}\right] x_{i_{m}+1} \cdots x_{n} \otimes\left[x_{1}|\ldots| x_{i_{o}}\left|x_{i_{o}+1} \cdots x_{i_{1}}\right|\right.\)
\(\ldots\left|x_{i_{m}+1}\right| \ldots\left|x_{n}\right|\)
(and zero if \(n<m\)). Note that \(D_{o}\) is just the Alexander-Whitney map.
2. (Hard) Mimic the above construction for \(p\) odd. Let \(T=<t: t^{P}=1>\) and use the existence and homotopy of maps from \(\underline{X} \otimes \underline{R}\) to \(\otimes^{P}(\underline{X})\) to construct maps \(P^{i}\) with suitable properties.

Beware that you will also construct the zero operation many times as we11!

\section*{Remark}

Serre ([84] , p. 457) has shown that the Steenrod operations commute with the transgressions in the Lyndon-Hochschild-Serre spectral sequence; you will need to use this fact in the following exercises. For a more general account of how the Steenrod operations fit into spectral sequences, see [82], [86] and [87]. What happens is that Steenrod operations are defined on each page \(E_{r}^{P}, q\) of the spectral sequence. They go up the page (increase q) until property (iv) on the first component of degree tells us that they should be generically zero. Thereafter they go to the right (increase \(p\)) with a certain 'indeterminacy' which is killed on a later page of the spectral sequence (there is no indeterminacy at the \(E_{2}\) and \(E_{\infty}\) levels), until property (iv) on total degree tells us that they should be zero.

These maps commute with the differentials \(d_{r}\), and agree with the Steenrod operations we know and love, on the \(\mathrm{E}_{2}^{\mathrm{o}, *}, \mathrm{E}_{2}^{*}, \mathrm{o}\) and \(\mathrm{E}_{\infty}\) levels. They also satisfy Adem relations and Cartan formulas (v. loc. cit.).
3. Let \(G\) be the dihedral group of order eight and let \(Z=Z(G)\). Use the spectral sequence \(H^{P}\left(G / Z, H^{q}(Z, Z / 2 \mathbb{Z})\right) \Rightarrow H^{P+q}(G, \mathbb{Z} / 2 \mathbb{Z})\) and the above remark to calculate the ring structure of \(H^{*}(G, Z / 2 Z)\).
4. Repeat the above exercise with \(G\) equal to the quaternion group of order eight.

\section*{Remark}

Quillen [74] has shown the following by similar methods. Suppose \(0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathrm{G} \rightarrow \mathrm{E} \rightarrow 0\) is an extension of an elementary abelian two
group \(E\) by a central subgroup of order two. Since
\(H^{*}(E, \mathbb{Z} / 2 \mathbb{Z}) \cong S\left(E^{*}\right)\), the symmetric algebra on the dual of \(E\) as a vector space, the given extension corresponds to a certain quadratic form \(Q(x) \varepsilon S^{2}\left(E^{\star}\right)\). Let \(B\) be the associated bilinear form. Then
\[
Q(x) \cdot S^{1} S q^{2} \ldots S q^{2^{i-1}}=B\left(x, x^{2^{i}}\right)
\]
for each i. Each \(B\left(x, x^{2}\right)\) is a non-zero-divisor modulo the ideal generated by the previous ones in \(S\left(E^{*}\right)\), for \(1 \leq i<h\), \(h\) being the codimension of a maximal isotropic subspace of \(E\), and for \(i \geq h\) the \(B\left(x, x^{2^{i}}\right)\) are in the ideal generated by the previous ones. The spectral sequence \(H^{p}\left(E, H^{q}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})\right)=H^{p+q}(G, \mathbb{Z} / 2 \mathbb{Z})\) therefore converges at the \(E_{h+1}\) level, and in fact
\[
H^{*}(G, \mathbb{Z} / 2 \mathbb{Z}) \cong\left(S\left(E^{*}\right) /<Q(x), B\left(x, x^{2}\right), \cdots, B\left(x, x^{2^{h-1}}\right)>\right) \otimes \mathbb{Z} / 2 \mathbb{Z}\left[w_{2}{ }^{h}\right]
\]
where \({ }^{w} 2^{h}\) is an element of degree \(2^{h}\) (appearing on the left-hand wall of the spectral sequence). See also [100] for a partial analysis of the corresponding case in odd characteristic.

\subsection*{2.24 Complexity}

In this section, we shall define the complexity of a module, and develop some properties of this notion. The Alperin-Evens theorem (2.24.4(xiii)) is one of the main goals.

\subsection*{2.24.1 Definitions}

Suppose \(X\) is a \(k\)-vector space graded by the non-negative integers. We say \(X\) has growth \(\gamma(X)=a\) provided \(a\) is the smallest non-negative integer such that there exists a constant \(\mu\) with \(\operatorname{dim}_{k}\left(X_{n}\right) \leq \mu n^{\alpha-1}\) for all \(n \geq 1\). If there is no such \(a\) we write \(\quad \gamma(X)=\infty\).

If \(V\) is a kG-module, let
\[
\ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow V \rightarrow 0
\]
be the minimal projective resolution of \(V\). Namely \(P_{o}\) is
the projective cover of \(V, P_{1}\) is the projective cover of the kernel of \(P_{o} \rightarrow V\), and so on. We define the complexity of \(V\) to be \(c x(V)=c x_{G}(V)=r\left(P_{\star}\right)\).
The fact that \(c x(V)\) is always finite will emerge in the course of the proof of 2.24 .4 , but of course easier arguments could be given if that was all we wanted to prove (cf. 2.22, property (vii) of cohomology and 2.31).

The p-rank of a group \(G\) is the rank of the largest elementary abelian subgroup of \(G\).

A module \(V\) is periodic if for some \(n \neq 0, V \cong \Omega^{n} V\). The least such \(n\) is called the period of \(V\).

\subsection*{2.24.2 Lemma}

Let \(G\) be a p-group and \(V\) a \(k G\)-module. Let \(x \beta\) be the Bockstein of an element \(x\) of \(H^{1}(G, 2 / p Z) \subseteq H^{1}(G, k)\). Regarding \(x\) as an element of \([G / \Phi(G)]^{*}\), let \(H\) be the corresponding maximal subgroup of \(G\). Then
\[
\gamma\left(H^{*}(G, V) / H^{*}(G, V) \cdot(x \beta)\right) \leq \gamma\left(H^{*}\left(H, V \downarrow_{H}\right)\right) .
\]

\section*{Proof}

By \(2.23 .4, \quad \mathrm{H}^{\mathrm{n}-2}(\mathrm{G}, \mathrm{V}) .(\mathrm{x} \beta)=\mathrm{F}^{2} \mathrm{H}^{\mathrm{n}}(\mathrm{G}, \mathrm{V})\), and so by 2.22.5, \(H^{n}(G, V) /\left(H^{n-2}(G, V) \cdot(x \beta)\right)\) has a subspace isomorphic to \(E_{\infty}^{1, n-1}(V)\) with quotient isomorphic to \(E_{\infty}^{0}, \mathrm{n}(V)\). Since \(G / H\) is cyclic, we have
\[
\begin{aligned}
\gamma\left(H^{*}(G, V) / H^{*}(G, V) \cdot(x \beta)\right) & =\gamma\left(E_{\infty}^{0, n}(V) \oplus E_{\infty}^{1, n-1}(V)\right) \\
\leq & \gamma\left(H^{0}\left(G / H, H^{n}(H, V)\right) \oplus H^{1}\left(G / H, H^{n-1}(H, V)\right)\right) \\
\leq & \gamma\left(H^{n}(H, V) \oplus H^{n-1}(H, V)\right)
\end{aligned}
\]
(since \(H^{i}(G / H, W)\) is a subquotient of \(W\) for any module \(W\); see 2.22 exercise 2)
\[
=\varphi\left(H^{*}(H, V)\right) .
\]
2.24.3 Lemma

Let \(G\) be a p-group, and let \(V\) be a kG-module. Then
(i) If \(H\) is a subgroup of index \(p\) in \(G\) then
\[
r\left(H^{*}(G, V)\right) \leq r\left(H^{*}\left(H, V \downarrow_{H}\right)\right)+1
\]
(ii) If \(G\) is not elementary abelian then
\[
r\left(H^{*}(G, V)\right) \leq \max _{H<G} r\left(H^{*}\left(H, V t_{H}\right)\right)
\]

Proof
(i) Let \(\gamma\left(H^{*}\left(H, V \psi_{H}\right)\right)=c\). Let \(x \beta\) be the Bockstein of an element \(x\) of \(H^{1}(G, k)\) corresponding to \(H\). Then by 2.24.2,
\[
\gamma\left(H^{*}(G, V) / H^{*}(G, V) \cdot(x \beta)\right) \leq \gamma\left(H^{*}\left(H, V \psi_{H}\right)\right) .
\]

Hence for some constant \(\lambda\),
\[
\begin{aligned}
& \operatorname{dim}\left(H^{n}(G, V) / H^{n-2}(G, V) \cdot(x \beta)\right) \leq \lambda n^{c-1} \\
& \operatorname{dim}\left(H^{n-2}(G, V) \cdot(x \beta) / H^{n-4}(G, V) \cdot(x \beta)^{2}\right) \leq \lambda(n-2)^{c-1}
\end{aligned}
\]
and so on. Thus
\[
\begin{aligned}
\operatorname{dim}\left(H^{n}(G, V)\right) & \leq \lambda_{n}^{c-1}+\lambda(n-2)^{c-1}+\lambda(n-4)^{c-1}+\ldots \\
& \leq \lambda^{\prime} n^{c} \quad \text { for some constant } \quad \lambda^{\prime} .
\end{aligned}
\]
(ii) Choose elements \(x_{1}, \ldots, x_{r}\) of \(H^{1}(G, \mathbb{Z} / P \mathbb{Z}) \subseteq H^{1}(G, k)\) in accordance with Serre's theorem (2.23.3). Let \(H_{i}\) be the corresponding subgroups of \(G\), and \(c_{i}=\gamma\left(H^{*}\left(H_{i}, V \psi_{H_{i}}\right)\right)\). Then since the \(x_{i}{ }^{\beta}\)
commute (see 2.22.1(iii)), 2.24.2 implies that for some constants
\(\lambda_{1}, \ldots, \lambda_{r}\),
\[
\begin{aligned}
& \operatorname{dim}\left(H^{n}(G, V) / H^{n-2}(G, V) \cdot\left(x_{1} \beta\right)\right) \leq \lambda_{1} n^{c_{1}-1} \\
& \operatorname{dim}\left(H^{n-2}(G, V) \cdot\left(x_{1} \beta\right) / H^{n-4}(G, V) \cdot\left(x_{1} \beta\right)\left(x_{2} \beta\right)\right) \\
& \quad \leq \operatorname{dim}\left(H^{n-2}(G, V) / H^{n-4}(G, V) \cdot\left(x_{2} \beta\right)\right) \leq \lambda_{2}(n-2)^{c_{2}-1}
\end{aligned}
\]
and so on. Thus
\[
\begin{aligned}
\operatorname{dim}\left(H^{n}(G, V)\right) & \leq \lambda_{1} n^{c_{1}-1}+\lambda_{2}(n-2)^{c_{2}-1}+\ldots+\lambda_{r}(n-2 r)^{c_{r}-1} \\
& \leq\left(\Sigma \lambda_{i}\right) n^{\max \left(c_{i}\right)-1} .
\end{aligned}
\]

\subsection*{2.24.4 Proposition}
(i) If \(H \leq G\) then \(\mathrm{cx}_{H}\left(\mathrm{~V}_{\mathrm{H}}\right) \leq \mathrm{cx}_{G}(\mathrm{~V})\).
(ii) If \(H \leq G\) and \(W{\underset{\text { is }}{*}}_{\text {is }}\) a \(k\)-module then \(c x_{G}\left(W+{ }^{G}\right)=c x_{H}(W)\).
(iii) \(c x_{G}(V)=\max _{S} r\left(E x t_{G}^{*}(V, S)\right)\), where \(S\) runs over the simple
kG-modules.
(iv) If \(G\) is a p-group, \(\mathrm{cx}_{\mathrm{G}}(\mathrm{V})=\gamma\left(\mathrm{H}^{*}\left(\mathrm{G}, \mathrm{V}^{*}\right)\right)\), where \(\mathrm{V}^{*}\) is the dual of \(V\) (in fact we shall see in 2.25 .9 that \(c x_{G}(V)=c x_{G}\left(V^{*}\right)\)).
(v) If \(0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0\) is a short exact sequence of \(k G-m o d u l e s ~ t h e n ~ c x_{G}\left(V_{i}\right) \leq \max \left(c x_{G}\left(V_{j}\right), c x_{G}\left(V_{k}\right)\right),\{i, j, k\}=\{1,2,3\}\). In particular, the two largest complexities are equal.
(vi) \(\quad \mathrm{cx}_{G}(V \oplus W)=\max \left(c x_{G}(V), c x_{G}(W)\right)\).
(vii) If \(D\) is a vertex of \(V\), then \(c x_{G}(V)=c x_{D}\left(V{ }_{D}\right)\).
(viii) \(\quad c x_{G}(V \otimes W) \leq \min \left(c x_{G}(V), c x_{G}(W)\right)\)
(ix) \(\quad \mathrm{cx}_{G}(V) \leq \mathrm{cx}_{G}(\mathrm{k})\)
(x) \(\quad \mathrm{cx}_{\mathrm{G}}(\mathrm{V})=0\) if and only if \(V\) is projective.
(xi) \(c x_{G}(V)=1\) if and only if \(V\) is periodic \(\oplus\) projective.
(xii) If \(G\) is a \(p\)-group and \(H\) is a subgroup of index \(p^{n}\) then \(\quad c x_{H}\left(V \downarrow_{H}\right) \leq c x_{G}(V) \leq c x_{H}\left(V \downarrow_{H}\right)+n\).
(xiii) \(c x_{G}(V)=\max _{E} c x_{E}\left(V{ }_{E}\right)\) as \(E\) ranges over the elementary abelian p-subgroups of \(G\) (Alperin, Evens).
(xiv) \(\mathrm{cx}_{\mathrm{G}}(\mathrm{k})\) equals the \(p-r a n k\) of \(G\).
(xv) \(\mathrm{cx}_{\mathrm{G}}(\mathrm{V})\) is bounded by the p -rank of G for all V .

Proof
(i) A projective resolution of \(V\) is also a projective resolution of \(\quad \mathrm{V} \psi_{H}\).
(ii) Inducing up a projective resolution of \(W\) to \(G\) gives a projective resolution of \(W_{\uparrow}{ }^{G}\), with the property that the original resolution is a summand of the restriction (Mackey decomposition).
(iii) Let \(S_{1}, \ldots, S_{m}\) be the simple kG-modules with projective covers \(P_{1}, \ldots, P_{m}\). Let \(d_{i}=\operatorname{dim}_{k} \operatorname{End}_{k G}\left(S_{i}\right)\). If \(\ldots \rightarrow R_{2} \rightarrow R_{1} \rightarrow R_{0} \rightarrow V \rightarrow 0\) is a minimal projective resolution of \(V\), then
\[
\begin{aligned}
& \operatorname{dim}_{k} \operatorname{Ext}_{G}^{n}\left(V, S_{i}\right)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(R_{n}, S_{i}\right) \\
&=d_{i} \cdot\left(\text { multiplicity of } P_{i}\right. \text { as a summand } \\
&\text { of } \left.R_{n}\right)
\end{aligned}
\]

Hence \(\operatorname{dim}_{k}\left(R_{n}\right)=\Sigma\left(\operatorname{dim}\left(P_{i}\right) / d_{i}\right) \cdot \operatorname{dim}_{k} \operatorname{Ext} G_{G}^{n}\left(V, S_{i}\right)\).
(iv) If \(G\) is a \(p\)-group, then \(k\) is the only simple \(k G\)-module, and so (iii) gives
\[
\begin{aligned}
c x_{G}(V) & =r\left(\operatorname{Ext}_{G}^{*}(\mathrm{~V}, \mathrm{k})\right) \\
& =r\left(\operatorname{Ext}_{\mathrm{G}}^{*}\left(\mathrm{k}, \mathrm{~V}^{*}\right)\right) \\
& =r\left(\mathrm{H}^{*}\left(\mathrm{G}, \mathrm{~V}^{*}\right)\right)
\end{aligned}
\]
(v) This follows from (iii) and the long exact Ext sequence.
(vi) This is clear by forming the direct sum of the resolutions.
(vii) \(\mathrm{cx}_{\mathrm{G}}(\mathrm{V}) \geq \mathrm{cx}_{\mathrm{D}}\left(\mathrm{V} \psi_{\mathrm{D}}\right)=\mathrm{cx}_{\mathrm{G}}\left(\mathrm{V} \psi_{D} \uparrow^{\mathrm{G}}\right) \geq \mathrm{cx}_{\mathrm{G}}(\mathrm{V})\), by (i), (ii) and (vi).
(viii) Tensoring a projective resolution of \(V\) with \(W\) gives a projective resolution of \(V \$ W\).
(ix) This follows from (viii) since \(V \cong V \otimes k\).
(x) This is clear.
(xi) Assume without loss of generality that \(V\) has no projective direct summands. Let \(\ldots+P_{1} \rightarrow P_{0}+V \rightarrow 0\) be the minimal projective resolution of \(V\). By 1.8.6 there is a homogeneous element \(x\) of positive degree \(j\) in \(H^{*}(G, k)\) such that cup product with \(x\) induces an injection from \(H^{n}\left(G, M^{*} \otimes S\right) \cong \operatorname{Ext}_{G}^{n}(M, S)\) to \(\operatorname{Ext}_{G}^{n+j}(M, S)\), for \(n\) sufficiently large, and for each simple module \(S\). Since \(r\left(\operatorname{Ext}_{\mathrm{G}}^{\mathrm{n}}(\mathrm{M}, \mathrm{S})\right) \leq 1\), this injection is an isomorphism for n sufficiently large. On the chain level, cup product with \(x\) is represented by a
map from \(P_{n}\) to \(P_{n+j}\), which since the resolution is minimal (cf. the argument for (iii)), is an isomorphism commuting with the boundary homomorphism, for all \(n\) sufficiently large. Thus \(\Omega^{n} M \cong \Omega^{n+j} M\) for some \(n\), and so since \(M\) has no projective summands, this implies that \(M \cong \Omega^{\mathbf{j}} \mathrm{M}\) (Eisenbud, [47]).

\section*{Remark}

There is a much easier argument over a field which is algebraic over the ground field: pass down to a finite field, and remark that there are only finitely many modules of a given dimension.
(xii) By induction we need only prove this for \(n=1\). The first inequality follows from (i), while the second follows from (iv) and 2.24 .3 (i).
(xiii) This follows from (i), (iv) and 2.24.3(ii).
(xiv) \(c x_{G}(k)=\max _{E} c x_{E}(k)\) by (xiii).
\(\leq p-r a n k\) of \(G\) by (xii).
Equality follows from the explicit structure of \(H^{*}(E, k)\) given in 2.22 exercise 2.
(xv) This follows from (ix) and (xiv). a
2.24.5 Corollary (Chouinard)

A kG-module \(V\) is projective if and only if \(V{ }^{\downarrow} E\) is projective for every elementary abelian \(p\)-subgroup \(E\) of \(G\).

Proof
This follows from 2.24.4(x) and (xiii). a

\subsection*{2.24.6 Corollary}

A kG-module \(V\) is periodic if and only if \(V{ }_{E}\) is periodic for every elementary abelian p-subgroup \(E\) of \(G\).

Proof
This follows from 2.24.4(xi) and (xiii).

\subsection*{2.24.7 Corollary}

Let \(G\) be a p-group and \(V\) a \(k G\)-module whose restriction to some maximal subgroup is projective. Then \(V\) is periodic.

Proof
This follows from 2.24.4(x), (xi) and (xii). a

\section*{Example}

In [64], Landrock and Michler examine the structure of the projective indecomposable modules for Janko's simple group \(J_{1}\) over a splitting field of characteristic 2. It turns out that there is a
simple module \(V\) of dimension 20 and a subgroup \(H\) of \(J_{1}\) isomorphic to \(\mathrm{L}_{2}(11)\) such that \(\mathrm{V}_{\mathrm{H}}\) is projective. A Sylow 2-subgroup of \(H\) is contained to index two in a Sylow 2-subgroup of \(J_{1}\) (which is in fact elementary abelian of order eight), and so by 2.24.7, \(V\) is periodic. In fact, there is a short exact sequence
\[
0 \rightarrow v^{3}(\mathrm{~V}) \rightarrow \mathrm{P}_{1} \rightarrow \Omega^{3}(\mathrm{~V}) \rightarrow 0
\]
and so \(V\) has period 7.

\section*{Exercises}
1. Let \(G\) be a p-group and \(V\) a kG-module. Let \(x \beta\) be the Bockstein of an element \(x\) of \(H^{1}(G, \mathbf{Z} / \mathrm{p} Z) \subseteq H^{1}(G, k)\). Let \(H\) be the maximal subgroup of \(G\) corresponding to \(x\), and let \(F_{F}{ }^{P}{ }^{P+q}(G, V)\) be the filtration associated with the spectral sequence
\[
H^{P}\left(G / H, H^{q}(H, V)\right) \Rightarrow H^{P+q}(G, V) .
\]
(i) Using exercise 7 of 2.22 , show that for \(q \geq 1\),
\[
\operatorname{dim}_{k} E_{\infty}^{p, q} \leq \operatorname{dim}_{k} E_{2}^{p, q} \leq|H|^{q+2} \operatorname{dim}_{k} H^{1}\left(H, V \psi_{H}\right) .
\]
(ii) Show that
\[
\operatorname{dim}_{k} B_{\infty}^{n, o} \leq \sum_{r=2}^{n} \operatorname{dim}_{k} E_{r}^{n-r, r-1} \leq|H|^{n+2} \operatorname{dim}_{k} H^{1}\left(H, V \psi_{H}\right) .
\]
(iii) Let \(U(n)\) denote the kernel of multiplication by \(x \beta\) on \(H^{n}(G, V)\). Using the fact that the map \(b_{2}^{n, o}: E_{2}^{n, o} \rightarrow E_{2}^{n+2, o}\) given by cup product with \(x \beta\) is an isomorphism for \(n \geq 1\) (cohomology of cyclic groups), show that
\[
\begin{aligned}
\operatorname{dim}_{k} U(n) & \leq \operatorname{dim}_{k}\left(H^{n}(G, V) / F^{n_{H}}(G, V)\right)+\operatorname{dim}_{k}\left(U(n) \cap F^{n} H^{n}(G, V)\right) \\
& \leq \sum_{r=0}^{n-1} \operatorname{dim}_{k} E_{\infty}^{r}, n-r \\
& \leq \operatorname{dim}_{k} B_{\infty}^{n+2, o} \\
& 2|H|^{n+4} \operatorname{dim}_{k} H^{1}\left(H, V t_{H}\right) .
\end{aligned}
\]
2. (Carlson [25])

Let \(G\) be a group and \(V\) a \(k G\)-module with vertex \(D\). For a subgroup \(H\) of \(G\), write \(V \downarrow_{H}=W \oplus P\) where \(P\) is projective and W has no projective summands, and define \(\operatorname{core}_{H}(V)=W\). Show that there is a constant \(B_{G}\) depending only on \(G\) such that if \(V\) has no projective summands then
\[
\operatorname{dim}_{k} V \leq \mathrm{B}_{\mathrm{G}} \cdot \max _{\substack{\mathrm{E}} \underset{\mathrm{E} \text { elem. }}{\text { abelian }}} \quad \operatorname{dim}_{\mathrm{k}} \operatorname{core}_{\mathrm{E}}(\mathrm{~V})
\]
(Hint: first reduce to \(G=D\) by the theory of vertices and sources, then use Serre's theorem 2.23.3 together with exercise 1(iii) and exercise 7(iii) of 2.22.)

Remark
This exercise may be used to give an alternative proof of the main results of this chapter, see Carlson [25].

\subsection*{2.25 Varieties associated to modules}

In this section, we introduce an affine variety associated with a given \(k G\)-module \(V\). This is a certain subvariety \(X_{G}(V)\) of the spectrum \(X_{G}=\operatorname{Max}\left(H^{e v}(G, k)\right)\) of maximal ideals of the even cohomology ring. At this point it is appropriate to remark that if \(A\) is a commutative Noetherian graded. ring, and \(A^{\prime}\) is the subring generated by the \(A_{i}\) for \(i\) divisible by a given natural number \(n\), then \(\operatorname{Max}(A) \cong \operatorname{Max}\left(A^{\prime}\right)\), the isomorphism being given by \(M \mapsto M \cap A^{\prime}\). Thus it is fairly natural to pass down to the even cohomology, to obtain a commutative ring. It will turn out that the dimension of \(X_{G}(V)\) is equal to the complexity of \(V\).

In the case where \(G\) is elementary abelian, we show that \(X_{G}(V)\) is naturally isomorphic to a variety \(Y_{G}(V)\) defined in terms of the restriction of \(V\) to certain cyclic subgroups of \(k G\).

In the next section, we shall see how the variety associated to a module for an arbitrary finite group is controlled by the restrictions to elementary abelian subgroups.

Throughout this and the next two sections, we assume that \(k\) is algebraically closed.
2.25.1 Definitions

Let \(X_{G}=\operatorname{Max}\left(H^{e v}(G, k)\right)\), the set of maximal ideals of \(H^{e v}(G, k)\), as an affine variety with the Zariski topology. Since \(H^{e v}(G, k)\) is a graded ring, we may also consider \(\bar{X}_{G}=\operatorname{Proj}\left(H^{e v}(G, k)\right)\), the set of homogeneous ideals, maximal in the ideal \(I\) of elements of positive degree. There is a natural morphism \(X_{G} \backslash\{0\} \rightarrow \bar{X}_{G}\), where 0 is the point in \(X_{G}\) given by the ideal \(I\). This homomorphism takes an ideal to the ideal generated by the homogeneous elements in it. We have \(\operatorname{dim}\left(\bar{X}_{G}\right)=\operatorname{dim}\left(X_{G}\right)-1\).

We denote by \(\mathrm{Ann}_{G}(V)\) the ideal of \(H^{e v}(G, k)\) consisting of those elements annihilating \(H^{*}(G, V)\). The support of a module \(V\), written \(X_{G}(V)\), is the set of all maximal ideals \(M \varepsilon X_{G}\) which contain \({A n_{G}}_{G}(V \otimes S)\) for some module \(S\). We denote by \(I_{G}(V)\) the
ideal of \(H^{e v}(G, k)\) consisting of those elements \(x\) such that for all modules \(S\), there exists a positive integer \(j\) such that \(H^{*}(G, V \otimes S) \cdot x^{j}=0\). If \(H \leq G\), then \(H^{*}\left(H, V t_{H} \otimes S\right) \cong H^{*}\left(G, V \otimes S \uparrow^{G}\right)\) by Shapiro's lerma, and so \(\mathrm{res}_{G, H}\left(\mathrm{I}_{\mathrm{G}}(\mathrm{V})\right) \subseteq \mathrm{I}_{\mathrm{H}}(\mathrm{V})\).

\subsection*{2.25.2 Lemma}

Suppose \(0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0\) is a short exact sequence of \(k G-\) modules, and \(x_{1} \varepsilon \operatorname{Ann}_{G}\left(V^{\prime}\right), x_{2} \varepsilon \operatorname{Ann}_{G}\left(V^{\prime \prime}\right)\). Then \(x_{1} x_{2} \varepsilon A n n_{G}(V)\).

\section*{Proof}

This follows from the long exact sequence of cohomology. \(\quad\) a
Thus in the definition of \(I_{G}(V)\), it is sufficient to check for \(S\) equal to the direct sum of the irreducible kG -modules.

\subsection*{2.25.3 Proposition}
\(X_{G}(V)=\operatorname{Max}\left(H^{e v}(G, k) / I_{G}(V)\right)\).

\section*{Proof}

If \(M \in X_{G}(V)\) then since \(M\) is prime, \(I_{G}(V) \subseteq M\). Conversely, suppose \(I_{G}(V) \subseteq M\). Let \(S\) be the direct sum of the irreducible kGmodules. Then \(x \notin M\) implies \(x^{j} \notin \operatorname{Ann}_{G}(V \otimes S)\). Hence \(M \& X_{G}(V)\). \(\quad\)

In particular, since \(I_{G}(V)\) is a homogeneous ideal in \(H^{e^{V}}(G, k)\), \(X_{G}(V)\) is a subvariety of \(X_{G}\) consisting of a union of lines through thr origin. Thus \(\bar{X}_{G}(V)=\operatorname{Proj}\left(\mathrm{H}^{\mathrm{eV}}(\mathrm{G}, \mathrm{k}) / \mathrm{I}_{\mathrm{G}}(\mathrm{V})\right)\) is a projective subvariety of \(\bar{X}_{G}\).

\subsection*{2.25.4 Proposition}
\(\operatorname{dim}\left(X_{G}(V)\right)=c x_{G}\left(V^{*}\right)\).
Proof
Let \(S\) be the direct sum of the irreducible kG-modules. By
2.24.4(iii), \(\mathrm{cx}_{\mathrm{G}}\left(\mathrm{V}^{*}\right)=r\left(\mathrm{H}^{*}(\mathrm{G}, \mathrm{V} \otimes \mathrm{S})\right)\)
\(=r\left(H^{e v}(G, V \otimes S)\right)\)
\(=r\left(H^{e v}(G, k) / I_{G}(V)\right) \quad\) by 2.25 .3
\(=\operatorname{dim}\left(X_{G}(V)\right)\) by 1.8.7. o
Remark
We shall see in 2.25 .9 that \(\mathrm{cx}_{G}\left(\mathrm{~V}^{*}\right)=\mathrm{cx} \mathrm{X}_{\mathrm{G}}(\mathrm{V})\).
If \(G=E\) is an elementary abelian \(p\)-group, there is another variety \(Y_{E}(V)\) which we may associate to a module \(V\). \(J=J(k E)\) is a subspace of kE of codimension 1 , and if \(\mathrm{x} \varepsilon \mathrm{J}\), then \(1+\mathrm{x}\) is an invertible element of \(k E\) of order \(p\). Before defining \(Y_{E}(V)\), we need proposition 2.25.6.

\subsection*{2.25.5 Lemma}

Suppose \(V\) is a \(k E\)-module. If \(x \in J\) has the property that \({ }^{V}{ }_{{ }_{k}}<1+x>\) is free, then a basis \(e_{1}, \ldots, e_{n}\) of \(V\) may be found with the following properties.
(i) \(E\) acts upper triangularly (i.e. for \(g \varepsilon E, e_{i} g \equiv e_{i}\) \(\left.\bmod <e_{i+1}, \ldots, e_{n}>\right)\).
(ii) The element \(1+\mathbf{x} \varepsilon \mathrm{kE}\) is in Jordan canonical form.

Proof
Find a basis \(f_{1}, \ldots, f_{n}\) of \(V\) such that \(1+x\) is in Jordan canonical form. Then the centralizer of \(1+x\) in GL(V) consists of all matrices whose \(p \times p\) blocks are of the form
\(\left(\begin{array}{ccccc}\lambda_{1} & \lambda_{2} & & \ldots & \lambda_{p} \\ & \lambda_{1} & \lambda_{2} & \ldots & \\ & & & & \\ & & & \lambda_{1}\end{array}\right) \quad\). Thus the collection of upper triangular
matrices in this group form a Sylow p -subgroup, and so E may be conjugated into upper triangular form without disturbing \(1+x\).

\subsection*{2.25.6 Proposition}

Suppose \(V\) is a kG-module. If \(x, y \varepsilon J\), and \(x \equiv y \bmod J^{2}\), then \(V{ }_{k<1+x>}\) is free if and only if \(V{ }_{k}{ }_{k<1+y>}\) is free.

\section*{Proof}

Suppose \(V \psi_{k<l+x>}\) is free. Choose a basis \(e_{1}, \ldots, e_{n}\) for \(V\) as in 2.25.5. Then the entries on and immediately above the diagonal for \(y\) are the same as for \(x\). Thus \(y^{p-1}\) has rank at least \(n / p\) (since the \(1 \frac{s t}{},(p+1) \frac{t h}{}, \ldots,(n-p+1) \frac{\text { th }}{}\) rows are linearly independent), so \(V t_{k<l+y>}\) is free.

For \(V \neq 0\), we now define \(Y_{E}(V)\) to be the subset of \(Y_{E}=J / J^{2}\) consisting of zero together with the image in \(Y_{E}\) of the set of \(x \in J\) such that \(V \psi_{k<l+x>}\) is not free. For \(V=0\), we define \(Y_{E}(V)=\emptyset\). Since \(x \in Y_{E}(V) \quad\) if and only if the rank of the matrix representing \(x^{p-1}\) is less than \(\operatorname{dim}(V) / p, Y_{E}(V)\) is defined by polynomial equations (namely the vanishing of certain minors), and is hence a subvariety of \(\quad Y_{E}\).

The following theorem was conjectured by Carlson, and proved by Avrunin and Scott [9].

\subsection*{2.25.7 Theorem}

There is a natural isomorphism \(Y_{E} \cong X_{E}\), which has the property that for every module \(V\), the image of \(Y_{E}(V)\) is \(X_{E}(V)\).

\section*{Remark}

Before reading the proof, if the reader is not familiar with the cohomology of cyclic groups, he should turn back to 2.22 , ex. 2 .

\section*{Proof of 2.25.7}

It is clear from 2.22 exercise 1 that \(H^{1}(E, k)\) is naturally isomorphic to \(\left(\mathrm{J} / \mathrm{J}^{2}\right)^{*}\). Now, the Bockstein homomorphism \(\beta: H^{1}(E, k) \rightarrow H^{2}(E, k)\) is injective (see 2.23 and 2.22 exercise 2), and if \(y_{l}, \ldots, y_{r}\) form a basis for \(H^{1}(E, k)\) then \(\left\{y_{i} \beta\right\} U\left\{y_{i} y_{j}: i<j\right\}\) form a basis for \(H^{2}(E, k)\). For \(p\) odd, the subalgebra of \(H^{e v}(E, k)\) generated by \(H^{1}(E, k) \beta\) forms a complement to \(J\left(H^{e v}(E, k)\right)\). For \(p=2, y \beta=y^{2}\) for each \(y_{\varepsilon} H^{1}(E, k)\). Thus in either case, \(\operatorname{Max}\left(H^{\mathrm{ev}}(E, k)\right)\) is a vector space dual to \(H^{1}(E, k) \beta \cong H^{1}(E, k) \cong\left(J / J^{2}\right)^{*}\), and hence \(X_{E}\) is naturally isomorphic to \(Y_{E}\).

Now suppose \(\mathrm{x} \varepsilon \mathrm{J}\). As remarked after 2.22.1, the map \(k<l+x>4 k E\) gives rise to maps \(H^{*}(E, k) \rightarrow H^{*}(<l+x>, k)\) and \(H^{*}(E, V) \rightarrow H^{*}(<1+x>, V)\) commuting with cup products and the Bockstein map. Thus \(x\) determines a line through the origin in each of \(X_{E}\) and \(\quad Y_{E}\), and so we must check that one is in \(X_{E}(V)\) if and only if the other is in \(Y_{E}(V)\) (note that each of \(X_{E}(V)\) and \(Y_{E}(V)\) is a union of lines through the origin).

First, if the line determined by \(x\) in \({ }_{*}{ }_{E}\) is in \(Y_{E}(V)\), then \({ }^{V} \psi_{k<1+x>}\) is not free. Thus the support of \(H^{*}(<1+x>, V)\) in \(X_{<1+x>}\) is the whole of \(X_{<1+x>}\), and so by the commutativity of the diagram

it follows that the image of \(X_{<1+x>}\) in \(X_{G}\) is in \(X_{G}(V)\).
Conversely, suppose \(V \downarrow_{k<1+x>}\) is free. Let \(F\) be a subgroup of kE containing \(1+\mathrm{x}\), and isomorphic to E . The inclusion \(\mathrm{F} \hookrightarrow \mathrm{kE}\) induces an isomorphism \(\mathrm{kF} \cong \mathrm{kE}\). Thus we have a spectral sequence
\[
H^{p}\left(F /<1+x>, H^{q}(<1+x>, V)\right) \Rightarrow H^{p+q}(F, V)=H^{p+q}(E, V),
\]
and since \(H^{q}(\leqslant l+x>, V)=0\) for \(q \neq 0\), this spectral sequence converges at the \(E_{2}\) level. This implies that \(H^{*}\left(F /<l+x>, V^{<l+x>}\right) \cong H^{*}(F, V)\), the isomorphism being given by the composite of the natural maps
\(H^{*}\left(F /<l+x>, V^{<l+x>}\right) \rightarrow H^{*}\left(F, V^{<l+X>}\right) \rightarrow H^{*}(F, V)\). Thus regarding \(H^{*}(F, V)\) as an \(H^{*}(F /<1+x>, k)\)-module via the natural map \(H^{*}(F /<1+x>, k) \rightarrow H^{*}(F, k)\),
the above isomorphism is an \(H^{*}(F /<1+x>, k)\)-module isomorphism. In particular, Evens' theorem (see 2.22, property (vii) of cohomology) says that \(H^{e v}\left(F /<1+x>, V^{<1+x>}\right)\), and hence \(H^{e v}(F, V)\), is finitely generated as an \(H^{*}(F /<1+x>, k)\)-module.

Now the composite map \(H^{*}(F /<1+x>, k) \rightarrow H^{*}(F, k) \rightarrow H^{*}(<1+x>, k)\) sends all positive degree elements to zero. Letting \(P\) be the kernel of \(H^{*}(F, k) \rightarrow H^{*}(<1+X>, k)\), we know that the points on the line \(\mathrm{X}_{\mathrm{E}}=\mathrm{X}_{\mathrm{F}}\) corresponding to \(\left.<1+\mathrm{x}\right\rangle\) are the maximal ideals containing \(P\). What we are asking is how many of these maximal ideals contain the annihilator of \(H^{e v}(F, V)\). However, we know that \(H^{e v}(F, V) / H^{e v}(F, V) P\) is a finitely generated module over \(H^{*}(F /<1+x>, k) /\{e l t s\) of positive degree \(\} \cong k\), and is hence a finite dimensional vector space. In particular, this implies that only finitely many maximal ideals contain its annihilator, and so only finitely many points of \(X_{<1+x>}\) belong to \(X_{E}(\mathrm{~V})\). Since k is an infinite field, this implies that \(X_{<1+x>} \cap X_{E}(V)=\{0\} . \quad \square\)

\subsection*{2.25.8 Corollary (Dade)}

Let \(V\) be a module for an elementary abelian group \(E\). Then \(V\) is free if and only if for every \(x \varepsilon J \backslash J^{2}, V{ }_{k<1+x>}\) is free.

\section*{Proof}

If \(V\) is free, it is clear that \({ }^{V}{ }_{k}<l+x \gg\) is free.
Conversely, suppose \(V \downarrow_{k<l+x>}\) is free for all \(x \quad \varepsilon \quad J \backslash J^{2}\). Then \(\mathrm{Y}_{\mathrm{E}}(\mathrm{V})=0\), and hence \(\mathrm{X}_{\mathrm{E}}(\mathrm{V})=0\) by 2.25.7. Thus by 2.25.4, \(\mathrm{cx}_{\mathrm{E}}(\mathrm{V})=0\), and so by 2.24.4(x), \(V\) is projective. \(\quad\)

\subsection*{2.25.9 Corollary (Carlson)}

For any group \(G\) and any module \(V, \mathrm{cx}_{G}(\mathrm{~V})=\mathrm{cx}_{G}\left(\mathrm{~V}^{*}\right)\) \(=c x_{G}\left(V \otimes V^{*}\right)=\gamma\left(\operatorname{Ext}_{G}^{n}(V, V)\right)\).

\section*{Proof}

By 2.24.4 (iv) and (xiii), it is sufficient to prove this for \(G\) elementary abelian. In this case, \(\mathrm{cx}_{\mathrm{G}}(\mathrm{V})=\operatorname{dim}\left(\mathrm{Y}_{\mathrm{G}}(\mathrm{V})\right)\). But \(V{ }_{k}<1+x>\) is free if and only if \(V{ }_{\star}^{*}{ }_{k<1+x>}\) is free, which in turn happens if and only if \(\left(V \otimes V^{*}\right){ }^{*} k<l+x>\) is free, and so \(Y_{G}(V)=Y_{G}\left(V^{*}\right)=Y_{G}\left(V \otimes V^{*}\right)\). Now use 2.25.4 and 2.25.7.

\subsection*{2.25.10 Corollary}

Let \(E_{1} \leq E_{2}\) be elementary abelian p-groups and \(V\) a \(\mathrm{kE}_{2}\)-module. Identifying \(\mathrm{X}_{\mathrm{E}_{1}}\) with a subspace of \(\mathrm{X}_{\mathrm{E}_{2}}\) via \(\mathrm{res}_{\mathrm{E}_{2}}^{*}, \mathrm{E}_{1}\), we have
\[
X_{E_{2}}(V) \cap X_{E_{1}}=X_{E_{1}}(V) . \quad \text { (see also 2.26.8) }
\]

\section*{Proof}

This follows immediately from 2.25.7, since it is clear from the definition that \(Y_{E_{2}}(V) \cap Y_{E_{1}}=Y_{E_{1}}(V)\). \(\quad \square\)

\section*{Exercise}
1. A kG-module \(V\) is said to be endotrivial if \(V \otimes V^{*} \cong k \oplus P\), where k is the trivial module and P is projective. Using 2.24 .5 and 2.18 exercise 3 (ii), show that \(V\) is endotrivial if and only if \({ }^{\downarrow} \downarrow E\) is endotrivial for every elementary abelian \(p\)-subgroup \(E\) of \(G\).

Show that \({ }^{V} \downarrow_{E}\) is endotrivial if and only if
\[
\operatorname{dim}_{k} \mathrm{End}_{\mathrm{kE}}\left(\mathrm{~V}_{\mathrm{E}}\right)=1+\left(\operatorname{dim}_{\mathrm{k}} \mathrm{~V}-1\right) /|\mathrm{E}|
\]

Deduce that \({ }^{V} \downarrow_{E}\) is endotrivial if and only if \(\quad{ }^{V} \downarrow 1+x>\) is endotrivial for each \(x \in J(k E)\). Show that if \(x-y \in J^{2}(k E)\) then \(V+\mathcal{V}+x>\) is endotrivial if and only if \({ }^{\downarrow} \downarrow \mathcal{l}+\mathrm{y}>\) is endotrivial.

\section*{Remark}

Dade [40] has shown that the only endotrivial modules for an abelian p-group are the modules \(\Omega^{\mathrm{n}}(\mathrm{k}) \oplus\) projective and \(\sigma^{n}(k) \oplus\) projective (\(n \geq 0\)).

Using this result, Puig has shown that for an arbitrary finite group, the multiplicative group of endotrivial modules (modulo projectives) is finitely generated.

\subsection*{2.26 The Quillen Stratification}

We now investigate the variety \(X_{G}(V)\) in relation to the elementary abelian subgroups of \(G\). It turns out that it is a disjoint union of strata, one for each conjugacy class of elementary abelian subgroup \(E\), and that each stratum is "homeomorphic to" a quotient of an affine variety determined by \(V \downarrow_{E}\) by a regular group of automorphisms (see theorem 2.26.10)

\subsection*{2.26.1 Proposition}

\section*{Proof}
 Let \(P_{\varepsilon S y l_{p}}(G)\). Then \(r e s_{G, P}: H^{*}(G, k) \rightarrow H^{*}(P, k)\) is injective, and so \(I_{G}(V)=\operatorname{res}_{G, P}^{-1}\left(I_{P}(V)\right)\). Thus it is sufficient to prove the
proposition for \(G=P\) a p-group. We work by induction on \(|P|\). If \(P\) is elementary abelian, the proposition is clear, so assume \(P\) is not elementary abelian. Choose elements \(x_{1}, \ldots, x_{r} \varepsilon H^{l}(P, \mathbb{Z} / \mathrm{P} \mathbb{Z})\) in accordance with Serre's theorem (2..23.3), and let \(P_{1}, \ldots, P_{r}\) be the corresponding maximal subgroups of \(P\).

For each \(x_{i}\), we have a spectral sequence
\[
H^{p}\left(P / P_{i}, H^{q}\left(P_{i}, V\right)\right) \Rightarrow H^{p+q}(P, V)
\]
and by the Quillen-Venkov lemma (2.23.4), \(\mathrm{F}^{2} \mathrm{H}^{\mathrm{n}+2}(\mathrm{P}, \mathrm{V})=\mathrm{H}^{\mathrm{n}}(\mathrm{P}, \mathrm{V})\left(\mathrm{x}_{\mathrm{i}} \beta\right)\). Suppose \(x \varepsilon H^{*}(P, k)\), such that for all \(i\), \(\operatorname{res}_{P, P_{i}}(x) \varepsilon I_{P_{i}}(V)\). We must show that \(x \in I_{P}(V)\). We have \(\operatorname{res}_{P, P_{i}}(x) \varepsilon H^{*}\left(P_{i}, k\right) P\) \(=H^{o}\left(P / P_{i}, H^{*}\left(P_{i}, k\right)\right)=E_{2}^{0, *}\). Now \(E_{2}^{o},^{*}\) acts on \(E_{2}^{p, *}(V)\), and for some \(j\) independent of \(p\) and \(q, x\) annihilates each \(E_{2}^{p, q}(V)\) (since \(H^{p}\left(P / P_{i}, H^{q}\left(P_{i}, V\right)\right)\) is a subquotient of \(H^{q}\left(P_{i}, V\right)\), see 2.22 exercise 2). Since \(x \in H^{*}(P, k), \operatorname{res}_{P, P_{i}}(x)\) is an element of \(E_{2}^{0, *}\) which survives to the \(E_{\infty}\) level, and at each stage the \(j\) th power annihilates each \(E_{r}^{p, q}(V)\). Thus at the \(E_{\infty}\) level, \(x^{j}\) annihilates each \(E_{\infty}^{p, q}(V)\), and so \(H^{*}(P, V) x^{2 j} \subseteq F^{2} H^{*}(P, V)=H^{*}(P, V)\left(x_{i} \beta\right)\). Thus \(H^{*}(P, V) x^{2 j r} \subseteq H^{\star}(P, V)\left(x_{1} \beta\right) \ldots\left(x_{r} \beta\right)=0 . \quad\).

If \(H\) is a subgroup of \(G\), we have a map \(t_{H, G}=\) res \(_{G, H}^{*}\) : \(X_{H} \rightarrow X_{G}\). It is clear that \(t_{H, G}\left(X_{H}(V)\right) \subseteq X_{G}(V)\) since res \(_{G, H}\left(I_{G}(V)\right) \subseteq I_{H}(V)\). One of our goals in this section will be theorem 2.26 .8 , which is a sort of converse to this.
2.26.2 Corollary
\[
X_{G}(V)=\bigcup_{\substack{\text { elentary } \\ \text { elementary } \\ \text { abelian }}} t_{E, G}\left(X_{E}(V)\right)
\]

Proof
Clear.
ㅁ

\section*{Remark}

2 26.2 and 2.25 .7 enable us to reduce questions about \(X_{G}(V)\) to questions about cyclic subgroups of the group algebra of order \(p\).
2.26.3 Corollary
\[
X_{G}=\underbrace{}_{\begin{array}{c}
E \tag{口}\\
\text { elementary } \\
\text { abelian }
\end{array}} t_{E, G}\left(X_{E}\right)
\]

\subsection*{2.26.4 Corollary}

An element \(x \in H^{i}(G, k)\) is nilpotent if and only if res \({ }_{G, E}(x)\) is nilpotent for all elementary abelian subgroups \(E\) of \(G\).

Proof
This is the case \(V=k\) of 2.26.1. \(\quad \square\)
For \(E\) an elementary abelian \(p\)-group of rank \(r\), we know that \(X_{E}\) is a vector space of dimension \(r\). We define
\[
\begin{aligned}
& x_{E}^{+}=X_{E} \backslash \bigcup_{E^{\prime}<E^{\prime}} t_{E^{\prime}, E^{\prime}}\left(X_{E^{\prime}}\right) \\
& X_{G, E}=t_{E, G}\left(X_{E}\right), \\
& X_{G, E}^{+}=t_{E, G}\left(X_{E}^{+}\right) \\
& X_{E}^{+}(V)=X_{E}(V) \bigcup_{E^{\prime}<E} t_{E^{\prime}, E}\left(X_{E},(V)\right) \\
& X_{G, E}(V)=t_{E, G}\left(X_{E}(V)\right), \quad X_{G, E}^{+}(V)=t_{E, G}\left(X_{E}^{+}(V)\right) .
\end{aligned}
\]

Thus \(X_{E}^{+}\)is the space \(X_{E}\) with all the hyperplanes defined over Z/pZ removed.

Let \(\quad \sigma_{E}=\underset{\mathbf{x}_{\varepsilon} H^{1}(E, \mathbb{Z} / \mathrm{p} \mathbf{Z})}{\Pi}(\mathbf{x} \beta)\). Then \(\sigma_{\mathrm{E}}\) may be regarded as an
element of the coordinate ring of \(X_{E}\), and the open set defined by \(\sigma_{E}\) is \(X_{E}^{+}\). Thus the coordinate ring of the variety \(X_{E}^{+}\)is \(H^{e v}(E, k)\left[\sigma_{E}^{-1}\right]\).

We now use the norm map (see 2.22, properties of cohomology (viii)) to ensure that \(H^{e v}(G, k)\) has enough elements.

\subsection*{2.26.5 Lemma}

Let \(E\) be an elementary abelian p-subgroup of \(G\), and let \(\left|N_{G}(E): E\right|=p^{a} \cdot h\) with \((p, h)=1\). Then
(i) There exists an element \(\rho_{E}\) of \(H^{e v}(G, k)\) such that for elementary abelian p-subgroups \(E\) ' of \(G\),
\[
\operatorname{res}_{G, E^{\prime}}\left(\rho_{E}\right)=\left\{\begin{array}{c}
0 \quad \text { if } E \text { is not conjugate to a subgroup } \\
\left(\sigma_{E}\right)^{p^{a}} \\
\text { of } E^{\prime} \\
E=E^{\prime} .
\end{array}\right.
\]
(ii) If \(y \in H^{e v}(E, k)\) is invariant under \(N_{G}(E)\) then there is an element \(y^{\prime} \varepsilon H^{e v}(G, k)\) with
\[
\operatorname{res}_{G, E}\left(y^{\prime}\right)=\left(y \sigma_{E}\right)^{p^{a}} .
\]

Proof
(i) Let \(z=\) norm \(_{E, G}\left(1+\sigma_{E}\right)\). The Mackey formula gives
\[
\begin{aligned}
\operatorname{res}_{G, E}(z) & =\left(1+\sigma_{E}\right)^{P^{a} \cdot h} \\
& =1+h\left(\sigma_{E}\right)^{P^{2}}+\text { terms of higher degree. }
\end{aligned}
\]

Also, if \(E\) is not conjugate to a subgroup of \(E\), then res \(_{G, E}(z)=1\), since for any proper subgroup \(E^{\prime \prime}\) of \(E\), \(\operatorname{res}_{E, E^{\prime \prime}}\left(\sigma_{E}\right)=0\). Thus we may take (\(1 / \mathrm{h}\)) times the homogeneous part of \(z\) of degree \(\mathrm{p}^{2} \cdot \operatorname{deg}\left(\sigma_{E}\right)\) as our \(\rho_{E}\).
(ii) Suppose without loss of generality that \(y\) is homogeneous. Let \(z^{\prime}=\operatorname{norm}_{E, G}\left(1+y \sigma_{E}\right)\). Then
\[
\mathrm{res}_{G, E}\left(z^{\prime}\right)=1+h\left(y \sigma_{E}\right) \mathrm{P}^{\mathrm{a}}+\text { terms of higher degree. }
\]

Thus we may take (\(1 / \mathrm{h}\)) times the homogeneous part of \(z^{\prime}\) of degree \(p^{a} \cdot \operatorname{deg}\left(y \sigma_{E}\right)\) as our \(y^{\prime}\). o

\subsection*{2.26.6 Definitions}

Given \(x \in X_{G}, 2.26 .3\) shows that there exists an elementary abelian \(p\)-subgroup \(E \leq G\) and ' \(y \in X_{E}\) such that \(x=t_{E, G}(y)\). If such a pair (\(\mathrm{E}, \mathrm{y}\)) satisfies the minimality condition that there does
 say that \(E\) is a vertex of \(x\) and \(y\) is a source (by analogy with section 2.5).

\subsection*{2.26.7 Theorem}
(i) Given \(\mathrm{x} \in \mathrm{X}_{\mathrm{G}}\), suppose \(\left(\mathrm{E}_{1}, \mathrm{y}_{1}\right)\) and \(\left(\mathrm{E}_{2}, \mathrm{y}_{2}\right)\) are both vertices and sources for \(x\). Then there is an element \(g \varepsilon G\) with \(E_{1}{ }^{g}=E_{2}\) and \(y_{1}{ }^{g}=y_{2}\).
(ii) (Quillen stratification of \(X_{G}\))
\(X_{G}\) is a disjoint union of the locally closed subvarieties \(X_{G, E}^{+}\), as \(E\) runs over a set of representatives of conjugacy classes of elementary abelian \(p\)-subgroups of \(G\). The group \(W_{G}(E)=N_{G}(E) / C_{G}(E)\) acts freely on \(X_{E}^{+}\), and \(t_{E, G}\) induces a finite homeomorphism
\[
\mathrm{X}_{\mathrm{E}}^{+} / \mathrm{W}_{\mathrm{G}}(\mathrm{E}) \rightarrow \mathrm{X}_{\mathrm{G}, \mathrm{E}}^{+}
\]

The topology on \(X_{G}\) is given as follows. The natural map \(\underset{\mathbb{E}}{\lim } X_{E} \rightarrow X_{G}\) is a finite homeomorphism. (The morphisms in the limit symbol are compositions of inclusions and conjugations).

Note
The finite homeomorphism \(X_{E}^{+} / W_{G}(E) \rightarrow X_{G, E}^{+} \quad\) is called by Quillen an 'inseparable isogeny", since it means that at the level of
coordinate rings, there are inclusions
\[
\mathrm{k}\left[\mathrm{X}_{\mathrm{E}}^{+} / \mathrm{W}_{\mathrm{G}}(E)\right] \quad \geq \mathrm{k}\left[\mathrm{X}_{\mathrm{G}, \mathrm{E}}^{+}\right] \quad \supseteq \mathrm{k}\left[\mathrm{X}_{\mathrm{E}}^{+} / \mathrm{W}_{\mathrm{G}}(E)\right]^{\mathrm{p}^{a}}
\]
where \(p^{a}\) is the power of \(p\) appearing in 2.26.5. In fact the argument can be strengthened to show that \(\mathrm{p}^{\text {a }}\) may be taken to be the p-part of \(\left|C_{G}(E): E\right|\), see [9].

Proof of 2.26.7
For each elementary abelian subgroup \(E \leq G\), we have a map \(X_{E}^{+} \rightarrow X_{G, E}^{+}\). Lemma 2.26 .5 shows that for the corresponding map of coordinate rings
\[
\begin{aligned}
k\left[X_{G, E}^{+}\right] & \supseteq k\left[X_{G, E}\right]\left[\rho_{E}^{-1}\right] \\
\underbrace{\downarrow}_{k\left[X_{E}^{+}\right]} & \cong H^{e v}(E, k)\left[\sigma_{E}^{-1}\right]
\end{aligned}
\]
the \(p^{2}\)-th power of any element of \(k\left(X_{E}^{+}\right)\)invariant under \(W_{G}(E)\) is in the image. This means that if we look at the extensions of function fields
\[
k\left(X_{G, E}^{+}\right) \leftrightarrow k\left(X_{E}^{+}\right)^{W_{G}(E)} \hookrightarrow k\left(X_{E}^{+}\right),
\]
the first extension is purely inseparable, while the second is Galois, with Galois group \(W_{G}(E)\). Thus the map \(X_{E}^{+} / W_{G}(E) \rightarrow X_{G, E}^{+}\)is a finite homeomorphism (or inseparable isogeny).

Next, if \(E_{1}\) is not conjugate to a subgroup of \(E_{+}\), then by 2.26.5, \(\quad \rho_{\mathrm{E}_{1}}\) is invertible on \(\mathrm{X}_{\mathrm{G}, \mathrm{E}_{1}}^{+}\)and zero on \(\mathrm{X}_{\mathrm{G}, \mathrm{E}_{2}}^{+{ }^{2}}\). Thus the different \(X_{G, E}^{+}\)are disjoint for non-conjugate \(E\) 's. Moreover, 2.26 .3 shows that the union of the \(X_{G, E}^{+}\)is \(X_{G}\). This completes the proof of (i) and the first part of (ii).

It now remains to study the glueing together of the \(X_{G, E}^{+}\)to form \(X_{G}\). Since there are only finitely many elementary abelian \(p\)-subgroups of \(G\), and for each one the map \(X_{E} \rightarrow X_{G, E}\) is finite, it follows that the map \(\underset{\mathrm{E}}{\lim } \mathrm{X}_{\mathrm{E}} \rightarrow \mathrm{X}_{\mathrm{G}}\) is finite. The bijectivity follows from the fact that the \(X_{G, E}^{+}\)are disjoint. \(\quad\) o Examp1e
R. Wilson [94] has shown that Lyons' simple group Ly has exactly two conjugacy classes of maximal elementary abelian subgroups, of order \(2^{3}\) and \(2^{4}\), with normalizers \(2^{3} \cdot L_{3}(2)\) and \(2^{4}\). \(3 A_{7}\). These may be chosen to intersect in a subgroup of order \(2^{2}\). Thus \(X_{G}\) has two irreducible components, of dimension three and four, and their
intersection has dimension two.

\subsection*{2.26.8 Theorem}

Let \(H\) be a subgroup of \(G\), and \(V\) a \(k G\)-module. Then
\[
x_{H}(\mathrm{~V})=\mathrm{t}_{\mathrm{H}, \mathrm{G}}^{-1}\left(\mathrm{X}_{\mathrm{G}}(\mathrm{~V})\right)
\]

Proof
It is clear that \(t_{H, G}\left(X_{H}(V)\right) \subseteq X_{G}(V)\), so it remains to show that \(t_{H, G}^{-1}\left(X_{G}(V)\right) \subseteq X_{H}(V)\). Let \(x \bar{\varepsilon} t_{H, G}^{-1}\left(X_{G}(V)\right)\). By 2.26 .2 we may choose \(E_{1} \leq G\), and \(y_{1} \in X_{E_{1}}(V)\), with \(t_{H, G}(x)=t_{E, G}\left(y_{1}\right)\). Let \(\left(E_{2}, y_{2}\right)\) be a vertex and source of \(x\). Then \(\left(E_{2}, y_{2}\right)\) are also a vertex and source of \(t_{H, G}(x)\), and so by \(2.26 .7(i)\), there exists \(\mathrm{g} \varepsilon \mathrm{G}\) with \(\mathrm{E}_{2}{ }^{\mathrm{g}} \leq \mathrm{E}_{1}\) and \(\mathrm{t}_{\mathrm{E}_{2}}{ }^{\mathrm{g}}, \mathrm{E}_{1}\left(\mathrm{y}_{2}{ }^{\mathrm{g}}\right)=\mathrm{y}_{1}\). By 2.25.10, it follows that \(y_{2}{ }^{g} \varepsilon X_{E_{2}} g(V)\), and so \(y_{2} \varepsilon X_{E_{2}}(V)\), and \(x=t_{E_{2}, H}\left(y_{2}\right) \varepsilon X_{H}(V)\).

The following theorem summarizes some of the main properties of the cohomology varieties. See also 2.26.10, 2.27 and 2.28.7.
2.26.9 Theorem

Let \(H \leq G\), let \(V\) be a \(k G-m o d u l e\) and \(W\) a \(k H-m o d u l e\).
(i) \(\operatorname{dim}\left(X_{G}(V)\right)=c x_{G}(V)\)
(ii) \(X_{G}(V)=X_{G}\left(V^{*}\right)=X_{G}\left(V \otimes V^{*}\right)=X_{G}\left(\Omega^{n_{V}}\right)\)
(iii) If \(0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0\) is a short exact sequence of kG-modules then \(X_{G}\left(V_{i}\right) \subseteq X_{G}\left(V_{j}\right) \cup X_{G}\left(V_{k}\right)\) for \(\{i, j, k\}=\{1,2,3\}\).
(iv) \(X_{G}\left(V \oplus V^{\prime}\right)=X_{G}(V) \cup X_{G}\left(V^{\prime}\right)\)
(v) \(\quad X_{G}\left(v \otimes V^{\prime}\right)=X_{G}(V) \cap X_{G}\left(V^{\prime}\right)\)
(vi) \(X_{H}\left(V t_{H}\right)=t_{H, G}^{-1}\left(X_{G}(V)\right)\)
(vii) \(X_{G}\left(W t^{G}\right)=t_{H, G}\left(X_{H}(W)\right)\)
(viii) \(X_{G}(V)=\{0\}\) if and only if \(V\) is projective
(ix) \(\quad X_{G}(V)=\underset{E}{U} t_{E, G}\left(X_{E}\left(V t_{E}\right)\right)\) as \(E\) ranges over the set of elementary abelian \(p\)-subgroups of \(G\).
(\(x\)) If (\(p\)) denotes the Frobenius map on both modules and varieties than \(X_{G}\left(V^{(p)}\right)=X_{G}(V){ }^{(p)}\).

\section*{Proof}
(i) See 2.25.4 and 2.25.9.
(ii) By 2.26.2 it suffices to prove these equalities for \(G=E\)
elementary abelian. Thus by 2.25 .7 we must show that
\[
Y_{E}(V)=Y_{E}\left(V^{*}\right)=Y_{E}\left(V V^{*}\right)=Y_{E}\left(s^{n^{V}} \mathrm{~V}\right)
\]

But this follows from 1.4 .4 and the definition of \(Y_{E}(V)\).
(iii) This follows in a similar way from 2.25 .7 and 2.26.2.
(iv) This is clear.
(v) Consider \(U \otimes V\) as a \(k(G \times G)\)-module. Then the Künneth formula shows that we have

The diagonal map \(G \subset G \times G\) gives rise to the diagonal map \(X_{G} \hookrightarrow X_{G} \times X_{G}\). Hence by 2.26.8,
\[
\begin{aligned}
X_{G}(V \otimes V) & =t_{G, G \times G}^{-1}\left(X_{G \times G}\left(V \otimes V^{\prime}\right)\right) \\
& =t_{G, G \times G}^{-1}\left(X_{G}(V) \times X_{G}\left(V^{\prime}\right)\right) \\
& =X_{G}(V) \cap X_{G}\left(V^{\prime}\right) .
\end{aligned}
\]
(vi) See 2.26.8.
(vii) Since \(W \uparrow^{G}{ }^{\downarrow}{ }_{H}\) has \(W\) as a direct summand,
\[
t_{H, G}\left(X_{H}(W)\right) \subseteq t_{H, G}\left(X_{H}\left(W_{\uparrow}{ }^{G^{*}}{ }_{H}\right)\right) \subseteq X_{G}\left(W \uparrow{ }^{G}\right) \text {. }
\]

Conversely if \(x \in X_{G}\left(W \uparrow^{G}\right)\), let (E,y) be a vertex and source of \(x\). Then by (vi), (iv) and Mackey decomposition,
\[
y \varepsilon X_{E}\left(W \not \uparrow^{G}{ }_{E}\right)=X_{E}\left(\sum_{H g E} W^{g^{g}}{ }_{H} g_{\cap E} \uparrow^{E}\right)=\bigcup_{H g E}^{U} X_{E}\left(W^{g}{ }_{H} g_{\cap E} \uparrow^{E}\right) \text {. Thus }
\]
replacing (\(E, y\)) by a conjugate if necessary, we have
\[
y \varepsilon X_{E}\left(W \not{ }_{H \cap E} \uparrow^{E}\right)=Y_{E}\left(W \not{ }^{E} H E^{\dagger^{E}}\right) \quad \text { by } 2.25 .7 \text {, and so } E \leq H
\]
by minimality of \(E\). Now since \(y \varepsilon X_{E}\left(W \downarrow_{E}\right), t_{E, H}(y) \varepsilon X_{H}(W)\) and \(x=t_{H, G}\left(t_{E, H}(y)\right) \varepsilon t_{H, G}\left(X_{H}(W)\right)\).
(viii) This follows from (i) and 2.24.4(x).
(ix) See 2.26.2.
(x) The Frobenius map acts on the bar resolution \(\tilde{X}_{j}(G)\) and induces an isomorphism \(\operatorname{Hom}\left(\tilde{X}_{i}(G), V(P)\right) \cong \operatorname{Hom}\left(\tilde{X}_{i}(G), V\right)(p)\) commuting with the \(\delta^{\prime} s\).
2.26.10 Corollary

Suppose \(V\) and \(V^{\prime}\) are modules and \(\bar{X}_{G}(V) \cap \bar{X}_{G}\left(V^{\prime}\right)=\emptyset\) (i.e. \(X_{G}(V) \cap X_{G}\left(V^{\prime}\right)=\{0\}\)). Then \(\operatorname{Ext}{\underset{G}{i}}_{i}\left(V, V^{\prime}\right)=0\) for all \(i>0\).
\(\left.X_{G} \frac{\text { Proof }}{\left(V^{*} \otimes\right.} V^{\prime}\right)_{*}=X_{G}(V) \cap X_{G}\left(V^{\prime}\right)=\{0\} \quad\) by \(2.26 .9(i i)\) and (v), and so by (viii), \(V^{*} \otimes V^{\prime}\) is projective. Thus
\[
\operatorname{Ext}_{G}^{i}\left(V, V^{\prime}\right) \cong H^{i}\left(G, V^{*} \otimes V^{\prime}\right)=0
\]

\section*{Remark}

It follows from 2.26.9 that if \(X\) is a subset of \(\bar{X}_{G}\) then the linear span \(A(G, X) \subseteq A_{k}(G)\) of modules \(V\) for which \(\bar{X}_{G}(V) \subseteq X\), is an ideal in \(A_{k}(G)\). We shall obtain some information about these ideals in 2.27.9.

Finally, we have the module analogue of 2.26.6(ii).
2.26.11 Theorem (Quillen stratification of \(X_{G}(V)\), Avrunin-Scott)
\(X_{G}(V)\) is a disjoint union of the locally closed subvarieties \(X_{G, E}^{+}(V)\), as \(E\) runs over a set of representatives of conjugacy classes of elementary abelian p-subgroups of \(G\). The group \(W_{G}(E)=N_{G}(E) / C_{G}(E)\) acts freely on \(X_{E}^{+}(V)\), and \(t_{E, G}\) induces a finite homeomorphism
\[
X_{E}^{+}(V) / W_{G}(E) \rightarrow X_{G, E}^{+}(V)
\]

The natural map
\[
\lim _{\vec{E}} X_{E}(V) \rightarrow X_{G}(V)
\]
is a bijective finite morphism.

\section*{Proof}

This follows from 2.26.6(ii) and 2.26.8.
Note that \(X_{E}^{+}(V)\) and \(X_{G, E}^{+}(V)\) are empty unless \(E\) is contained in a vertex of some direct summand of \(V\).

\section*{Exercise}

If \(X\) is a projective variety of dimension \(d\) in \(\mathbb{P}^{n}\) then there is a linear subspace of dimension \(n-d-1\) not intersecting \(X\). Use this fact to show that if \(V\) is a \(k G\)-module and
\[
s=(p-r a n k \text { of } G)-c x_{G}(V)
\]
then \(p^{s} \mid \operatorname{dim}_{k}(V)\).
(Hint: first restrict to a suitable elementary abelian subgroup \(E\) of \(G\), and then restrict to a subgroup of \(k E\) of order \(p^{s}\) to obtain a projective module).

\subsection*{2.27 What varieties can occur?}

We know from section 2.25 that for every \(k G-m o d u l e ~ V ~ w e ~ h a v e ~\) a subvariety \(X_{G}(V)\) of the variety \(X_{G}=\operatorname{Max}\left(H^{e V}(G, k)\right)\). In this section we investigate the following questions.
(1) Which subvarieties of \(X_{G}\) occur as \(X_{G}(V)\) for some module \(V ?\)
(2) Which subvarieties of \(X_{G}\) occur as \(X_{G}(V)\) for some indecomposable module \(V\) ?

We obtain a complete and simple answer to (1), namely that every homogeneous subvariety of \(X_{G}\) is of the form \(X_{G}(V)\) for some module V (2.27.3).

A partial answer to (2) is given in Carlson's result 2.27.8, which states that if \(V\) is indecomposable then \(\bar{X}_{G}(V)\) is topologically connected.

We shall see that every irreducible homogeneous subvariety of \(X_{G}\) occurs as \(X_{G}(V)\) for some indecomposable module \(V\), but the question of exactly which connected non-irreducible varieties can occur is still open.

The following construction for modules \(L_{\zeta}\) is basic to the ensuing discussion, and lemma 2.27.2 is what allows us to prove results by induction on dimension.

For any kG-module \(V\), there is a natural isomorphism \(E x t_{G}^{n}(V, V) \cong\left(\Omega^{n} V, V\right)^{1, G}\) by 2.19.1. Thus an element \(\zeta \varepsilon \operatorname{Ext}_{G}^{n}(V, V)\) is represented by a homomorphism \(\quad \Omega^{n} V \rightarrow V\), and such a homomorphism represents the zero element if and only if it factors through a projective module. In particular, for \(V=k\), the trivial \(k G-m o d u l e\), no homomorphisms \(\quad \Omega^{\mathrm{n}} \mathrm{k} \rightarrow \mathrm{k}\) factor through projective modules, and so for each \(\zeta \varepsilon \quad H^{n}(G, k) \cong \operatorname{Ext}_{G}^{n}(k, k)\) we have a well defined homomorphism \(\quad \Omega^{n_{k}} \rightarrow k\) whose kernel we denote by \(L_{\zeta}\). Thus we have a short exact sequence
\[
0 \longrightarrow L_{\zeta} \longrightarrow \Omega^{n_{k}} \xrightarrow{\zeta} k \longrightarrow 0 .
\]

\subsection*{2.27.1 Lemma}

Let \(\phi\) be the natural homomorphism from \(E x t_{G}^{n}(k, k)\) to \(\operatorname{Ext}_{G}^{\mathrm{n}}(\mathrm{V}, \mathrm{V})\) given by tensoring with \(V\). If \(\zeta \varepsilon \operatorname{Ker}(\phi)\) then
\[
\mathrm{L}_{\zeta} \otimes \mathrm{V} \cong \Omega^{\mathrm{n}} \mathrm{~V} \oplus \Omega \mathrm{~V} \oplus \mathrm{P}
\]
where \(P\) is a projective module.
Proof
We tensor the short exact sequence defining \(L_{\zeta}\) with \(V\) to give
\[
0 \longrightarrow \mathrm{~L}_{\zeta} \otimes \mathrm{V} \longrightarrow \Omega^{n_{k} \otimes \mathrm{~V} \longrightarrow \zeta \otimes 1} \mathrm{~V} \longrightarrow 0
\]

Since \(\quad \zeta \varepsilon \operatorname{Ker}(\phi), \zeta \geqslant 1\) factors through a projective module.
Thus by 1.4.2(i),
\[
\mathrm{L}_{\zeta} \otimes \mathrm{V} \oplus \mathrm{P}_{\mathrm{V}} \cong \Omega^{\mathrm{n}_{\mathrm{k}} \otimes \mathrm{~V} \oplus \Omega \mathrm{~V}}
\]
where \(P_{V}\) is the projective cover of \(V\). Now \(\Omega^{n_{k}} \geqslant V \cong \Omega^{n_{V}}\) \(\oplus\) projective by 1.4 .2 (ii), and so the result follows from the Krull-Schmidt theorem. \(\quad\)

\subsection*{2.27.2 Lemma}

For \(\zeta\) a homogeneous element of \(H^{e V}(G, k), X_{G}\left(L_{\zeta}\right)\) is the hypersurface \(\quad X_{G}(\zeta)\) defined by \(\zeta\) considered as an element of the coordinate ring of \(X_{G}\).

lemma in the case where \(G=E\) is elementary abelian Following through the identification of \(X_{E}\) with \(Y_{E}\) given in the proof of 2.25 .7 , we see that we are required to prove that
\[
Y_{E}\left(L_{\zeta}\right)=\{0\} \cup\left\{\bar{x} \varepsilon J / J^{2}: \operatorname{res}_{E,<1+x>}(\zeta)=0\right\}
\]

But by Schanue1's lemma (1.4.2 (ii)), \(\Omega^{n}(k)+_{<1+x>} \cong k \oplus P\)
with \(P\) projective (for a cyclic group of order \(p, \Omega^{n}(k) \cong k\) since \(n\) is even). Thus res \(E,<l+x>(\zeta)=0\) if and only if the map \(k \oplus P \rightarrow k\) in the short exact sequence
\[
0 \longrightarrow \mathrm{~L}_{\zeta}{ }^{+}<1+x>\longrightarrow \mathrm{k} \oplus \mathrm{P} \longrightarrow \mathrm{k} \longrightarrow 0
\]
factors through a projective module. If it does factor then \(L_{\zeta^{+}<1+x>} \cong k \oplus \Omega(k) \oplus\) projective, while if it does not factor then \(L_{\zeta}{ }^{+}<1+x>0\), and so we are done.

\subsection*{2.27.3 Theorem (Carlson)}

Every homogeneous subvariety of \(X_{G}\) is of the form \(X_{G}(V)\) for some module \(V\).

\section*{Proof}

Suppose \(X\) is a homogeneous subvariety of \(X_{G}\), and the corresponding ideal in \(H^{e v}(G, k)\) is \(I\). Since \(H^{\mathrm{ev}}(G, k)\) is

Noetherian (see 2.22, properties of cohomology (vii)), I is finitely generated by homogeneous elements \(I=<_{\zeta_{1}}, \ldots, \zeta_{r}>\). Then by 2.26.9(ii) and 2.27.2,
\[
\begin{aligned}
X_{G}\left(L_{\zeta_{1}} \otimes \ldots L_{\zeta_{I}}\right) & =X_{G}\left(L_{\zeta_{1}}\right) \cap \ldots \cap X_{G}\left(L_{\zeta_{I}}\right) \\
& =X_{X_{G}}\left(\zeta_{1}\right) \cap \ldots \cap X_{G}\left(\zeta_{I}\right) \\
& =X .
\end{aligned}
\]

\subsection*{2.27.4 Corollary}

The map \(X \mapsto A(G, X)\) (see remark after 2.26.9) is an inclusion preserving injection from the set of subsets of \(\bar{X}_{G}\) to the set of ideals of \(A_{k}(G)\).

\subsection*{2.27.5 Corollary}

Every irreducible homogeneous subvariety of \(X_{G}\) is of the form \(X_{G}(V)\) for some indecomposable module \(V\).

\section*{Proof}

This follows from 2.27.3 and 2.26.9 (iv). \(\quad\) a

\subsection*{2.27.6 Lemma}

Suppose \(\zeta_{1}\) and \(\zeta_{2}\) are homogeneous elements of \(H^{e V}(G, k)\) of degrees \(r\) and \(s\) respectively. Then there is a short exact sequence \(0 \rightarrow \Omega^{I}\left(L_{\zeta_{2}}\right) \rightarrow L_{\zeta_{1} \zeta_{2}} \oplus P \rightarrow L_{\zeta_{1}} \rightarrow 0 \quad\) with \(\quad P \quad\) a projective module.
\(\frac{\text { Proof }}{\text { Tensor the short exact sequence }} 0 \rightarrow L_{\zeta_{2}} \rightarrow \Omega^{s}(k) \xrightarrow{\zeta_{2}}>k \rightarrow 0\) with \(\Omega^{r}(k)\) to obtain a short exact sequence
\[
0 \rightarrow \Omega^{r}\left(L_{\zeta_{2}}\right) \oplus \text { projective } \rightarrow \Omega^{r+s}(k) \oplus \text { projective } \rightarrow \Omega^{s}(k) \rightarrow 0
\]

Since projectives are injective (1.4.4), we may subtract out projective modules from the first two terms to obtain
\[
0 \rightarrow \Omega^{\mathrm{r}}\left(\mathrm{~L}_{\zeta_{2}}\right) \rightarrow \Omega^{\mathrm{r}+\mathrm{s}}(\mathrm{k}) \oplus \mathrm{P} \rightarrow \Omega^{\mathrm{s}}(\mathrm{k}) \rightarrow 0 .
\]

We now form the pullback diagram

2.27.7 Theorem (Carlson).

If \(X_{G}(V) \subseteq X_{1} \cup X_{2}\), where \(X_{1}\) and \(X_{2}\) are homogeneous subvarieties of \(X_{G}\) with \(X_{1} \cap X_{2}=\{0\}\), then we may write \(V=V_{1} \oplus V_{2}\) with \(X_{G}\left(V_{1}\right) \subseteq X_{1}\) and \(X_{G}\left(V_{2}\right) \subseteq X_{2}\).

Proof
We prove this by induction on \(d=\operatorname{dim}\left(X_{1}\right)+\operatorname{dim}\left(X_{2}\right)\). The result is clear when \(d=0\) or 1 , so suppose \(d>1\). Choose \(\zeta_{1}\) and \(\zeta_{2}\) homogeneous elements of \(H^{e v}(G, k)\) of degrees \(r\) and \(s\) respectively, with
(i) \(X_{1} \subseteq X_{G}\left(\zeta_{1}\right)\) and \(\operatorname{dim}\left(X_{2} \cap X_{G}\left(\zeta_{2}\right)\right)=\operatorname{dim}\left(X_{2}\right)-1\), and
(ii) \(X_{2} \subseteq X_{G}\left(\zeta_{2}\right)\) and \(\operatorname{dim}\left(X_{1} \cap X_{G}\left(\zeta_{1}\right)\right)=\operatorname{dim}\left(X_{1}\right)-1\).

Then \(X_{G}(V) \subseteq X_{1} \cup X_{2} \subseteq X_{G}\left(\zeta_{1}\right) \cup X_{G}\left(\zeta_{2}\right)=X_{G}\left(\zeta_{1} \zeta_{2}\right)\) and so \(\zeta_{1} \zeta_{2} \varepsilon I_{G}(V)\). Thus replacing \(\zeta_{1}\) and \(\zeta_{2}\) by suitable powers, we may assume that \({\underset{\sim}{*}}_{1}^{\zeta_{2}} \varepsilon^{\varepsilon} \operatorname{Ker}(\phi)\), where \(\phi\) is the natural map from \(\operatorname{Ext}_{\mathrm{G}}^{*}(\mathrm{k}, \mathrm{k})\) to \(\operatorname{Ext}_{\mathrm{G}}^{*^{\prime}}(\mathrm{V}, \mathrm{V})=\mathrm{H}^{*}\left(\mathrm{G}, \mathrm{V} * \mathrm{~V}^{*}\right)\). Thus by 2.27.1
\[
\mathrm{L}_{\zeta_{1} \zeta_{2}} \otimes \mathrm{~V} \cong \Omega^{\mathrm{r}+\mathbf{s}}(\mathrm{V}) \oplus \Omega(\mathrm{V}) \oplus \text { projective. }
\]

Now tensor \(V\) with the short exact sequence given in 2.27 .6 to obtain
\[
0 \rightarrow \Omega^{r}\left(L_{\zeta_{2}}\right) \otimes V \rightarrow \Omega^{r+s}(V) \oplus \Omega(V) \oplus \text { projective } \rightarrow L_{\zeta_{1}} \otimes V \rightarrow 0
\]

Now by 2.26 .9 and 2.27.2,
\[
X_{G}\left(L_{\zeta_{1}} \otimes V\right)=X_{G}(V) \cap X_{G}\left(\zeta_{1}\right)
\]
and
\[
X_{G}\left(\Omega^{r}\left(L_{\zeta_{2}}\right) \otimes V\right)=X_{G}(V) \cap X_{G}\left(\zeta_{2}\right)
\]

Thus by the inductive hypothesis, \(\mathrm{L}_{\zeta_{1}} \otimes \mathrm{~V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}\) with \(X_{G}\left(W_{1}\right) \subseteq X_{1} \cap X_{G}\left(\zeta_{1}\right)\) and \(X_{G}\left(W_{2}\right) \subseteq X_{2}\), and \(\Omega^{r}\left(L_{\zeta_{2}}\right) \otimes V=W_{1}^{\prime} \oplus W_{2}^{\prime}\) with \(X_{G}\left(W_{1}^{\prime}\right) \subseteq X_{1}\) and \(X_{G}\left(W_{2}^{\prime}\right) \subseteq X_{2} \cap X_{G}\left(\zeta_{2}\right)\). Now by 2.26.10, \(\operatorname{Ext} \mathrm{G}_{\mathrm{G}}^{1}\left(\mathrm{~W}_{1}, W_{2}^{\prime}\right)=0\) and \(\operatorname{Ext}_{\mathrm{G}}^{1}\left(\mathrm{~W}_{2}, \mathrm{~W}_{1}^{\prime}\right)=0\). Thus we have
\[
\Omega^{\mathrm{n}}(\mathrm{~V}) \oplus \Omega(\mathrm{V}) \oplus \text { projective }=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}
\]
where there are short exact sequences
\[
0 \rightarrow W_{1}^{\prime} \rightarrow V_{1} \rightarrow W_{1} \rightarrow 0
\]
and
\[
0 \rightarrow W_{2}^{\prime} \rightarrow V_{2} \rightarrow W_{2} \rightarrow 0
\]

The result now follows from 2.26 .9 (ii) and the Krull-Schmidt theorem. a

\subsection*{2.27.8 Corollary}

If \(V\) is indecomposable then \(\bar{X}_{G}(V)\) is topologically connected (in the Zariski topology).

We now have enough information to state the main properties of the ideals \(A(G, X)\) introduced after 2.26 .10 (see also 2.28.8).

\subsection*{2.27.9 Theorem}

Let \(H \leq G\), let \(X\) be a subset of \(\bar{X}_{G}\) and \(X^{\prime}\) a subset of \(\bar{X}_{H}\).
(i) \(A(G, X)\) is an ideal in \(A(G)\)
(ii) \(A\left(H, t_{H, G}^{-1}(X)\right) \geq r_{G, H}(A(G, X))\)
(iii) \(A\left(G, t_{H, G}\left(X^{\prime}\right)\right) \geq i_{H, G}\left(A\left(H, X^{\prime}\right)\right)\)
(iv) \(A(G, X)\) is closed under taking dual modules and under \(\Omega\).
(v) If \(V \otimes V^{*}{ }_{\varepsilon} A(G, X)\) then so are \(V\) and \(V^{*}\).
(vi) \(A(G, X)\) is closed under taking extensions of modules.
(vii) \(A(G, \emptyset)=A(G, 1)\), the linear span of the projective modules.
(viii) \(A\left(G, X_{1} \cap X_{2}\right)=A\left(G, X_{1}\right) \cap A\left(G, X_{2}\right)\)
(ix) \(A\left(G, X_{1} \cup X_{2}\right) \supseteq A\left(G, X_{1}\right)+A\left(G, X_{2}\right)\) with equality if \(\mathrm{X}_{1} \cap \mathrm{X}_{2}=\emptyset\).
(x) If \(X_{1} \ddagger X_{2}\) then \(A\left(G, X_{1}\right) \varsubsetneqq A\left(G, X_{2}\right)\)
(xi) \(\psi^{n}(A(G, X)) \subseteq A(G, X)\) for \(n\) coprime to \(p\) (see 2.16), while \(\psi^{P}(A(G, X)) \subseteq A(\bar{G}, X(P))\), where \((p)\) is the Frobenius map on varieties. Thus if \(X=X^{(P)}, A(G, X)\) is stable under the operations \(\lambda^{n}\).

\section*{Proof}
(i) See 2.26.9(iv) and (v).
(ii) See 2.26.9(vi).
(iii) See 2.26.9(vii).
(iv) See 2.26.9(ii).
(v) See 2.26 .9 (ii)
(vi) See 2.26.9(iii), \(i=2\).
(vii) See 2.26.9(viii).
(viii) Clear.
(ix) This follows from 2.27.7.
(x) See 2.27.4.
(xi) Suppose \(X_{G}(V) \subseteq X\). Then for \(n\) coprime to \(p\), \(\psi^{n}(V)\) is a linear combination of direct summands of. \(\mathcal{O}^{n}(V)\), and hence lies in \(A(G, X)\). For \(n=p, 2.26 .9(x)\) tells us that \({ }_{\psi} \mathrm{P}(\mathrm{A}(\mathrm{G}, \mathrm{X})) \subseteq \mathrm{A}\left(\mathrm{G}, \mathrm{X}^{(\mathrm{p})}\right)\). Finally, the \(\lambda^{\mathrm{n}}\) are linear combinations of the \(\psi^{n}\). \(\quad\).

Note that it is difficult to make a ring theoretic statement corresponding to 2.26 .9 (ix). It is tempting to write \(A(G, X)=\bigcap_{E} r_{G, E}^{-1}\left(A\left(E, t_{E, G}^{-1}(X)\right)\right)\), but this is false in general. For example, the right hand side contains \(V_{2}-V_{1}-V_{3}\) whenever \(0 \rightarrow \mathrm{~V}_{1} \rightarrow \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{3} \rightarrow 0\) is a short exact sequence which splits on restriction to every elementary abelian \(p\)-subgroup of \(G\), and we know that there are plenty of these by 2.15.6.

\subsection*{2.28 Irreducible maps and the Auslander-Reiten Quiver}

In this section, we describe a certain directed graph associated with the almost split sequences, and describe its elementary properties. The results of sections 2.28 to 2.32 are summarized in theorem 2.32.6.

\subsection*{2.28.1 Definition}

Suppose \(U\) and \(V\) are indecomposable kG-modules. A map \(\lambda: U \rightarrow V\) is irreducible if \(\lambda\) is not an isomorphism, and whenever \(\lambda=\mu \nu \quad\) is a factorization of \(\lambda\), either \(\mu\) has a left inverse or \(\nu\) has a right inverse.

Let \(\operatorname{Rad}(U, V)\) be the space of non-isomorphisms from \(U\) to \(V\), and \(\operatorname{Rad}^{2}(U, V)\) be the space spanned by the homomorphisms of the form \(\alpha \beta \quad\) with \(\quad \alpha \varepsilon \operatorname{Rad}(U, W)\) and \(\quad \beta \varepsilon \operatorname{Rad}(W, V)\) for some indecomposable \(W\). Then the set of irreducible maps is precisely \(\operatorname{Rad}(U, V) \backslash \operatorname{Rad}^{2}(U, V)\). The space \(\operatorname{Irr}(U, V)=\operatorname{Rad}(U, V) / \operatorname{Rad}^{2}(U, V) \quad i s\) an \(E n d_{k G}(U)-E n d_{k G}(V)\) bimodule. Let its length as a left End \(_{k G}(U)\)-module be \(a_{U V}\) and its length as a right End \(_{k G}(V)\)-module be \(a_{U V}\). Note that if \(k\) is algebraically closed then
\(a_{U V}=a_{U V}=\operatorname{dim} \operatorname{Irr}(U, V)\).
The Auslander-Reiten quiver of \(G\) is the directed graph whose vertices are the indecomposable modules, and whose edges are as follows.
\[
\begin{array}{lll}
\mathrm{U} \cdot & \text { if } & \operatorname{Irr}(\mathrm{U}, \mathrm{~V})=0 \\
\mathrm{U} \xrightarrow{\left(\mathrm{a}_{\mathrm{UV}}, \mathrm{a}_{\mathrm{UV}}^{\prime}\right)} \mathrm{V} & \text { if } & \operatorname{Irr}(\mathrm{U}, \mathrm{~V}) \neq 0 \\
\mathrm{U} \longrightarrow \mathrm{~V} & \text { if } & a_{\mathrm{UV}}=a_{U V}^{\prime}=1
\end{array}
\]

\subsection*{2.28.2 Lemma}

If \(\lambda: U \rightarrow V\) is irreducible, then \(\lambda\) is either an epimorphism with an indecomposable kernel, or a monomorphism with an indecomposable cokernel.

\section*{Proof}

The factorization \(U \xrightarrow{\mu} \mathrm{U} / \operatorname{Ker}(\lambda) \xrightarrow{\nu} V\) shows that \(\lambda\) is either an epimorphism or a monomorphism. Suppose \(\lambda\) is an epimorphism with kernel \(A \oplus B\). Then there is a factorization
\[
U \xrightarrow{\mu} U / A \xrightarrow{\nu} U /(A \oplus B)=V .
\]

If either \(\mu\) has a left inverse or \(v\) has a right inverse, it is easy to see that \(U\) is decomposable. A similar argument works when \(\lambda\) is a monomorphism.

\subsection*{2.28.3 Proposition}
(i) If V is not projective, let the almost split sequence terminating in \(V\) be \(0 \rightarrow \Omega^{2} \mathrm{~V} \longrightarrow \mathrm{X}_{\mathrm{V}} \stackrel{\sigma}{\mathrm{V}} \mathrm{V} \rightarrow 0\). Then \(\lambda: U \rightarrow V\) is irreducible if and only if \(U\) is a summand of \(X_{V}\) and \(\lambda=i_{U} \sigma\) with \(i_{U}: U \rightarrow X_{V}\) the inclusion.
(ii) If \(U\) is not projective, let the almost split sequence beginning with \(U\) be \(0 \longrightarrow U \xrightarrow{\sigma^{\prime}} X_{\gamma^{2} U} \longrightarrow \partial^{2} U \longrightarrow 0\). Then \(\lambda: U \rightarrow V\) is irreducible if and only if \(V\) is a direct summand of

(iii) If \(U\) and \(V\) are both projective then there are no irreducible maps \(\mathrm{U} \rightarrow \mathrm{V}\).

Proof
(i)

Since \(\lambda\) is not an isomorphism, \(\lambda\) factors as \(\mu \sigma\). Since \(\sigma\) does not have a right inverse, \(\mu\) has a left inverse. Thus we may take \(\mu=i_{U}\). Conversely suppose \(U\) is a direct summand of \(X_{V}\) with inclusion \(i_{U}\), and \(i_{U} \sigma=\mu \nu\).

If \(v\) does not have a right inverse, then \(v\) factors through \(\sigma\), and so \(\mu\) has a left inverse.
(ii) This follows in a similar way from 2.17.8.
(iii) This follows from 2.28 .2 and the fact that projective modules are injective.

This proposition implies that the Auslander-Reiten quiver is a locally finite graph.

\section*{Remark}

It follows from 2.28.3 that \(a_{U V}\) is the number of copies of \(V\) as a direct summand of the middle term of the almost split sequence starting with \(U\), and that \(a_{U V}\) is the number of copies of \(U\) as a direct summand of the middle term of the almost split sequence terminating with \(V\).
2.28.4 Lemma

Suppose \(U\) and \(V\) are indecomposable kG-modules and \(f: U \rightarrow V\) is not an isomorphism, and is non-zero.
(i) There is an irreducible map \(g: U \rightarrow U^{\prime}\) and a map \(h: U^{\prime} \rightarrow V\) with \(\mathrm{gh} \neq 0\).
(ii) There is a map \(g: U \rightarrow V^{\prime}\) and an irreducible map \(h: V^{\prime} \rightarrow V\) with \(g h \neq 0\).

Proof
We shall prove (ii); (i) is proved dually using 2.17.8. Suppose \(V\) is not projective.
\[
0 \longrightarrow \Omega^{2} \mathrm{~V} \longrightarrow \mathrm{X}_{\mathrm{V}}^{\mathrm{K}^{-0^{-\prime}}} \underset{\beta}{a} \mathrm{~V}_{\mathrm{V}}^{\mathrm{U}} \longrightarrow 0
\]

Write \(X_{V}=\oplus X_{i}\) and \(f=\alpha \beta=\Sigma \alpha_{i} \beta_{i}\) with \(\alpha_{i}: U \rightarrow X_{i}\) and \(\beta_{i}: X_{i} \rightarrow V\). Since \(f \neq 0\), some \(a_{i} \beta_{i} \neq 0\), and \(\beta_{i}\) is an irreducible map. On the other hand if \(V\) is projective then \(f\) factors through the injection Rad V \(\mapsto\) V. \(\quad\).

\subsection*{2.28.5 Proposition}

Suppose \(U\) and \(V\) are indecomposable kG-modules, and \(f: U \rightarrow V\) is not an isomorphism, and is non-zero. Suppose there is no chain of irreducible maps from \(U\) to \(V\) of length less than \(n\).
(i) There exists a chain of irreducible maps
\[
\mathrm{U}=\mathrm{U}_{0} \xrightarrow{\mathrm{~g}_{1}} \mathrm{U}_{1} \xrightarrow{\mathrm{~g}_{2}} \ldots \longrightarrow \mathrm{U}_{\mathrm{n}-1} \xrightarrow{\mathrm{~g}_{\mathrm{n}}} \mathrm{U}_{\mathrm{n}}
\]
and a map \(\mathrm{h}: \mathrm{U}_{\mathrm{n}} \rightarrow \mathrm{V}\) with \(\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}} \mathrm{h} \neq 0\).
(ii) There exists a chain of irreducible maps
\[
v_{n} \xrightarrow{h_{n}} v_{n-1} \xrightarrow{h_{n-1}} \ldots \rightarrow v_{1} \xrightarrow{h_{1}} v_{0}=v
\]
and a map \(\mathrm{g}: \mathrm{U} \rightarrow \mathrm{V}_{\mathrm{n}}\) with \(\quad \mathrm{gh}_{\mathrm{n}} \mathrm{h}_{\mathrm{n}-1} \cdots \mathrm{~h}_{1} \neq 0\).
Proof
This follows from 2.28.4 and induction. a
The projective modules often only get in the way when we are looking at the Auslander-Reiten quiver, and so we define the stable quiver to be the subgraph of the Auslander-Reiten quiver obtained by deleting the vertices corresponding to the projective modules and all edges meeting them.

Note that the only irreducible maps involving a projective indecomposable module \(P\) are \(P \longrightarrow>P / S o c(P)\) and \(\operatorname{Rad}(P)>\longrightarrow P\). Thus if an almost split sequence involves a projective module, it is of the form \(0 \rightarrow \operatorname{Rad}(P) \rightarrow P \oplus \operatorname{Rad}(P) / \operatorname{Soc}(P) \rightarrow P / S o c(P) \rightarrow 0\).

\subsection*{2.28.6 Proposition}

Any two modules in the same connected component of the stable quiver have the same complexity.

Proof
Clearly \(\mathrm{cx}_{\mathrm{G}}\left(\Omega^{2} \mathrm{~V}\right)=\mathrm{cx}_{\mathrm{G}}(\mathrm{V})=\mathrm{cx}_{\mathrm{G}}\left(\mho^{2} \mathrm{~V}\right)\). Take V of minimal complexity in a connected component of the stable quiver, and adjacent to a module of strictly larger complexity. Then by 2.24.4(vi) and 2.28.3, we obtain an almost split sequence whose middle term has larger complexity than the ends, contradicting 2.24.4(v).

In fact, more than this is true.

\subsection*{2.28.7 Proposition}

If \(U\) and \(V\) are in the same connected component of the stable quiver, then \(X_{G}(U)=X_{G}(V)\).

\section*{Proof}

By 2.26.10 and 2.25.7, we only need check that for each cyclic subgroup \(P\) of \(k G\) of order \(p, \quad U \psi_{P}\) is free if and only if \(V \psi_{P}\) is free. If this is false, then without loss of generality, there is a directed edge from \(U\) to \(V\) in the stable quiver. Suppose \(V^{\dagger}{ }_{P}\) is free while \(U \psi_{P}\) is not. Then \(\left(\Omega^{2} V\right){ }^{2} P\) is also free, and so \(U{ }_{P} P\) is a direct summand of an extension of a free module by a free module, and is hence free. Similarly if \(U{ }^{\downarrow}{ }_{P}\) is free while \(V{ }_{P}{ }_{P}\) is not, then \(\left(v^{2} U\right) \psi_{P}\) is also free, and so \(V \psi_{P}\) is again a direct summand of an extension of a free module by a free module.
2.28.8 Corollary

Given a subset \(X \subseteq \bar{X}_{G}\), the bilinear forms (,) and \(<,>\) are non-singular on \(A(G, X)\).

Proof
If \(V\) is an indecomposable module with \(X_{G}(V) \subseteq X\), then by 2.18.3, v. \(\tau(\mathrm{V}) \varepsilon \mathrm{A}(\mathrm{G}, \mathrm{X})\), and by 2.26.9(ii), \(\tau(\mathrm{V}) \varepsilon \mathrm{A}(\mathrm{G}, \mathrm{X})\). The result now follows from 2.18 .4 as in the proof of 2.18 .5 .

\subsection*{2.29 The Riedtmann Structure Theorem}

We now wish to describe the structure theorem of Riedtmann (2.29.6). This theorem describes the structure of an abstract stable representation quiver, of which the stable quivers described in 2.28 are an example. The necessary terminology is given in the following definitions. The proof of the structure theorem involves a variant of the classical 'universal cover' construction.

\subsection*{2.29.1 Definitions}

A quiver \(Q\) consists of a set of vertices \(Q_{\odot}\), a set of arrows \(Q_{1}\), and a pair of maps \(d_{0}, d_{1}: Q_{1} \rightarrow Q_{0}\). For \(a \varepsilon Q_{1}\), we call \(a d_{0} \varepsilon Q_{0}\) the head of \(a\) and \(a d_{I}\) the tail. For \(x \varepsilon Q_{0}\), we set
\[
\begin{aligned}
& \mathbf{x}^{+}=\left\{a d_{0}: a \varepsilon Q_{1} \quad \text { and } \quad a d_{1}=x\right\} \\
& \mathbf{x}^{-}=\left\{a d_{1}: a \varepsilon Q_{1} \text { and } \quad a d_{0}=x\right\}
\end{aligned}
\]

A morphism of quivers \(\phi: Q \rightarrow Q^{\prime}\) is a pair of maps \(\phi_{0}: Q_{0} \rightarrow Q_{0}^{\prime}\) and \(\phi_{I}: Q_{I} \rightarrow Q_{I}^{\prime}\) such that the following squares commute.

\(Q\) is called locally finite if \(x^{+}\)and \(x^{-}\)are finite sets for all \(x \in Q_{0}\).

To a quiver \(Q\) without loops or double arrows (ie. subquivers of the form \(x 0\) resp. \(x \neq y\)) we associate a graph \(\bar{Q}\) whose vertices are the vertices of \(Q\), and two vertices \(x\) and \(y\) are joined by an edge if there is an arrow \(x \rightarrow y\) or \(x+y\) in \(Q\). \(A\) quiver is called a directed tree if \(Q\) has no subquiver of the form \(\mathrm{x} \nrightarrow \mathrm{y}\) and \(\overline{\mathrm{Q}}\) is a (connected) tree.

A stable representation quiver is a quiver \(Q\) together with an automorphism \(\quad \lambda: Q \rightarrow Q\) called the translation such that the following conditions are satisfied.
(i) \(Q\) contains no loops or double arrows.
(ii) For all \(\mathrm{x} \in \mathrm{Q}_{0}, \mathrm{x}^{-}=(\mathrm{x} \lambda)^{+}\).

\section*{Example}

The stable quiver of kG is a locally finite stable representtion quiver, with translation \(\Omega^{2}\).

A morphism of stable representation quivers is a morphism of quivers commuting with the translation. A stable representation quiver is said to be connected if it is nonempty and cannot be written as a disjoint union of two subquivers each stable under translation (note that this does not imply that the underlying quiver is connected).

To a directed tree \(B\) we associate a stable representation quiver \(\mathbb{Z} B\) as follows. The vertices of \(\mathbb{Z} B\) are the pairs (\(n, x\)), \(n \varepsilon \mathbb{Z}\), \(\mathrm{x} \varepsilon \mathrm{B}_{\mathrm{O}}\). For each arrow \(\mathrm{x} \rightarrow \mathrm{y}\) and each \(\mathrm{n} \varepsilon \mathbb{Z}\), we have two arrows \((n, x) \rightarrow(n, y)\) and \((n, y) \rightarrow(n-1, x)\). The translation is defined via \((n, x) \lambda=(n+1, x)\). We regard \(B\) as embedded in \(Z B\) as \(\{(0, x)\}\).

\section*{Examples}

and \(\quad \mathbb{Z} B=\)

then \(\bar{B}\) and \(\mathbb{Z} B\) are again as above.

Keep this example in mind when reading the proofs of 2.29.3 and 2.29.6.

\subsection*{2.29.2 Lemma}

Let \(B\) be a directed tree and \(Q\) a stable representation quiver. Given a quiver morphism \(\phi: B \rightarrow \mathrm{Q}\) there is a unique morphism of stable representation quivers \(f: Z B \rightarrow Q\) such that \((0, x) f=x \phi\).

Proof
\((n, x) f=x \phi \lambda^{n}\) is clearly the unique such morphism

\subsection*{2.29.3 Proposition}

Let \(B\) and \(B^{\prime}\) be directed trees. Then \(Z B \cong \mathbb{Z} B^{\prime}\) if and only if \(\overline{\mathrm{B}} \cong \overline{\mathrm{B}}^{\prime}\).

Proof
\(\bar{B}\) may be obtained from \(Z B / \lambda\) by replacing each double edge \(\longrightarrow\) by an undirected edge \(\longrightarrow\), and so \(\mathbb{Z B} \cong \mathbb{Z B}{ }^{\prime}\) implies \(\bar{B} \cong \bar{B}^{\prime}\). Conversely suppose \(\bar{B} \cong \bar{B}^{\prime}\). Choose a point \(x \varepsilon B_{o}\), and send it to \((0, x)\) in \(\mathbb{Z} B_{0}^{\prime}\). Since \(B\) is connected we may extend this uniquely to a morphism \(B \rightarrow \mathbb{Z}^{\prime}\) in such a way that the induced morphism \(\overline{\mathrm{B}} \rightarrow \overline{\mathrm{B}}^{\prime}\) is our given isomorphism. Now by 2.29 .2 , we get a morphism of stable representation quivers \(\mathbb{Z B} \rightarrow \mathbb{Z} B^{\prime}\) which is clearly an isomorphism, since it sends (\(n, x\)) to (\(n+a_{x}, x\)), where vertices of \(B\) and \(B^{\prime}\) have been identified by the given tree isomorphism, and \(a_{x}\) are integer constants depending only on \(x\). \(\quad\) 2.29.4 Definitions

A group \(\square\) of automorphisms of a stable representation quiver \(Q\) is called admissible if the orbit of a point \(x\) does not intersect \(\mathrm{x}^{+} \mathrm{U} \mathrm{x}^{-}\). The quotient quiver \(Q / \pi\), defined in the obvious way, is clearly a stable representation quiver.

A morphism of representation quivers \(f: Q \rightarrow Q^{\prime}\) is called a covering if for each vertex \(x \in Q_{0}\) the induced maps \(x^{-} \rightarrow(x f)^{-}\) and \(x^{+} \rightarrow(x f)^{+}\)are bijective. It is clearly enough to check that \(\mathrm{X}^{+} \rightarrow(\mathrm{xf})^{+}\)is bijective for each \(\mathrm{x} \varepsilon \mathrm{Q}_{0}\).

Example
The canonical projection \(Q \rightarrow Q / \Pi\), for \(\Pi\) an admissible group of automorphisms of \(Q\), is a covering.

\subsection*{2.29.5 Lemma}

Let \(B\) be a directed tree, \(\pi: \mathbb{Z} B \rightarrow Q^{\prime}\) a morphism of stable representation quivers, \(\phi: Q \rightarrow Q^{\prime}\) a covering, and (\(n, x\)) a vertex of \(\mathbb{Z} B\). Then for each \(y \in Q_{o}\) with \(y \phi=(n, x)\), there is a unique morphism \(\quad \psi: \mathbb{Z} B \rightarrow Q\) with \(\psi \phi=\pi\) and \(\quad y_{\phi}=(n, x) \pi\).

\section*{Proof}

Renumber \(\mathbb{Z} B\) so that \(n=0\). Then the map \((0, x) \psi=y\) clearly extends uniquely to a map from \(B\) to \(Q\) whose composite with \(\phi\) is \(\pi\). The result now follows from 2.29.2.

\subsection*{2.29.6 Structure Theorem (Riedtmann)}

For each connected stable representation quiver \(Q\) there is a directed tree \(B\) and an admissible group of automorphisms \(\Pi \subseteq A u t(\mathbb{Z} B)\) such that \(Q \cong \mathbb{Z} B / \Pi\). The graph \(\vec{B}\) associated to \(B\) is defined by \(Q\) uniquely up to isomorphism, and \(\Pi\) is uniquely defined up to conjugation in Aut(\(\mathbb{Z} B)\).

\section*{Proof}

Given \(Q\), we construct \(B\) as follows. Choose a point \(x \varepsilon Q_{Q}\), and let \(B\) have as vertices the paths
\[
x \xrightarrow{\alpha_{1}} y_{I} \xrightarrow{\alpha_{2}} y_{2} \longrightarrow \xrightarrow{\alpha_{n}} y_{n} \quad(n \geq 0)
\]
for which \(y_{i} \neq y_{i+2^{\lambda}}\) for \(1 \leq i \leq n-2\). The arrows of \(B\) are \(\left(x \xrightarrow{\alpha_{1}} y_{1} \longrightarrow \ldots \xrightarrow{\alpha_{n-1}} y_{n-1}\right) \rightarrow\left(x \xrightarrow{\alpha_{1}} y_{1} \longrightarrow . \xrightarrow{\alpha_{n-1}} y_{n-1} \xrightarrow{\alpha_{n}} y_{n}\right)\).

Then clearly \(B\) is a directed tree.
The quiver morphism \(B \rightarrow Q\) given by
\[
\left(x \xrightarrow{\alpha_{1}} y_{1} \longrightarrow y_{n}\right.
\]
extends uniquely, by 2.29 .2 , to a morphism \(\phi: \mathbb{Z} B \rightarrow Q\).
We check that \(\phi: \mathbb{Z B} \rightarrow \mathrm{Q}\) is a covering morphism. If
\(u=\left(x \xrightarrow{a_{1}} y_{1} \longrightarrow \xrightarrow{a_{n}} y_{n}\right) \varepsilon B_{o}\) then
\[
u^{+}= \begin{cases}\left\{\left(x \xrightarrow{\alpha_{1}} y_{1} \longrightarrow\right.\right. & \left.\xrightarrow{\alpha_{n}} y_{n} \xrightarrow{\beta} z\right) \\ \text { such that } & \left.z \lambda \neq y_{n-1}\right\} \\ \{(x \longrightarrow \gg 0)\} & n=0,\end{cases}
\]
and so
\[
(0, u)^{+}=\left\{(0, v), v \varepsilon u^{+}\right\} \cup\left\{(-1, v), v \varepsilon u^{-}\right\}
\]
has image \(\left\{z \varepsilon y_{n}^{+}: z \lambda \neq y_{n-1}\right\} \cup\left\{y_{n-1} \lambda^{-1}\right\}=y_{n}^{+}\)in \(Q\). Hence \((m, u)^{+}\)has image \(\left(y_{n} \lambda^{m}\right)^{+}\)as desired.

Now let \(\Pi\) be the fundamental group of \(Q\) at \(x\), namely the group of morphisms of stable representation quivers \(\rho: \mathbb{Z B} \rightarrow \mathbb{Z B}\) with \(\rho \phi=\phi\). Since \(\phi\) is a covering morphism, \(\Pi\) is admissible. Hence by 2.29.5, \(Q \cong \mathbb{Z} B / \Pi\).

Also by 2.29 .5 , if \(\mathbb{Z B} \rightarrow Q\) and \(\mathbb{Z B}^{\prime}{ }_{\mathrm{g}} \rightarrow \mathrm{Q}\) are two such covers then we obtain inverse isomorphisms \(\mathbb{Z B} \underset{\mathrm{g}^{-1}}{\stackrel{\mathrm{~g}}{\leftrightarrows}} \mathbb{Z} \mathrm{~B}^{\prime}\). Hence \(\Pi^{\prime}=\mathrm{g}^{-1} \Pi \mathrm{~g}\), and by 2.29.3, \(\overline{\mathrm{B}} \cong \overline{\mathrm{B}}^{\prime}\). \(\quad\)

The stable representation quiver \(\mathbb{Z B}\) is called the universal cover of \(Q\), and the isomorphism class of \(B\) is called the tree class of \(Q\).

We also have another graph associated with \(Q\). We define the reduced graph \(\Delta\) of \(Q\) to be the graph obtained from \(Q / \lambda\) by replacing each double edge \(\rightarrow\) by an undirected edge \(\quad\). It is clear that an automorphism of \(Q\) determines an automorphism of \(\Delta\).

\subsection*{2.29.7 Lemma}

There is a natural map \(x\) from the tree \(\bar{B}\) to the reduced graph \(\Delta\) which satisfies
(i) \(x\) is surjective
(ii) If x and y are adjacent points in \(\overline{\mathrm{B}}\) then \(\mathrm{x} x \neq \mathrm{yx}\).

Proof
The composite map \(\mathbb{Z} B \rightarrow Q \rightarrow \Delta\) is surjective, and has the property that (\(n, x\)) and (\(n+1, x\)) have the same image. Thus it determines a well defined surjective map \(\quad x: \bar{B} \rightarrow \Delta\). Now \(Q \cong B / \square\) with \(\Pi\) an admissible group of automorphisms, by 2.29 .6 , and so property (ii) follows from the definition of admissibility. o

We shall see in the next two sections that the tree class and reduced graph of a connected component of the stable quiver of \(k G\) are quite restricted in possible shape.

Now the translation \(\Omega^{2}\) on a component \(Q\) of the stable quiver of \(k G\) preserves the labelling (\(a_{U V}, a_{U V}^{\prime}\)) on the edges, and so we have a labelling on \(Q / \Omega^{2}\). Moreover, since \(a_{U V}=a_{\Omega}^{\prime}{ }^{2} V, U\) and \(a_{U V}=a_{\Omega} 2_{V, U}\), we have a labelling \(\left(a_{i j}, a_{j i}\right)\) on the reduced graph. Lifting this back via \(x\) gives a labelling on the associated tree.

\subsection*{2.30 Dynkin and Euclidean diagrams}

In the last section, we saw that associated with each component of the stable quiver of \(k G\) we have a tree together with a labelling of the edges with pairs of numbers \(\left(a_{i j}, a_{j i}\right)\). In this section, we define the notion of a subadditive function on a labelled graph, and show that the existence of such a subadditive function imposes severe restrictions on the possible shape of the graph (theorem 2.30.6). In the next section, we shall construct a subadditive function on the labelled tree associated with a component of the stable quiver of \(k G\), and then investigate the various possibilities given by theorem 2.29.6.

A labelled graph is a graph together with a pair of positive integers (\(a_{i j}, a_{j i}\)) for each edge \(i-j\). As usual, we omit the labels when \(a_{i j}=a_{j i}=1\). We also use \(\Rightarrow\) and \(\Rightarrow\) to signify the labelled edges \(\bullet(2,1)\) and \(\because(3,1)\) respectively. If \(T\) is a labelled graph then \(T^{\circ p}\) is the labelled graph with \(a_{i j}^{o p}=a_{j i}\). A labelled tree is a labelled graph which is a tree. The Cartan matrix \(C_{T}\) of a labelled graph \(T\) (not to be confused with the Cartan matrix of an algebra) is the matrix whose rows and columns are indexed by the vertices of the graph, and with entries
\[
c_{i j}=\left\{\begin{array}{l}
2 \quad \text { if } \quad i=j \\
-a_{i j} \text { if } i=j \quad \text { is an edge } \\
0 \text { otherwise }
\end{array}\right.
\]

We shall be interested in the following labelled graphs.
(i) The finite Dynkin diagrams

(ii) The infinite Dynkin diagrams

\section*{Remark}

For the moment, ignore the numbers attached to the vertices of the Euclidean and infinite Dynkin diagrams. These will appear in the proofs of 2.30 .3 and 2.30.5.

Given two labelled graphs \(T_{1}\) and \(T_{2}\), we say that \(T_{1}\) is smaller than \(T_{2}\) if there is an injective morphism of graphs
\(\rho: T_{1} \rightarrow T_{2}\) such that for each edge \(i-j\) in \(T_{1}, a_{i j} \leq a_{i \rho, j \rho}\), and strictly smaller if \(\rho\) can be chosen not to be an isomorphism. Note that a labelled graph may be strictly smaller than itself (see \(\mathrm{A}_{\infty}\) for example).

\subsection*{2.30.1 Lemma}

Given any labelled graph \(T\), either \(T\) is a Dynkin diagram (finite or infinite) or there is a Euclidean diagram which is smaller than \(T\) (both possibilities may not occur simultaneously).

Proof
Suppose there is no Euclidean diagram which is smaller than \(T\). Using \(\tilde{A}_{n}\), \(T\) has no cycles, and is hence a labelled tree. Using \(\tilde{A}_{11}\) and \(\tilde{A}_{12}\) all edges of the form \(\because, \Longrightarrow\) or \(\Longleftrightarrow\). Using \(\tilde{G}_{21}\) and \(\tilde{G}_{22}\), if \(\Longrightarrow\) occurs then \(T \cong G_{2}\). Using \(\tilde{B}_{n}, \tilde{C}_{n}\) and \(\widetilde{\mathrm{BC}}_{n}\), \(T\) has at most one edge of the form \(\vec{\square}\). Using \(\widehat{B D}_{n}\) and \(\widetilde{C D}_{n}\), if there is an edge of the form \(\Rightarrow\) then \(T=\ldots \quad \Rightarrow\); using \(\tilde{F}_{41}\) and \(\tilde{F}_{42}\) this forces \(T \cong F_{4}, B_{n}, C_{n}, B_{\infty}\) or \(C_{\infty}\). Otherwise \(T\) is a tree with single edges, and using \(D_{n}\), it has at most one branch point. Using \(\tilde{E}_{6}, \tilde{E}_{7}\) and \(\tilde{E}_{8}\) now completes the proof. a 2.30.2 Definition

A subadditive function on a labelled graph \(T\) is a function \(t_{i} H d_{i}\) from the vertices of \(T\) to the positive integers satisfying \(\sum_{i} d_{i} c_{i j} \geq 0\) for all \(j\). A subadditive function is called additive if \(\quad \sum_{i} d_{i} c_{i j}=0 \quad\) for all \(\quad j\).

\subsection*{2.30.3 Lemma}
(i) Each Euclidean diagram admits an additive function.
(ii) If \(T^{\circ p}\) admits an additive function then every subadditive function on \(T\) is additive.
(iii) Every subadditive function on a Euclidean diagram is additive.

\section*{Proof}
(i) The numbers attached to the vertices of the Euclidean diagrams in the illustration form an additive function in each case.
(ii) Suppose \(d\) is a subadditive function on \(T\). By hypothesis there is a function \(d^{\prime}\) such that \(\sum_{j} c_{i j} d_{j}^{\prime}=0\) for all \(i\). Thus \(0=\sum_{i, j}^{\Sigma} d_{i} c_{i j} d_{j}^{\prime}\), while \(\sum_{i} d_{i} c_{i j} \geq 0\) and \(d_{j}^{\prime}>0\) for each \(j\). Hence \(d\) is additive.
(iii) follows from (i) and (ii). a

\subsection*{2.30.4 Lemma}

Suppose \(T\) and \(T^{\prime}\) are connected labelled graphs and \(T\) is strictly smaller than \(T^{\prime}\). Suppose also that \(d\) is a subadditive function on \(T^{\prime}\). Then identifying \(T\) with a subgraph of \(T^{\prime}\), \(d\) restricted to \(T\) is a subadditive function on \(T\) which is not additive.
\[
\begin{aligned}
& \frac{\text { Proof }}{\text { For } j} \text { a vertex of } T, \\
& \quad 2 d_{j} \geq \sum_{\substack{i \varepsilon T \\
i \neq j}}^{\sum} d_{i} a_{i j}^{\left(T^{\prime}\right)} \geq \sum_{\substack{i \varepsilon T \\
i \neq j}} d_{i} a_{i j}^{(T)}
\end{aligned}
\]

Since \(T\) is strictly smaller than \(T^{\prime}\), for some \(j \varepsilon T\) the right hand inequality is strict, and so the restriction of \(d\) is not additive.

\subsection*{2.30.5 Lemma}

Each of the infinite Dynkin diagrams admits an additive function.
(i) For \(A_{\infty}\) there are also subadditive functions which are not additive.
(ii) For the other infinite Dynkin diagrams every subadditive function is a multiple of a given bounded additive function.

Proof
The numbers attached to the vertices in the illustration form an additive function in each case.
(i) \(A_{\infty}\) is strictly smaller than itself, and so by 2.30 .4 there is a subadditive function which is not additive.
(ii) For \(A_{\infty}^{\infty}\), given a subadditive function \(d\), choose a vertex \(i\) with \(d_{i}\) minimal. Then the sum of the two adjacent \(d_{j}\) is at most \(2 \mathrm{~d}_{i}\), and so each equals \(\mathrm{d}_{\mathrm{i}}\). Inductively we find that the function is constant and additive.

For \(B_{\infty}, C_{\infty}\) and \(D_{\infty}\), given a subadditive function we generate a subadditive function on \(A_{\infty}^{\infty}\) as follows.
\(\mathrm{d}_{\mathrm{o}}=\mathrm{d}_{1}-\mathrm{d}_{2}-\ldots \vdash \longrightarrow \mathrm{d}_{2}-\mathrm{d}_{1}-\mathrm{d}_{\mathrm{o}}-\mathrm{d}_{1}-\mathrm{d}_{2}-\ldots\)
\(\mathrm{d}_{\mathrm{o}} \Longrightarrow \mathrm{d}_{1}-\mathrm{d}_{2}-\ldots \longmapsto \ldots-\mathrm{d}_{2}-\mathrm{d}_{1}-2 \mathrm{~d}_{\mathrm{o}}-\mathrm{d}_{1}-\mathrm{d}_{2}-\ldots\)

The result follows immediately for \(B_{\infty}\) and \(C_{\infty}\). For \(D_{\infty}\) we
obtain \(d_{0}+d_{0}^{\prime}=d_{1}\). Subadditivity forces \(2 d_{0} \geq d_{1}\) and \(2 d_{0}^{\prime} \geq d_{1}\) whence \(d_{o}=d_{o}^{\prime}\), and the result follows.

The following is a generalization by Happel, Preiser and Ringel of Vinberg's characterization of the finite Dynkin and Euclidean diagrams. See also [15].

\subsection*{2.30.6 Theorem}

Let \(T\) be a connected labelled graph, and \(d\) a subadditive function on \(T\). Then
(i) \(T\) is either a Dynkin diagram (finite or infinite) or a Euclidean diagram.
(ii) If \(d\) is not additive then \(T\) is a finite Dynkin diagram or \(A_{\infty}\).
(iii) If \(d\) is additive then \(T\) is an infinite Dynkin diagram or a Euclidean diagram.
(iv) If \(d\) is unbounded then \(T \cong A_{\infty}\).

Proof
(i) Suppose Ialse. Then by 2.30 .1 there is a Euclidean diagram which is strictly smaller than \(T\). Thus by 2.30 .4 there is a subadditive function on this Euclidean diagram which is not additive, contradicting 2.30 .3 (iii).
(ii) This follows from 2.30.3 (iii) and 2.30 .5 (ii).
(iii) Suppose false. Then \(T\) is a finite Dynkin diagram by (i), and hence so is \(T^{O P}\). Thus \(T^{O P}\) is strictly smaller than some Euclidean diagram. Thus by 2.30 .3 (i) and \(2.30 .4 \mathrm{~T}^{\mathrm{op}}\) admits a subadditive function which is not additive, contradicting 2.30 .3 (ii).
(iv) If \(d\) is unbounded then \(T\) is infinite, and so by (i) it is an infinite Dynkin diagram. Hence by 2.30 .5 (ii) \(T \cong A_{\infty}\). \(\quad\).

\subsection*{2.31 The tree class of a connected component of the stable quiver}

We now wish to construct a subadditive function on the labelled tree determined by a connected component of the stable quiver of \(k G\), and to determine when this function is additive. In order to do this, we take another look at Poincaré series. In 2.22 we saw that \(\xi_{V}(t)\) is a rational function of the form \(f(t) /{\underset{i=1}{r}}_{m_{i=1}}\left(1-t^{k_{i}}\right)\). We can also form another Poincaré series \(\quad \eta_{V}(t)=\Sigma t^{n} \operatorname{dim}\left(P_{n}\right)\), where \(\ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow V \rightarrow 0^{\circ}\) is a minimal projective resolution of \(V\). Since for \(S\) simple the number of times \(P_{S}\) occurs as a summand of \(P_{n}\) is \(\quad \operatorname{dim}_{k} \operatorname{Ext}_{G}^{n}(V, S) / \operatorname{dim}_{k} \operatorname{End}_{k G}(S)\), we have
\[
\operatorname{dim}_{k}\left(P_{n}\right)={\underset{S}{S}}_{\text {simple }} \frac{\operatorname{dim}_{k}\left(P_{S}\right) \cdot \operatorname{dim}_{k} E x t_{G}^{n}(V, S)}{\operatorname{dim}_{k} E n d_{k G}(S)}
\]

Now, \(\operatorname{Ext}_{\mathrm{G}}^{*}(\mathrm{~V}, \mathrm{~S}) \cong \mathrm{H}^{*}\left(\mathrm{G}, \mathrm{V}^{*} \otimes \mathrm{~S}\right)\) is a finitely generated module for \(H^{*}(G, k)\) by Evens' theorem (see 2.22, properties of cohomology (vii)). Thus by \(1.8 .2, \eta_{V}(t)\) is a rational function of the form \(f(t) / \prod_{i=1}^{r}\left(1-t^{k}\right)\), where the \(k_{i}\) are independent of \(V\), and \(f\) has integer coefficients. It now follows from 1.8.3 that the pole of \(\eta_{V}(t)\) at \(t=1\) has order \(c=\mathrm{cx}_{\mathrm{G}}(V)\), and that the value of the analytic function \(\left(\Pi k_{i}\right) \eta_{V}(t)(1-t)^{c}\) at \(t=1\) is a positive integer. We denote this value by \(\eta(V)\). This will in fact form our subadditive function.

\subsection*{2.31.1 Proposition}
(i) \(\eta(\mathrm{V})=\eta(\Omega \mathrm{V})\)
(ii) If \(0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0\) is a short exact sequnece of modules of the same complexity (cf. 2.24.4(v)), then
\[
\eta(V) \leq \eta\left(V^{\prime}\right)+\eta\left(V^{\prime \prime}\right)
\]
(iii) If \(0 \rightarrow \Omega^{2} V \rightarrow X_{V}+V+0\) is an almost split sequence, then \(\eta\left(X_{V}\right) \leq 2 \eta(V)\) if \(\eta\left(X_{V}\right)<2 \eta(V)\) then \(V\) is periodic, and for some \(n\) the middle term \(X_{\Omega} n_{V}\) of the almost split sequence \(0 \rightarrow \Omega{ }^{n+2} V \rightarrow X_{\Omega}{ }^{n} V \rightarrow \Omega{ }^{n} V \rightarrow 0\) has a projective direct summand.

\section*{Proof}
(i) \(\quad \eta_{V}(t)=t \eta_{\Omega V}(t)+\) constant.
(ii). Without loss of generality \(V^{\prime}\) and \(V^{\prime \prime}\) have no projective direct summands (although \(V\) may have) since these split off from the sequence without affecting \(\eta\left(V^{\prime}\right)+\eta\left(V^{\prime \prime}\right)-\eta(V)\). Thus if \(\ldots \rightarrow P_{1}^{\prime} \rightarrow P_{o}^{\prime} \rightarrow V^{\prime}+0\) and \(\ldots \rightarrow P_{1}^{\prime \prime}+P_{o}^{\prime \prime} \rightarrow V^{\prime \prime} \rightarrow 0\) are minimal projective resolutions then there is a projective resolution \(\ldots \rightarrow P_{1}^{\prime} \oplus P_{1}^{\prime \prime} \rightarrow P_{o}^{\prime} \oplus P_{o}^{\prime \prime} \rightarrow V \rightarrow 0\). Thus \(\eta_{V}(t)+\eta_{V^{\prime \prime}}(t)-\eta_{V}(t)\) is the Poincaré series of a graded module, and so the value at \(t=1\) of \(\left(\eta_{V^{\prime}}(t)+\eta_{V^{\prime \prime}}(t)-\eta_{V}(t)\right)(1-t)^{c}\) cannot be negative (see 1.8.3). (iii) By 2.28.6, V, \(X_{V}\) and \(\Omega_{\Omega}{ }^{2} V\) have the same complexity. \(X_{\Omega} n_{V} \cong \Omega^{n}\left(X_{V}\right)\) unless and only unless \(X_{\Omega} n_{V}\) has a projective direct summand. Thus the minimal projective resolution of \(X_{V}\) is the sum of the minimal projective resolutions of \(V\) and \({ }_{\Omega}{ }^{2} V\) except at
those places where \(X_{\Omega} n_{V}\) has a projective direct summand. If this happens for only finitely many values of \(n\), then \(\eta_{V}(t)+\eta_{\Omega} 2_{V}(t)-\eta_{X_{V}}(t)\) is a polynomial in \(t\), and hence \(\eta\left(\mathrm{X}_{\mathrm{V}}\right)=\eta(\mathrm{V})+\eta\left(\Omega^{2} \mathrm{~V}\right)-2 \eta(\mathrm{~V})\). Otherwise, V must be periodic, since there are only finitely many projective indecomposables, each of which appears in only one almost split sequence.

\subsection*{2.31.2 Theorem}
(i) (Webb, [92]) Let \(T\) be the tree class of a connected component \(Q\) of the stable quiver of \(k G\). Then \(T\) is either a Dynkin diagram (finite or infinite) or a Euclidean diagram (apart from \(\tilde{A}_{n}\)).
(ii) The reduced graph \(\Delta\) of \(Q\) is also either a Dynkin diagram (finite or infinite) or a Euclidean diagram (this time \(\tilde{A}_{n}\) is allowed).

Proof
By 2.31.1, \(\eta(V)\) defines a function on \(Q\) which commutes with \(\Omega^{2}\), and satisfies \(2 \eta(x) \geq \underset{y \in x^{-}}{\sum} \eta(y)\). Thus \(\eta\) gives a subadditive function on both \(T\) and \(\Delta\). The result thus follows from 2.30 .6 (i). -

Remark
If \(k\) is algebraically closed then each \(a_{U V}=a_{U V}^{\prime} \quad\) (see definition 2.28.1) since the irreducible modules for \(\operatorname{End}_{k G}(U)\) and End \(_{\mathrm{k} G}(\mathrm{~V})\) are one dimensional. Thus only the diagrams of type \(A, D\), \(\mathrm{E}, \tilde{\mathrm{A}}\) (but not \(\tilde{\mathrm{A}}_{11}\)), \(\tilde{\mathrm{D}}\) and \(\tilde{\mathrm{E}}\) occur.

\subsection*{2.31.3 Corollary}

The length of \(\operatorname{Irr}(\mathrm{U}, \mathrm{V})\) as a left \(E n d_{k G}(U)\)-module and as a right \(\operatorname{End}_{k G}(V)\)-module are at most four, and if \(k\) is algebraically closed, \(\operatorname{dim}_{k} \operatorname{Irr}(\mathrm{U}, \mathrm{V}) \leq 2\).

\section*{Proof}

Among the list of Dynkin and Euclidean diagrams, the maximum \(a_{i j}\) appearing is four, and if \(a_{i j}=a_{j i}\) then the maximum value appearing is two; indeed, we may further observe that \(a_{i j} \cdot a_{j i}\) is at most four. \(\quad\) o

\subsection*{2.31.4 Corollary}

The number of direct summands in the middle term of an almost split sequence is at most five, and if equal to five, then one of the summands is projective.

\section*{Proof}

Among the Dynkin and Euclidean diagrams, the maximal possible value of \(\sum_{j}^{\Sigma} a_{i j}\) is four. \(\quad\) o

\subsection*{2.31.5 Corollary}

Let \(P\) be a (non-simple) projective indecomposable kG-module. Then the maximal possible number of direct summands of \(\operatorname{Rad}(P) / \operatorname{Soc}(P)\) is four.

\section*{Proof}

Apply 2.31.4 to the almost split sequence
\[
0 \rightarrow \operatorname{Rad}(P) \rightarrow P \oplus \operatorname{Rad}(P) / \operatorname{Soc}(P)+P / \operatorname{Soc}(P) \rightarrow 0
\]

Following Webb, we now investigate each of the possibilities allowed by 2.31.2 in turn.

\section*{Case 1 The Finite Dynkin Diagrams}

\subsection*{2.31.6 Lemma}

Suppose a connected component \(Q\) of the stable quiver of \(k G\) contains a periodic module. Then every module in \(Q\) is periodic.

\section*{Proof}

This follows from 2.25 .4 and 2.24.4(xi). Alternatively, we may prove this directly as follows. If \(x\) is periodic with \(x=\Omega^{2 n} x\) then \(\Omega^{2 n}\) induces a permutation on \(\mathrm{x}^{-}\), which is a finite set by 2.28 .3 , and so some power of \(\Omega^{2 n}\) stabilizes \(x^{-}\)pointwise. Hence by induction all modules in \(Q\) are periodic. \(\quad\)

\subsection*{2.31.7 Proposition}

Suppose the tree class \(T\) or the reduced graph \(\Delta\) of a component Q of the stable quiver of kG is a finite Dynkin diagram. Then Q has only finitely many vertices.

\section*{Proof}

Suppose \(T\) or \(\Delta\) is a finite Dynkin diagram. Then by 2.30.6 \(\eta\) defines a subadditive function on \(T\) or \(\Delta\) which is not additive. Hence for some module \(V\) belonging to \(Q, \eta\left(X_{V}\right)<2 \eta(V)\). Thus by 2.31. 1 (iii), \(V\) is periodic. Hence by 2.31 .2 every module in \(Q\) is periodic, and so \(Q\) has only finitely many vertices.

\subsection*{2.31.8 Proposition}

Suppose a component \(Q\) of the stable quiver of \(k G\) has only finitely many vertices. Then \(Q\) consists of all the non-projective modules in a block of \(k G\) with cyclic defect group.

Proof
Let \(A\) be the linear span in \(A(G)\) of the modules in \(Q\). Suppose the modules in \(A\) do not constitute the set of non-projective modules in a complete block. Then there is a non-projective
indecomposable module \(V\) outside \(A\) and a module \(W\) in \(A\) such that there is a non-zero homomorphism from \(V\) to \(W\). Now by 2.18.3, for each indecomposable module \(U\) in \(A, V . \tau(U) \varepsilon A\), and so by 2.18 .4 (,\(~ i s\) non-singular on \(A\). Since \(A\) is finite dimensional, this means that there exists \(x \in A\) such that \((x, U)=(V, U)\) for all \(U \in A\). Let \(W_{o}\) be an indecomposable module in \(A\) such that \(x\) has a non-zero coefficient of \(W_{0}\). Then
\[
\begin{gathered}
0 \neq\left(x, v \cdot \tau\left(W_{0}\right)\right) \quad(\text { see } 2.18 .5) \\
=\left(V, v \cdot \tau\left(W_{o}\right)\right)
\end{gathered}
\]

Thus by 2.18.4 \(V=W_{o}\) since \(V\) and \(W_{o}\) are indecomposable. This contradiction shows that \(Q\) consists of all the non-projective modules in a block \(B\) of \(k G\). The fact that \(B\) has cyclic defect group follows from 2.12.9.

\section*{Remark}

In fact in [77] and [52] it is shown that if \(B\) is a block of \(k G\) with cyclic defect group then the tree class of the corresponding connected component of the stable quiver is equal to the reduced graph, and is the Dynkin diagram \(A_{n}\). However, the other finite Dynkin diagrams come up in algebras of finite representation type which are not blocks of finite group algebras.

\section*{Case 2 Infinite Quiver Components}

In case 1 , we saw that either \(T \cong A_{n}\) or \(Q\) has infinitely many vertices. We shall now show that if \(Q\) is infinite then there are indecomposable modules in \(Q\) with an arbitrarily large number of composition factors. We shall then give two applications of this. First, we shall show that in the special case where \(Q\) has a periodic module, \(T \cong A_{\infty}\). We shall then go on to consider the Euclidean diagrams, and show that if \(T\) is Euclidean then there is a projective module attached to \(Q\).
2.31.9 Lemma (Harada, Sai)

Let \(V_{o}, \ldots, V_{2^{n}-1}\) be indecomposable modules, each having
at most \(n\) composition factors, and suppose \(f_{i}: V_{i-1} \rightarrow V_{i}\) is not an isomorphism. Then \(f_{1} f_{2} \ldots{ }_{2^{n}-1}=0\).

\section*{Proof}

Write \(|U|\) for the number of composition factors of a module \(U\) (and \(|0|=0\)). We show by induction on \(m\) that \(\left|\operatorname{Im}\left(f_{1} \ldots f_{2^{m}-1}\right)\right| \leq n-m\). The assertion is clear for \(m=1\), since \(f_{1}\)
is not an isomorphism. Suppose true for m - 1. Write
\(f=f_{1} \ldots f_{2^{m-1}-1}, \quad g=f_{2^{m-1}}\) and \(h=f_{2^{m-1}+1} \quad f_{2^{m}-1}\). By the
inductive hypothesis \(|\operatorname{Im}(f)| \leq n-m+1\) and \(|\operatorname{Im}(h)| \leq n-m+1\).
If either inequality is strict, we are done, so suppose they are both equalities, and suppose \(|\operatorname{Im}(f g h)|=n-m+1\). Then \(\operatorname{Im}(f) \cap \operatorname{Ker}(\mathrm{gh})=0\) and \(\operatorname{Im}(\mathrm{fg}) \cap \operatorname{Ker}(h)=0\). Thus by counting composition factors, \(V_{2^{m}-1}=\operatorname{Im}(f) \oplus \operatorname{Ker}(g h)\) and \(V_{2}{ }^{m}=\operatorname{Im}(f g) \oplus \operatorname{Ker}(h)\). Since each is indecomposable, gh is injective and \(f g\) is surjective. Thus \(g\) is an isomorphism, contrary to hypothesis.

\subsection*{2.31.10 Theorem (Auslander)}

Suppose \(Q\) is an infinite component of the stable quiver of kG. Then \(Q\) has modules with an arbitrary large number of composition factors.

\section*{Proof}

Suppose to the contrary that all modules in \(Q\) have at most \(n\) composition factors. Suppose \(U\) and \(V\) are indecomposable modules and \((U, V) \neq 0\) (recall \(\left.(U, V)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}(U, V)\right)\). If \(U \varepsilon Q\), then also \(V \in Q\). For if \(V \notin Q\), then by 2.27 .5 there is a chain of irreducible maps
\[
\mathrm{U}=\mathrm{U}_{0} \xrightarrow{\mathrm{~g}_{1}} \mathrm{U}_{1} \xrightarrow{\mathrm{~g}_{2}} \ldots \xrightarrow{\mathrm{~g}^{\mathrm{n}}-1} \mathrm{U}_{2^{\mathrm{n}}-1}
\]
and a map \({\mathrm{h}: \mathrm{U}_{2} \mathrm{n}_{-1}} \rightarrow \mathrm{~V}\) with \(\mathrm{g}_{1} \cdots \mathrm{~g}_{2^{\mathrm{n}}-1} \mathrm{~h} \neq 0\), contradicting 2.31.9.
The dual argument also shows that if \(V \varepsilon Q\) then \(U \in Q\).
Now for any indecomposable module \(V\) in \(Q\), there is a projective module \(P\) with \((P, V) \neq 0\), and hence \(P \in Q\). Thus every module is \(Q\) is connected by a chain of irreducible maps of length at most \(2^{n}-1\) to a projective module. Since there are only finitely many projectives in \(Q\), and \(Q\) has finite valence, this shows that \(Q\) is finite, contrary to assumption.
2.31.11 Theorem

Suppose an infinite component \(Q\) of the stable quiver of \(k G\) has a periodic module . Then the tree class of \(Q\) is \(A_{\infty}\).

\section*{Proof}

By 2.31.6, every module in \(Q\) is periodic. If \(V\) is periodic, then \(\eta(V)\) may be expressed in the form
\(\left(\Pi k_{i}\right)\). (average dimension of \(\quad \Omega^{n}(V)\)).
Since \(Q\) is infinite, 2.31 .10 shows that \(\eta(V)\) is unbounded. Thus by 2.30.6(iv), the tree class of \(Q\) is \(A_{\infty}\). \(\quad\) (

Finally, we examine the Euclidean diagrams in the next section.

\subsection*{2.32 Weyl groups and Coxeter transformations}

In this section, we examine the geometry of a certain rational vector space associated with the graphs discussed in 2.30. Our goal is to prove proposition 2.32.4 and theorem 2.32.5. Finally, we summarize the results of sections 2.28 and 2.32 in our final theorem, 2.32.6.

A valued graph \(T\) is a finite labelled graph such that there exist natural numbers \(f_{i}\), one for each vertex of \(T\), with \(a_{i j} f_{j}=a_{j i} f_{i}\), for each edge \(i-j\) in \(T\). Note that all the finite Dynkin and Euclidean diagrams are valued graphs, and that the numbers \(f_{i}\), when they exist, are uniquely defined up to constant multiplication on each connected component. The matrix \(\tilde{C}_{T}=\left(c_{i j} f_{j}\right)\) is called the symmetrized Cartan matrix, and is self-transpose.

Given a valued graph \(T\), we form the rational vector space \(Q^{T}\) with the points \(t_{i}\) of \(T\) as basis, and we bestow \(\mathbb{Q}^{T}\) with the symmetric bilinear form given by \(\quad \tilde{\mathrm{C}}_{\mathrm{T}}\) :
\[
\langle\underline{x}, \underline{Y}\rangle=\sum_{i, j}^{\Sigma} c_{i j} f_{j} x_{i} y_{j}
\]
\(\left(\underline{x}=\Sigma x_{i} t_{i}, \quad y=\Sigma y_{i} t_{i}\right)\).
The Weyl group \(W(T)\) is the group generated by the reflections
\[
\underline{x} w_{i}=\underline{x}-2 \frac{\left.<\underline{x}, t_{i}\right\rangle}{\left\langle t_{i}, t_{i}\right\rangle} t_{i}
\]

It is easy to check that the \(w_{i}\) are transformations of order two preserving the bilinear form. By examining the two point graphs we see that the order of \(w_{i} w_{j}\) is \(2,3,4,6\) or \(\infty\) for
\(a_{i j} a_{j i}=0,1,2,3\) or \(\geq 4\) respectively.

\subsection*{2.32.1 Lemma}

Let \(T\) be a connected valued graph.
(i) \(T\) is a finite Dynkin diagram if and only if \(<\), \(>\) is positive definite on \(\mathbb{Q}^{\mathrm{T}}\).
(ii) \(T\) is a Euclidean diagram if and only if \(<\), \(>\) is positive semidefinite on \(Q^{T}\). In this case every null vector is a multiple
of the vector given by the additive function shown in 2.30 .
Proof
Suppose \(T\) is a Euclidean diagram. By 2.30.3(i), there is an additive function \(t_{i} \mapsto d_{i}\) on \(T\). Thus we have
\[
\langle\underline{x}, \underline{x}\rangle=-\frac{1}{2} \sum_{i \neq j} \quad d_{i} d_{j} c_{i j} f_{j}\left(\frac{x_{i}}{d_{i}}-\frac{x_{j}}{d_{j}}\right)^{2}
\]
which is positive semidefinite since the \(c_{i j}\) are negative for \(i \neq j\), and the \(d_{i}\) and \(f_{i}\) are positive. Moreover for a null vector, all the \(\frac{x_{i}}{d_{i}}\) must have the same value so that the null space is one dimensional.

Since every Dynkin diagram is strictly smaller than a Euclidean diagram, it follows that \(<,>\) is positive definite on the Dynkin diagrams.

If \(T\) is neither Euclidean nor Dynkin then by 2.30.1 there is a Euclidean diagram \(T^{\prime}\) which is strictly smaller than \(T\). If \(T^{\prime}\) contains all the points of \(T\), then a null vector for \(T^{\prime}\) has negative norm for \(T\). Otherwise choose a point of \(T\) adjacent to a point of \(T^{\prime}\), and add a small enough multiple of the corresponding basis element to the null vector for \(T^{\prime}\), to obtain a vector of negative norm.
-

\subsection*{2.32.2 Lemma}

Suppose \(T\) is a Euclidean diagram. Let \(\underline{n}\) be the null vector given by the additive function shown in 2.30. Then \(W(T)\) preserves \(<\underline{\mathrm{n}}\), and acts as a finite group of automorphisms of \(\mathbb{Q}^{\mathrm{T}} /<\underline{\mathrm{n}}>\).

Proof
Since \(<\underline{n}>\) is the radical of \(<, \quad>,<\underline{n}>\) is preserved by \(W(T)\). Since the matrices in \(W(T)\) have integer entries with respect to our basis \(t_{i}, W(T)\) acts as a discrete subgroup of the compact orthogonal group on \(\mathbb{Q}^{T} /<\underline{n}>\), and this action is therefore finite. a

We now define a Coxeter transformation to be a product of all the \(w_{i}\), taken once each in some order. Let \(T\) be a Euclidean diagram and let \(c\) be a Coxeter transformation. By 2.32.2, \(c\) has finite order \(m\) on \(\mathbb{Q}_{T}^{T} /<\underline{n}>\), and so we may define the defect \(a_{c}(\underline{x})\) of a vector \(\underline{x} \in \mathbb{Q}^{T}\) via
\[
\underline{x} c^{m}=\underline{x}+\partial_{c}(\underline{x}) \underline{n}
\]

Thus \(\quad a_{c}\) is a linear form \(\mathbb{Q}^{T} \rightarrow \mathbb{Q}\) and \(\partial_{c}(\underline{x})=\sum_{i} \partial_{c}\left(t_{i}\right) x_{i}\).

The map \(\quad a_{c}\) gives us a splitting \(\quad \mathbb{Q}^{\mathbf{T}}=\operatorname{Ker}\left(\partial_{c}\right) \oplus<\underline{n}>\).

\subsection*{2.32.3 Lemma}

The following two conditions on a vector \(x \in \mathbb{Q}^{T}\) are equivalent.
(i) \(\underline{x}\) has infinitely many images under \(c\)
(ii) \(\partial_{c}(\underline{x}) \neq 0\).

If (i) and (ii) are satisfied then some image of \(x\) has negative coordinates.

\section*{Proof}

This is clear from the preceding discussion.
Now let \(\bar{B}\) be a directed labelled tree. A slice of \(Z B\) (see section 2.29) is a connected subgraph of \(Z B\) containing one representative of each point in \(B\). If \(S\) is a slice, we write \(S^{+}\) for the adjacent slice \(\{(n+1, x):(n, x) \varepsilon S\}\).

An additive function on \(Z B\) is a function \(f\) from the vertices of \(\mathbb{Z B}\) to the positive integers with the property that
\[
f(x)+f(x \lambda)=\sum_{y \varepsilon x^{-}} f(y) \cdot a_{y x}
\]
where \(a_{y x}\) is to be interpreted as the number \(a_{i j}\) where \(t_{i}\) is the image of \(y\) and \(t_{j}\) is the image of \(x\) in \(\bar{B}\).

\subsection*{2.32.4 Proposition}

If \(\overline{\mathrm{B}}\) is a Euclidean tree then every additive function on \(\mathbb{Z B}\) takes bounded values.

\section*{Proof}

Let \(f\) be an additive function on \(\quad 2 B\). \(I f \quad S\) is a slice of \(\mathbb{Z} B\) then we have a corresponding vector \(\underline{X}_{S} \varepsilon \mathbb{Q}^{\bar{B}}\) whose \(i\) th coordinate \(x_{i}\) is the value of \(f\) on the unique vertex in \(S\) lying above \(t_{i} \varepsilon \bar{B}\). It is easy to check that if the vertex \(\left(n, t_{i}\right) \varepsilon S\) is a sink (i.e. all directed edges in \(S\) involving (\(n, t_{i}\)) go towards \(\left(n, t_{i}\right)\)) then the slice \(S . w_{i}\) obtained by replacing (\(n, t_{i}\)) by \(\left(n+1, t_{i}\right)\) in \(S\) satisfies
\[
\underline{x}_{S . w_{i}}=\underline{x}_{S} w_{i}
\]
by the definition of additivity of \(f\). Since \(\bar{B}\) is a tree, we may choose an ordering for the vertices of \(\bar{B}\) in such a way that each \(t_{i}\) is a sink for \(S . w_{1} \ldots w_{i-1}\). Thus the associated Coxeter element \(c\) takes \(S\) to the adjacent slice \(S^{+}\). Since \(f\) only takes positive values it follows from 2.32.3 that \(X_{S}\) has only finitely many images under \(c\). This implies that \(f\) takes on only finitely many
different values on \(\mathbb{Z B}\). \(\quad\)

\subsection*{2.32.5 Theorem}

Suppose \(Q\) is a connected component of the stable quiver of \(k G\), whose tree class is a Euclidean diagram. Then there is a projective module attached to \(Q\).

Proof
Let \(\overline{Z B}\) be the universal cover of \(Q\), with \(\bar{B}\) a Euclidean diagram. Suppose there is no projective module attached to \(Q\). Then the dimension function on \(Q\) lifts to an additive function on \(\mathbb{Z} B\). Thus by 2.32.4, the dimensions of modules in \(Q\) are bounded, contradicting 2.31 .10 (\(Q\) has infinitely many vertices by case 1 of 2.31).

Finally, the following theorem summarizes the results of sections 2.28 to 2.32 .

\subsection*{2.32.6 Theorem}

Let \(Q\) be a connected component of the stable quiver of \(k G\). Then associated with \(Q\) we have a tree class \(T\) and a reduced graph \(\Delta\), both of which are labelled graphs, together with a natural surjective map \(\quad x: T \rightarrow \Delta\), which never identifies adjacent vertices of \(T\). Each of \(T\) and \(\Delta\) is either a Dynkin diagram (finite or infinite) or a Euclidean diagram.
(i) \(T\) is a Dynkin diagram if and only if \(\Delta\) is a Dynkin diagram, which in turn happens if and only if the modules in \(Q\) belong to a block B with cyclic defect group. In this case \(Q\) consists of all the non-projective modules in \(B, x: T \rightarrow \Delta\) is an isomorphism, and \(T \cong A_{n}\).
(ii) If \(T\) is not a Dynkin diagram then there are indecomposable modules in \(Q\) of arbitrarily large dimension.
(iii) If \(Q\) contains a periodic module then every module in \(Q\) is periodic and \(T \cong A_{\infty}\).
(iv) If \(T\) is a Euclidean diagram then there is a projective module attached to \(Q\). In particular, only finitely many connected components of the stable quiver have a Euclidean diagram as their tree class.

\subsection*{2.33 Galois Descent on the Stable Quiver}

In 2.29, we introduced the concepts of tree class and reduced graph for a connected component of the stable quiver of \(k G-m o d u l e s\).

In this section we investigate what happens under field extensions, and we see that the reduced graph behaves much better than the tree class.

Let \(k\) be a field of characteristic \(p\) and let \(K\) be a finite Galois extension of \(k\). Then \(G=G a l(K / k)\) acts on the set of indecomposable KG-modules as follows. If \(V\) is a KG-module and \(\sigma \varepsilon \in\), let \(V^{\sigma}\) be the representation with the same underlying set and the same action of \(G\), but with new scalar multiplication by \(\lambda\) equal to the old scalar multiplication by \(\quad \lambda^{\sigma}\). It is clear that \(\sigma \quad\) sends almost split sequences to almost split sequences and irreducible morphisms to irreducible morphisms. Thus \(\mathbb{E}\) acts as automorphisms on the stable quiver of KG-modules, and hence also permutes the connected components.

Denote by \(e_{k, K}\) the natural map \(A_{k}(G) \rightarrow A_{K}(G)\) given by \(V \nLeftarrow V \notin K\), and by \(f_{K, k}\) the natural map \(A_{K}(G) \rightarrow A_{k}(G)\) given by \(V \mapsto(1 /|K: k|) V{ }_{k G}\).

\subsection*{2.33.1 Lemma}
(i) \(e_{k, K}\) and \(f_{K, k}\) are ring homomorphisms.
(ii) \(\mathrm{e}_{\mathrm{k}, \mathrm{K}}\) is injective (see also exercise to 2.18).
(iii) \(A_{K}(G)=\operatorname{Im}\left(e_{k, K}\right) \oplus \operatorname{Ker}\left(f_{K, k}\right)\) as a direct sum of ideals.
(iv) \(e_{k, K}\) preserves the inner products (,) and \(<,>\).

Because of (i) - (iv), we shall identify \(A_{k}(G)\) with its image
under \(e_{k, K}\) from now on.
(v) If \(V\) is an indecomposable \(k G\)-module and
\(\mathrm{V} \underset{\mathrm{k}}{\otimes} \mathrm{K}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}}\) then \(\quad \in=\mathrm{Gal}(\mathrm{K} / \mathrm{k})\) acts transitively on the isomorphism types of the \(V_{i}\).
(vi) \(A_{k}(G)\) is the set of fixed points of \(G\) on \(A_{K}\) (G) (but
note that \(a_{k}(G)\) is in general smaller than the set of fixed points of \(G\) on \(\left.a_{K}(G)\right)\).
(vii) \(e_{k, K}\) commutes with the map \(\tau\) defined in section 2.18 .

Proof
(i) It is clear that \(e_{k, K}\) is a ring homomorphism. Since \(V \psi_{k G} \underset{k}{W} \psi_{k G} \cong\left(\left(V \psi_{k G} \underset{k}{\otimes}\right) \underset{K}{\otimes} W\right) \psi_{k G}=|K: k|(V \underset{K}{\otimes} W) t_{k G}, \quad f_{K, k} \quad\) is also a ring homomorphism.
(ii) and (iii) follow from the fact that \(e_{k, K}\) followed by \(f_{K, k}\) is the identity map.
(iv) This follows from the identities
and \(e_{k, K}\left(u_{k G}\right)=u_{K G}\), together with 2.4.3.
(v) Suppose \(G\) does not act transitively on the isomorphism types of the \(V_{i}\). Reorder the \(V_{i}\) so that for some \(k\) with \(1 \leq k \leq n\), no one of \(V_{1}, \ldots, V_{k}\) is isomorphic to any \(V_{k+1}^{\sigma}, \ldots, V_{n}^{\sigma}\), for any \(\sigma \varepsilon G\). Then the direct sum decomposition
\[
\underset{\mathrm{k}}{\mathrm{~V}} \underset{\mathrm{~K}}{\otimes}=\left(\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}\right) \oplus\left(\mathrm{V}_{\mathrm{k}+1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}}\right)
\]
is stable under the action of \(G\), and hence corresponds to a direct sum decomposition of \(V\).
(vi) Since every KG-module is a direct summand of some \(e_{k, K}{ }^{(V)}\) with \(V\) an indecomposable kG-module, it follows from (v) that \(\operatorname{Ker}\left(f_{K, k}\right)\) is the linear span of elements of the form \(W-W^{\sigma}\) for \(W\) an indecomposable \(K G\)-module, and \(\operatorname{Im}\left(e_{K, k}\right)\) is the linear span of elements of the form \(\sum_{\sigma \in G} W^{\sigma}\).
(vii) Suppose \(U\) and \(V\) are kG-modules with \(U \underset{k}{W}=U_{1}^{\oplus} \ldots U_{m}\) and \(V \underset{k}{\otimes} \mathrm{~K}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}}\). By (vi), all the \(<\mathrm{U}_{\mathrm{i}}, \mathrm{e}_{\mathrm{k}, \mathrm{K}} \tau(\mathrm{V})>\) are equal, and so
\[
\begin{aligned}
<U_{i}, e_{k, K} \tau(V)> & =(1 / m)<e_{k, K}(U), e_{k, K} \tau(V)> \\
& =(1 / m)<U, \tau(V)>\quad \text { by (iv) } \\
& = \begin{cases}d_{U} / m & \text { if } U \cong V \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
\]

On the other hand
\[
\begin{aligned}
<U_{i}, \tau e_{k, K}(V)> & =\sum_{j=1}^{\sum}<U_{i}, \tau\left(V_{j}\right)> \\
& = \begin{cases}d_{U_{i}} \cdot\left(\text { no. of } V_{j}\right. \text { isomorphic to } \\
\left.U_{i}\right) & \text { if } U \cong V \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
\]

But \(d_{U_{i}}=d_{U} /\left(m\right.\). (no. of \(V_{j}\) isomorphic to \(\left.U_{i}\right)\)), since the extension \(K / k\) is separable. Thus \(e_{k, K} \tau(V)\) and \(\tau e_{k, K}(V)\) have the same inner product with every element of \(A_{K}(G)\), and so by 2.18 .5 they are equal.

\subsection*{2.33.2 Proposition}

Suppose \(V\) is a non-projective indecomposable kG-module with \(\mathrm{V} \underset{\mathrm{K}}{\mathrm{K}}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}}\). Suppose \(0 \rightarrow \Omega^{2} \mathrm{~V} \rightarrow \mathrm{X}_{\mathrm{V}} \rightarrow \mathrm{V} \rightarrow 0\) is the almost split sequence terminating in \(V\). Then tensoring with \(K\), we obtain the direct sum of the almost split sequences terminating in the \(V_{i}\) : \(0 \rightarrow \Omega{ }^{2} \mathrm{~V}_{1} \oplus \ldots \oplus \Omega^{2} \mathrm{~V}_{\mathrm{n}} \rightarrow \mathrm{X}_{\mathrm{V}_{1}} \oplus \ldots \oplus \mathrm{X}_{\mathrm{V}_{\mathrm{n}}} \rightarrow \mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}} \rightarrow 0\).

\section*{Proof}

We have
\[
\begin{aligned}
& \cong E x t_{K G}^{1}\left(\mathrm{~V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{n}}, \Omega^{2} \mathrm{~V}_{1} \quad \oplus \ldots \oplus \quad \Omega^{2} \mathrm{~V}_{\mathrm{n}}\right) .
\end{aligned}
\]

The almost split sequence \(0 \rightarrow \Omega^{2} V \rightarrow X_{V} \rightarrow V \rightarrow 0\) corresponds to a generator \(x\) for the socle of \(\operatorname{Ext}_{k G}^{1}\left(V, \Omega{ }^{2} V\right) \cong\left(\operatorname{End}_{k G}(V) / J\left(\operatorname{End}_{k G}(V)\right)\right)^{*}\) Now \(E n d_{k G}(V) / J\) (End \(\left._{k G}(V)\right)\) is a division ring \(D\), and without loss of generality we may take \(x: D \rightarrow k\) to be the reduced trace function (i.e. tensor D with a splitting field, so that it becomes an algebra of matrices, and then \(x\) takes a matrix to its trace, which is in \(k\). Then since \(K\) is a separable extension of \(k, D ~_{k}^{\otimes} K\) is a direct sum of complete matrix algebras over division rings with \(k\) in their centres (1.2.4) and \(\mathbf{x} \otimes \mathrm{K}\) is still the reduced trace function. Thus as an element of k \(E x t_{K G}^{I}\left(V_{1} \oplus \ldots \oplus V_{n}, \Omega^{2} V_{1} \oplus \ldots \oplus \Omega^{2} V_{n}\right), \quad x \otimes K\) represents the sum of the generators for the socles of \(E x t{ }_{K G}^{1}\left(V_{i}, \Omega^{2} V_{i}\right)\), and so our sequence is the direct sum of the almost split sequences. \(\quad\)

\subsection*{2.33.3 Proposition}

Let \(q\) be a connected component of the stable quiver of kGmodules. Then the direct summands of \(\begin{gathered}V \neq K \\ k\end{gathered}\) for \(V \varepsilon q\) belong to a finite set of connected components \(Q_{1}, \ldots, Q_{n}\) of the stable quiver of KG-modules, and \(\sigma\) acts transitively in the \(Q_{i}\).

Proof
Choose a module \(V \in q\), and let \(V_{1}, \ldots, V_{m}\) be the isomorphism classes of summands of \(\begin{gathered}\mathrm{V} \underset{\mathrm{k}}{\$} \mathrm{~K} .\end{gathered}\) By 2.33.2 and induction, if \(W \varepsilon q\), and \(W_{1}\) is a direct summand of \(W \geqslant K\), then \(W_{1}\) is in the same connected component as one of the \(V_{i}\). Thus there are at most \(m\) connected components., and by 2.33 .2 , G acts transitively on them. a

Definitions
In the situation of 2.33 .3 , we say \(Q_{1}, \ldots, Q_{n}\) lie above \(q\). If \(Q\) is a connected component of the stable quiver of KG-modules, we define the decomposition group \({ }_{Q}\) to be \(S_{t a b_{G}}(Q)\), and the decomposition field \(K^{d}\) to be the fixed field of \(G_{Q}\).

\subsection*{2.33.4 Proposition}

Let \(Q\) be a connected component of the stable quiver of KGmodules, with decomposition group \(G_{Q}\) and decomposition field \(K^{d}\). Let \(Q_{1}, \ldots, Q_{n}\) be the images of \(Q\) under \(G\), and let \(q\) be the component of the stable quiver of kG-modules, over which they lie. Let \(\vartheta\) be the component of the stable quiver of \(K^{d} G\)-modules over which \(Q\) lies. Then
(i) \(Q\) is the only component of the stable quiver of \(K G-m o d u l e s\) lying over \(Y\),
(ii) there is a natural isomorphism \(\mathcal{V} \cong q\), and
(iii) \(\tau \mathbb{Z}\) is the quotient of \(Q\) by the action of \(G_{Q}=\operatorname{Gal}\left(K / K^{d}\right)\).

Proof
(i) This is clear from the definition of \(K^{d}\).
(ii) The isomorphism is given as follows. If \(V \varepsilon q\), then \(V \otimes K^{d}\) has a unique summand in \(\mathscr{V}\), since \(G a l(K / k)\) is transitive on the isomorphism classes of summands of \(V \otimes K\) (2.33.1(v)), and k
\({ }^{6}\) Q is precisely the setwise stabilizer of those summands lying in Q. The isomorphism in question takes \(V\) to this summand. This is clearly a quiver isomorphism by 2.33.2.
(iii) This is clear. \(\quad\)

Since \(G_{Q}\) acts on \(Q\), this passes down to an action of \({ }^{{ }^{6}} \mathrm{Q}\) on the reduced graph \(\Delta\) of \(Q\) (but not on the associated tree, as we shall see).

The reduced graph \(\Delta_{0}\) for \(\vartheta\) may be obtained as follows. The vertices of \(\Delta_{0}\) are the orbits of \(\theta_{Q}\) on \(\Delta\). To find the new multiplicity \(a_{i j}\), pick a representative \(i_{o}\) of the orbit \(i\), and add together with \(a_{i_{o}}, j_{o}\) as \(j_{o}\) runs over the elements of the orbit \(j\) connected to \(i\).

Example
Let \(G=A_{4}, k=\mathbb{F}_{2}\) and \(K=\mathbb{F}_{4}\). Let \(Q\) be the component of
 Auslander-Reiten quiver containing the projective modules (see Appendix). Let \(\tau \mathcal{Z}\) be the corresponding component of the stable
quiver of \(k G-m o d u l e s . ~ T h e n ~ t h e ~ t r e e ~ c l a s s ~ a n d ~ r e d u c e d ~ g r a p h ~ o f ~ Q ~\) are \(A_{\infty}^{\infty}\) and \(\tilde{A}_{5}\). The Galois group \(\operatorname{Gal}(\mathrm{K} / \mathrm{k})\) acts on \(\tilde{A}_{5}\) as follows,

and so the reduced graph of \(\eta\) is

Since the tree class of \(\mathcal{\eta}\) is also \(\tilde{B}_{3}\), we see that the behaviour of the tree class under Galois descent is less easy to predict.

We define the inertia group \(T_{Q}\) of \(Q\) to be the pointwise stabilizer in \({ }^{\mathbb{C}} Q\) of the reduced graph of \(Q\), and the inertia field \(\mathrm{K}^{\mathrm{t}}\) to be the fixed field of \(\mathrm{T}_{\mathrm{Q}}\). The following proposition is clear.
2.33.5 Proposition
(i) The reduced graph of the component of the stable quiver of \(K^{t} G\)-modules corresponding to \(Q\) is isomorphic to the reduced graph of \(\tau\).
(ii) \(\quad \epsilon_{Q} / T_{Q}\) acts faithfully as a group of graph automorphisms on the reduced graph of \(Q\), and is hence either cyclic or isomorphic to a subgroup of \(\mathrm{S}_{4}\).

\section*{Appendix}

\section*{Representations of particular groups}

In this appendix, we list some information about the representation theory of particular finite groups. The amount of information given varies with the size of the group. We pay special attention to the representation theory of the Klein fours group, since this is a good example of many of the concepts introduced in the text. Our notation for the tables is a modification of the 'Atlas' conventions [36], as follows.

If \(A\) is a direct summand of \(A(G)\) satisfying hypothesis 2.21.1, we write first the atom table and then the representation table. The top row gives the value of \(c(s)\) (calculated using 2.21.13) . The second row gives the \(\ell \frac{\text { th }}{}\) power of \(s\), for each relevant prime \(\ell\) in numerical order (a prime is relevant for a species \(s\) if either \(\ell||\operatorname{Orig}(s)|\), or \(p||O r i g(s)| \quad(p=\operatorname{char}(k))\) and \(\ell \mid(p-1))\). The third row gives the isomorphism type of an origin of \(s\), followed by a letter distinguishing the conjugacy class of the origin, and a number distinguishing the species with that origin, if there is more than one. Thus for example S3A2 means that the origin is isomorphic to \(S_{3}\), and lies in a conjugacy class labelled ' \(A\) ' ; the species in question is the second one with this origin. For the power maps (second row), the origin is determined by 2.16 .11 , so we only give the rest of the identifier.

The last column gives the conjugacy class of the vertex of the representation. If there is more than one possible source with a given vertex, the dimension of the source is given in brackets.

By 2.21.9, the Brauer character table of modular irreducibles always appears at the top left corner of the atom table. Similarly the Brauer character table of projective indecomposable modules always appears at the top left corner of the representation table.

For the irreducible modules in the atom table, we also give the Frobenius-Schur indicator, namely
+ if the representation is orthogonal
- if the representation is symplectic but not orthogonal
o if the representation is neither symplectic nor orthogonal.
(For char \(k \neq 2\), this is \(\left(1, \psi^{2}(V)\right)\), see example after 2.16.2).

\section*{Irrationalities}

The irrationalities we find in these tables are as follows.
\[
b n= \begin{cases}\frac{1}{2}(-1+\sqrt{n}) & \text { if } n \equiv 1(\bmod 4) \\ \frac{1}{2}(-1+i \sqrt{n}) & \text { if } n \equiv 3(\bmod 4)\end{cases}
\]
i.e. the Gauss \(s\) um of half the primitive \(n \frac{t h}{}\) roots of unity.
\[
\begin{aligned}
& \mathrm{zn}=\mathrm{e}^{2 \pi i / n} \text { is a primitive } n \frac{\text { th }}{} \text { root of unity } \\
& \mathrm{yn}=\mathrm{zn}+\overline{\mathrm{zn}} \\
& \text { in }=\mathrm{i} \sqrt{\mathrm{n}}
\end{aligned}
\]
\(*_{m}\) denotes the image of the adjacent irrationality under the Galois automorphism \(\mathrm{zn} \mapsto(\mathrm{zn})^{\text {m }}\)
* denotes the conjugate of a quadratic irrationality.
\(\star *\) denotes \(*(-1)\).
\(\mathbf{x} \delta \mathrm{m}\) denotes \(\mathbf{x}+\mathbf{x}_{\mathrm{m}}\).
Projective modules
We give the Loewy structure of the projective indecomposable kG-modules. This is the diagram whose \(i \frac{\text { th }}{}\) row gives the simple summands of the \(i^{\text {th }}\) Loewy layer, namely the completely reducible module \(L_{i}(V)=V J^{i-1} / \mathrm{VJ}^{i}\), where \(J=J(k G)\). In this diagram, simple modules are labelled by their dimensions, with some form of decoration (e.g. a subscript) if there is more than one simple module of the same dimension.

\section*{Auslander-Reiten Quiver}

We use dotted lines to indicate the arrows involving projective modules, so that the stable quiver may be obtained by removing these arrows and the projective modules attached to them. When the tree class of a connected component is equal to the reduced graph, we only give the former. If they are different, we give both, and we write (tree class) \(\rightarrow\) (reduced graph).

Cohomology
We give \(H^{*}(G, Z)\) and \(H^{*}(G, k)\) in the forms \(\mathbf{Z}\) [generators]/(relations) and \(k\) [generators]/(relations), where the relations \(x y=(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)} y x\) are to be assumed. We also give the Poincaré series \(\quad \xi_{k}(t)=\Sigma t^{n} \operatorname{dim}_{k} H^{n}(G, k)\).

\section*{Acknowledgement}

I would like to thank Richard Parker for his permission to
reproduce extracts from his collection of decomposition matrices and Brauer character tables.
\(\mathrm{C}_{2}\), the cyclic group of order two
i. Ordinary characters
```

    \(2 \quad 2\)
    P power A
    ind 1A 2A
        \(+11\)
        \(+1-1\)
    $H^{\star}\left(C_{2}, \mathbb{Z}\right)=\mathbb{Z}[x] /(2 x), \quad \operatorname{deg}(x)=2$.

```
ii. Representations over \(\mathbb{F}_{2}\) Representation type: finite.
 Decomposition matrix and Cartan matrix
\[
\mathrm{D}=\begin{aligned}
& \\
& 1 \\
& 1
\end{aligned} \begin{gathered}
I \\
1 \\
1
\end{gathered} \quad C=\begin{aligned}
& I \\
& 2
\end{aligned}
\]

Atom table and representation table for \(A(G)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & -2 & 2 & -2 & \\
\hline p pow & & A & p power & A & \\
\hline ind & & 2A & 1A & 2 A & vtx \\
\hline + & 1 & 1 & 2 & 0 & 1A \\
\hline & 0 & -2 & 1 & 1 & 2A \\
\hline
\end{tabular}

\section*{Projective indecomposable modules}

I
I
Almost Split Sequences
\[
0 \rightarrow I \rightarrow \frac{I}{I} \rightarrow I \rightarrow 0
\]

Auslander-Reiten Quiver

Tree Class
\(A_{1}\)

Cohomology
\[
\begin{aligned}
& H^{*}\left(C_{2}, k\right)=k[x], \quad \operatorname{deg}(x)=1, \quad x S q^{1}=x^{2} . \\
& \xi_{k}(t)=\frac{1}{1-t} \\
& \operatorname{Max}\left(H^{e v}\left(C_{2}, k\right)\right) \cong \mathbb{A}^{1}(k) \\
& \operatorname{Proj}\left(H^{e v}\left(C_{2}, k\right)\right) \quad \text { is a single point. }
\end{aligned}
\]

\section*{A Ring Homomorphism}

If \(H=\langle t\rangle\) is a cyclic subgroup of a group \(G\) with \(|H|=2\), then \((1+t)^{2}=0\), and
\[
V \mapsto \operatorname{Ker}_{V}(1+t) / \operatorname{Im}_{V}(1+t)
\]
is a ring homomorphism from \(A(G)\) to \(A\left(C_{G}(H) / H\right)\).
\(\mathrm{V}_{4}\), the Klein fours group \(\left(=C_{2} \times C_{2}\right)\)
\[
\begin{gathered}
H^{*}\left(V_{4}, z\right)=\mathbb{Z}[x, y, z] /\left(2 x, 2 y, 2 z, z^{2}-x y^{2}-x^{2} y\right) \\
\operatorname{deg}(x)=\operatorname{deg}(y)=2, \quad \operatorname{deg}(z)=3 .
\end{gathered}
\]

Representations over \(\overline{\mathbf{F}}_{2}\) Representation type: tame.
The set of species of \(A_{k}\left(V_{4}\right)\) falls naturally into three subsets.
(i) The dimension.
(ii) A set of species \(s_{z}\) parametrized by the non-zero complex numbers \(z \in \mathbb{C} \backslash\{0\}\).
(iii) A set of species \(s_{N, \lambda}\) parametrized by the set of ordered pairs (\(N, \lambda\)) with \(N \in \mathbb{N} \backslash\{0\}\) and \(\lambda \varepsilon \mathbb{P}^{1}(k)\).

The set of indecomposable representations also falls naturally into three subsets.
(i) The projective indecomposable representation \(P_{1}\) of dimension four.
(ii) The syzygies of the trivial module \(V_{0}=k\)
\[
\mathrm{V}_{\mathrm{m}}=\Omega^{\mathrm{m}}(\mathrm{k}) \quad \text { and } \quad \mathrm{V}_{-\mathrm{m}}=\gamma^{m}(\mathrm{k})
\]
(iii) The set of representations \(V_{n, \lambda}\) parametrized by the set of ordered pairs (\(n, \lambda\)) with \(n \varepsilon \mathbb{N} \backslash\{0\}\) and \(\lambda \varepsilon \mathbb{P}^{1}(k)\), having dimension 2 n , and \(\Omega\left(\mathrm{V}_{\mathrm{n}, \lambda}\right) \cong \mathrm{V}_{\mathrm{n}, \lambda}\)

Matrices for these representations are given as follows. Let \(\mathrm{V}_{4}=<\mathrm{g}_{1}, \mathrm{~g}_{2}: \mathrm{g}_{1}^{2}=\mathrm{g}_{2}^{2}=1, \mathrm{~g}_{1} \mathrm{~g}_{2}=\mathrm{g}_{2} \mathrm{~g}_{1}>\). Then \(\mathrm{V}_{\mathrm{n}, \lambda}\) is the representation
\[
g_{1} \mapsto\left(\begin{array}{cc}
I & I \\
0 & I
\end{array}\right) \quad g_{2} \mapsto\left(\begin{array}{cc}
I & J_{\lambda} \\
0 & I
\end{array}\right)
\]
where. I represents an \(n \times n\) identity matrix, while \(J_{\lambda}\) represents an \(n \mathrm{x} \mathrm{n}\) Jordan block with eigenvalue \(\lambda\).
For \(\lambda=\infty\), the representation is
\[
\begin{gathered}
g_{1} \mapsto\left(\begin{array}{cc}
I & J_{0} \\
0 & I
\end{array}\right) \quad g_{2} \mapsto\left(\begin{array}{ll}
I & I \\
0 & I
\end{array}\right) . \\
\text { Aut }\left(V_{4}\right)=S_{3}=<h_{1}, h_{2}: h_{1}^{2}=h_{2}^{2}=\left(h_{1} h_{2}\right)^{3}=1, \quad g_{1}=g_{1}
\end{gathered}
\]
\[
g_{2}^{h_{1}}=g_{1} g_{2}, g_{1}^{h_{2}}=g_{2}, g_{2}^{h_{2}}=g_{1}>\text { acts on the set of representations }
\] as follows. \(P_{1}\) and \(V_{n}\) are fixed by al automorphisms, and
\[
\mathrm{h}_{1}: \mathrm{V}_{\mathrm{n}, \lambda} \mapsto \mathrm{~V}_{\mathrm{n}, 1+\lambda} \quad, \quad \mathrm{h}_{2}: \mathrm{V}_{\mathrm{n}, \lambda} \mapsto \mathrm{~V}_{\mathrm{n}, 1 / \lambda}
\]

Define infinite matrices \(A, B, C\) and \(D\) as follows
\[
\begin{aligned}
& \stackrel{N}{+}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{N}
\end{aligned}
\]

Let 0 represent an infinite matrix of zeros. Then the representation table and atom table for \(V_{4}\) are as follows

Atom Table for \(\mathrm{V}_{4}\)

Direct Summands of \(A(G)\)
\(A(G, C y c)\) is the linear span of \(P_{1}, V_{1,0}, V_{1,1}\) and \(V_{1, \infty}\). \(A(G, D i s c r e t e)\) is the linear \(s p a n\) of the elements \(P_{1}\) and all the \(V_{n, \lambda}\).
\(A_{o}\) (G,Discrete) is the linear span of elements of the form
\(2 V_{m}-2 V_{o}-|m| P_{1}\), and is isomorphic to the ideal of \(\mathbb{C}\left[X, X^{-1}\right]\)
consisting of those functions vanishing at \(\mathrm{X}=1\). Letting \(\hat{A}_{0}\) (G,Discrete) be the subring of \(A(G)\) generated by \(A_{0}\) (\(G\),Discrete) and the identity element, we have
\[
A(G)=A(G, \text { Discrete }) \oplus \hat{A}_{o}(G, \text { Discrete }) .
\]
\(\hat{A}_{o}\) (G, Discrete) is isomorphic to \(\mathbb{C}\left[\mathrm{X}, \mathrm{X}^{-1}\right]\), under the isomorphism \(\mathrm{V}_{1}-\frac{1}{2} \mathrm{P}_{1}=\mathrm{X}, \mathrm{V}_{-1}-\frac{1}{2} \mathrm{P}_{1}=\mathrm{X}^{-1}\). In particular,
\(A(G, D i s c r e t e) \oplus A_{o}\) (G,Discrete) is an ideal of codimension one in \(A(G)\), and \(A(G, D i s c r e t e)\) is not an ideal direct summand of \(A(G)\), since it has no identity element.

\section*{Power maps}
\[
\left(s_{z}\right)^{m}= \begin{cases}s_{z^{m}} & m \text { odd } \\ s_{z} & m=2\end{cases}
\]
\[
\left(s_{\mathrm{N}, \lambda}\right)^{\mathrm{m}}= \begin{cases}\mathrm{s}_{\mathrm{N}, \lambda} & \mathrm{~m} \quad \text { odd } \\ \mathrm{s}_{\mathrm{N}, \lambda^{2}} & \mathrm{~m}=2\end{cases}
\]
unless \(N=1\) or \(2, \lambda \varepsilon\{0,1, \infty\}\) and \(m \equiv 3\) or \(5 \bmod 8\), in which case \(\left(s_{1, \lambda}\right)^{m}=s_{2, \lambda}\) and \(\left(s_{2, \lambda}\right)^{m}=s_{1, \lambda}\).

\section*{Almost Split Sequences}
\[
\begin{array}{ll}
0 \rightarrow V_{n+2} \rightarrow V_{n+1} \oplus V_{n+1} \rightarrow V_{n} \rightarrow 0 & (n \neq-1) \\
0 \rightarrow V_{1} \rightarrow V_{0} \oplus V_{0} \oplus P_{1} \rightarrow V_{-1} \rightarrow 0 \\
0 \rightarrow V_{n, \lambda} \rightarrow V_{n+1, \lambda} \oplus V_{n-1, \lambda} \rightarrow V_{n, \lambda} \rightarrow 0 & (n>1) \\
0 \rightarrow v_{1, \lambda} \rightarrow v_{2, \lambda} \rightarrow v_{1, \lambda} \rightarrow 0
\end{array}
\]

\section*{Auslander-Reiten Quiver}
\[
\begin{aligned}
& \mathrm{v}_{1}, \lambda \mathbb{R} \mathrm{v}_{2}, \lambda \mathbb{R} \mathrm{v}_{3}, \lambda \pi \mathrm{v}_{4}, \lambda \mathbb{R} \ldots . \\
& \left(\lambda \varepsilon \mathbf{P}^{1}(k)\right)
\end{aligned}
\]

\section*{Tree Classes}
\[
\tilde{A}_{12}, \text { and a } \mathbb{P}^{1}(k) \text { - parametrized family of } A_{\infty} \text { 's. }
\]

\section*{Cohomology}
\(H^{*}\left(V_{4}, k\right)=k[x, y] \quad \operatorname{deg}(x)=\operatorname{deg}(y)=1\)
\(x S S^{1}=x^{2}, \quad y S q^{1}=y^{2}\)
\(\xi_{k}(t)=1 /(1-t)^{2}\)
\(\operatorname{Max}\left(H^{e v}\left(V_{4}, k\right)\right) \cong \mathbb{A}^{2}(k)\)
\(\operatorname{Proj}\left(\mathrm{H}^{\mathrm{ev}}\left(\mathrm{V}_{4}, \mathrm{k}\right)\right) \cong \mathbb{P}^{1}(\mathrm{k})\), and may be identified with the parametrizing set for the \(V_{n, \lambda}\) in such a way that \(\bar{X}_{G}\left(V_{n, \lambda}\right)=\{\lambda\}\). Thus there is a one-one correspondence between the connected components of the stable quiver and the non-empty subvarieties of \(\bar{X}_{G}\). Note that for a general group there may be many connected components of the stable quiver with the same variety.

Remark
For representation theory of \(V_{4}\) over an arbitrary field in characteristic 2 , see under the dihedral group of order \(2^{n}\).

The Dihedral Group D
\[
\begin{gathered}
H^{*}\left(D_{8}, z\right)=Z[w, x, y, z] /\left(2 w, 2 x, 2 y, 4 z, y^{2}-w z, x^{2}-w x\right) \\
\operatorname{deg}(w)=\operatorname{deg}(x)=2, \operatorname{deg}(y)=3, \operatorname{deg}(z)=4
\end{gathered}
\]

Representations over a field \(k\) of characteristic 2 (not necessarily algebraically closed) [79] Representation type: tame

First we describe the finite dimensional indecomposable modules for the infinite dihedral group
\[
G=\left\langle x, y: x^{2}=y^{2}=1\right\rangle
\]
and then we indicate which are modules for the quotient group \(D_{4 q}=\left\langle x, y: x^{2}=y^{2}=1, \quad(x y)^{q}=(y x)^{q}\right\rangle\).

Let \(\|\) be the set of words in the letters \(a, b, a^{-1}\) and \(b^{-1}\) such that \(a\) and \(a^{-1}\) are always followed by \(b\) or \(b^{-1}\) and viceversa, together with the 'zero length words' \(1_{a}\) and \(1_{b}\). If \(C\) is a word, we define \(c^{-1}\) as follows. \(\left(1_{a}\right)^{-1}=1_{b},\left(1_{b}\right)^{-1}=1_{a}\); and otherwise, we reverse the order of the letters in the word and invert each letter according to the rule \(\left(a^{-1}\right)^{-1}=a,\left(b^{-1}\right)^{-1}=b\). Let \(\mathbb{I}_{1}\) be the set obtained from \(d 0\) by identifying each word with its inverse.

The \(n-\frac{\text { th }}{}\) power of a word of even length is obtained by juxtaposing \(n\) copies of the word. Let \(\|^{\prime}\) be the subset of \(m\) consisting of all words of even non-zero length which are not powers of smaller words. Let \(\mathbb{W}_{2}\) be the set obtained from \(\mathrm{m}^{\prime}\) by identifying each word with its inverse and with its images under cyclic permutations
\[
\ell_{1} \cdots \quad \ell_{n}+\ell_{n} \ell_{1} \cdots \ell_{n-1} .
\]

The following is a list of all the isomorphism types of finite dimensional indecomposable kG-modules.

Modules of the first kind
These are in one-one correspondence with elements of \(\mathrm{m}_{1}\). Let \(C=\ell_{1} \ldots \ell_{n} \varepsilon \mathbb{D}\). Let \(M(C)\) be a vector space over \(k\) with basis \(z_{o}, \ldots, z_{n}\) on which \(G\) acts according to the schema
\[
\mathrm{kz}_{\mathrm{o}}<\frac{\ell_{1}}{} \mathrm{k} z_{1}<\frac{{ }_{2}}{2} \mathrm{k} z_{2} \quad . . \mathrm{kz}_{\mathrm{n}-1}<\frac{{ }^{\ell} \mathrm{n}}{} \mathrm{k} z_{\mathrm{n}}
\]
where \(x\) acts as " \(1+a\) " and \(y\) acts as " \(1+b "\). (e.g. if \(C=a b^{-1} a b a^{-1}\) then the schema is
\[
\mathrm{k} z_{0}<\xrightarrow{\mathrm{a}} \mathrm{k} \mathrm{z}_{1} \xrightarrow{\mathrm{~b}} \mathrm{kz}_{2}<-\mathrm{a} \mathrm{k}_{3}<\xrightarrow{\mathrm{b}} \mathrm{k} z_{4} \xrightarrow{\mathrm{a}} \mathrm{k} z_{5}
\]
and the representation is given by
\[
\mathbf{x} \stackrel{\mapsto}{ }\left(\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
& & 1 & & & \\
& & 1 & 1 & & \\
& & & & 1 & 1 \\
& & & & & 1
\end{array}\right) \quad y_{H}\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & 1 & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right)
\]

It is clear that \(M(C) \cong M\left(C^{-1}\right)\).
Modules of the second kind
These are in one-one correspondence with elements of \(\mathrm{m}_{2} \times \mathrm{y}\) where
\[
\begin{aligned}
v= & f(V, \varphi): V \text { is a vector space over } k \text { and } \varphi \text { is an } \\
& \text { indecomposable automorphism of } V\}
\end{aligned}
\]
(an indecomposable automorphism of a vector space is one whose rational canonical form has only one block, which is associated with a power of an irreducible polynomial over \(k\)). If (\(C,(V, \varphi)\)) \(\varepsilon\) d \({ }^{\prime} \times v\) with \(C=\ell_{1} \ldots \quad \ell_{n}\), let \(M(C, V, \varphi)\) be the vector space n-1 \(\underset{i=0}{\oplus} \quad V_{i}\) with \(V_{i} \cong V\) on which \(G\) acts according to the schema
where again \(x\) acts as " \(1+a\) " and \(y\) acts as " \(1+b\) " as above. It is clear that if \(C\) and \(C^{\prime}\) represent the same element of \(\quad \mathbb{J}_{2}\) then \(M(C, V, \varphi) \cong M\left(C^{\prime}, V, \varphi\right)\).

A module represents the quotient group \(D_{4 q}\) if and only if either
(i) the module is of the first kind and the corresponding word does not contain \((a b)^{q}\), (ba) \({ }^{\mathrm{q}}\) or their inverses,
(ii) the module is of the second kind and no power of the corresponding word contains (ab) \({ }^{q}\), (ba) \({ }^{q}\) or their inverses, or
(iii) the module is the projective indecomposable module \(\mathrm{M}\left((\mathrm{ab})^{\mathrm{q}}(\mathrm{ba})^{-\mathrm{q}}, k\right.\), id) (of the second kind).

\section*{Almost Split Sequences}

\section*{(a) Modules of the first kind}

We define two functions \(L_{q}\) and \(R_{q}\) from words to words as follows. Let \(A=(a b)^{q-1} a\) and \(B=(b a)^{q-1} b\). If a word \(C\) starts with \(\mathrm{Ab}^{-1}\) or \(\mathrm{Ba}^{-1}\) then \(\mathrm{CI} q\) is obtained by cancelling that part; otherwise \(C L_{q}=A^{-1} \mathrm{bC}\) or \(\mathrm{B}^{-1} \mathrm{CC}\) whichever is a word. Similarly if \(C\) ends in \(a B^{-1}\) or \(b A^{-1}, C R{ }_{q}\) is obtained by cancelling that part; otherwise \(C R_{q}=C a^{-1} B\) or \(C b^{-1} A\), whichever is a word. \(R_{q}\) and \(L_{q}\) are bijections from to itself, and we have
\(R_{q} L_{q}=L_{q} R_{q}\), and \(\Omega{ }^{2} M(C) \cong M\left(C R_{q} L_{q}\right)\). The almost split sequence terminating in \(M(C)\) is
\[
0 \rightarrow M\left(\mathrm{CR}_{\mathrm{q}} \mathrm{~L}_{\mathrm{q}}\right) \rightarrow \mathrm{M}\left(\mathrm{CR}_{\mathrm{q}}\right) \oplus \mathrm{M}\left(\mathrm{CL}_{\mathrm{q}}\right) \rightarrow \mathrm{M}(\mathrm{C}) \rightarrow 0
\]
unless \(C\) or \(C^{-1}\) is \(A B^{-1}\), in which case it is
\[
0 \rightarrow M\left(\mathrm{CR}_{\mathrm{q}} \mathrm{~L}_{\mathrm{q}}\right) \rightarrow \mathrm{M}\left(\mathrm{CR}_{\mathrm{q}}\right) \oplus \mathrm{M}\left(\mathrm{CL}_{\mathrm{q}}\right) \oplus \mathrm{P}_{1} \rightarrow \mathrm{M}(\mathrm{C}) \rightarrow 0
\]
i.e.
\[
\begin{aligned}
& 0 \rightarrow M\left(A^{-1} B\right) \rightarrow M\left((a b)^{q-1}\right) \oplus M\left((b a)^{q-1}\right) \oplus M\left((a b)^{q}(b a)^{-q}, k, i d\right) \\
& \\
& \rightarrow M\left(A B^{-1}\right) \rightarrow 0 \\
& \text { or } C=A, \text { in which case } 0 \rightarrow M(A) \rightarrow M\left(A b^{-1} A\right) \rightarrow M(A) \rightarrow 0 .
\end{aligned}
\]
(b) Modules of the second kind

For an irreducible polynomial \(p(x) \varepsilon k[x]\), let (\(V_{n, p}, \varphi_{n, p}\)) be the vector space and endomorphism with one rational canonical block associated with \((p(x))^{n}\). Then \(\Omega^{2} M\left(C, V_{n, p}, \varphi_{n, p}\right) \cong M\left(C, V_{n, p}, \varphi_{n, p}\right)\)
and the almost split sequence terminating in \(M\left(C, V_{n, p}, \varphi_{n, p}\right)\) is
\[
\begin{aligned}
& 0 \rightarrow M\left(C, v_{n, p}, \varphi_{n, p}\right) \rightarrow M\left(C, V_{n+1, p}, \varphi_{n+1, p}\right) \oplus M\left(C, v_{n-1, p}, \varphi_{n-1, p}\right) \\
& \rightarrow M\left(C, v_{n, p}, \varphi_{n, p}\right) \rightarrow 0 \quad(n>1)
\end{aligned}
\]
and
\[
0 \rightarrow M\left(C, V_{1, p}, \varphi_{1, p}\right) \rightarrow M\left(C, V_{2, p}, \varphi_{2, p}\right) \rightarrow M\left(C, v_{1, p}, \varphi_{1, p}\right) \rightarrow 0
\]

Auslander-Reiten Quiver of \(\mathrm{D}_{2^{n}}, \quad \mathrm{n} \geq 3\)
(a) Modules of the first kind

These fit together to form an infinite set of components of type \(\mathbf{z A}_{\infty}^{\infty}\)

together with the following special components.

(note that \(A R_{q} L_{q}=A\) and \(B R_{q} L_{q}=B\))

(note that \(A B^{-1} R_{q} L_{q}=A^{-1} B\))
(b) Modules of the second kind

For each \(C \in \mathbb{Z}_{2}\) and each irreducible polynomial \(p(x) \varepsilon k[x]\), there is a component

\section*{Tree Classes}
(a) All components \(A_{\infty}^{\infty}\).
(b) All components \(\mathrm{A}_{\infty}\).

Cohomology of \(\mathrm{D}_{2} n, \quad n \geq 3\)
\(H^{*}\left(D_{2}, k\right)=k[x, y, u] /(x y)\)
\begin{tabular}{|c|c|c|c|}
\hline & degree & Sq \({ }^{1}\) & \(s q^{2}\) \\
\hline x & 1 & \(\mathrm{x}^{2}\) & 0 \\
\hline y & 1 & \(y^{2}\) & 0 \\
\hline u & 2 & \(u(x+y)\) & \(\mathrm{u}^{2}\) \\
\hline
\end{tabular}
\(\xi_{k}(t)=1 /(1-t)^{2}\)
Proj (\(\left.\mathrm{H}^{\mathrm{eV}}\left(\mathrm{D}_{2} \mathrm{n}, \mathrm{k}\right)\right)\) is a union of two copies of \(\mathbb{P}^{1}(k)\) intersecting in a single point.

\section*{Varieties for Modules}

Write \(\bar{X}_{G}=\mathbb{P}_{a}^{1} \cup \mathbb{P}_{b}^{1}\), where \(\mathbb{P}_{a}^{1} \cap \mathbb{P}_{b}^{1}=\left\{\infty_{a}\right\}=\left\{{ }_{b}\right\}\). Label in such a way that \(\mathbb{P}_{a}^{1}\) corresponds to \(\left\langle x,(x y)^{q}\right\rangle\) and \(\mathbb{P}_{b}^{1}\) corresponds to \(<(x y)^{q}, y>\). By the Quillen stratification theorem (2.26.7) we have a homeomorphism
\[
\bar{X}_{<x,(x y)^{q}>} \rightarrow \mathbb{P}_{a}^{1} .
\]
 corresponds to \(\infty\), and \((x y)^{q} x\) corresponds to 1 , and write the homeomorphism as \(\lambda \rightarrow \lambda(1+\lambda)\). Label \(\mathbb{P}_{b}^{1}\) similarly with respect to \(<(x y)^{\mathrm{q}}, \mathrm{y}>\). Then the varieties for the above modules are as follows.

Q 8 , the Quaternion group of order eight
\(H^{*}\left(Q_{8}, \mathbb{Z}\right)=\mathbb{Z}[x, y, z] /\left(2 x, 2 y, 8 z, x^{2}, y^{2}, x y-4 z\right)\)
\(\operatorname{deg}(x)=\operatorname{deg}(y)=2, \operatorname{deg}(z)=4\).
Representations over \(\overline{\mathbb{F}}_{2}\)
Representation type : tame
All modules are periodic with period 1,2 or 4.
Auslander-Reiten Quiver
The tree class of each connected component of the stable quiver is \(A_{\infty}\).

\section*{Cohomology}
\(H^{*}\left(Q_{8}, k\right)=k[x, y, z] /\left(x^{2}+x y+y^{2}, x^{3}, y^{3}\right)\)
\begin{tabular}{|c|c|c|c|c|}
\hline & degree & \(s q^{1}\) & \(5 q^{2}\) & \(5 q^{4}\) \\
\hline x & 1 & \(x^{2}\) & 0 & 0 \\
\hline y & 1 & \(\mathrm{y}^{2}\) & 0 & 0 \\
\hline \(z\) & 4 & 0 & 0 & \(z^{2}\) \\
\hline
\end{tabular}
\(\xi_{k}(t)=\left(1+t+t^{2}\right) /(1-t)\left(1+t^{2}\right)\)
\(\operatorname{Max}\left(H^{e v}\left(Q_{8}, k\right)\right) \cong \mathbb{A}^{1}(k)\)
\(\operatorname{Proj}\left(H^{e v}\left(Q_{8}, k\right)\right) \quad\) is a single point.
\(C_{p}\), the cyclic group of order \(p, \quad p\) odd
\(H^{*}\left(C_{p}, \mathbb{Z}\right)=\mathbb{Z}[x] /(p x), \quad \operatorname{deg}(x)=2\).
Representations over \(\overline{\mathbb{F}}_{\mathrm{p}}\) Representation type: finite.

\section*{Representation Table}

There are \(p\) indecomposable representations \(X_{j}, 1 \leq j \leq p\), of dimension \(j\), corresponding to the Jordan blocks with eigenvalue one. There are \(p\) species \(s_{0}, \cdots, s_{p-1}\) with
\[
\begin{aligned}
\left(s_{k}, X_{j}\right) & =\frac{\sin (j k \pi / p)}{\sin (k \pi / p)} \\
c_{k}=c\left(s_{k}\right) & =\frac{(-1)^{k} \cdot p}{1+\cos (k \pi / p)}
\end{aligned}
\]

Power Maps \(\left(s_{k}\right)^{P}=s_{k}\)
\[
\left(s_{k}\right)^{q}=s_{q k} \quad \text { if } \quad p \nless q
\]

\section*{Almost split sequences}
\[
0 \rightarrow X_{j} \rightarrow X_{j+1} \oplus X_{j-1} \rightarrow X_{j} \rightarrow 0 \quad 1 \leq j \leq p-1
\]

Auslander -Reiten Quiver

Tree class
\[
A_{p-1}
\]

Cohomology
```

$H^{*}\left(C_{p}, k\right)=k[x, y] /\left(x^{2}\right) \quad \operatorname{deg}(x)=1, \quad \operatorname{deg}(y)=2, x \beta=y, y \beta=0$,
$y P^{1}=y^{P}$
$\xi_{k}(t)=\frac{1}{1-t}$
$\operatorname{Max}\left(H^{\mathrm{ev}}\left(\mathrm{C}_{\mathrm{p}}, \mathrm{k}\right)\right) \cong \mathbb{A}^{1}(\mathrm{k})$
$\operatorname{Proj}\left(\mathrm{H}^{\mathrm{ev}}\left(\mathrm{C}_{\mathrm{p}}, \mathrm{k}\right)\right)$ is a single point.

```
\(C_{3}\) : atom table and representation table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 3 & 6 & -2 & 3 & 6 & -2 & \\
\hline P p & Wer & AlA1 & A1A2 & p power & AlA1 & A1A2 & \\
\hline ind & 1A & 3 Al & 3A2 & 1A & 3 Al & 3 A 2 & vtx \\
\hline + & 1 & 1 & 1 & 3 & 0 & 0 & 1A \\
\hline & 0 & 3 & -1 & 1 & 1 & 1 & 3A(1) \\
\hline & 0 & -3 & -1 & 2 & -1 & 1 & 3 A (2) \\
\hline
\end{tabular}

The general p-group
Structure of the Group Algebra (Jennings, [61])
Let \(P\) be a \(p\)-group, and \(k\) a field of characteristic \(p\).
Define \(H_{1}=P\), and
\[
H_{i}=\left\langle\left[H_{i-1}, P\right], H_{(i / p)}^{(p)}\right\rangle
\]
where (\(i / p\)) is the least integer which is greater than or equal to \(i / p\), and \(H_{\lambda}^{(p)}\) denotes the set of \(p-t h\) powers of elements of \(H_{\lambda}\). Then \(\left\{H_{i}\right\}\) is minimal among series \(\left\{G_{i}\right\}\) with
and
\[
\begin{aligned}
& {\left[G_{i}, P\right] \subseteq G_{i+1}} \\
& x \varepsilon G_{i} \Rightarrow x^{p} \varepsilon G_{i p}
\end{aligned}
\]

In particular, \(H_{i} / H_{i+1}\) is elementary abelian, say of order \(p^{d}\). Define \(\phi(x)=1+x+\ldots+x^{p-1}\), and
\[
F_{P}(x)=\phi(x)^{d_{1}} \cdot \phi\left(x^{2}\right)^{d_{2}} \cdot \ldots \quad \cdot \phi\left(x^{m}\right)^{d_{m}}=\Sigma a_{i} x^{i}
\]
(m is the last value of \(i\) with \(d_{i} \neq 0\)). Then the dimension of the \(i+1\)-th Loewy layer of the group algebra (which is the only projective indecomposable module) is
\[
\operatorname{dim}_{k}\left((J(k P))^{i} /(J(k P))^{i+1}\right)=a_{i}
\]

In particular, the Loewy length of kP is
\[
\ell=1+\underset{i}{\sum} i_{i} \cdot d_{i}(p-1) .
\]

Since \(F_{P}(x)=x^{\ell-1} F_{P}(1 / x)\), we have \(a_{i}=a_{\ell-1-i}\), and so the Loewy and Socle series of \(k P\) are the same.

Groups of order \(p^{2}\) and \(p^{3}\) (\(p\) odd) [66]
\(H^{*}\left(\mathbf{Z} / \mathrm{p}^{2} \mathbf{Z}, \mathbf{Z}\right)=\mathbf{z}[\mathbf{x}] /\left(\mathrm{p}^{2} \mathbf{x}\right), \quad \operatorname{deg}(\mathbf{x})=2\).
\(H^{*}(\mathbf{z} / \mathrm{p} \mathbf{Z} \times \mathbf{Z} / \mathrm{p} \mathbf{Z}, \mathbf{Z})=\mathbf{Z}[\mathrm{x}, \mathrm{y}, \mathrm{z}] /\left(\mathrm{px}, \mathrm{py}, \mathrm{pz}, \mathrm{z}^{2}\right)\)
\(\operatorname{deg}(x)=\operatorname{deg}(y)=2, \operatorname{deg}(z)=3\).
\(H^{*}\left(\mathbf{Z} / \mathrm{p}^{3} \mathbf{Z}, \mathbf{Z}\right)=\mathbf{Z}[\mathrm{x}] /\left(\mathrm{p}^{3} \mathrm{x}\right), \quad \operatorname{deg}(\mathrm{x})=2\).
\(H^{*}\left(Z / p^{2} Z \times Z / p Z, z\right)=Z[x, y, z] /\left(p^{2} x, p y, p z, z^{2}\right)\)
\(\operatorname{deg}(x)=\operatorname{deg}(y)=2, \quad \operatorname{deg}(z)=3\).
\(\mathrm{H}^{*}\left(\mathrm{Z} / \mathrm{p} \mathbf{Z} \times \mathbf{Z} / \mathrm{p} \mathbf{Z} \times \underset{2}{\mathbf{Z} / \mathrm{p} \mathbf{Z}, \mathrm{Z})}=\mathbf{Z}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{z}\right] /\left(\mathrm{px}_{1}, \mathrm{px}_{2}, \mathrm{px}_{3}, \mathrm{py}_{1}, \mathrm{py}_{2}\right.\right.\),
\(\mathrm{py}_{3}, \mathrm{pz}, \mathrm{y}_{1}{ }^{2}, \mathrm{y}_{2}{ }^{2}, \mathrm{y}_{3}{ }^{2}, \mathrm{z}^{2}, \mathrm{y}_{1} \mathrm{z}, \mathrm{y}_{2} \mathrm{z}, \mathrm{y}_{3} \mathrm{z}, \mathrm{y}_{2} \mathrm{y}_{3}+\mathrm{x}_{1} \mathrm{z}, \mathrm{y}_{1} \mathrm{y}_{3}+\mathrm{x}_{2} \mathrm{z}, \mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{x}_{3} \mathrm{z}, \mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}\)
\(+x_{3} y_{3}\))
\(\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right)=2, \quad \operatorname{deg}\left(y_{1}\right)=\operatorname{deg}\left(y_{2}\right)=\operatorname{deg}\left(y_{3}\right)=3\), \(\operatorname{deg}(z)=4\).
If \(\mathrm{G}=<\mathrm{g}, \mathrm{h}: \mathrm{g}^{\mathrm{p}^{2}}=\mathrm{h}^{\mathrm{P}}=1, \mathrm{~h}^{-1} \mathrm{gh}=\mathrm{g}^{1+\mathrm{p}}>\) then
\(H^{*}(G, z)=\mathbf{z}\left[w, x, y, z_{1}, \ldots, z_{p-1}\right] /\left(p w, p x, p^{2} y, p z_{i}, x^{2}, w z_{i}, x z_{i}, z_{i} z_{j}\right)\)
\(\operatorname{deg}(w)=2, \operatorname{deg}(x)=2 p+1, \operatorname{deg}(y)=2 p, \operatorname{deg}\left(z_{i}\right)=2 i\).
If \(G=<\mathrm{g}, \mathrm{h}, \mathrm{k}: \mathrm{g}^{\mathrm{P}}=\mathrm{h}^{\mathrm{P}}=\mathrm{k}^{\mathrm{P}}=1,[\mathrm{~g}, \mathrm{~h}]=\mathrm{k},[\mathrm{g}, \mathrm{k}]=[\mathrm{h}, \mathrm{k}]=1>\) then
\(\left.H^{*}(G, Z)=Z_{[} x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, y_{1}, \ldots, y_{p-3}\right] /\left(p x_{1}, p x_{2}, p x_{3}, p x_{4}, p x_{5}, p^{2} x_{6}\right.\),
\(p y_{i}, x_{3}{ }^{2}, x_{4}{ }^{2}, x_{1} y_{i}, x_{2} y_{i}, x_{3} y_{i}, x_{4} y_{i}, x_{5} y_{i}, y_{i} y_{j}, x_{1} x_{3}-x_{2} x_{4}, x_{1}{ }^{p} x_{3}-x_{2} p_{x_{4}}\),
\(x_{1}{ }^{p} x_{2}-x_{2}{ }^{p} x_{1}, x_{5}{ }^{p}-x_{1}{ }^{p-1} x_{2}{ }^{p-1}, x_{1}\left(x_{5}-x_{2}{ }^{p-1}\right), x_{2}\left(x_{5}-x_{1}{ }^{p-1}\right), x_{3}\left(x_{5}-x_{1}{ }^{p-1}\right)\), \(x_{4}\left(x_{5}-x_{2}{ }^{p-1}\right)\))
\(\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=2, \operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{4}\right)=3, \operatorname{deg}\left(x_{5}\right)=2 p-2\),
\(\operatorname{deg}\left(x_{6}\right)=2 p, \quad \operatorname{deg}\left(y_{i}\right)=2 i+2\).
The p-hypoelementary groups with cyclic \({ }^{0_{p}} \quad k=\bar{F}_{p}\)
Representation type: finite.
Let \(\left.H=<x, y: x^{p^{r}}=y^{m}=1, \quad x^{y}=x^{a}\right\rangle \quad\) where \(\quad\) a is a primitive d th root of unity modulo \(p^{5}\), \(d\) divides \(p-1\) and \(d\) divides \(m\). Let \(\theta\) be a primitive \(m^{\text {th }}\) root of unity in \(k\) with \(a \equiv \theta^{m / d}\) as elements of the prime field \(\mathbb{F}_{p}\). There are \(m\) irreducible modules \(X_{1}\left(\theta^{q}\right), 1 \leq q \leq m\), for \(H\), which are one dimensional and are given by \(x \rightarrow(1), y \rightarrow\left(\theta^{q}\right)\) as matrices. If \(1 \leq n \leq p^{r}\), there are \(m\) indecomposable modules of dimension \(n\). These are denoted \(X_{n}\left(\theta^{q}\right)\), \(1 \leq q \leq m\). These account for all the irreducible modules. \(\quad X_{n}\left(\theta^{q}\right)\) is uniserial, with Loewy layers \(L_{i}\left(X_{n}\left(\theta^{q}\right)\right) \cong X_{1}\left(a^{n-i} \theta^{q}\right)\). We write \(X_{n}\) for \(X_{n}(I)\).

\section*{The case \(r=1\)}

In this case \(H\) has order \(p . m,(p, m)=1\). The following

\[
\begin{aligned}
& X_{1}\left(\theta^{q}\right) \otimes X_{n} \cong X_{n}\left(\theta^{q}\right) \\
& X_{2} \otimes X_{n} \cong \begin{cases}X_{n-I}(a) \oplus X_{n+1} & \text { if } I \leq n<p \\
X_{p}(a) \oplus X_{p} & \text { if } n=p .\end{cases}
\end{aligned}
\]

Let \(\lambda\) be a primitive \(2 m \frac{\text { th }}{}\) root of unity in \(d\). Then the representation table is as follows.

Almost split sequences (general r)
\[
\begin{aligned}
0 \rightarrow X_{j}\left(\theta^{q}\right) \rightarrow X_{j+1}\left(\theta^{q}\right) \oplus X_{j-1}\left(a \theta^{q}\right) & \rightarrow X_{j}\left(a \theta^{q}\right) \rightarrow 0 \\
1 & \leq j<p^{r}, 0 \leq q<m
\end{aligned}
\]

\section*{Auslander-Reiten Quiver}

The stable quiver is obtained by deleting the top layer, which consists of the modules \(X_{p}{ }_{r}\left(\theta^{q}\right)\), and all the arrows connected to them.

Tree class
\[
\mathrm{P}^{\mathrm{A}} \mathrm{r}_{-1}
\]

Cohomology \(\quad\left(p^{r} \neq 2\right)\)
\(H^{*}(H, k)=k[x, y] /\left(x^{2}\right) \quad \operatorname{deg}(x)=1, \quad \operatorname{deg}(y)=2\)
\(x \beta=y, y \beta=0, y P^{l}=y^{P}\).
\(\xi_{k}(t)=I /(1-t)\)
\(\operatorname{Max}\left(H^{e v}(H, k)\right) \cong \mathbb{A}^{1}(k)\)
\(\operatorname{Proj}\left(\mathrm{H}^{\mathrm{eV}}(\mathrm{H}, \mathrm{k})\right) \quad\) is a single point.
\(\mathrm{S}_{3}:\) atom table and representation table, \(\mathrm{k}=\overline{\mathbf{F}}_{3}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6 & 2 & 12 & -4 & -4 & -4 & \\
\hline P power & A & AlAl & AlA2 & AlAl & AlA2 & \\
\hline ind 1A & 2A & 3 Al & 3 A 2 & S3A1 & S3A2 & \\
\hline + 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline + 1 & -1 & 1 & 1 & -1 & -1 & \\
\hline 0 & 0 & 3 & -1 & -1 & -1 & \\
\hline 0 & 0 & 3 & -1 & 1 & 1 & \\
\hline 0 & 0 & -3 & -1 & 1 & -i & \\
\hline 0 & 0 & -3 & -1 & -i & i & \\
\hline 6 & 2 & 12 & -4 & -4 & -4 & \\
\hline p power & A & AlA1 & A1A2 & AlA1 & A1A2 & \\
\hline 1A & 2A & 3A1 & 3 A 2 & S 3A1 & S3A2 & vtx \\
\hline 3 & 1 & 0 & 0 & 0 & 0 & 1A \\
\hline 3 & -1 & 0 & 0 & 0 & 0 & 1A \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 3A(1) \\
\hline 1 & -1 & 1 & 1 & -1 & -1 & 3A(1) \\
\hline 2 & 0 & -1 & 1 & -i & i & 3A(2) \\
\hline 2 & 0 & -1 & 1 & i & -i & 3A(2) \\
\hline
\end{tabular}

\section*{The Alternating Group \(A_{4}\)}
i. Ordinary Characters

We display in one table, according to 'Atlas' conventions, the ordinary characters of \(A_{4}, 2 A_{4}, S_{4}\) and \(2 S_{4}\). Note that there are two isomorphism classes of isoclinic groups \(2 S_{4}\), and to get from the character table of one to the character table of the other we multiply the bottom right hand corner by i.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 12 & 4 & 3 & 3 & & & 2 & 2 \\
\hline P & r & A & A & A & & & A & A \\
\hline ind & 1A & 2A & 3A & B** & fus & ind & 2B & 4A \\
\hline \(+\) & 1 & 1 & 1 & 1 & : & ++ & 1 & 1 \\
\hline \(\bigcirc\) & 1 & 1 & z3 & ** & 1 & + & 0 & 0 \\
\hline \(\bigcirc\) & 1 & 1 & ** & z3 & b & & & \\
\hline + & 3 & -1 & 0 & 0 & : & + & 1 & -1 \\
\hline ind & 1 & 4 & 3 & 3 & fus & ind & 2 & 8 \\
\hline & 2 & & 6 & 6 & & & & 8 \\
\hline - & 2 & 0 & -1 & -1 & : & 00 & 0 & i2 \\
\hline \(\bigcirc\) & 2 & 0 & -z3 & ** & 1 & + & 0 & 0 \\
\hline - & 2 & 0 & ** & -z3 & 1 & & & \\
\hline
\end{tabular}

\section*{ii. Representations over \(\bar{E}_{2}\)}

Representation type: tame.
Write \(\omega, \bar{\omega}\) for the primitive cube roots of unity in both \(k\) and \(\mathbb{C}\).

Let \(A_{4}=\left\langle g_{1}, g_{2}, h: g_{1}^{2}=g_{2}^{2}=h^{3}=1, \quad g_{1} g_{2}=g_{2} g_{1}, g_{1}^{h}=g_{2}\right.\), \(g_{2}^{h}=g_{1} g_{2}>\). Let \(h\) act on \(\mathbb{P}^{1}(k)\), the parametrizing set for representations and species for \(V_{4}\), via \(h: \lambda \rightarrow 1 /(1+\lambda)\). Then \(V_{n, \lambda}{ }^{A_{4}} \cong V_{n, \mu^{\uparrow}}{ }^{A} 4\) if and only if \(\lambda\) and \(\mu\) represent the same element of \(\mathbb{P}_{1}(k) /<h>\).

The indecomposable representations of \(A_{4}\) are obtained by taking direct summand of representations induced up from \(V_{4}\), and are as follows.
(i) The projective covers \(P_{1}, P_{\omega}, P_{\bar{\omega}}\) of the simple modules \(1, \omega\) and \(\bar{\omega}\).
(ii) \(W_{n}(\alpha)=\Omega^{n}(\alpha), \quad \alpha \varepsilon\{1, \omega, \bar{\omega}\}, \quad n \varepsilon \mathbf{Z}\).
(iii) \(\quad W_{n, \lambda}=V_{n, \lambda^{\uparrow}}{ }^{A_{4}}, \quad \lambda \varepsilon\left(\mathbb{P}^{1}(k) /<h>\right) \backslash\{\omega, \bar{\omega}\}, n \varepsilon \mathbb{N} \backslash\{0\}\).
(iv) \(W_{n, \omega}(\alpha), W_{\mathrm{n}, \bar{\omega}}(a), \alpha \varepsilon\{I, \omega, \bar{\omega}\}, \mathrm{n} \varepsilon \mathbb{N} \backslash\{0\}\).

These last representations, of dimension \(2 n\), are the direct summand of \(V_{n, \omega} \uparrow^{A_{4}}\) and \(V_{n, \bar{\omega}} \uparrow^{A_{4}}\). They are defined as follows.
\[
\begin{aligned}
& \mathrm{W}_{\mathrm{n}, \omega}(\alpha)=\mathrm{W}_{\mathrm{n}, \omega}(1) \propto \alpha \\
& \mathrm{W}_{\mathrm{n}, \bar{\omega}}(\alpha)=\mathrm{W}_{\mathrm{n}, \bar{\omega}}(1) \quad \alpha \varepsilon\{1, \omega, \bar{\omega}\} \\
& \mathrm{W}_{\mathrm{n}, \bar{\omega}}(1)=\psi^{2}\left(\mathrm{~W}_{\mathrm{n}, \omega}(1)\right),
\end{aligned}
\]
and
\(W_{n, \omega}(I)\) is given in terms of matrices as follows.

Tensor products modulo projectives are as follows. If \(m \leq n\),
\[
W_{m, \omega}(1) \otimes W_{n, \omega}(1) \cong \begin{cases}W_{2, \omega}(1) & \text { if } m=n=1 \\ 2 . W_{m, \omega}(1) & \text { if } n \equiv 2 \text { (mod 3) } \\ W_{m, \omega}(\omega) \oplus W_{m, \omega}(\bar{\omega}) & \text { otherwise. }\end{cases}
\]
\[
\mathrm{W}_{\mathrm{m}, \omega}(1) \otimes \mathrm{W}_{\mathrm{n}, \bar{\omega}}(1)=0
\]

The species of \(A_{k}\left(A_{4}\right)\) are as follows. There is one species for each h-orbit on species of \(V_{4}\), there are two Brauer species corresponding to \(\left\langle h_{>}\right.\), and there are the species whose origin is \(A_{4}\), namely
(i) two sets of species \(s_{z}\) and \(s_{z}{ }^{2}\) parametrized by the complex numbers \(z \in \mathbb{C} \backslash\{0\}\), and
(ii) four sets of species \(s_{n, \omega}, s_{n, \omega}, s_{n, \bar{\omega}}\), and \(s_{n, \bar{\omega}}\).

The representation table and atom table are as follows.
Let \(A, B, C\) and \(D\) be as in the representation table and atom table of \(V_{4}\), and define further infinite matrices \(E\) and \(F\) as follows.

(each column repeats with period three where it is non-zero)

We use the 'Atlas' format to make clear the relationship with the tables for \(V_{4}\).

Representation Table

Atom Table

\(\mathrm{m} \varepsilon \mathbb{Z}, \quad \mathrm{n} \geq 1\),
\(\varepsilon \varepsilon\{0, \pm 1\}, \quad \varepsilon=\) dimension (mod 3)
\(\lambda\) and \(\mu\) run over a set of representatives in \(\mathbb{P}^{l}(k) \backslash\{0,1, \infty, \omega, \bar{\omega}\}\) under the action of \(h\), and \(\delta_{\lambda \mu}\) represents the matrix which is the identity if \(\lambda=\mu\) and zero otherwise.

\section*{Almost Split Sequences}
\[
\begin{aligned}
& 0 \rightarrow W_{n+2}(\alpha) \rightarrow W_{n+1}(\alpha \omega) \oplus W_{n+1}(\alpha \bar{\omega}) \rightarrow W_{n}(\alpha) \rightarrow 0 \\
& 0 \rightarrow W_{1}(\alpha) \rightarrow W_{0}(\alpha \omega) \oplus W_{0}(\alpha \bar{\omega}) \oplus P_{\alpha} \rightarrow W_{-1}(\alpha) \rightarrow 0 \\
& \alpha \quad \varepsilon\{1, \omega, \bar{\omega}\}, n \in \mathbb{Z} \backslash(-1\} . \\
& 0 \rightarrow W_{n, \omega}(\alpha \omega) \rightarrow W_{n+1, \omega}(\alpha \bar{\omega}) \oplus W_{n-1, \omega}(\alpha \bar{\omega}) \rightarrow W_{n, \omega}(\alpha) \rightarrow 0 \\
& 0 \rightarrow W_{1, \omega}(\alpha \omega) \rightarrow W_{2, \omega}(\alpha \bar{\omega}) \rightarrow W_{1, \omega}(\alpha) \rightarrow 0 \\
& 0 \rightarrow W_{n, \bar{\omega}}(\alpha \bar{\omega}) \rightarrow W_{n+1, \bar{\omega}}(\alpha \omega) \oplus W_{n-1, \bar{\omega}}(\alpha \omega) \rightarrow W_{n, \bar{\omega}}(\alpha) \rightarrow 0 \\
& 0 \rightarrow W_{1, \bar{\omega}}(\alpha \bar{\omega}) \rightarrow W_{2, \bar{\omega}}(\alpha \omega) \rightarrow W_{1, \bar{\omega}}(\alpha) \rightarrow 0 \\
& 0 \rightarrow W_{n, \lambda} \rightarrow W_{n+1, \lambda} \oplus W_{n-1, \lambda} \rightarrow W_{n, \lambda} \rightarrow 0 \\
& 0 \rightarrow W_{1, \lambda} \rightarrow W_{2, \lambda} \rightarrow W_{1, \lambda} \rightarrow 0
\end{aligned}
\]
\[
\lambda \varepsilon\left(\mathbb{P}^{1}(\mathrm{k}) /<h>\right) \backslash\{\omega, \bar{\omega}\}, \quad \mathrm{n}>1 .
\]

\section*{Aus? ander-Reiten Quiver}
(a)

(Identify top and bottom lines to form a doubly infinite cylinder)
(b) Two connected components, for \(\alpha=\omega\) and \(\alpha=\bar{\omega}\) as follows.

(Identify right hand and left hand edges to form a singly infinite cylinder)
(c) For each \(\lambda \in\left(\mathbf{P}^{l}(k) /<h>\right) \backslash\{\omega, \bar{\omega}\}\), a connected component as follows.

\section*{Tree Classes and Reduced Graphs}
(a) \(\quad A_{\infty}^{\infty} \longrightarrow \tilde{A}_{5}\)
(b) Two copies of \(A_{\infty} \longrightarrow A_{\infty}\)
(c) A \(\left(\mathbb{P}^{1}(k) /<h>\right) \backslash\{\omega, \bar{\omega}\}\)-parametrized family of copies of \(\mathrm{A}_{\infty} \longrightarrow \mathrm{A}_{\infty}\).

\section*{Remark}

Over a non algebraically closed field \(k\) of characteristic two, the components corresponding to (b) and (c) above are still of type \(A_{\infty} \longrightarrow A_{\infty}\), but the component containing the trivial module (i.e. corresponding to (a) above) is of type \(A_{\infty}^{\infty} \longrightarrow \tilde{A}_{5}\) if \(x^{2}+x+1\) splits in \(k\) and of type \(\widetilde{B}_{3} \rightarrow \widetilde{B}_{3}\) otherwise.

In the latter case, denote by \(k_{1}\) the splitting field for \(x^{2}+x+1\) over \(k\), and denote by \(W_{n}(2)\) and \(P_{2}\) the modules which when tensored with \(k_{1}\) give \(W_{n}(\omega) \oplus W_{n}(\bar{\omega})\) and \(P_{\omega} \oplus P_{\bar{\omega}}\) respectively. Then the appropriate component of the Auslander-Reiten quiver is as follows.

(Do not make any identifications)
Cohomology of \(A_{4}\) over \(\mathbb{F}_{2}\)
\(H^{*}\left(A_{4}, k\right)\) is the set of fixed points of \(h\) on \(H^{*}\left(V_{4}, k\right)=k[x, y]\), namely the subring generated by \(u=x^{2}+x y+y^{2}, v=x^{3}+x^{2} y+y^{3}\) and \(w=x^{3}+x y^{2}+y^{3}\). Thus
\(H^{*}\left(A_{4}, k\right)=k[u, v, w] /\left(u^{3}+v^{2}+v w+w^{2}\right)\)

\(\xi_{k}(t)=\left(1-t+t^{2}\right) /(1-t)^{2}\left(1+t+t^{2}\right)\)
\(\operatorname{Proj}\left(H^{e v}\left(A_{4}, k\right)\right)\) is the irreducible conic in \(\mathbb{P}^{2}(k)\) given by \(x_{1}^{2}=x_{2} x_{3}\).
Cohomology of \(S_{4}\) over \(\bar{F}_{2}\)
\(H^{*}\left(S_{4}, k\right)=k[x, y, z] /(x z)\)
restriction

\(\xi_{k}(t)=\left(1+t^{2}\right) /(1-t)^{2}\left(1+t+t^{2}\right)\)

Proj (\(\left.\mathrm{H}^{\mathrm{ev}}\left(\mathrm{S}_{4}, \mathrm{k}\right)\right)\) is a union of two copies of \(\mathbb{P}^{1}(k)\) intersecting in a single point.

The Alternating Group \(A_{5}\), and its coverings and automorphisms.
i. Ordinary Characters (see remarks under \(\mathrm{A}_{4}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
60 \\
\text { p power } \\
\text { ind }
\end{array}
\]}} & 4 & 3 & 5 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5 \\
& \mathrm{~A}
\end{aligned}
\]} & \multirow[b]{2}{*}{fus} & \multirow[b]{2}{*}{ind} & \multirow[t]{2}{*}{6
A
2 B} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2 \\
A \\
4 \mathrm{~A}
\end{array}
\]} & \multirow[t]{2}{*}{a
A
\(6{ }^{\text {a }}\)} \\
\hline & & 2A & 3A & 5A & & & & & & \\
\hline + & 1 & 1 & 1 & 1 & 1 & : & ++ & 1 & 1 & 1 \\
\hline + & 3 & -1 & 0 & -b5 & * & I & + & 0 & 0 & 0 \\
\hline + & 3 & -1 & 0 & * & -b5 & ! & & & & \\
\hline + & 4 & 0 & 1 & -1 & -1 & : & ++ & 2 & 0 & -1 \\
\hline + & 5 & 1 & -1 & 0 & 0 & : & + & 1 & -1 & 1 \\
\hline ind & \[
\frac{1}{2}
\] & 4 & \[
\begin{aligned}
& 3 \\
& 6
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & fus & ind & 2 & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] \\
\hline - & 2 & 0 & -1 & b5 & * & 9 & - & 0 & 0 & 0 \\
\hline - & 2 & 0 & -1 & * & b5 & d & & & & \\
\hline - & 4 & 0 & 1 & -1 & -1 & : & -0 & 0 & 0 & i3 \\
\hline - & 6 & 0 & 0 & 1 & 1 & : & 00 & 0 & i2 & 0 \\
\hline
\end{tabular}
ii. Representations over \(\overline{\mathbb{F}}_{2} \quad\) Representation type: tame

Decomposition matrix

Cartan Matrix

Atom Table and Representation Table for \(A(G, C y c)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 60 & 3 & 5 & 5 & -4 & 60 & 3 & 5 & 5 & -4 & \\
\hline p p & ver & A & A & A & A & p power & A & A & A & A & \\
\hline ind & 1A & 3A & 5A1 & 5A2 & 2A & 1A & 3A & 5 Al & 5A2 & 2A & vtx \\
\hline + & 1 & 1 & 1 & 1 & 1 & 12 & 0 & 2 & 2 & 0 & 1 A \\
\hline - & \(2_{1}\) & -1 & b 5 & * & 0 & 8 & -1 & * & b 5 & 0 & 1A \\
\hline - & 2 & -1 & * & b 5 & 0 & 8 & -1 & b 5 & * & 0 & 1 A \\
\hline + & 4 & 1 & -1 & -1 & 0 & 4 & 1 & -1 & -1 & 0 & 1A \\
\hline & 0 & 0 & 0 & 0 & -2 & 6 & 0 & 1 & 1 & 2 & 2A \\
\hline
\end{tabular}
\(\underline{\text { Representation table for } A(G, T r i v), ~ G=A_{5}, k=\overline{\mathbb{E}}_{2}}\)
\(\begin{array}{rrrrrrrrr}\text { p power } & A & A & A & A & A & B A & A A & \\ 1 A & 3 A & 5 A & B^{*} & 2 A & \text { V4A } & A 4 A & B^{* *} & \text { vtx }\end{array}\)
\begin{tabular}{rrrrlllll}
12 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 A \\
8 & -1 & b 5 & \(*\) & 0 & 0 & 0 & 0 & 1 A \\
8 & -1 & \(*\) & b 5 & 0 & 0 & 0 & 0 & 1 A \\
4 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 A \\
6 & 0 & 1 & 1 & 2 & 0 & 0 & 0 & 2 A \\
5 & -1 & 0 & 0 & 1 & 1 & z 3 & \(* *\) & V4A \\
5 & -1 & 0 & 0 & 1 & 1 & \(* *\) & \(z 3\) & V4A \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & V4A
\end{tabular}

Projective Indecomposable Modules for \(A_{5}\) over \(\bar{F}_{2}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{I} & \({ }^{2} 1\) & \({ }^{2} 2\) \\
\hline \({ }^{2} 1\) & \(2_{2}\) & I & I \\
\hline I & I & \(2_{2}\) & \({ }^{2} 1\) \\
\hline \(2_{2}\) & \({ }^{1} 1\) & I & I \\
\hline \multicolumn{2}{|c|}{I} & \({ }^{2} 1\) & \({ }_{2} 2\) \\
\hline
\end{tabular}
\[
4
\]

Projective Indecomposable modules for \(\mathrm{S}_{5}\) over \(\mathbf{F}_{2}\)
\begin{tabular}{llll}
\multicolumn{1}{c}{ I } & & \(4_{2}\) & \\
I & \(4_{2}\) & I & \(4_{1}\) \\
\(4_{2}\) & I & I & \(4_{1}\) \\
I & I & \(4_{2}\) & \\
I & \(4_{2}\) & I & \\
\(4_{2}\) & I & I & \\
& & \(4_{2}\) &
\end{tabular}

I
Projective Indecomposable modules for \(2 \mathrm{~A}_{5}\) over \(\overline{\mathbb{F}}_{2}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{I} \\
\hline \({ }^{2} 1\) & \({ }^{2} 2\) \\
\hline I & I \\
\hline \(2_{2}\) & \({ }^{2} 1\) \\
\hline I & I \\
\hline \(2_{1}\) & \({ }^{2} 2\) \\
\hline I & I \\
\hline \({ }_{2} 2\) & \({ }^{2} 1\) \\
\hline & \\
\hline
\end{tabular}

Green Correspondence between \(A_{4}\) and \(A_{5}\)

Since a Sylow 2-subgroup of \(A_{5}\) is a t.i. subgroup with normalizer \(A_{4}\) (see exercise to 2.12), Green correspondence sets up a oneone correspondence between non-projective modules for \(A_{5}\) and for \(A_{4}\) in characteristic two. This correspondence takes almost split sequences to almost split sequences, and so the stable quivers are isomorphic. The atom copying theorem (section 2.20) gives the atom table as follows.

Atom Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & 1 A 3A 5A1 5A2 & \(z_{j}\) & \((\mathrm{N}, \infty)\) & \((\mathrm{N}, \omega)_{\mathrm{j}}\) & \((\mathrm{N}, \bar{\omega})_{\mathrm{j}}\) & \((\mathrm{N}, \lambda)\) \\
\hline trivial & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & 1 & 1 & 1 & 1 & 1 \\
\hline \(\mathrm{L}_{2}(4)\)-natural & \({ }^{2} 1\)-1 b5 * & 0 & 0 & G & 0 & 0 \\
\hline dual & \(2_{2}-1\) * b5 & 0 & 0 & 0 & G & 0 \\
\hline Steinberg & \(4 \begin{array}{llll}4 & -1 & -1\end{array}\) & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{m}_{\mathrm{i}}\) & & \(-z^{m-1}(1-z)^{2} \omega^{i-j}\) & 0 & 0 & 0 & 0 \\
\hline \((\mathrm{n}, \infty)\) & & 0 & c & 0 & 0 & 0 \\
\hline \((\mathrm{n}, \omega)_{\mathrm{i}}\) & - & 0 & 0 & \(\begin{cases}\text { D } & i=j \\ F & i \neq j\end{cases}\) & 0 & 0 \\
\hline \((\mathrm{n}, \bar{\omega})_{\mathrm{i}}\) & & 0 & 0 & \(0\{1\) & \(\begin{cases}\text { D } & i=j \\ F & i \neq j\end{cases}\) & 0 \\
\hline \((\mathrm{n}, \mu)\) & & 0 & 0 & 0 & 0 & \({ }^{D} \delta_{\lambda \mu}\) \\
\hline
\end{tabular}

In this table, \(D\) and \(F\) are as given under \(V_{4}\) and \(A_{4}\), and
\(G=(I 2,-r 2,0,0, \ldots)\)
\(i \varepsilon\{1, \omega, \bar{\omega}\}\)
\(\lambda\) and \(\mu\) run over a set of representatives in \(\mathbf{p}^{1}(k) \backslash\{0,1, \infty, \omega, \bar{\omega}\}\) under the action of \(t \mapsto I /(l-t)\), and \(\delta_{\lambda \mu}\) represents the matrix which is the identity if \(\lambda=\mu\) and zero otherwise.

Almost split sequences for \(A_{5}\) over \(\bar{F}_{2}\)
These are given by applying Green correspondence to the almost split sequences for \(A_{4}\). The sequences involving projective modules are as follows.
\[
\begin{aligned}
& 0 \rightarrow g\left(W_{1}(1)\right) \rightarrow P_{1} \oplus g\left(W_{0}(\omega)\right) \oplus g\left(W_{0}(\bar{\omega})\right) \rightarrow g\left(W_{-1}(1)\right) \rightarrow 0 \\
& 0 \rightarrow g\left(W_{1, \omega}(\vec{\omega})\right) \rightarrow P_{2} \oplus g\left(W_{2, \omega}(1)\right) \rightarrow g\left(W_{1, \omega}(\omega)\right) \rightarrow 0 \\
& 0 \rightarrow g\left(W_{1, \bar{\omega}}(\omega)\right) \rightarrow P_{2} \oplus g\left(W_{2, \bar{\omega}}(1)\right) \rightarrow g\left(W_{1, \bar{\omega}}(\bar{\omega})\right) \rightarrow 0
\end{aligned}
\]

The Auslander-Reiten quiver may thus be obtained from that for \(A_{4}\) by relocating the projective modules as indicated above.

\section*{Cohomology}

It again follows from the fact that a Sylow 2-subgroup of \(A_{5}\) is a t.i. subgroup with normalizer \(A_{4}\) (see 2.22 exercises 4 and 5) that \(H^{*}\left(A_{5}, k\right) \cong H^{*}\left(A_{4}, k\right)\).
iii. Representations over \(\overline{\mathrm{F}}_{3}\)

Decomposition matrix

Representation type: finite

\section*{Cartan matrix}

Atom Table and Representation Table for \(A_{k}(G)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 60 & 45 & 5 & 12 & -4 & -4 & -4 & & & 6 & 2 & 12 & -4 & -4 & -4 & \\
\hline P power & A A & A & AlAl & AlA2. & AlA1 & AlA2 & & & A. & A. & Alal & AlA2 & AlBl & AlB2 & \\
\hline Ind 1A & 2A 5A & B* & 3A1 & 3 A 2 & S3Al & S3A2 & fus & Ind & 2B & 4A & 6A1 & 6 A2 & S3B1 & S3B 2 & \\
\hline + -1 & \(1 \quad 1\) & 1 & \(\overline{1}\) & 1 & \(\overline{1}\) & 1 & : & + & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline \(+3\) & -1-b5 & * & 0 & 0 & 0 & 0 & & + & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline \(+3\) & -1 * & -bs & 0 & 0 & 0 & 0 & . & & & & & & & & \\
\hline + 4 & \(0-1\) & -1 & 1 & 1 & \(-1\) & -1 & : & + & -2 & 0 & 1 & 1 & -1 & -1 & \\
\hline 0 & 0 & 0 & 3 & -1 & -1 & -1 & : & & 0 & 0 & 3 & \(-1\) & -1 & -1 & \\
\hline 0 & 00 & 0 & 3 & -1 & 1 & 1 & : & & 0 & 0 & 3 & -1 & 1 & 1 & \\
\hline 0 & 00 & 0 & -3 & -1 & 1 & -1 & ; & & 0 & 0 & -3 & -1 & 1 & -1 & \\
\hline 0 & 00 & 0 & -3 & -1 & -1 & -1 & : & & 0 & 0 & -3 & -1 & -1 & 1 & \\
\hline 60 & 45 & 5 & 12 & -4 & -4 & -4 & & & 6 & 2 & 12 & -4 & & - -4 & \\
\hline P power & A A & A & Alal & AlA2 & AlAl & AlA 2 & & & A & A & AlAl & A1A2 & AlBl & A1B2 & \\
\hline 18. & 2A 5A & B* & 3 Al & 3 A 2 & S3Al & S3A2 & fus & & 2B & 4A & 6Al & 6A. 2 & S3B1 & S3B2 & vtx \\
\hline 6 & 21 & 1 & 0 & 0 & & 0 & : & & 0 & 2 & 0 & 0 & 0 & 0 & 1A \\
\hline 3 & -1-b5 & * & 0 & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & LA \\
\hline 3 & -1 * & -b 5 & 0 & 0 & 0 & 0 & 1 & & & & & & & & 1A \\
\hline 9 & \(1-1\) & -1 & 0 & 0 & 0 & 0 & & & -3 & 1 & 0 & 0 & 0 & 0 & 1 A \\
\hline 1 & 11 & 1 & 1 & 1 & 1 & 1 & : & & 1 & 1 & 1 & 1 & 1 & 1 & 3 A (1) \\
\hline 4 & 0-1 & -1 & 1 & 1 & -1 & -1 & ; & & -2 & 0 & 1 & 1 & -1 & -1 & 3A(1) \\
\hline 5 & 10 & 0 & -1 & 1 & -1 & 1 & : & & -1 & 1 & -1 & 1 & -1. & 1 & 3A(2) \\
\hline 5 & 10 & 0 & -1 & 1 & 1 & -i & : & & -1 & 1 & \(-1\) & 1 & 1 & -1 & 3A(2) \\
\hline
\end{tabular}

The Alternating Group \(A_{6}\), and its coverings and automorphisms.
i. Ordinary Characters
\(\mathrm{S}_{6} \quad \mathrm{PGL}_{2}(9) \quad \mathrm{M}_{10}\)

ii. Representations over \(\bar{F}_{2}\)

Decomposition Matrix
\begin{tabular}{c|ccccc|}
\multicolumn{1}{c}{} & I & \({ }^{4}{ }_{1}\) & \({ }^{4} 2\) & \(8_{1}\) & \(8_{2}\) \\
\cline { 2 - 6 } & 1 & 0 & 0 & & \\
5 & 1 & 1 & 0 & & \\
5 & 1 & 0 & 1 & & \\
9 & 1 & 1 & 1 & & \\
10 & 2 & 1 & 1 & & \\
8 & & & & 1 & \\
8 & & & & & 1 \\
\hline
\end{tabular}

Representation type: tame

\section*{Cartan Matrix}

\section*{Triple Cover}

Atom Table and Representation Table for \(A\left(A_{6}, C y c\right)\) and \(A\left(3 A_{6}\right.\), Cyc) over

Atom Table and Representation Table for \(A\left(2 A_{6}\right.\), Cyc) over \(\overline{\mathbb{F}}_{2}\)

\section*{Projective Indecomposable Modules for \(3 A_{6}\) over \(\overline{\mathbb{F}}_{2}\)}

(and duals of these)

Projective Indecomposable modules for \(S_{6}\) over \(\mathbb{F}_{2}\)

Projective indecomposable modules for \(M_{1 C}\) over \(\overline{\mathbb{F}}_{2}\)
\begin{tabular}{lll}
& I & \\
8 & & 8 \\
I & 8 & I \\
I & I & I \\
8 & I & 8 \\
I & 8 & I \\
I & I & 8 \\
8 & I & I \\
I & 8 & I \\
I & I & 8 \\
8 & & I \\
I & 8 & I
\end{tabular}

Projective indecomposable modules for PGL \(_{2}(9)\) over \(\bar{F}_{2}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{I} & \(8_{1}\) \\
\hline \(8_{1}\) & I & I \\
\hline I & \(8_{1}\) & I \\
\hline I & I & 81 \\
\hline \({ }^{8} 1\) & I & I \\
\hline I & \(8_{1}\) & I \\
\hline I & I & \(8_{1}\) \\
\hline \({ }^{8} 1\) & I & I \\
\hline I & \({ }^{8} 1\) & I \\
\hline I & I & \({ }^{8} 1\) \\
\hline \({ }^{8} 1\) & I & I \\
\hline I & \(8_{1}\) & I \\
\hline & & \({ }^{8} 1\) \\
\hline
\end{tabular}
\(8_{2} \quad 8_{3}\)

1

iii. Representations over \(\mathbb{F}_{3}\)

Representation type: wild

Decomposition Matrix

\section*{Cartan Matrix}

\(\begin{array}{lllll}\text { I } & 3_{1} & 3_{2} & 4 & 9\end{array}\)
\begin{tabular}{l|lllll|}
\hline 1 & 5 & 1 & 1 & 4 \\
3 & 1 & 2 & 1 & 2 & \\
3 & 1 & 1 & 2 & 2 & \\
4 & 4 & 2 & 2 & 5 & \\
9 & & & & & 1 \\
\hline
\end{tabular}

\section*{Double Cover}

Projective Indecomposable Modules for \(\mathrm{A}_{6}\) over \(\overline{\mathbb{F}}_{3}\)

\begin{tabular}{llllllll}
& & & 4 & & & & \\
I & I & & \(3_{1}\) & & \(3_{2}\) & \\
& 4 & 4 & & 4 & & 9 \\
I & I & & \(3_{1}\) & \(3_{2}\) & \\
& & & 4 & & &
\end{tabular}

\section*{Double Cover}

iv. Representations over \(\bar{F}_{5}\) : Brauer character table

Representation type: finite

The Alternating Group \(A_{7}\), and its coverings and automorphisms.
i. Ordinary Characters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 520 & 24 & 36 & 9 & 4 & 5 & 12 & 7 & 7 & & & 120 & 24 & 12 & 6 & 3 & 5 & 6 \\
\hline P po & 7er & A & A & A & A & A & A & A & A & & & A & A & A & \(A B\) & BC & AB & \(A B\) \\
\hline \(p^{\prime} \mathrm{p}\) & art & A & A & A & A & A & A & A & A & & & A & A & A & \(A B\) & BC & \(A B\) & \(A B\) \\
\hline ind & 1A & 2A & 3A & 3B & 4 A & 5A & 6A & 7A & B** & fus & ind & 2B & 2C & 4B & 6B & 6B & 10A & 12A \\
\hline + & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & : & ++ & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline + & 6 & 2 & 3 & 0 & 0 & 1 & -1 & -1 & -1 & : & + & 4 & 0 & 2 & 1 & 0 & -1 & -1 \\
\hline \(\bigcirc\) & 10 & -2 & 1 & 1 & 0 & 0 & 1 & b7 & ** & * & + & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\bigcirc\) & 10 & -2 & 1 & 1 & 0 & 0 & 1 & ** & b7 & \(\checkmark\) & & & & & & & & \\
\hline + & 14 & 2 & 2 & -1 & 0 & -1 & 2 & 0 & 0 & : & ++ & 6 & 2 & 0 & 0 & -1 & 1 & 0 \\
\hline + & 14 & 2 & \(-1\) & 2 & 0 & -1 & -1 & 0 & 0 & ; & + & 4 & 0 & -2 & 1 & 0 & -1 & 1 \\
\hline + & 15 & -1 & 3 & 0 & -1 & 0 & -1 & 1 & 1 & : & + & 5 & -3 & 1 & -1 & 0 & 0 & 1 \\
\hline + & 21 & 1 & -3 & 0 & -1 & 1 & 1 & 0 & 0 & : & + & 1 & -3 & -1 & 1 & 0 & 1 & -1 \\
\hline + & 35 & -1 & -1 & -1 & 1 & 0 & -1 & 0 & 0 & : & ++ & 5 & 1 & -1 & -1 & 1 & 0 & -1 \\
\hline & 1 & 4 & 3 & 3 & 8 & 5 & 12 & 7 & 7 & & & 2 & 4 & 8 & 6 & 12 & 10 & 24 \\
\hline & 2 & & 6 & 6 & 8 & 10 & & 14 & 14 & & & & & & & 12 & 10 & 24 \\
\hline - & 4 & 0 & -2 & 1 & 0 & -1 & 0 & -b7 & ** & & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\bigcirc\) & 4 & 0 & -2 & 1 & 0 & -1 & 0 & ** & -b7 & d & & & & & & & & \\
\hline - & 14 & 0 & 2 & -1 & r2 & -1 & 0 & 0 & 0 & & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 14 & 0 & 2 & -1 & -r2 & -1 & 0 & 0 & 0 & 1 & & & & & & & & \\
\hline - & 20 & 0 & -4 & -1 & 0 & 0 & 0 & -1 & -1 & : & -- & 0 & 0 & 0 & 0 & r3 & 0 & 0 \\
\hline - & 20 & 0 & 2 & 2 & 0 & 0 & 0 & -1 & -1 & : & -- & 0 & 0 & 0 & 0 & 0 & 0 & r6 \\
\hline - & 36 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & : & -- & 0 & 0 & 0 & 0 & 0 & r5 & 0 \\
\hline & 1 & 2 & 3 & 3 & 4 & 5 & 6 & 7 & 7 & & & 2 & 2 & 4 & 6 & 6 & 10 & 12 \\
\hline & 3 & 6 & & & 12 & 15 & 6 & 21 & 21 & & & & & & & & & \\
\hline & 3 & 6 & & & 12 & 15 & 6 & 21 & 21 & & & & & & & & & \\
\hline \(\bigcirc 2\) & 6 & 2 & 0 & 0 & 0 & 1 & 2 & -1 & -1 & * & + & & & & & & & \\
\hline -2 & 15 & -1 & 0 & 0 & -1 & 0 & 2 & 1 & 1 & * & + & & & & & & & \\
\hline 02 & 15 & 3 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & * & + & & & & & & & \\
\hline o2 & 21 & 1 & 0 & 0 & -1 & 1 & -2 & 0 & 0 & * & + & & & & & & & \\
\hline 02 & 21 & -3 & 0 & 0 & 1 & 1. & 0 & 0 & 0 & * & + & & & & & & & \\
\hline 02 & 24 & 0 & 0 & 0 & 0 & -1 & 0 & b 7 & ** & & +2 & & & & & & & \\
\hline \(\bigcirc 2\) & 24 & 0 & 0 & 0 & 0 & -1 & 0 & ** & b7 & * & & & & & & & & \\
\hline & 1 & 4 & 3 & 3 & 8 & 5 & 12 & 7 & 7 & & & 2 & 4 & 8 & 6 & 12 & 10 & 24 \\
\hline & 6 & 12 & 6 & 6 & 24 & 30 & 12 & 42 & 42 & & & & & & & 12 & 10 & 24 \\
\hline & 3 & 12 & & & 24 & 15 & 12 & 21 & 21 & & & & & & & & & \\
\hline & 2 & & & & 8 & 10 & & 14 & 14 & & & & & & & & & \\
\hline & 3 & & & & 24 & 15 & & 21 & 21 & & & & & & & & & \\
\hline & 6 & & & & 24 & 30 & & 42 & 42 & & & & & & & & & \\
\hline 02 & 6 & 0 & 0 & 0 & r2 & 1 & 0 & -1 & -1 & 1 & \(\bigcirc 2\) & & & & & & & \\
\hline \(\bigcirc 2\) & 6 & 0 & 0 & 0 & -r2 & 1 & 0 & -1 & -1 & * & & & & & & & & \\
\hline 02 & 24 & 0 & 0 & 0 & 0 & -1 & 0 & b 7 & ** & - & \(-2\) & & & & & & & \\
\hline \(\bigcirc 2\) & 24 & 0 & 0 & 0 & 0 & -1 & 0 & ** & b7 & * & & & & & & & & \\
\hline 02 & 36 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & * & - & & & & & & & \\
\hline
\end{tabular}
ii. Representations over \(\mathbb{F}_{2}\)

Representation type: tame

Decomposition Matrix
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & I & 14 & 20 & \({ }^{4} 1\) & \(4_{2}\) & 6 \\
\hline 1 & 1 & 0 & 0 & & & \\
\hline 15 & 1 & 1 & 0 & & & \\
\hline 21 & 1 & 0 & 1 & & & \\
\hline 35 & 1 & 1 & 1 & & & \\
\hline 14 & 0 & 1 & 0 & & & \\
\hline 6 & & & & 0 & 0 & 1 \\
\hline 10 & & & & 0 & 1 & 1 \\
\hline 10 & & & & 1 & 0 & 1 \\
\hline 14 & & & & 1 & 1 & 1 \\
\hline
\end{tabular}

Cartan Matrix

Triple Cover

\begin{tabular}{r|rrrr|}
\multicolumn{1}{c}{} & 6 & 15 & \(24_{1}\) & \(24_{2}\) \\
\cline { 2 - 5 } & 3 & 2 & & \\
15 & 2 & 4 & & \\
\(24_{1}\) & & & 1 & \\
\(24_{2}\) & & & & 1 \\
\hline
\end{tabular}

Atom Table and Representation Table for \(A\left(A_{7}, C y c\right)\) over \(\overrightarrow{\boldsymbol{F}}_{2}\)
\begin{tabular}{lrrrrrrrrr}
2520 & 36 & 9 & 5 & 7 & 7 & -24 & -8 & 8 & -12 \\
p power & A & A & A & A & A & A & A & A & AA \\
ind & 1 A & 3 A & 3 B & 5 A & 7 A & \(\mathrm{~B} * *\) & 2 A & 4 Al & 4 A 2
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 4 & -2 & 1 & -1 & -b 7 & \(* *\) & 0 & 0 & 0 & 0 \\
0 & 4 & -2 & 1 & -1 & \(* *\) & -b 7 & 0 & 0 & 0 & 0 \\
+ & 6 & 3 & 0 & 1 & -1 & -1 & 2 & 0 & 0 & -1 \\
+ & 14 & 2 & -1 & -1 & 0 & 0 & 2 & 0 & 0 & 2 \\
- & 20 & -4 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 0 & -2 \\
& 0 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 0
\end{tabular}
\(\begin{array}{rrrrrrrrrr}2520 & 36 & 9 & 5 & 7 & 7 & -24 & -8 & 8 & -12 \\ \text { p power } & \mathrm{A} & \mathrm{AA} \\ 1 \mathrm{~A} & 3 \mathrm{~A} & 3 \mathrm{~B} & 5 \mathrm{~A} & 7 \mathrm{~A} & \mathrm{~B} * * & 2 \mathrm{~A} & 4 \mathrm{Al} & 4 \mathrm{~A} 2 & 6 \mathrm{~A}\end{array}\)
\begin{tabular}{rrrrrrrrrr}
72 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 \\
24 & 0 & 3 & -1 & b 7 & \(\star *\) & 0 & 0 & 0 & 0 \\
24 & 0 & 3 & -1 & \(\star *\) & b 7 & 0 & 0 & 0 & 0 \\
40 & 4 & 4 & 0 & -2 & -2 & 0 & 0 & 0 & 0 \\
64 & 4 & -2 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \\
56 & -4 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
100 & 4 & -2 & 0 & 2 & 2 & 4 & 0 & 0 & 4 \\
20 & 2 & 2 & 0 & -1 & -1 & 4 & 0 & 0 & -2 \\
50 & 2 & -1 & 0 & 1 & 1 & 2 & 2 & 2 & 2 \\
86 & 2 & -1 & 1 & 2 & 2 & 2 & 2 & -2 & 2
\end{tabular}

Projective Indecomposable Modules for \(A_{7}\) over \(\overline{\mathbf{F}}_{2}\)

iii. Representations over \(\overline{\mathbb{F}}_{3}\)

Representation type: wild

\section*{Decomposition Matrix}

\section*{Cartan Matrix}
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & 7 & 2 & 2 & 4 & \\
\hline \(10_{1}\) & 2 & 2 & 1 & 1 & \\
\hline \(10_{2}\) & 2 & 1 & 2 & 1 & \\
\hline 13 & 4 & 1 & 1 & 3 & \\
\hline 6 & & & & & 2 \\
\hline 15 & & & & & 1 \\
\hline
\end{tabular}

Projective Indecomposable Modules for \(A_{7}\) over \(\overline{\mathbb{F}}_{3}\)
\begin{tabular}{|c|c|c|c|}
\hline I & \({ }^{10} 1\) & \(10_{2}\) & 13 \\
\hline & I & I & I I \\
\hline I I I I I & \(10_{2} \quad 13\) & \(10_{1} \quad 13\) & \\
\hline & I & I & I I \\
\hline & \({ }^{10} 1\) & \(10_{2}\) & 13 \\
\hline
\end{tabular}
\begin{tabular}{rr}
6 & 15 \\
15 & 6 \\
6 & 15
\end{tabular}

The Linear Group \(\mathrm{L}_{3}(2)\), and its coverings and automorphisms.
i. Ordinary Characters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline + & 1 & 1 & 1 & 1 & 1 & 1 & : & + & 1 & 1 & 1 & 1 \\
\hline - & 3 & -1 & 0 & 1 & b7 & ** & - & + & 0 & 0 & 0 & 0 \\
\hline \(\bigcirc\) & 3 & -1 & 0 & 1 & ** & b7 & d & & & & & \\
\hline + & 6 & 2 & 0 & 0 & -1 & -1 & : & + & 0 & 0 & r2 & -r2 \\
\hline \(+\) & 7 & -1 & 1 & -1 & 0 & 0 & : & + & 1 & 1 & -1 & -1 \\
\hline \(+\) & 8 & 0 & -1 & 0 & 1 & 1 & : & + & 2 & -1 & 0 & 0 \\
\hline ind & 1 & 4 & 3
6 & 8 & \[
\begin{array}{r}
7 \\
14
\end{array}
\] & \[
\begin{array}{r}
7 \\
14
\end{array}
\] & fus & ind & 4 & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & 16
16 & 16
16 \\
\hline 0 & 4 & 0 & 1 & 0 & -b7 & ** & & - & 0 & 0 & 0 & 0 \\
\hline 0 & 4 & 0 & 1 & 0 & ** & -b7 & \(\checkmark\) & & & & & \\
\hline - & 6 & 0 & 0 & r2 & -1 & -1 & : & -- & 0 & 0 & yl6 & * 3 \\
\hline - & 6 & 0 & 0 & -r2 & -1 & -1 & : & -- & 0 & 0 & *5 & y16 \\
\hline - & 8 & 0 & -1 & 0 & 1 & 1 & : & -- & 0 & r3 & 0 & 0 \\
\hline
\end{tabular}
ii. Representations over \(\mathbb{F}_{2}\)

Representation type: tame
Decomposition Matrix

Cartan Matrix

Atom Table and Representation Table for \(A\left(L_{3}(2)\right.\), Cyc) over \(\bar{F}_{2}\)
\begin{tabular}{rrrrrrr}
& 168 & 3 & 7 & 7 & -8 & -8 \\
p power & \(A\) & \(A\) & \(A\) & \(A\) & \(A\) & \(A\) \\
ind & \(1 A\) & \(3 A\) & \(7 A\) & \(B * *\) & \(2 A\) & \(4 A 1\) \\
\(4 A 2\)
\end{tabular}
\begin{tabular}{rrrrrrrr}
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 3 & 0 & b 7 & \(\star *\) & 1 & 1 & -1 \\
0 & 3 & 0 & \(\star *\) & b 7 & 1 & 1 & -1 \\
+ & 8 & -1 & 1 & 1 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & -2 & 2 & 0 \\
& 0 & 0 & 0 & 0 & 0 & -2 & 2 \\
& 0 & 0 & 0 & 0 & 0 & -2 & -2
\end{tabular}
\begin{tabular}{rrrrrrrr}
168 & 3 & 7 & 7 & -8 & -8 & 8 & \\
p power & A & A & A & A & A & A & \\
1 A & 3 A & 7 A & \(\mathrm{~B} \star *\) & 2 A & 4 AI & 4 A 2 & vtx
\end{tabular}
\begin{tabular}{rrrrllll}
8 & 2 & 1 & 1 & 0 & 0 & 0 & 1 A \\
16 & 1 & \(\mathrm{~b} 7-1\) & \(\star *\) & 0 & 0 & 0 & 1 A \\
16 & 1 & \(* *\) & \(\mathrm{~b} 7-1\) & 0 & 0 & 0 & 1 A \\
8 & -1 & 1 & 1 & 0 & 0 & 0 & 1 A \\
20 & 2 & -1 & -1 & 4 & 0 & 0 & 2 A \\
26 & 2 & -2 & -2 & 2 & 2 & 2 & \(4 \mathrm{~A}(1)\) \\
14 & 2 & 0 & 0 & 2 & 2 & -2 & \(4 \mathrm{~A}(3)\)
\end{tabular}

Projective Indecomposable Modules for \(L_{3}(2)\) over \(\overline{\boldsymbol{F}}_{2}\)

\begin{tabular}{rrrrrrrrrrrrrr}
1344 & 6 & 7 & \(7-192\) & -32 & -32 & -6 & -16 & 16 & -8 & 8 & -8 & 8 \\
p power & A & A & \(A\) & \(A\) & \(A\) & \(A\) & \(A A\) & \(A\) & \(A\) & \(B\) & \(B\) & \(C\) & \(C\) \\
ind & 1 A & 3 A & 7 A & \(\mathrm{~B} * *\) & 2 A & 2 B & 2 C & 6 A & 4 A 1 & 4 A 2 & 4 B 1 & 4 B 2 & 4 C 1 \\
4 C 2
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrrrr}
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 3 & 0 & b 7 & \(* *\) & 3 & 1 & 1 & 0 & 1 & 1 & 1 & -1 & 1 & -1 \\
0 & 3 & 0 & \(* *\) & b 7 & 3 & 1 & 1 & 0 & 1 & 1 & 1 & -1 & 1 & -1 \\
+ & 8 & -1 & 1 & 1 & 8 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & -2 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
\(\begin{array}{rrrrrrrrrrrrrrr}1344 & 6 & 7 & 7-192 & -32 & -32 & -6 & -16 & 16 & -8 & 8 & -8 & 8 & \\ \text { p power } & A & A & A & A & A & A & A A & A & A & B & B & C & C & \\ 1 A & 3 A & 7 A & B * * & 2 A & 2 B & 2 \mathrm{C} & 6 \mathrm{~A} & 4 \mathrm{Al} & 4 \mathrm{~A} 2 & 4 \mathrm{~B} 1 & 4 \mathrm{~B} 2 & 4 \mathrm{Cl} & 4 \mathrm{C} 2 & \mathrm{Vtx}\end{array}\)
\begin{tabular}{rrrrrrrrlllllll}
64 & 4 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
128 & 2 & \(\mathrm{~b} 7-1\) & \(* *\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
128 & 2 & \(* *\) & \(\mathrm{~b} 7-1\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
64 & -2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
160 & 4 & -1 & -1 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 B \\
208 & 4 & -2 & -2 & 0 & 8 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & \(4 \mathrm{~B}(1)\) \\
112 & 4 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & \(4 \mathrm{~B}(3)\) \\
160 & 4 & -1 & -1 & 0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 C \\
208 & 4 & -2 & -2 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & \(4 \mathrm{C}(1)\) \\
112 & 4 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 2 & -2 & \(4 \mathrm{C}(3)\) \\
160 & 4 & -1 & -1 & 96 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 A \\
208 & 4 & -2 & -2 & 48 & 0 & 0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 & \(4 \mathrm{~A}(1)\) \\
112 & 4 & 0 & 0 & 48 & 0 & 0 & 0 & 4 & -4 & 0 & 0 & 0 & 0 & \(4 \mathrm{~A}(3)\) \\
224 & -1 & 0 & 0 & 32 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 A
\end{tabular}

\section*{\(\xrightarrow{\text { The Sporadic Group } \mathrm{M}_{11}}\)}

\section*{i. Ordinary Characters}
\begin{tabular}{rrrrrrrrrr}
7920 & 48 & 18 & 8 & 5 & 6 & 8 & 8 & 11 & 11 \\
p,power & A & A & A & A & AA & A & A & A & A \\
p, part & A & A & A & A & AA & A & A & A & A \\
ind & 1 A & 2 A & 3 A & 4 A & 5 A & 6 A & 8 A & \(\mathrm{~B} * *\) & 11 A \\
in*
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
+ & 10 & 2 & 1 & 2 & 0 & -1 & 0 & 0 & -1 & -1 \\
0 & 10 & -2 & 1 & 0 & 0 & 1 & i2 & \(-i 2\) & -1 & -1 \\
0 & 10 & -2 & 1 & 0 & 0 & 1 & \(-i 2\) & i2 & -1 & -1 \\
+ & 11 & 3 & 2 & -1 & 1 & 0 & -1 & -1 & 0 & 0 \\
0 & 16 & 0 & -2 & 0 & 1 & 0 & 0 & 0 & bl1 & ** \\
0 & 16 & 0 & -2 & 0 & 1 & 0 & 0 & 0 & ** & b11 \\
+ & 44 & 4 & -1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
+ & 45 & -3 & 0 & 1 & 0 & 0 & -1 & -1 & 1 & 1 \\
+ & 55 & -1 & 1 & -1 & 0 & -1 & 1 & 1 & 0 & 0
\end{tabular}
ii. Representations over \(\mathbb{F}_{2}\)

Representation type: tame
Decomposition Matrix
Cartan Matrix

\begin{tabular}{|c|c|c|c|c|c|}
\hline & I & 10 & 44 & \(16_{1}\) & \(16_{2}\) \\
\hline I & 4 & 2 & 2 & & \\
\hline 10 & 2 & 5 & 1 & & \\
\hline 44 & 2 & 1 & 3 & & \\
\hline 161 & & & & 1 & \\
\hline \(16_{2}\) & & & & & 1 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllll}
Atom Table \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrrr}
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
+ & 10 & 1 & 0 & -1 & -1 & 2 & -1 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 16 & -2 & 1 & bl1 & \(\star *\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 16 & -2 & 1 & \(\star *\) & bll & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+ & 44 & -1 & -1 & 0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & -2 & -2 & 2 & 0 & 2 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & -4 & 2 & 4 & 0 & -2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 2 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & -2 & -2
\end{tabular}
\(\begin{array}{rrrrrrrrrrrrr}7920 & 18 & 5 & 11 & 11 & -48 & -6 & -16 & 16 & -16 & 16 & 16 & -16 \\ \text { p power } & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{AA} & \mathrm{A} 1 & \mathrm{~A} 2 & \mathrm{~A} 1 & \text { A2 } & \mathrm{A} 3 & \mathrm{~A} 4 \\ 1 \mathrm{~A} & 3 \mathrm{~A} & 5 \mathrm{~A} & 11 \mathrm{~A} & \mathrm{~B} * * & 2 \mathrm{~A} & 6 \mathrm{~A} & 4 \mathrm{Al} & 4 \mathrm{~A} 2 & 8 \mathrm{Al} & 8 \mathrm{~A} 2 & 8 \mathrm{~A} 3 & 8 \mathrm{~A} 4\end{array}\)
vtx
\begin{tabular}{rrrrrrrrrrrrrr}
112 & 4 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
96 & \(i\) & 1 & -3 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
16 & -2 & 1 & b 11 & \(* *\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
16 & -2 & 1 & \(\star *\) & b 11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
144 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 A \\
200 & 2 & 0 & 2 & 2 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 A \\
120 & 3 & 0 & -1 & -1 & 8 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 A \\
220 & 4 & 0 & 0 & 0 & 12 & 0 & 4 & 4 & 0 & 0 & 0 & 0 & \(4 \mathrm{~A}(1)\) \\
372 & 12 & 2 & -2 & -2 & 12 & 0 & 4 & -4 & 0 & 0 & 0 & 0 & \(4 \mathrm{~A}(3)\) \\
110 & 2 & 0 & 0 & 0 & 6 & 0 & 2 & 2 & 2 & 2 & 2 & 2 & \(8 \mathrm{~A}(1)\) \\
90 & 0 & 0 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 & -2 & \(8 \mathrm{~A}(3)\) \\
286 & 7 & 1 & 0 & 0 & 10 & 1 & 2 & -2 & 2 & 2 & -2 & -2 & \(8 \mathrm{~A}(5)\) \\
242 & 8 & 2 & 0 & 0 & 6 & 0 & 2 & -2 & 2 & -2 & -2 & 2 & \(8 \mathrm{~A}(7)\)
\end{tabular}

Projective Indecomposable Modules for \(M_{11}\) over \(\overline{\mathbb{F}}_{2}\)

\section*{References}
[1] J. L. Alperin, 'Periodicity in Groups', I11. J. Math. 21 (1977) 776-83.
[2] J. L. Alperin, L. Evens, 'Representations, resolutions, and Quillen's dimension theorem', J. Pure Appl. Alg. 22, 1-9 (1981).
[3] J. L. Alperin, L. Evens, 'Varieties and elementary abelian subgroups', J. Pure Appl. Alg. 26 (1982) 221-227.
[4] M. F. Atiyah, I. G. Macdonald, 'Introduction to Commutative Algebra', Addison-Wesley, Reading, Mass. (1969).
[5] M. Auslander, I. Reiten, 'Representation Theory of Artin Algebras, III: almost split sequences', Comm. in Alg. 3 (3), 239-294 (1975).
[6] M. Auslander, 'Existence theorems for almost split sequences', Oklahoma Ring Theory Conference, March 1976.
[7] M. Auslander, I. Reiten, 'Representation theory of Artin Algebras, IV: invariants given by almost split sequences', Comm. in Alg. 5 (5), 443-518 (1977).
[8] G. S. Avrunin, 'Annihilators of cohomology modules', J. Alg. 69, 150-154 (1981).
[9] G. S. Avrunin and L. L. Scott, 'Quillen Stratification for Modules', Invent. Math. 66, 277-286 (1982).
[10] V. A. Basev, 'Representations of the group \(Z_{2} \times Z_{2}\) in a field of characteristic 2 ', (Russian), Dok1. Akad. Nauk. SSSR 141 (1961), 1015-1018.
[11] D. J. Benson, 'The Loewy structure of the projective indecomposable modules for \(A_{8}\) in characteristic two', Commun. in Alg., 11 (13), 1395-1432, 1983.
[12] D. J. Benson, 'The Loewy structure of the projective indecomposable modules for \(A_{9}\) in characteristic two', Commun. in Alg., 11 (13), 1433-1453, 1983.
[13] D. J. Benson. R. A. Parker, 'The Green Ring of a Finite Group', J. Alg. 87, 290-331 (1984).
[14] D. J. Benson, 'Lambda and Psi Operations on Green Rings', J. Alg. 87, 360-367 (1984).
[15] Berman, Moody and Wonenburger, 'Cartan Matrices with Nul1 Roots and Finite Cartan Matrices', Indiana U. Math. J. 21 (7-12) 1972, 1091.
[16] R. Brauer, Collected Papers, Vols. I-III, MIT Press, 1980, ed. P. Fong and W. Wong.
[17] D. Burry, J. Carlson, 'Restrictions of modules to local subgroups', Proc. A.M.S. 84, 181-184, 1982.
[18] J. F. Carlson, 'The modular representation ring of a cyclic 2-group', J. L.M.S. (2), 11 (1975), 91-92.
[19] J. F. Carlson, 'Periodic Modules over Group Algebras', J. L.M.S. (2), 15 (1977), 431-436.
[20] J. F. Carlson, 'Restrictions of modules over modular group algebras', J. Alg. 53 (1978), 334-343.
[21] J. F. Carlson, 'The dimensions of periodic modules over modular group algebras', Ill. J. Math. 23 (1979), 295-306.
[22] J. F. Carlson, 'The complexity and varieties of modules', in 'Integral Representations and their applications', Lecture Notes in Mathematics 882, p. 415-422, Springer-Verlag 1981.
[23] J. F. Carlson, 'Complexity and Krull Dimension', in 'Representations of algebras', Lecture Notes in Mathematics 903, p. 62-67, Springer-Verlag 1981.
[24] J. F. Carlson, 'The structure of periodic modules over modular group algebras', J. Pure App1. Alg. 22 (1981), 43-56.
[25] J. F. Carlson, 'Dimensions of modules and their restrictions over modular group algebras', J. Alg. 69, 95-104 (1981).
[26] J. F. Carlson, 'Varieties and the cohomology ring of a module', J. Alg. 85 (1983), 104-143.
[27] J. Carlson, 'The variety of an indecomposable module is connected', to appear, Invent. Math. 1984.
[28] R. Carter, 'Simple groups of Lie type', Wiley-Interscience, 1972.
[29] L. Chouinard, 'Projectivity and relative projectivity over group rings', J. Pure Appl. Alg. 7 (1976) 278-302.
[30] S. B. Conlon, 'Twisted Group algebras and their representations', J. Aust. Math. Soc., 4 (1964) 152-173.
[31] S. B. Conlon, 'Certain representation algebras', J. Aust. Math. Soc., 5 (1965) 83-99.
[32] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroups \(Z_{2} \times Z_{2}{ }^{\prime}\), J. Aust. Math. Soc. 6 (1966), 76-88.
[33] S. B. Conlon, 'Structure in representation algebras', J. Alg. 5 (1967), 274-279.
[34] S. B. Conlon, 'Relative components of representations', J. Alg. 8 (1968), 478-501.
[35] S. B. Conlon, 'Decompositions induced from the Burnside algebra'; J. Alg. 10 (1968), 102-122.
[36] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, 'An Atlas of Finite Groups', to appear, OUP 1985.
[37] C. W. Curtis and I. Reiner, 'Representation theory of finite groups and associative algebras', Wiley-Interscience 1962.
[38] C. W. Curtis and I. Reiner, 'Methods in representation theory', Vol. I, J. Wiley and Sons, 1981.
[39] E. C. Dade, 'Endo-permutation modules over p-groups II', Ann. of Math. 108 (1978), 317-346.
[40] L. E. Dickson, 'On the algebra defined for any given field by the multiplication table of any given finite group', Trans. AMS 3, 285-301, 1902.
[41] V. Dlab and C. M. Ringel, 'Indecomposable representations of graphs and algebras', Memoirs of the A.M.S. (6) \(173,1976\).
[42] P.- Donovan and M. R. Freislich, 'Representable functions on the category of modular representations of a finite group with cyclic Sylow subgroups', J. A1g. 32, 356-364 (1974).
[43] P. Donovan and M. R. Freislich, 'Representable functions on the category of modular representations of a finite group with Sylow subgroup \(\mathrm{C}_{2} \times \mathrm{C}_{2}{ }^{\prime}\), J. Alg. 32, 365-369 (1974).
[44] L. Dornhoff, 'Group representation theory, part B', Marcel Dekker, New York, 1972.
[45] A. Dress, 'On relative Grothendieck rings', Repn. Thy., Proc. Ottawa Conf. SLN 488, Springer, Beriin 1975.
[46] A. Dress, 'Modules with trivial source, modular monomial representations and a modular version of Brauer's induction theorem', Abh. Math. Sem. Univ. Hamburg 44 (1975), 101-109.
[47] D. Eisenbud, 'Homological algebra on a complete intersection, with an application to group representations', Trans. A.M.S. 260 (1980) 35-64.
[48] L. Evens, 'The Cohomology ring of a finite group', Trans. A.M.S. 101, 224-239 (1961).
[49] L. Evens, 'A generalization of the transfer map in the cohomology of groups \({ }^{\prime}\), Trans. A.M.S. 108 (1963) 54-65.
[50] L. Evens, 'The Spectral Sequence of a Finite group extension stops', Trans. A.M.S. 212, 269-277 (1975).
[51] W. Feit, 'The representation theory of finite groups', North Holland, 1982.
[52] P. Gabrie1, C. Riedtmann, 'Group representations without groups', Comm. Math. Helvetici 54 (1979) 240-287.
[53] P. Gabriel, 'Auslander-Reiten sequences and representation-finite algebras', Repn. Thy. I, Proc. Ottawa Conf. SLN 831, Springer Berlin 1980.
[54] J. A. Green, 'On the Indecomposable Representations of a finite group', Math. Zeit., Bd. 70 (1959), S. 430-445.
[55] J. A. Green, 'The modular representation algebra of a finite group', Ill. J. Math. 6 (4) (1962), 607-619.
[56] J. A. Green, 'Some remarks on defect groups', Math. Z. 107, 133-150, 1968.
[57] J. A. Green, 'A transfer theorem for modular representations', Trans. Amer. Math. Soc. 17 (1974), 197-213.
[58] D. Happe1, U. Preiser, C. M. Ringel, 'Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules \({ }^{1}\), Repn. Thy. II, Proc. Ottawa Conf. SLN 832, Springer, Berlin 1980.
[59] D. G. Higman, 'Indecomposable representations at characteristic p ', Duke Math. J. 21, 377-381, 1954.
[60] G. Hochschild, J.-P. Serre, 'Cohomology of group extensions', Trans. A.M.S. 74 (1953), 110-134.
[61] S.A. Jennings, 'The structure of the group ring of a p-group over a Modular Field', Trans. A.M.S. 50 (1941), 175-185.
[62] D. Knutson, ' \(\lambda\)-rings and the representation theory of the symmetric group', SLN 308, Springer, Berlin 1973.
[63] O. Kroll, 'Complexity and elementary abelian subgroups', Ph.D. thesis, Univ. of Chicago, 1980.
[64] P. Landrock and G. O. Michler, 'Block structure of the smallest Janko group', Math. Ann. 232, 205-238, 1978.
[65] P. Landrock, 'Finite group algebras and their modules', L.M.S. lecture note series, 1984.
[66] G. Lewis, 'The Integral Cohomology Rings of Groups of Order \(p^{3}\) ', Trans. A.M.S. 132, 501-529, 1968.
[67] S. MacLane, 'Homology', Springer-Verlag, 1974.
[68] J. Milnor, 'The Steenrod algebra and its dual', Ann. of Math. vol. 67, no. 1, 150-171, 1958.
[69] H. J. Munkholm, 'Mod 2 cohomology of \(D 2^{\text {n }}\) and its extensions by \(Z_{2}{ }^{\prime}\), Conference on Alg. Topology, Univ. of Illinois at Chicago Circle, June 17-28, 1968, p. 234-252.
[70] H. Nagao, 'A proof of Brauer's Theorem on generalized decomposition numbers', Nagao Math. J. 22, 73-77, 1963.
[71] D. Quillen, 'A Cohomological criterion for p-nilpotence', J. Pure Appl. Alg. 1, 36l-372 (1971).
[72] D. Quillen, 'The spectrum of an equivariant cohomology ring, I ', Ann. of Math. 94, 549-572 (1971).
[73] D. Quillen, 'The spectrum of an equivariant cohomology ring, II ', Ann. of Math. 94, 573-602 (1971).
[74] D. Quillen, 'The Mod 2 Cohomology Rings of Extra-Special 2-groups and the Spinor Groups', Math. Ann. 194, 197-212 (1971).
[75] D. Quillen, B. B. Venkov, 'Cohomology of finite groups and elementary abelian subgroups', Topology ll, 317-318 (1972).
[76] I. Reiten, 'Almost Split Sequences', Workshop on permutation groups and indecomposable modules, Giessen, September, 1975.
[77] I. Reiten, 'Almost split sequences for group algebras of finite representation type', Trans. A.M.S. 335, 125-136, 1977.
[78] C. Riedtmann, 'Algebren, Darstellungsköcher, Ueberlagerungen und Zurück', Comm. Math. Helvetici 55 (1980), 199-224.
[79] C. M. Ringel, 'The Indecomposable Representations of the Dihedral 2-groups', Math. Ann. 214, 19-34, 1975.
[80] K. W. Roggenkamp and J. W. Schmidt, 'Almost split sequences for integral group rings and orders', Commun. in Alg. 4, 893-917, 1976.
[81] K. W. Roggenkamp, 'The construction of almost split sequences for integral group rings and orders', Commun. in Alg., 5 (13), 1363-1373, 1977.
[82] J. Sawka, 'Odd primary operations in first-quadrant spectral sequences', Trans. A.M.S. 273 (2), 1982, 737-752.
[83] L. L. Scott, 'Modular permutation representations', Trans. A.M.S. 175, 101-121, 1973.
[84] J. P. Serre, 'Homologie Singulière des Espaces Fibrés', Annals of Maths. 54, 3 (1951), 425-505.
[85] J. P. Serre, 'Sur la dimension cohomologique des groupes profinis', Topology 3, 413-420 (1965).
[86] W. M. Singer, 'Steenrod Squares in Spectral Sequences, I ', Trans. A.M.S. 175, 1973, 327-336.
[87] W. M. Singer, 'Steenrod Squares in Spectral Sequences, II ', Trans. A.M.S. 175, 1973, 337-353.
[88] W. Smoke, 'Dimension and Multiplicity for Graded Algebras', J. Alg. 21, 149-173 (1972).
[89] N. Steenrod, 'Cohomology operations, and obstructions to extending continuous functions', Colloquium Lectures, 1957.
[90] N. Steenrod, 'Cohomology operations', Ann. of Math. Studies no. 50, Princeton 1962, (Notes by D. Epstein).
[91] R. G. Swan, 'Induced representations and projective modules', Ann. of Math. vol. 71, no. 3, 552-578, 1960.
[92] P. J. Webb, 'The Auslander-Reiten quiver of a finite group', Math. Z. 179, 97-121, 1982.
[93] P. J. Webb, 'On the Orthogonality Coefficients for Character Tables of the Green Ring of a Finite Group', preprint.
[94] R. A. Wilson, 'The Local structure of the Lyons Group', preprint.
[95] J. R. Zemanek, 'Nilpotent Elements in Representation Rings', J. Algebra 19, 453-469, 1971.
[96] J. R. Zemanek, 'Nilpotent Elements in Representation Rings over Fields of Characteristic 2', J. Algebra 25, 534-553, 1973.
[97] V. M. Bondarenko and Yu.A. Drozd, 'The representation type of finite groups', Zap. Naucn. Sem. LOMI 57 (1977), 24-41.
[98] M. F. O'Reilly, 'On the modular representation algebra of a finite group', Ill. J. Math. 9 (1965), 261-276.
[99] H. R. Margolis, 'Spectra and the Steenrod Algebra', North-Holland 1983.
[100] M. Tezuka and N. Yagita, 'The varieties of the mod, p cohomology rings of extra special p-groups for an odd prime \(\mathrm{p}^{\prime}\), Math. Proc. Camb. Phil. Soc. (1983), 94, 449-459.

\section*{Index}
a(G) 25
\(\hat{a}(G) \quad 26\)
A(G) 25
A(G,H) 33
\(A_{0}(G, H) \quad 25\)
\(A^{\prime}(G, H) \quad 33\)
\(A^{\prime \prime}(G, H) \quad 63\)
A(G,H) 33
\(A_{0}(G, H) \quad 33\)
A(G,S) 33
\(A_{0}(G, S) \quad 33\)
A(G,X) 139,142,144
A(G,Cyc) 91,95
A(G,Discrete) 94
\(\mathrm{A}_{0}\) (G,Discrete) 94
A(G,Triv) 40, 64ff
A.C.C. (iii)

Adams operations 72
additive function 156
Adem relations 113
admissible automorphism 151
Alexander-Whitney map 100,119
almost split sequence \(79 \mathrm{ff}, 81\)
Alperin-Evens theorem 123
alternating group \(\mathrm{A}_{4}\) (ix), 171, 191ff
alternating group \(A_{5} 198\)
alternating group \(A_{6} 203\)
alternating group \(A_{7} 211\)
ascending chain condition (iii)
atom 85
atom copying theorem 93
atom table 95
augmentation map 99
Auslander-Reiten quiver 145ff, 174
Auslander-Reiten sequences 79 ff , 81
Avrunin-Scott theorem 139
\(\mathrm{b}_{\mathrm{g}} \quad 57\)
\(\begin{array}{ll}B_{n}^{P}, q & 107 \\ B_{\infty}^{P}, q & 107\end{array}\)
bar resolution 100
block 13ff
block idempotent 14
Bockstein map 113
Brauer correspondence 50
Brauer's first main theorem 51
- , extended 52

Brauer map 49 ff
Brauer's second main theorem 52
Brauer species 56 ff
Burnside ring 29
Burry-Carlson theorem 61, 93
\(c_{j}=c\left(s_{j}\right)=c_{G}\left(s_{j}\right) \quad 97\)
\(\mathrm{cx}_{\mathrm{G}}\) (V) \(\quad 121\)
Carlson 131, 141
Cartan formula 113
Cartan homomorphism 58
Cartan invariants 13
Cartan matrix \(13,17,154\)
- , of a p-group 25
central component 42
central homomorphism 14, 17
central idempotent 13
chain homotopy 99
Chouinard's theorem 125
classical case 46
cohomology of groups 99ff
- , of cyclic groups 110
- , of elementary abelian groups 111
- , of modules 6ff
commutative algebra 18ff
completely reducible 1,2
complexity 121ff
component 42
composition series 2
conjugacy of origins 54
conjugacy of vertices 38
connected 150
covering morphism 151
Coxeter transformation 165
cup product 100
cyclic p-group \(28,110,230\)
\(\mathrm{d}_{\mathrm{V}} \quad 85\)
\(\mathrm{D}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}} \quad 106\)
\(\mathrm{D}_{\infty}^{\mathrm{P}, \mathrm{q}} \quad 107\)
D.C.C. (iii)

Dade 131
decomposition field 171
decomposition group 171
decomposition matrix 16
- , of a p-group 25
decomposition numbers 16
defect 47, 165
defect group 45ff
- , of a block 47
defect zero 48
derived couple 106
diagonal approximation 100
dihedral groups 181ff
directed tree 150
discrete spectrum 94ff
division ring \(2,3,10\)
dodecahedron 42
double arrow 150
Dynkin diagram 154
\(\mathrm{e}_{\mathrm{H}, \mathrm{b}} \quad 65\)
\(\mathrm{e}_{\mathrm{k}, \mathrm{K}} \quad 168\)
\(E=E(S) \quad 41\)
\(\hat{E}=\hat{E}(S) \quad 41\)
\(\bar{E}=\bar{E}(S) \quad 41\)
\(\mathrm{E}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}} \quad 107\)
\(\mathrm{E}_{\infty}^{\mathrm{P}, \mathrm{q}} \quad 107\)
End \(_{k G}(\mathrm{U}) \quad 80\)

restricted module 24
Riedtmann structure theorem 149ff
Rosenberg's lemma 13
\(\mathrm{s}_{\mathrm{H}, \mathrm{b}} \quad 65\)
S 41
\(\mathrm{s}_{\mathrm{i}}^{2} \quad 41\)
\(S_{3}\) in characteristic three 28, 191
S-projective 33
S-split 33
\(\mathrm{Sq}^{\mathrm{i}} \quad 113,117\)
Schanuel's lemma 6
Schur's lemma 2
semiperfect ring 8
semisimple \(\quad 1\)
semisimplicity of \(A(G, 1) \quad 57\)
semisimplicity of \(A(G, C y c)\) 90, 95
semisimplicity of \(A(G, T r i v)\) 64ff
Serre's theorem on Bocksteins 114
Shapiro's lemma 103
slice 166
smaller 155
socle 1
source 37ff, 135
species \(26,38,53,55,56,67,74\)
- , factoring through subgroup 54
- , fusion of 54
- , origins of 53
spectral sequence \(104 f f\)
splitting field 4
splitting p-modular system 15
stable quiver 148
stable representation quiver 149
Steenrod algebra 114
Steenrod operations 113
Steenrod squares 113
strictly smaller 156
subadditive function 156
suborbit map 41
support 127
symmetric algebra 10,13
symmetrized Cartan matrix 164
symplectic representation 74, 173
\begin{tabular}{lc}
\(\mathrm{t}_{\mathrm{H}, \mathrm{G}}\) & 133 \\
\(\mathrm{tr}_{\mathrm{H}, \mathrm{G}}\) & 102 \\
\(\mathrm{~T}_{\mathrm{ij}}\) & 95 \\
\(\mathrm{Tr}_{\mathrm{H}, \mathrm{G}}\) & 30 \\
\(\mathrm{Tor}_{\mathrm{i}}^{\Lambda}\) & 8 \\
tail & 149
\end{tabular}
tame representation type 39
tensor induction \(68 \mathrm{ff}, 103\)
trace map 30
trace map in cohomology 102
transgression 107
translation 150
tree class 153,158,174
trivial source module 39ff,64
u 35
\(\mathrm{U}_{\mathrm{ij}} \quad 95\)
unique decomposition property
4
universal coefficient theorem
101
universal cover 153
v 35
\(\mathrm{V}_{\mathrm{e}} \quad 41\)
\(\mathrm{V}_{4} \quad 95,176 \mathrm{ff}\)
valuation ring 15
valued graph 164
variety 127ff
vertex 37ff,67,135
Webb 112, 160
Weyl group 164
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{wild representation type} & 39 \\
\hline Wilson 136 & & \\
\hline \(\mathrm{X}_{\mathrm{e}} \quad 41\) & & \\
\hline \(\mathrm{X}_{\mathrm{V}} \quad 82\) & & \\
\hline \(\widetilde{\mathrm{X}}_{\mathrm{i}}(\mathrm{G}) \quad 100\) & & \\
\hline \(\mathrm{x}_{\mathrm{G}}, \overline{\mathrm{X}}_{\mathrm{G}}, \mathrm{X}_{\mathrm{G}}(\mathrm{V}), \overline{\mathrm{x}}_{\mathrm{G}}(\mathrm{V})\) & 127 & \\
\hline \(\mathrm{X}_{\mathrm{E}}^{+}, \mathrm{X}_{\mathrm{E}}^{+}(\mathrm{V})\) & 134 & \\
\hline \(\mathrm{X}_{G, E}, \mathrm{X}_{\mathrm{G}, \mathrm{E}}^{+}, \mathrm{X}_{\mathrm{G}, \mathrm{E}}(\mathrm{V})\) & \(\mathrm{X}_{\mathrm{G}, \mathrm{E}}^{+}{ }^{(\mathrm{V})}\) & 134 \\
\hline
\end{tabular}
\(Y_{E}, Y_{E}(V) \quad 128\)
\(Z_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}} \quad 107\)
\(Z_{\infty}^{\mathrm{p}, \mathrm{q}} \quad 107\)
\begin{tabular}{ll}
\(\beta\) & 113
\end{tabular}

Y(X) 19,121
\(\Gamma \quad 23\)
「G 23
\(\eta_{V}(t) \quad 158\)
\(\eta\) (V) 159
\(\lambda^{\mathrm{n}} \quad 77\)
\(\xi_{\mathrm{V}}(\mathrm{t}) \quad 102\)
\({ }_{\rho} \mathrm{p}, \mathrm{q} \quad 107\)
\({ }^{\sigma}{ }_{\mathrm{E}} \quad 134\)
\(\tau(\mathrm{V}) \quad 85\)
\(\psi^{n} \quad 72 \mathrm{ff}\)
\(\Omega(V) \quad 8\)
\(\vartheta(\mathrm{V})=\Omega^{-1}(\mathrm{~V}) \quad 8\)
(s, V) 26
\((\mathrm{U}, \mathrm{V})^{\mathrm{G}} \quad 24\)
\(\mathrm{V}^{\mathrm{G}} \quad 24\)
\((\mathrm{U}, \mathrm{V})_{\mathrm{H}}^{\mathrm{G}}, \mathrm{V}_{\mathrm{H}}^{\mathrm{G}} \quad 30\)
\((\mathrm{U}, \mathrm{V})_{\mathfrak{H}}^{\mathrm{G}}, \mathrm{V}_{\mathfrak{H}}^{\mathrm{G}} \quad 30\)
\((\mathrm{U}, \mathrm{V})^{\mathrm{H}, \mathrm{G}}, \mathrm{V}^{\mathrm{H}, \mathrm{G}} \quad 30\)
\((\mathrm{U}, \mathrm{V})^{\mathfrak{H}, G}, \mathrm{~V}^{\mathfrak{H}, \mathrm{G}} \quad 30\)
(,) 34

39

134

107
\[
\begin{array}{llr}
(,)_{n} & 91 \\
<, ~> & 34 \\
\mathrm{v}^{\star} & & 9,23
\end{array}
\]

\title{
Lecture Notes in Mathematics
}

\author{
Edited by J.-M. Morel, F. Takens and B. Teissier
}

Editorial Policy
for the publication of monographs
1. Lecture Notes aim to report new developments in all areas of mathematics and their applica-tions - quickly, informally and at a high level. Mathematical texts analysing new developments in modelling and numerical simulation are welcome.

Monograph manuscripts should be reasonably self-contained and rounded off. Thus they may, and often will, present not only results of the author but also related work by other people. They may be based on specialised lecture courses. Furthermore, the manuscripts should provide sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes from journal articles or technical reports which normally are very concise. Articles intended for a journal but too long to be accepted by most journals, usually do not have this „lecture notes \({ }^{\text {4/ }}\) character. For similar reasons it is unusual for doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may be appropriate.
2. Manuscripts should be submitted (preferably in duplicate) either to Springer's mathematics editorial in Heidelberg, or to one of the series editors (with a copy to Springer). In general, manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet be reached on the basis of the first 2 reports, further referees may be contacted: The author will be informed of this. A final decision to publish can be made only on the basis of the complete manuscript, however a refereeing process leading to a preliminary decision can be based on a pre-final or incomplete manuscript. The strict minimum amount of material that will be considered should include a detailed outline describing the planned contents of each chapter, a bibliography and several sample chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts almost always result in longer refereeing times and nevertheless unclear referees' recommendations, making further refereeing of a final draft necessary.
Authors should also be aware that parallel submission of their manuscript to another publisher while under consideration for LNM will in general lead to immediate rejection.
3. Manuscripts should in general be submitted in English. Final manuscripts should contain at least 100 pages of mathematical text and should always include
- a table of contents;
- an informative introduction, with adequate motivation and perhaps some historical remarks: it should be accessible to a reader not intimately familiar with the topic treated;
- a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print form is still preferred by most referees), in the latter case preferably as pdf- or zipped ps-files. Lecture Notes volumes are, as a rule, printed digitally from the authors' files. To ensure best results, authors are asked to use the LaTeX2e style files available from Springer's web-server at:
ftp://ftp.springer.de/pub/tex/latex/matheg1/mono/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/matheg1/mult/ (for summer schools/tutorials).
Additional technical instructions, if necessary, are available on request from
lnm@springer.com.
4. Careful preparation of the manuscripts will help keep production time short besides ensuring satisfactory appearance of the finished book in print and online. After acceptance of the manuscript authors will be asked to prepare the final LaTeX source files (and also the corresponding dvi-, pdf- or zipped ps-file) together with the final printout made from these files. The LaTeX source files are essential for producing the full-text online version of the book (see http://www.springerlink.com/openurl.asp?genre=journal\&issn=0075-8434 for the existing online volumes of LNM).
The actual production of a Lecture Notes volume takes approximately 8 weeks.
5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled to a discount of \(33.3 \%\) on the price of Springer books purchased for their personal use, if ordering directly from Springer.
6. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer-Verlag secures the copyright for each volume. Authors are free to reuse material contained in their LNM volumes in later publications: A brief written (or e-mail) request for formal permission is sufficient.

\author{
Addresses: \\ Professor J.-M. Morel, CMLA, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France \\ E-mail: Jean-Michel.Morel@cmla.ens-cachan.fr \\ Professor F. Takens, Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, 9700 AV Groningen, The Netherlands \\ E-mail: F.Takens@math.rug.nl \\ Professor B. Teissier, Institut Mathématique de Jussieu, UMR 7586 du CNRS, Équipe "Géométrie et Dynamique", 175 rue du Chevaleret 75013 Paris, France \\ E-mail: teissier@math.jussieu.fr \\ For the "Mathematical Biosciences Subseries" of LNM: \\ Professor P. K. Maini, Center for Mathematical Biology, \\ Mathematical Institute, 24-29 St Giles, \\ Oxford OX1 3LP, UK \\ E-mail : maini@maths.ox.ac.uk \\ Springer, Mathematics Editorial, Tiergartenstr. 17, \\ 69121 Heidelberg, Germany, \\ Tel.: +49 (6221) 487-8410 \\ Fax: +49 (6221) 487-8355 \\ E-mail: lnm@springer.com
}```

