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Introduction

This book grew out of a graduate course which I gave at Yale
University in the spring semester of 1983. The aim of this course was
to make some recent results in modular representation theory accessible
to an audience ranging from second-year graduate students to established
mathematicians.

The material covered has remarkably little overlap with the
material currently available in textbook form. The reader new to
modular representation theory is therefore encouraged also to read, for
example, Feit [51], Curtis and Reiner [37,38], Dornhoff [44],

Landrock [65], as well as Brauer's collected works [1l6], for rather
different angles on the subject.

The first of the book's two chapters is intended as background
material from the theory of rings and modules. The reader is expected
already to be familiar with a large proportion of this, and to refer
to the rest as he needs it; proofs are included for the sake of
completeness.

The second chapter treats three main topics in detail.

(i) Representation rings.

(ii) Almost split sequences and the Auslander-Reiten quiver.

(iii) Complexity and cohomology varieties.

I hope to impress upon the reader that these three topics are
closely connected, and to encourage further investigation of their
interplay.

The study of modular representation theory was in some sense

started by L. E. Dickson [40] in 1902. However, it was not until
R. Brauer [16] started investigating the subject that it really got off
the ground. In the years between 1935 and his death in 1977, he almost
single-handedly constructed the corpus of what is now regarded as the
classical modular representation theory. Brauer's main motivation
in studying modular representations was to obtain number theoretic
restrictions on the possible behaviour of ordinary character tables,
and thereby find restrictions upon the structure of finite groups. His
work has been a major tool in the classification of the finite simple
groups. For a definitive account of modular representation theory from
the Brauer viewpoint (as well as some more modern material) see Feit
[51].

It was really J. A. Green who first systematically developed the
study of modular representation theory from the point of view of



\Y

examining the set of indecomposable modules, starting with his paper
[54]. Green's results were an indispensable tool in the treatment by
Thompson, and then more fully by Dade, of blocks with cyclic defect
groups. Since then, many other people have become interested in the
study of the modules for their own sake.

In the study of representation theory in characteristic zero, it
is customary to work in terms of the character table, namely the square
table whose rows are indexed by the ordinary irreducible representations,
whose columns are indexed by the conjugacy classes of group elements,
and where a typical entry gives the trace of the group element on the
representation. Why do we use the trace function? This is because
the maps V » tr(g,V) are precisely the algebra homomorphisms from the
representation ring to €, and these homomorphisms separate representa-
tions. In particular, in this case the representation ring is semi-
simple. This has the effect that we can compute with representations
easily and.effectively in terms of their characters; representations
are distinguished by their characters, direct sum corresponds to
addition and tensor product corresponds to multiplication. The
orthogonality relations state that we may determine the dimension of
the space of homomorphisms from one representation to another by taking
the inner product of their characters.

How much of this carries over to characteristic p, where
p||G] ? The first problem is that Maschke's theorem no longer holds;

a representation may be indecomposable without being irreducible. Thus
the concepts of representation ring A(G) and Grothendieck ring do not
coincide. The latter is a quotient of the former by the '"ideal of
short exact sequences" AO(G,l). Brauer discovered the remarkable fact
that the Grothendieck ring A(G)/AO(G,l) is semisimple, and found the
set of algebra homomorphisms from this to €, in terms of lifting
eigenvalues. Thus he gets a square character table, giving information
about composition factors of modules, but saying nothing about how they
are glued together.

In an attempt to generalize this, we define a species of the
representation ring to be an algebra homomorphism A(G) -~ €. Even if
we use the set of all species, we cannot distinguish between modules
Vl and V2 when Vl - V2 is nilpotent as an element of A(G). For
some time, it was conjectured that A(G) has no nilpotent elements in
general. However, it is now known that A(G) has no nilpotent elements

whenever kG has finite representation type (i.e. the Sylow p-subgroups



of G are cyclic, where p = char(k)), as well as a few other cases in
characteristic two"whilst in general there are nilpotents (see
O'Reilly [98] and Zemanek [95, 96] as well as a forthcoming paper by
J. Carlson and the author).

The Brauer species (i.e. the species of A(G) which vanish on
A (G,1)) may be evaluated by first restricting down to a cyclic sub-
group of order coprime to p, and then lifting eigenvalues. The
corresponding concept for a general species is the origin, namely the
minimal subgroup through which thespecies factors. We show that the
origins of a species are very restricted in shape, namely if H is
an origin then H/O_(H) 1is a cyclic group of order coprime to p, and
we show how Op(H) is related to the vertices of modules on which the
species does not vanish. \

Many of the properties of representation rings and species are
governed by the trivial source subring A(G,Triv), which is a finite

dimensional semisimple subring of A(G). Thus we spend several sections
investigating trivial source modules, and showing how these modules are
connected with block theory. Instead of developing defect groups and
Brauer's first main theorem just for group algebras, we develop them

for arbitrary permutation modules, and recover the classical case by
applying the theory to G x G acting on the set of elements of G by
left and right multiplication. When applied to this case, the
orthogonality relations 2.6.4 become the ordinary character
orthogonality relations.

In ordinary character theory, one of the ways in which the
structure of the group is reflected in the character table is via the
so-called power maps, or Adams operations. Namely there are ring
homomorphisms wn on the character ring, with the property that the
character value of g on v?(V) 1is the character value of gn on V.
These are usually given in terms of the exterior power operations A",
and these operations make the character ring into a special lambda-ring.
It turns out that for modular representations we must first construct
the ring homomorphisms vl a(G) + a(G), and then use them to
construct operations x“, which do not agree with the exterior power
operations unless n < p (although they do at the level of Brauer

characters), and the A make a(G) ® 2[l/p] into a special
z

B to define the powers

lambda-ring. It then makes sense to use the ¥
of a species. As an application of these power maps, we give Kervaire's
proof that the determinant of the Cartan matrix is a power of p,

rather than using Brauer's characterization of characters.
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The next feature of ordinary character theorv which we may wish to
mimic is the fact that the orthogonality relations may be interpreted
as saying that amodule is characterized by its inner products with the
indecomposable modules. It. turns out that this is still true in
arbitrary characteristic although the proof is much harder. There are
two sensible bilinear forms to use here, which both agree with the usual
inner product in the case of characteristic zero. These are

(V, W) = dimy, HomkG(V, W)
and <V, W> = rank of Z g on Homk(V, W).

ge G

There are elements u and v of A(G) with wuv =1, u* = v,
V, W) =<v.V,W>=<V, uW> and <V,W>= (u.V, W) = (V, v.W). It is
thus easy to pass back and forth between the two inner products, and
the second has the advantage that it is symmetric. It is not until
2.18, after we have introduced the almost split sequences, that we can
prove that these inner products are non-singular on A(G). We do this
by finding elements T(V) € A(G), one for each indecomposable module
V, such that <V, T(W)> 1is non-zero if and only if V = W. These
elements ~T(V) are called atoms, and they are the simple modules and

the 'irreducible glues', the latter being related to the almost split
sequences. Any module may then be regarded as a formal sum of atoms,
namely the composition factors and the glues holding it together.

As an application of the non-singularity theorem, in 2.19 we find
the radical of the bilinear forms dimy ExtEG(— , =) on A(G).

In section 2.21 we bring together these results on representation
rings to provide an extension of Brauer character theory. We project
all the information we have onto a finite dimensional direct summand
of A(G) satisfying certain natural conditions. We define tables
T.. and U,. called the atom table and representation table, which

ij ij
satisfy certain orthogonality relations. The minimal direct summand

satisfying our conditions is the summand spanned by the projective
modules. In this case Tij is the table of Brauer characters of
irreducible modules, and Uij is the table of Brauer characters of
projective indecomposable modules. The analogues in the general case
for the centralizer orders in the Brauer theory are certain algebraic

numbers which need not be positive or rational.

We have now reached a position where we would like to understand
better how to compute inside: A(G). This means that we need to
understand the behaviour of tensor products of modules. One of the
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most interesting tools we have available for this at the moment is
Carison's idea of associating varieties to modules. To each module we
associate a homogeneous subvariety of Spec Hev(G,k), the spectrum of
the even cohomology ring of G. These varieties XG(V) have the
properties that XG(V & W) = XG(V) U XG(W), XG(V ? W = XG(V) n XG(W),
and if V 1is indecomposable then the projective variety XG(V)
corresponding to XG(V) is connected. Thus at the level of represen-
tation rings, if X 1is a homogeneous subset of Spec HeV(G,k), then the
linear span A(G,X) of the modules V with XG(V) ¢ X 1is an ideal in
A(G).

Generalizing a result of Quillen, Avrunin and Scott [9] have shown
how to stratify XG(V) into strata corresponding to restrictions of
V to elementary abelian p-subgroups E of G. Thus many properties
of modules are controlled by these restrictions. For example,
Chouinard's theorem states that V 1is projective if and only if V+E
is projective for all such E.

The dimension of XG(V) is an important invariant of V, called
the complexity, ch(V). It measures the rate of growth of a minimal
projective resolution of V, and the Alperin-Evens theorem states that
ch(V) is equal to the maximal complexity of Vig as E ranges over
the elementary abelian p-subgroups of G.

All the results in this area seem to depend on two basic results,
namely a theorem of Serre (2.23.3) on products of Bocksteins for
p-groups, and the Quillen-Venkov lemma (2.23.4). In order to prove and
use these results, we need to introduce the Lyndon-Hochschild-Serre
spectral sequence, and the Steenrod algebra. The former is introduced
in section 2.22 without complete proofs, while the latter is introduced
at the beginning of 2.23 with no proofs at all! This is because
complete construction of these tools would take us too far away from
the purpose of this book. However, we do give a very sketchy outline
of the construction of the Steenrod operations in characteristic two
in an exercise at the end of 2.23.

We return to the almost split sequences in sections 2.28 to 2.33,
and show how these may be fitted together to form a locally finite
graph (the Auslander-Reiten quiver). We pull off the projective

modules, since these often get in the way, and are then left with the
stable quiver. This is an example of an abstract stable representation

quiver, and the Riedtmann structure theorem (2.29.6) shows that a
connected stable representation quiver is uniquely expressible as a
quotient of the universal covering quiver of a tree, by an 'admissible'
group of automorphisms. This tree is called the tree class of the



vii

connected component of the stable quiver. Using an invariant (V)
related to the complexity of V, together with the finite generation
of cohomology, we prove Webb's theorem (2.31.2), that for modules for
a group algebra, the tree class of a connected component is either a
Dynkin diagram (finite or iﬁfinite) or a Euclidean diagram. Following
Webb, we investigate each of these possibilities in turn, and the results
are summarized in 2.32.6.

One surprising corollary of Webb's theorem is given in 2.31.5,
which states that if P 1is a non-simple projective indecomposable
kG-module, then Rad(P)/Soc(P) falls into at most four indecomposable
direct summands. In practice, this module will usually be indecompo-
sable. For the alternating group A4 over the field of two elements,
there is a projective indecomposable module P such that
Rad(P)/Soc(P) has three summands, but I know of no examples with four.

We include exercises at the end of most sections. These vary
substantially in difficulty, from routine exercises designed to
familiarize the reader with the concepts of the text, to outlines of
recent related results for which there was not enough room in the text.

We also include an appendix containing descriptions of the
representation theory of some particular groups, in order to illustrate
some of the concepts in the text and provide the reader with concrete
examples.

Finally, it is my pleasure to thank all those who made this book
possible. I would particularly like to thank Richard Parker,
Peter Landrock, Jon Carlson, Peter Webb and Walter Feit for sharing
their insights with me, Yale University for employing me during the
period in which I was writing this book, and Mel DelVecchio for her
patience in typing the manuscript.



Table of Contents

Section One: Rings and Modules

The Jacobson Radical 1
The Wedderburn-Artin Structure Theorem 2
The Krull-Schmidt Theorem 4
Cohomology of modules 6

HHHEHRBRR PR~
W NP W N

Idempotents and the Cartan Matrix 11
Blocks and Central Idempotents 13
Algebras over a Valuation Ring 15
A Little Commutative Algebra 18

Section Two: Modules for Group Algebras

2.1 Tensors and Homs; Induction and Restriction 23
2.2 Representation Rings 25
2.3 Relative Projectivity and the Trace M-_ 30
2.4 Inner Products on A(G) 34
2.5 Vertices and Sources 37
2.6 Trivial Source Modules 39
2.7 Defect Groups 45
2.8 The Brauer Homomorphism 49
2.9 Origins of Species 53
2.10 The Induction Formula 55
2.11 Brauer Species 56
2.12 Green Correspondence and the Burry-Carlson Theorem 60
2.13 Semisimplicity of A(G,Triv) 64
2.14 Structure Theorem for Vertices and Origins 67
2.15 Tensor Induction, and Yet Another Decomposition of A(G) 68
2,16 Power Maps on A(G) 72
2.17 Almost Split Sequences 79
2.18 Non-singularity of the Inner Products on A(G) 85
2.19 The Radical of dimExtg] 91
2.20 The Atom Copying Theorem 93
2.21 The Discrete Spectrum of A(G) 93
2.22 Group Cohomology and the Lyndon-Hochschild-Serre Spectral
Sequence HP(G/N,HI(N,V)) = BPYY(G,V) 99
2.23 Bockstein Operations and the Steenrod Algebra 112
2.24 Complexity 121
2.25 Varieties Associated to Modules 127
2.26 The Quillen Stratification 132



NN NN

.27
.28
.29
.30
.31
.32
.33

What varieties can occur?

Irreducible maps and the Auslander-Reiten Quiver

The Riedtmamn Structure Theorem

Dynkin and Euclidean Diagrams

The Tree Class of a Connected Component of the Stable Quiver
Weyl groups and Coxeter transformations

Galois descent on the stable quiver

Appendix
References

Index

140
145
149
154
158
164
167

173

226



Conventions and Abbreviations

All rings have an identity element, although homomorphisms need
not take identity elements to identity elements.

Maps are written on the right.

All groups are finite, and all permutation representations are on
finite sets. \

D.C.C. denotes the descending chain condition or Artinian

condition on right ideals of a ring, or on submodules of a module.
A.C.C. denotes the ascending chain condition or Noetherian

condition on right ideals of a ring, or on submodules of a module.

o marks the end of a proof.
» denotes a monomorphism, and —»>> denotes an epimorphism.
o denotes an inclusion.

» denotes the action of a map on an element.

If H and K are subgroups of a group G, them 2 will
HgK

denote a sum over a set of H - K double coset representatives g in
G.

H =G means "H 1is a subgroup of G", and H < G means "H 1is
a proper subgroup of G". N 2 G means "N is a normal subgroup of
G".

Note that the index is also an index of notation.



Section 1 Rings and Modules

1.1 The Jacobson Radical
Let A be a ring and V a A -module. The socle of V 1is the

sum of all the irreducible submodules of V, and is written Soc(V).
The radical of V 1is the intersection of all the maximal submodules
of V, and is written Rad(V). V 1is said to be completely reducible
if V = Soc{(V). The head of V 1is V/Rad(V).

1.1.1 Lemma

If V satisfies D.C.C. then V 1is completely reducible if and
only if Rad(V) = 0. In this case, V 1s a finite direct sum of
irreducible modules.

The proof is an exercise. b

J(A), the Jacobson radical of A, is defined to be the inter-
section of the annihilators of the irreducible A-modules, i.e. the

intersection of the maximal right ideals of A. Let A, denote A

as a right a-module (called the regular representation of A). Then
J(a) = Rad(AA). We say that A 1is semisimple if J(A) = 0. Note that
J(a/J(a)) 1is always zero.

1.1.2 Lemma
Any right ideal of 4 is contained in a maximal right ideal of

Proof
Use Zorn's lemma and the fact that A has an identity element. o

1.1.3 Lemma
If a e J(A) then 1-a has a right inverse in A,

Proof
1 =2a+ (1-a), and so A = J(A) + (l-a)ar . If (l-a)r # A,
choose M a maximal right ideal with (l-a)a ¢ M (1.1.2). Then
J(A) ¢ M also, so A& c M, a contradiction. o

1.1.4 Lemma (Nakayama)
If W is a finitely generated A-module and W.J(A) = W then
W= 0.

Proof
Suppose W # 0. Choose Wys vees W generating W with n
n

with

n
minimal. Since W.J(pA) = W, we can write w, o= I wia
i=1
ay € J(a). By 1.1.3, l—arl has a right inverse b in 4. Then
n-1 n-1
wn(l—an) = iElwiai, and so W, = (iil wiai).b. This contradiction

i
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proves the lemma. 0o

1.1.5 Lemma
If A 1is semisimple and satisfies D.C.C. then every A-module 1s
completely reducible.

Proof
Rad(AA) =0, so by 1.1.1, AA is completely reducible. Thus any
module 1s a quotient of a direct sum of completely reducible modules,
and 1s hence completely reducible. o

1.1.6 Theorem

If A satisfies D.C.C. then

(i) J(A) 1is nilpotent.

(i1) If V 1is finitely generated then V satisfies A.C.C. and
D.C.C. (i.e. V has a composition series).

(ii1i) A satisfies A.C.C.

Proof

(1) By D.C.C., for some n, J(&)? = J(A)°?, and 1f J)® # 0,
we may choose a minimal right ideal I wilth IJ(A)n # 0. Choose
a € I with aJ(A)n # 0. Then I = aJ(A)n by minimality of I, and
so for some x € J(A)n, a = aXx. But then a(l-x) = 0, and so a = 0
by 1.1.3.

(11) Let V, = V.J(4)'. Then V,/V,,, 1is annihilated by J(A),
and is hence completely reducible by 1.1.5. Since V 1is finitely
generated it satisfies D.C.C. and hence so does Vi/vi+1’ Thus by
1.1.1, Vi/vi+1 has a composition series, and hence so does V.

(i1i) follows by applying (ii) to AA . 0

1.2 The Wedderburn-Artin Structure Theorem

1.2.1 Lemma (Schur)

If V and W are simple A-modules, then for V Z W,
HomA(V,w) = 0, while HomA(V,V) = EndA(V) = EA(V) is a division
ring. o

An idempotent in A 1is a non-zero element e with e2 = e.

1.2.2. Lemma

(1) If V is a A-module and e 1is an idempotent in A then
V.e =~ HomA(eA,V).

(1i) epe = EndA(eA).



Proof .
(i) Define £t Ve o HomA(eA,V) by fl(ve): ea b vea and
£yt HomA(eA,V) + Ve by f2: Ak A(e). Then f; and f2 are inverse
module homomorphisms.
(ii) follows from (1). o

1.2.3 Theorem
Let V Dbe a completely reducible A-module with a composition
series. Write V = V1 ® ... @ Vr’ with each Vi a direct sum of ng
modules Uil D ... D Uin isomorphic to a simple module Ui’ and
i
Uy # Uj if 1 # j. Let 4y = EndA(Ui). Then 4; 1s a division

ring, EndA(Vi) = Matni(Ai), and EndA(V) = ? EndA(Vi) is semisimple.

Proof
By 1.2.1, 44 is a division ring. Choose once and for all

eij:Uij
xjk € 4; as the composite map

isomorphisms + Uy, Now given X ¢ EndA(Vi), we define

—— —_— —_— o~
T T T A e
ij ik

The map X = (xjk) is then an injective homomorphism

16

EndA(Vi) -+ Matni(Ai). Conversely, given (Xjk), we can construct A
as the sum of the composite endomorphisms

—_— =53 [ S
Vi_>>U1,j U > Ui U > Vi.

=171 T, o7, ik
eij Jk
Finally, End,(V) = & End, (V,) since 1f i # j, 1.2.1 implles that
Hom (V. ,V.) = 0 1A
om, (V; ,V; . D

1.2.4 Theorem (Wedderburn-Artin Structure Theorem)

Let A be a semisimple ring satisfying D.C.C. Then

r
A= & A

i=1
are uniquely determined. A has exactly r 1somorphism classes of
irreducible modules Vi with dimA (Vi) =n,. If A is simple then

A

1R

12 i

4 Matni(Ai), 4; 1s a division ring, and the A

i
~ i
A = Mat (a).
Proof
By 1.1.5, AA 1s completely reducible. By 1.2.2 with e = 1,
A = EndA(AA). The result now follows by applying 1.2.3 to A, - ®
Remarks

(i) Wedderburn has shown that every divislon ring with finitely
many elements 1s a field.
(11) If A 1s a finite dimensional algebra over a fileld k,



then each a; for A/3(4A) has k in its centre. If for each 1,

Wwe have A, = k, then k 1is called a splitting field for A
It k

1 is an extension field of k, regarding V ® k as a
k

1
T i kl -module, we have Endkl(V ﬁ kl) 3 Endk(V) % kl. Thus if k

is a Splitting field for A, every extension kl of k 1is a
splitting field for r ® kl. An algebraically closed fileld 1s a
splitting field for any algebra over k of finite dimension.
Exercises

1. Suppose A& 1s an n-dimensional semisimple commutative algebra
over €. Show that the number f(n) of subalgebras of A (containing
the identity element) satisfies f(1) = 1 and

f(n+l) = £(n) + n.f(n-1) + (5).£(n-2) + ... + n.f(1) + 1.

Find f£(7).

2. Suppose kl and k2 are finite extensions of k with kl
separable. Show that kl i k2 1s semisimple. Show that if A is a

finite dimensional semisimple algebra over k and kl is a finite

separable extension of k then A ﬁ kl is semisimple.

1.3 The Krull-Schmidt Theorem

A ring R 1s said to be a local ring if the non-units in R
form an ideal.
A A-module V is said to have the unique decomposition property

if
(1) V 1s a direct sum of a finite number of indecomposable

modules, and

m n
(i1) Whenever V= ® U, = @& V., with each U, and each Vi # 0)
i=1 +  1=1 7 .
indecomposable, then m = n and after reordering if necessary, Ui =] Vi'

A ring A 1is said to have the unique decomposition property

if every finitely generated A-module has.

1.3.1 Theorem
Suppose V 1is a finite sum of indecomposable A-modules Vi with
the property that the endomorphism ring of each Vi is a local ring.
Then V Thas the unique decomposition property.
Proof
m n
et V= o U, = @& V and work by induction on n. Assume
i= =
n>1.'Let



ay :UiCL———> v >> V)
PR A
and Bi .V1 > V >> U .
Then 1Vl = ZBjay :Vy » V,. Since EndA(Vl) is a local ring, some

Bias is a unit. Renumber so that Biay is a unit. Then Ul = Vl‘
Consider the map u = 1-8 , where

n
. < C
6: V >> Vl - Ul >V >> .? Vi > V.
a i=2
1
n n
Then Uu=V,, and (& V,)p = ® V,, so pup 1s onto. If wp= 0,
1 1 =2 1 1=2 *
n
then w = we and so W € @2Vi. But then weo = 0.
i=
Thus u 1s an automorphism of V with Ulu = Vl’ and so
n n
® Ul = V/Ul =~ V/Vl = .tl) Vi. o
i=2 i=2

1.3.2 Lemma (Fitting)
Suppose V has a composition series and f ¢ EndA(V). Then for
large enough n, V = Im(f?) @ Ker(f™).

Proof
Choose n so that ¢ vel o Vf2rl is an isomorphism. If u ¢ V,
write uf® = vf2n. Then u = vf® + (u—vfn) € Im(fn) + Ker(fn). if

uf® ¢ Im(f®) n Ker(f™) then ur<®

n-

= 0, and so ut™ = 0. @

1.3.3 Lemma
Suppose V is indecomposable and has a composition series. Then
EndA(V) is a local ring.

Proof

Let E = EndA(V), and choose I a maximal right ideal. Suppose
a £ I. Then E =2aE + I. Write 1 =ax + pu, » ¢ E, u € I. Since pu
is not an isomorphism, 1.3.2 implies that un = 0 for some n. Thus
an(lpt .. + 07 = (Q-w)(r L.+ JAH
invertible. o

=1, and so a 1is

1.3.4 Theorem (Krull-Schmidt)
Suppose A satisfles D.C.C. Then A has the unique decompo-

sition property.

Proof
Suppose V 1s a finitely generated indecomposable A-module.
Then by 1.1.6 V has a composition series, and so by 1.3.3, EndA(V)
is a local ring. The result now follows from 1.3.1. o



1.4 Cohomology of Modules

A module P is saild to be projective if given two modules V
and W and maps A: P>V and p: W=V with u epil, there is a
map v: P+ W such that

P
v
l). commutes.
W _E_> V—>0

A module I 1is injective if given two modules V and W and
maps AV +I and p: V> W with ¢ mono, there is a map
v: W= I such that

>V——1"'—>w

11’///1// commutes.
T

0

1.4.1 Lemma

The following are equilvalent:

(i) P 1is projective.

(i1) Evefy epimorphism A: V> P splits.

(i11) P is a direct summand of a free module. o

1.4.2 Lemma

(1) Suppose 0 —> w1 —_— Ul 2> V —> 0 and

0 — w2 > P2 > vV > 0 are short exact sequences, with P2

projective, and suppose ¢ factors through a projective module. Then

W, &P, U &W, (This is needed in the proof of 2.27.1).

(11) (Schanuel's lemma) Suppose 0 —> W1 —_— Pl —> V —> (0 and
g ——> W2 —_— P2 ——> V —> (0 are short exact sequences wlth Pl
and P2 projective. Then wl @ P2 ~ Pl (] w2.

Proof

(1) We construct a pullback diagram



j
Wo——
2 2
4 l J/
0 > W > Xeeomm=m b, > 0
Y
5 p- B
v
v
0 >Wl e>Ulc > V > 0

o
&
o¢

Since (1 -aBY8)o = 0, we may define
6 = apy + (1 -apvs)e L z.
Then © 1s a splitting for &6 , and so
wl L P2 >~ X = Ul ) w2.
(ii) This follows from (i). a

A map A: U >V 1s called an essential epimorphism if no proper
submodule of U 1is mapped onto V by X , and it is called an

essential monomorphism if every non-zero submodule of V has a non-

zero intersection with Im(f). A projective cover for V 1s a

projective module P together with an essential epimorphism A:P -+ V.
An injective hull for V 1is an injective module I together with an
essential monomorphism p: V - I. The following theorem contains the
necessary results about injectlive hulls and projective covers.
1.4.3. Theorem

(i) Projective covers, if they exlst, are unique up to an
isomorphism which commutes with the essential epimorphisms.

P
n
>

(11) Injective hulls always exlst, and are unique up to an
isomorphism which commutes with the essentlal monomorphisms.

//ZI
V\\§!'

(111) The following conditions on a ring A are equlvalent
(a) Every filnitely generated A-module has a projective



cover,

and (b) A/J(A) satisfies D.C.C., and any decomposition of A4/J(4)
as a direct sum of A-modules (c.f. 1.2.4) 1lifts to a decomposition of
AA.

(Note: a ring satisfying condition (b) is called semiperfect).

Proof.
(1), (ii) and (ii1) (b) = (a) can be found in Curtis and Reiner
[38] §6. We shall not need (i1i) <(a) = (b). o

Note

We shall see 1n section 1.5 that if A satlsfies D.C.C. then 4
is semiperfect. In section 1.7 we shall see that a finltely generated
algebra over a complete rank one discrete valuation ring is also
semiperfect.

We write PV for the projective cover of a module V, and IV

for its injective hull. We write @(V) = Ker(Py -~ V) and ﬁ_l(V) =
B(V) = Coker(V - IV).
Given a module V, a projective resolution of V is an
infinite exact sequence
— Prl —_— ., —> P2 B Pl —— V —> 0 with each Pi

projective.

It is clear that every module has a projective resolution, slnce
every module 1s a quotient of a free module. If W 1s another module,

we get long sequences (not necessarlly exact)

0 —> HomA(V,W) 5—1'> HOmA(Pl,W) '—q> HomA(P2,W) 5—3-‘> L

and
‘e > P, ® W > P, ® W >V oW > 0
a3 2 35 1, aq A
with 5151+l = 0 and 354991 = 0. We define
i -
ExtA(V,w) = Ker(si+l)/Im(5i)
A =
and Tori(V,w) = Ker(ai)/Im(ai+l) (1 =2 1).

The following facts are well known from homologlcal algebra
(see for example Cartan and Eilenberg 'Homological Algebra' or
S. Maclane, 'Homological Algebra'; see also section 2.22):

(1) The functors Exti and Torﬁ are independent of the choice
of projective resolutlon, in the sense that given two different
projective resolutions of V, we get natural isomorphisms between the
two functors Exti 50 defined, and likewise for Torg.

(ii) A short exact sequence 0 - Vl > V2 > V3 -+ 0 gives rise to



long exact sequences

0 — HomA(V3,W) E— HomA(V2,w) —_— HomA(Vl,W)-)

1 1 1
()ExtA(V3,W) —> ExtA(V2,W) — ExtA(Vl,W)j)

2
CéExtA(V3,w) —_—
and

— W —— 2 W —
ChiV Ve pW Vg pW—>0

(*Toré(vl,w) E— Torg(V2,W) — Torﬁ(V3,w))

e — Torg(v3,W)J.

(1i1) A short exact sequence 0 - wl - W2 - W3 + 0 glves rise to a

long exact sequence

0 —> HomA(V,Wl) e HomA(V,w2) e HomA(V,W3)—)

1 1 1
Orxey (v,4)) —> Bxey (V,W,) —> Exe}(V, 130~

2
G Ext2 (V,0y) —> -
(1v) The elements of Exti(V,w) may be 1lnterpreted as equivalence

classes of short exact sequences 0 - V - X > W - 0, two such being
equivalent if there is a map of short exact sequences

> X —= W — 0

i

0 — V—> X' —> W —=> 0 .

0 —

Note that by the five-lemma, the middle map X - X' 1is an_isomor-
phism. See also [67 ] III.5 for a similar interpretation of Exti, i> 1.

We shall study cohomology for group algebras in more detall in
section 2.22; what we have described here will suffice for our needs
untll then.

Now let A be an algebra over a fleld k. If V is a right
A-module, then V* = Homk(V,k) has a natural structure as a left
A-module, and vice-versa. If V 1is finlte dimensional as a vector
space over k, then there 1s a natural lsomorphlsm (V*)* x V., If V
1s injectlve, then V* is projective, and vice-versa, since duality
reverses all arrows.

In general, projectlve and injective modules for a ring are very
different. However, there is a special situatlion under which they are
the same. We say a flnite dimensional algebra A over a fleld k 1s
Frobenlus 1f there 1s a linear map X\ : 4 -+ k such that

(1) Ker()) contains no non-zero left or right ideal.



We say that A 1s symmetrlc 1f it satisfies (i) together with
(11) For all a, b e A, A(ab) = i(ba).

1.4.4 Proposition
Let A be a Frobenius algebra over k. Then

(1) (" =,
(1i) The following conditions on a finitely generated A-module
are equivalent.
(a) V 1s projective
(b) V dis injective
(e) V* 1s projective

*
and (ay v is injective.
Proof
N *
(i) We define a linear map Q: AA e (AA) via

xp 1y > Mxy). Then if vy e 4 , y[(xe)v] = (vy)(xe) =A(xyy) =
yl(x¥)p], so ¢ 1is a homomorphism. By the defining property of M ,
¢ 1s injective, and hence surjective.

(ii) It follows from (i) that V is projective if and only if
V* is projective, so that (a) and (c) are equivalent. W. have
already remarked that (a) = (d) and (b) e (c) hold for all finite
dimensional algebras. o

Remarks
(i) If A 1s the group algebra of a finite group (see 2.1),
then A 1s symmetric, with A Za_.g - aj. Then since
-1 g
x((zag-g)-g
clear.

) = a property (i) 1s satisfied. Property (ii) is

g}
(ii1) If A 1is Frobenius, and V has no projective direct
summands, then PV = Iﬁ(v), and so B(R(V)) V. Similarly
Q(B(V)) =V,
(1i1) See the exercise to 1.5 for a property of symmetric
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algebras not shared by all Frobenius algebras.

Exercises

1. Let A be a flnite dimensional division ring over its centre
K. Show that [A,A] = span({ab - ba|a, b e A }) 1s properly
contained in A (Hint: let Kl be a maximal subfield of A . Then
A % K, = Matn(Kl), and so [A % Kb & ? Klj g A % Kl). Deduce

that every finite dimensional semlsimple algebra over a field k is
symmetric.

2. Show that if V and W are finltely generated Z-modules,
then Tor®(V,W) = 0 for n > 1. Find Tor¥(z/mz, w/nw).
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1.5 Idempotents and the Cartan Matrix

Recall that an ldempotent in A 18 a non-zero element e with
e2 =e. If e 1s an idempotent than so 1s 1l-e. Two ldempotents e
and e, are said to be orthogonal if e,ep = eyeq = 0. An idempotent
e 1s primitive if we cannot write e = eq + €5 with eq and €5

orthogonal idempotents.
There 1s a one-one correspondence between expressions

1= e + .. + €n with the €y orthogonal idempotents, and direct
sum decompositions AA = Al e .. & An of the regular representation,
given by Ay = ejh. Under this correspondence, ey is primitive if

and only if Ay is indecomposable.

1.5.1 Theorem (Idempotent Refinement)

Let N be a nilpotent 1deal in A , and let e be an l1dempotent

in A/N. Then there 1s an idempotent f 1n A with e = F.
Proof

We define idempotents ey € A/Ni inductively as follows. Let
e; = e. For 1 > 1, let a be any element of A/Ni with image
e;; 1n A/Nl—l. Then a2 - ace Nl—l/Nl, and so (a2—a)2 = 0. Let
ey = 3a2 - 2a3. Then e. has image e in A/Ni_l, and

i i-1
ei -ey = (3a2—2a3)(3a2—2a3—l)
= -(3-2a)(1+2a)(a°-a)° = 0.

Ir N' = 0, we take f = e, o
1.5.2 Corollary

Let N be a nilpotent ideal 1n A Let 1 = e + ..+ e, with
the ey primitive orthogonal ldempotents in A/N. Then we can write
1= fl + + fn with the fi primitive orthogonal idempotents in
A and fi =ey-

Proof
] ] ]

Defilne fi Inductlively as follows. fl =1, and for i > 1, fi

is any 1ift of e + €141 + + e to an idempotent 1n the ring
D AT, Then £le'. = £l = ¢l f'. Let £, =f! - r!
fi0A Ty Then 30540 = fy4p = Tyyfy. Ret £y =0 =14
— . _ ' t
Clearly fi = ey If 3 > 1i, fJ = fi+lfjfi+l’ and so
1] 1] 1 t

fifj = (fi - fi+l)fi+lfjfi+l = 0. Similarly fjfi = 0. a

Now for the rest of section 1.5,

suppose A satilsfies D.C.C.

Then by the Wedderburn-Artin structure theorem (1.2.4), we may write

5 A
1=1

A/T(A) =

10 By = Matni(Ai)'

Let Vi be the irreducible
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A-module correspondlng to Ai, so that Vi 1s an ni~dimensional

module for Ay Then Ai = V.ll ® .. ® Vini with Vij = Vi'
Corresponding to this decomposition of A/J(A) we have a primitive
orthogonal idempotent decomposition 1 = e + ., + e By 1.5.2 we
may 1lift this to a primitive orthogonal idempotent decomposition

1= fl + ..+ fn in A, since J(A) 1s nilpotent by 1.1.6. Letting
Ei = fiA, we have AA= El D..H En. By the Krull-Schmidt theorem
(1.3.5) and 1.4.1, every projective indecomposable module is
isomorphic to one of the gy We say that the Ei are the principal

indecomposable modules for A (PIMs for short).

From this description, we see that Ei/EiJ(A) is an irreducible
module, and so Ei has a unique maximal submodule. Moreover, the
definition of a projective module ensures that any isomorphism
Ei/EiJ(A) ~ Ej/EjJ(A) lifts to a pair of maps &; - Ej and
Ej > Ei' The composlite is not nilpotent, so by Fitting's lemma (1.3.2)
i1t is an isomorphism. Thus there are as many non-isomorphic PIMs as
there are irreducilble modules. If Vi are the irreducibles, write
Pi for the corresponding PIMs. Thus we have shown that

r
AA = iil niPi
In particular, we have shown that if A satisfies D.C.C. then A 1s
semiperfect, and so every module has a projective cover (see 1.4.3),
namely the unlque projective module with 1somorphic head.

We say that two primltive idempotents e and e' 1in A
are equivalent if they lie in the same Wedderburn component of A/J(A),
or equivalently if ea and e'A are isomorphic PIMs.

i
0 otherwise

1.5.3 Lemma
A, if 1 =13
HomA(Pi,Vj)

Proof
Every homomorphism from Pi to a simple module factors through

Vi. [a)

1.5.4 Lemma

DimA HomA(Pi,V) is the multiplicity of Vi as a composition

i
factor of V.
Proof

Use 1.5.3 and induction on the composition length of V. An
exact sequence 0 - V' -V > Vj -+ 0 1induces an exact sequence
0 » HomA(Pi,V') > HomA(Pi,V) -+ HomA(Pi’Vj) - 0 . o
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The Cartan invariants of A are defined as

cij = dinhi Ho"h(Pi’Pj)

multiplicity of Vi as a composition factor

£ P,
© J

The matrix ¢ 1s called the Cartan matrix of the ring A

In general, the ma%iix 53 may be singular (e.g. A = F3S3/J(F3S3)2).
We shall see in section 2.11, however, that this never happens for
group algebras of finite groups. In fact, in 2.16.5 we shall show
that the determlnant of the Cartan matrix of a group algebra over a
field of characteristic p > 0 1is a power of p.

Finally, we shall need the following result.

1.5.5 Lemma (Rosenberg)
Suppose e 1is a primitive idempotent in a ring A satisfying
D.C.C., and e ¢ I1 + ..+ Ir wilith the Ij two-sided ideals. Then

for some j, e ¢ Ij‘

Proof
By 1.2.2, eAe EndA(eA). By 1.1.6 and 1.3.3 this is a local
ring. Each tee is an ideal in epe, and so for some J,

e el.e c I,.
€ €<y o

Exercise

Suppose A 1s a symmetric algebra. Let e be a primitive
idempotent in A and let P = eA be the corresponding PIM. Thus
V = P/Rad(P) and W = Soc(P) are simple. Use the map X to show
that We # 0. Show that there is a non-zero homomorphism from P to
W. Deduce that V = W.

Using the dual of lemma 1.5.4, show that if A 1s a symmetric
algebra and k 1s a splitting field, then the Cartan matrix for A

is symmetric.

1.6 Blocks and Central Idempotents

A central ildempotent In A 1is an idempotent in the centre of A.

A primitive central idempotent is a central idempotent not expressible

as the sum of two orthogonal central i1dempotents. There 1s a one-one
correspondence between expressions 1 = eq + ..+ eg with ey
orthogonal central idempotents and direct sum decomposltions
A=B & .. d BS of A as two-sided ideals, gilven by Bi = Ae

1
Now suppose A satisfles D.C.C. Then we can wrlte

i*



A = Bl D .. B BS with the Bi indecomposable as two-sided ideals.

1.6.1 Lemma
This decomposition is unique; 1l.e. if

] 1
B.®.. 9 BS = Bl d .. B Bt then s =t and for some permutation
T

1

o of ({1, .. , s} , Bi = Bo(i)
Proof
1 ] 1

Write 1 = e + ..+ eg = € L ey Then eiej is also a

central idempotent (or zero) for each 1, j. Thus
* 1 Al ]

€y = €3¢ + ..+ €485 SO that for a unlque Jj, ey = eiej = ej. o

The indecomposable two-sided ideals in thils decomposition are
called the blocks of A .

Suppose V 1s indecomposable. Then V = Vel ® .. D VeS shows
that for some 1, Vei =V, and Vej =0 for j # 1. We then say
that V belongs to the block Bi' Thus the simples and PIMs are
classifled 1nto blocks. Clearly if a module is in a certain block,
then so are all its composition factors. Thus if Vi and Vj are
in different blocks, then cij = 0.

The central primitive idempotents are thus also called the

block idempotents.

If A 1is a finlte dimensional algebra over a splitting field k,
the algebra homomorphisms w: Z(A) + k are called the central

homomorphisms.

1.6.2 Proposition
(1) Let Z(A) be the centre of A . Then

z(a) = Z(a)e; & .. & Z(a)eg

1s the block decomposition of Z(a). Each Z(A)ei is a local ring,

and we have an lnclusion map
Z(A)ei/J(Z(A)ei)C» EndA(V)

for each irreduclble A-module V in Bi'
(ii) Suppose A 1s a finlte dimenslonal algebra over a
splitting field k. Then k 1s also a splitting field for Z(a),

and in particular
Z(A)ei/J(Z(A)ei) >~ k.

There 1s a one-one correspondence between central homomorphisms @y

and blocks By, with the property that mi(ej) = 5ij.

Proof
(i) A decomposition of 1 as a sum of central idempotents in A
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and in Z{a) are the same thing, so that
Z(a) = Z(A)el@ .. @ Z(A)eS

is the block decomposition of Z(a). By 1.2.2(il) and 1.3.3, since
Z{r) 1is commutative, we have that Z(A)ei Y EndZ(A)(Z(A)ei) is a
local ring.

If V 1s an irreducible A-module in Bi’ then Z(A)ei acts
non-trivially on V as endomorphisms, since e; acts as the identity
element. Thus we have a non-trivial map

z(A)ei - EndA (V).

Since Z(A)ei is a local ring and EndA(V) is a division ring,
thls induces an injection

Z(a)ey/3(z(a)ey) e End, (V).
(ii) If k is a splitting field for A, then we have maps
ker Z(a)e;/J(z(a)e;) e End, (V) = k

whose composite 1s the identity. Thus Z(A)/J(Z(a)) 1is a direct sum
of s copies of k, and the central homomorphisms @y are simply

th j i aps. H ) = 8.4,
e 8 projection map ence mi(eJ) 51J o

Exercise.
Show that every commutative algebra satisfying D.C.C. is a direct
sum of local rings.

1.7 Algebras over a Valuation Ring

Let R be a complete rank one dlscrete valuatlon ring in
characteristic zero (e.g. a p-adic completion of an algebralc number
ring) and let (r) Dbe its maximal ideal. Let ﬁ denote the fileld of
fractions of R, and let R = R/(n) Dbe a field of characteristic
p # 0. We then say that (ﬁ,R,ﬁ) is a p~-modular system. Let A be
an algebra ov?r R, which as an R-module is free and of finite rank.

et A=A ®R and A =4 ® R =4a/A(r), and suppose A 1is semi-
R R

simple . From now on, when we talk of A-modules, we shall mean

finitely generated R-free A-modules. Similarly, we only consider

finitely generated A-modules and A-modules,which are respectively

called ordinary and modular representations. If V 1s a A-module,

we let V=V ®R as a A-module, and V=V @R =7V/V(r) as a
R - R _
A-module. If R is a splitting field for A and R 1is a splitting

field for K, we say that (R,R,R) is a splitting p-modular system




for A

1.7.1 Lemma
If W 1s a A-module, there is a A-module X with X = W.

Proof
Choose a basis Wis - 5 W for W over ﬁ and let
X = LAY .ot W A X 1s torsion free, and hence free. ghoose
a free basis X{s =+ xm. Then the Xy spag W and are R
independent, and hence m=n, and W = X g R. o

Such a A-module X 1s called an R-form of W. In general,
R-forms are not unique.

1.7.2 Theorem (Idempotent Refinement)

(i) Let e be an i1dempotent in 4. Then there is an idempotent
f in A with e = T

(i1) Let 1 = eq + .. + e, with the ey primitive orthogonal
i1dempotents in A. Then we can write 1 = fl + ..+ fn with the fi
primitive orthogonal idempotents in A, and fi = ej;.

(1i1) Let 1 = e + ..+ eg with the ey primitive central
1dempotents 1n A. Then we can write 1 = fl + .. 0+ fs with the

fi primitive central idempotents in A, and fi = ey

Proof
(1) We may apply 1.5.1 to A/A(nn) to obtaln elements fi e A
whose image in A/A(ni) 1s a 1lift of fi—l to an idempotent. Then
the ¢ form a Cauchy sequence, and we can take f as thelr limit.

1
(i1) Apply the same argument to 1.5.2.
(iii) Apply (11) to the centre of A . o

Thus the decomposition of KK as a sum of PIMs 1ifts to a

decomposition of AA' So given an 1rreducible A-module Vj, 1t has

a projectlve cover PJ = Qj for some projective A-module Qj' We

define the decomposition numbers dij as follows. Let wl, A Wt
be the 1rreduclble A-modules, Xl’ e s Xt be R-forms of them, and
Vi, .. , V, be the irreducible A-modules. We define

IS

by = dimgEnd~(W,)

hy dlmﬁEndK(Vi)

dij/pi = multipliclty of wi as a summand of Qj'
Remark
Note that when (R,R,R) 1s a splitting p-modular system, all

the By and ;i are one.
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Then d = dimﬁHomX(Qj,wi) (see exercise 3)

ij

rankRHomA(Qj,Xi) since HomA(Qj,Xi) is an R-form for
HOmX(Qj,Wi)
= dlmﬁHomE(Pj’xi) since Qj is projective, and so

dij/ﬁﬁ = multiplicity of Vj as a composition factor of fi.

In particular

c,, = 2 ad

ij k kidkj/“k“i

and if (ﬁ,R,ﬁ) is a splitting system then the Cartan matrix is
symmetric.

Note carefully what the above is saying in case (ﬁ,R,ﬁ) is
a splitting system. It is saying that the decomposition matrix (dij)
may be read two different ways up. The columns give the ordinary
composition factors of a projective indecomposable (tensored with ﬁ),
and the rows give the modular composition factors of the reduction
modulo (r) of an R-form of the ordinary irreducible. Exercise 3
shows that the decomposition numbers are well-defined, and so in
particular the modular composition factors of an ordinary irreducible
do not depend upon the R-form chosen.

By 1.7.2(iii), there is a one-one correspondence between blocks
of A and blocks of A, having the property that if V is an
indecomposable A-module, then all summands of V are in the block
corresponding to V. We shall identify corresponding blocks, so that
we regard all indecomposable K, A and A-modules as falling into
blocks of A. It 1s clear that if wi is i1n a different block from
Vj then diJ = 0.

If (ﬁ,R,ﬁ) is a splitting p-modular system for A , then given
an irreducible K—module wi with cgntral homomorphism mi:Z(X) -> ﬁ,
mi(Z(A)) c R (since any subring of R which is finitely generated as
an R-module is contained in R), and so we get a central homomorphism
;i: Z(A) - R. This central homomorphism determines the block to
which Wi belongs.

Exercises
1. (1) Let V be a A-module and f e End, (V). Write In(f”) =
A Im(f?) and Ker(f") = {x e V:V¥n=03mz0 s.t. xft™ ¢ V.J(A)"}.
n=1 .
Using Fitting's lemma (1.3.2) show that V = Im(f") @& Ker(f").
(ii) Modify the argument of 1.3.3 to show that if V 1is an
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indecomposable A-module then EndA(V) is a local ring.
(1ii) Apply 1.3.1 to deduce that A has the unique decomposition
property.
2. Check that lemma 1.5.5 holds for primitive idempotents in A
3. If P is a PIM for A, show that any two lifts Q and Q,
of P to a A-module are isomorphic (Hint: use exercise 1).
Deduce that the decomposition numbers are well defined.

1.8 A Little Commutative Algebra

We shall occasionally need a little commutative algebra, and so I
have collected here, for easy reference, all the results that will be
used.

The following 1s a version of the 'going—up' theorem, and will
be needed 1in section 2.9.

1.8.1 Proposition

Suppose A 1is a commutative algebra over an algebraically closed
field k, and B 1is integral over A. If X: A > k 1is an algebra
homomorphism, then there exists an algebra homomorphism wp: B > k
such that the restriction of u to A 1is equal to X ( p 1is not

necessarily unique).

Proof
We extend A a bit at a time. Choose b e B\A, and let the
minimal equation of b be p™ o+ an_lbm—l + ..+ a, = 0, a; e A.
Since k 1s algebraically closed, the equation 7+ (an_IX)xn—l+
+ (a,2) = 0 has a solution x = ¢ in k. We may then send
<A,b> to k Dby sending b to ¥ . By Zorn's lemma, we may continue
until we have a homomorphism p extending A o

When we come to study Poincaré series in sections 2.22 and 2.25
(see the paragraph before 2.25.17), we shall need the following
proposition, whose proof I have lifted from Atiyah and Macdonald,

1 1
Commutative Algebra .

1.8.2 Proposition

Suppose A 1s a commutative graded Noetherian ring over a field
k, with each As finite dimensional over k, and M 1is a finitely
generated grgded A-module. Then the Poincare series,

S .
P(M,t) = 2 tldimk(Mi) is of the form p(t)/ =« (1-t 9), where
i 5=1

p(t) is a polynomial with integer coefficients and ky, .. , kg

are the degrees of a set of homogeneous generators of A over AO.



Proof
Suppose A 1s generated over Ao by homogeneous elements

X s X of degrees kl, ..o K and work by induction on s.

l b s S’
If s = 0, then dim(Mn) = 0 for all large n, and so P(M,t) is a
polynomial with integer coefficlents.

Now suppose s > 0. Multiplication by Xy gives an exact

sequence

0 Kn Mn > Mn+k n+k
s s

> 0,

where K and L are the kernel and cokernel of multiplication by
and are hence finitely generated graded Ao[xl, ces xs_l]-modules.
Taking Polncaré series, we obtailn

k k
(1-t ®)P(M,t) = P(L,t) - t SP(K,t) + g(t)

where g(t) is a polynomial with integer coefficients. The result
now follows from the inductive hypothesis. n

Remark

This result also holds, without change in the proof, if A 1s
‘graded commutative', in the sense that for homogeneous elements Xx
and y, We have

Xy = (_1)deg(x)deg(y) yx.

This will be the form in which we shall use the proposition.

Suppose A 1is a commutative graded Noetherian ring and M 1is
finitely generated graded A-module. Then we write Y(M) for the
degree of the pole of P(M,t) at t = 1. The following proposition
relates y(M) to the rate of growth of the coefficients dim(Mi)
of P(M,t). This will be used in section 2.31.

1.8.3 Proposition s Kk
Let f£(t) be a rational functlon of the form p(t)/ w(l -t 9)
Jj=1

= 3 aitl, where the a; are non-negative integers. Let ¢ be the
i=0

order of the pole of f(t) at t = 1. Then

(i) There is a positive number X such that for all large enough
a, = ch—l , but there is no positive number ¢ such that

a, = unc—2 for all large enough n.

(ii) The value of the analytic function ({Tki)-f(t)(l-t)c at

t =1 1is a positive integer.

S’

a

n,
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Proof

The hypotheses and conclusion remain unaltered 1f we replace f(t)
k,-1
by f£(t)(1+t+ ..+t J ), and so without loss of generality we may
assume that each k 1s one. We may thus assume that
£(t) = p(t)/(1-t)%, where p(t) = amtm + .. +a_ satisfiles p(1) 40,
le. apt .. +ta, # 0. Thus

n+c-1 nt+c~2 n+c-m+1
= +
an % c-1 % c-1 MR %m c-1

1s a polynomial in n of degree c¢~1, thus proving (i). If p(l)
were negative, then for large n, a, would also be negative, and so
(11) is proved. o

Finally, we shall need 1.8.6 in the proof of 2.24.4(x1).

1.8.4 Lemma

Let A be a commutative graded ring, I a homogeneous ideal,
and P(l) s ee s P(r) homogeneous prime ideals. If I ¥ P(i) for
each 1 <1 < r, then there 1s a homogeneous element in I which

1s not 1in any of the P(i). '

Proof
We shall proceed by inductlion on r. The case r =1 1s clear.
Suppose first that r = 2. Suppose every homogeneous element of I
is in P(l) U P(2). Choose a homogeneous element x of degree J in

1w ana y of degree k in I\P®). Then x ¢ P® ana
y e P l), and so xk + yj 1s a homogeneous element of I which is
not in P(l) or P(2).

Now suppose r > 2. If P(i) c P(r) for some 1 < r, we may
delete P(i) and the result follows by 1lnductlon, so we may assume
p(1) 4 P(r) for 1 < r. Hence IP(l)..P(r—l) 4 P(r), so by the
result for r = 1, there 1s a homogeneous element x of degree J 1in
IP(l)..P(r_IJ \EJP). By the 1nductive hypothesls, there 1s a homo-
geneous element y of degree k 1n I\(P(l) P(r_l)).' Suppose
every homogeneous element of I 1s in P(l) u..u P(r). Then

Y e P(r), and so xk + yJ is a homogeneous element which 1s in I
but not 1n any of the P(i). o
Notatlon

If M 1s a graded module for a graded ring A, we write M(r)
t
for the 'twisted module with M(r)i = M1+r’ and the same A-action.

1.8.5 Lemma
Let A be a commutative graded Noetherlan ring and M a
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finitely generated graded A-module. Then M has a filtration
m=u® o =15 5 y(0)

3

with M(i)/M(i_l) E(A/P(i))(ri) and P(i) (not necessarily distinct)

homogeneous prime ideals.

‘Proof
Let le) be a maximal element of the set of annihilators of non-
zero homogeneous elements x &€ M. Then P(l) 1s a homogeneous ideal.
If a and b are homogeneous, ab & P(l), and a £ P(l), then

xa # 0 and xab = 0. Since P(l) = Ann(x) £ Ann(xa), maximality of
P impites that (%) p(1)
prime. If deg(x) = ris then the map a% xa 1s an injection of

(A/P(l))(rl) into M. Let its image be M(l). Proceeding in the
(1)

= Ann(xa), and so Db ¢ P(l). Thus is

same way for M/M , We obtain an injection of (A/P(Z))(rz) into
m/m(L)

obtain an ascending chain of submodules

Let M(Z)/M(l) be its image. Continuing in this way, we
JRNN ) IR B R G- I

Since M satisfiles A.C.C., for some t we have M(t) =M. O

1.8.6 Proposition

Let A be a commutative graded Noetherian ring, and M a
finitely generated graded A-module. Then there is a homogeneous
element x of positive degree J in A such that for all n
sufficiently large, multiplication by x 1induces an injective map
Mn -+ Mn+j'

Proof

By 1.8.5, M has a filtpation M = M(®) o M(E=1) 5 5 y(0) _ ¢,
with M(i)/M(i_l) o (A/P(i))(ri) and P(i) homogeneous prime ideals.
Denote by I the ideal of A generated by the elements of positive
degree. By 1.8.4, we may choose an element x of degree J which
lies in I, but does not lie in any of those P(i) not containing I.
For n > max(r;), suppose u e M _. Suppose u lies in M(i) but

. (1-1)* n (1) ;(1-1)
not in M /M
= (A/P(i))(ri), and since n > ry, this implies that p(1) Z 1,
and so ux # 0. Hence ux # 0, and so multiplication by x induces

Then u has non-zero image u in M

s . . M
an injection b Mn o

+j°
1.8.7 Proposition

Let A be a commutative graded Noetherian ring with Ao = k,
and M a finitely generated graded A-module. Then +y(M) is equal to
the Krull dimension of A/ann(M), i.e. the maximal length n of a

chain of homogeneous prime ideals



22

A > P(O) 5 p(1) 5 .o P(n) > ann(M).

(geometrically, this is the dimension of Spec(A/ann(M)) as a variety;
namely one more than the dimension of Proj(A/ann(M))).

Proof

By 1.8.5, we may assume that M = A/P with P prime, and
without loss of generality P = 0.

We first show that dim(A) = yv(A), by induction on Y(A). If
Y(A) = 0, then P(A,t) is a polynomial, and so A is finite
dimensional over k. Thus all elements of positive degree are nil-
potent, and hence form the only prime ideal (which 1is hence zero).
Now suppose Y(A) > 0, and suppose A > P(O> > ... D P(n) =0 is a
chain of prime ideals. Let x be a homogeneous element of degree d
in P(n_l), and let (x) be the principal ideal of 'A generated by
X. Then by the inductive hypothesis, n-1 < Y(A/(x)). But x is
not a zero divisor, and so the exact sequence

0 > A > A > A/ (x) > 0 shows that

P(A/(x),t) = (1-t3)P(A,t). Thus Y(A/(x)) = v(a) - 1.
Conversely, we now show that y(4) = dim(A). This time we

proceed by induction on dim(A), which we may since we now know that
it is finite. If dim(A) = 0, the only prime ideal is the one
consisting of the elements of positive degree. But zero is a prime
ideal, and so A 1is one dimensional, and Y(A) = 0. Now suppose
dim(A) > 0. Let x be a non-zero homogeneous element of positive
degree. As before, we have Y(A/(x)) = Y(A) - 1. By the inductive
hypothesis, there 1s a chain A > P(O> 5> ,. > P(n_l) > A/ (x),

where n = v(A). Thus A > pl0) 5 5 p-1) 5 p) _ g 4o 4

chain of length n in A, and so dim(A) =z n. n
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Section 2. Modules for Group Algebras

Throughout section 2, G will denote a finite group, (ﬁ,R,ﬁ)
will be a p-modular system (see section 1.7), k will be an arbitrary
field of characteristic p, and T will be an arbitrary commutative
ring with the property that T'G has the unique decompositlion property
(see section 1.3); e.g. T & {ﬁ,R,ﬁ}.

2.1 Tensors and Homs; Induction and Restrictlon

We define the group algebra I'G to be the free TI'-module on the
elements of G, with multiplication defined as the linear extension
of the multiplication in G.

Maschke's theorem [51, p. 91] shows that ﬁG 1s semisimple,
and so the theory of 1.7 gives us decomposition numbers and Cartan
invariants, relating the projective indecomposables, the ordinary
(i.e. characteristic 0) irreducibles and the modular (i1.e.
characteristic p) irreducibles.

Note that kG 1is a symmetrlc algebra (see remark after 1.4.4).
Thus projective modules are the same thing as injective modules, and
the unique l1rreducible submodule of a projective indecomposable 1s
iscmorphic to its unique irreducible quotient (l.4.4 and the exercise
to 1.5).

Recall our convention (see 1.7) that all T'G-modules are
finitely generated and T-free. If V and W are TI'G-modules, we
define TG-module structures on V ? W and Homr(V,w) in the usual

way:
(v ® w)g = vg ® wg
vig) = ((ve e

(veVy, we W, ge G, X ¢ Homr(V,w)).

*®
We let T Dbe the trivial TI'G-module, and define V = Homr(V,F).
The following facts are elementary.

2.1.1 Lemma

There are natural TI'G-module isomorphisms
(1) VaWasWeV
(ii) Vv ® (wleawz)gV@wl@V@w
(111) (U V) e W= U ® (VW)
(1v) V' ® W = Hom (V,W)

(ihis is also an EndFG(V) - Ener(w) bimodule isomorphism)
(v) (V) =V. a

2

If H is a subgroup of G, and V 1is a TIG-module, we write

David J. Benson: Modular Representation Theory, Lect. Notes Math. 1081, 23-172 (2006)
DOIT 10.1007/b15289 2 © Springer-Verlag Berlin Heidelberg 2006
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V+H for the restriction of V as a TH-module. If W is a

T'H-module, we wrilte W+G for the induced module W ® TG. The

TH
following lemmas contain the elementary facts on restriction and

induction.

2.1.2 Lemma

Let V, Vl and V2 be TG-modules and W, wl and W2 be
I'H-modules. There are natural isomorphisms

(1) (V1 ® V2)+H = Viby @ V2+H

Vb ® Vot
. ¢ . .G a
(111) (wy @ w48 = W 4% @ wyt

(iv) V ® Wit o (Ve » w)+%

(11) (v @ V2)+H =

(v) (HomF(V+H,w))+G o HomF(V,W+G)

10

(vi) (Homr(w,V+H))+G = Hom, (W+%,V). o

We write (V,w)G for HomFG(V,W) and WG for HomFG(F,w),

the set of fixed points of G on W.

2.1.3 Lemma (Frobenius Reciprocity)
There are natural isomorphisms
(1) FrH’G:(V+H,w)H = (v,ws)C
given by v.Fry G(a) = Z(vgzla) ® gy (here, the gy run over

3

a set of right coset representatives of H 1in G, and the
resulting map is independent of choice of coset representa-
tives)

. ' . H G G

(i1) FrH,G : (w,V+H) = (W4 ,V)

given by (w ® g)Frﬁ,G(B) = (WwBlg. o

Note that this may be interpreted as saying that induction is
both left and right adjoint to restriction.

2.1.4 Lemma (Mackey Decomposition)
Suppose H and K are subgroups of G, V 1s a TH-module and

W 1s a TK-module.

(i) V+G+K ~ o v +K. In this expression, g runs over a

HgK uenk
set of H-K double coset representatives in G, and vE€  denotes
the HB-module conjugate to V by g.
G
(11) e wi® = 0 (v& _ zwe . )+Y . @
HgK w8k HEnk
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2.1.5 Lemma
If Vl and V2 are TG-modules and Vl 1s projective, then so
is Vl ? V2.
Proof
Use 1.4.1 (411). @

2.1.6 Lemma
NP G * G
1) ((v,w)' = (r, Homr(V,W)) =~ (T, V ® W)

IR

(Homr(w,V),F)G =~ (Va® w*, r)G
(11) (v e v,m% ~ (u,v" s W%, o

Exercises

1. Let G be a p-group and k a fleld of characteristic p. Let V
be a kG-module. Show that G fixes polntwise some nontrivial subspace
of V. (Hint: filrst do the case where G 1s abellan, and then use
the fact that every proper subgroup of G 1is properly contained in
its normalizer). Deduce that there is only one irreducible kG-module,
and that the regular representation of the group algebra is indecom-
posable. What do the decomposition matrix and the Cartan matrix look
like?

2. Let G be 83, the group of all permutations of three objects,
and R Dbe the ring of 2-adic integers. Write down the character
table for ﬁG. Find R-forms for each of the irreducible §G-modules
(ecE. 1.7.1). Examine thelr reductions modulo (2). What are the
2-modular irreducible representations (i.e. the i1rreducible
RG-modules)? Write down the decomposition matrix and Cartan matrix.
Deduce that RG 1s isomorphic to the direct sum of Mat2(ﬁ) and RH,
where H 1is a cycllic group of order 2.

2.2 Representation Rings

Since I'G has the unique decomposition property (see section
2.1), we may define a(G) = aF(G) to be the free abellan group on
the set of indecomposable TG-modules, with multiplication defined on
the generators by the tensor product, and then extended bilinearly to
a(G) (see 2.1.1). We then let A(G) = AF(G) = ar(G) ? €. A(G) 1is

called the representation ring or Green ring (after J.A. Green) of TG.
It 1s a commutative and associative algebra over €, and the identity
element 1s the trivial TG-module T', which we henceforth write as 1.

As we shall see later, the ring A(G) 1is in general infinite dimen-
sional, and for T ¢ {R,R} it is finite dimensional if and only if
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the Sylow p-subgroups of G (p = char(R)) are cyclic. If H 1is a
subgroup of G, we define AO(G,H) to be the linear span in A(G)
of the elements of the form X - X' - X", where 0 -+ X'+ X > X"> 0
is a short exact sequence which splits on restriction to H (an
H-splilt sequence). Then AO(G,H) 1s an ideal of A(G), and
A(G)/AO(G,l) 1s the Grothendieck ring of ra.

We shall be interested 1n studylng the representation theory of
G via the study of the structure of a(G) and A(G). We want to
look at various subrings and ideals 1n these rings, and see how they

reflect the structure of the group. Each subring or ideal which we
define will have an integral version denoted by a small letter a(-),
a p-local version af(-) % 7(%) = ;(—), and a complex version
a(-) ® ¢ = A(-).

z

The first question we may wish to ask is, how are the elements
of G reflected in the structure of A(G)? Over a splitting field of
characteristic zero, the answer to this question is easy; the columns
of the ordinary character table are in one-one correspondence with the
conjugacy classes of elements of G. Over a field of characteristic
P, the answer 1s a little more difficult. Brauer discovered that
there were certaln algebra homomorphisms (see section 2.11), from
A(G) to € which correspond to the conjugacy classes of p'-elements
of G. This motivates the following definition.

If A 1is a subalgebra or ideal of A(G), a species of A 1is an
algebra homomorphism A - ¢. If s 1s a specles and x & A, we
write (s,x) for the value of s on x.

2.2.1 Lemma
Any set of distinct species of A 1is linearly independent.

Proof
r
Suppose ) ay8; = 0 1is a linear relation among the specles of
i=1
A with r minimal. Choose y e A such that (s;,y) # (52,y). Then
r r
0 = iil ai(si,x.y) = iil ai(si,y)(si,x) and so
r
3 a,((sy,y) - (s,,y))s, = 0. This contradicts the minimality of
q=p 1 1 1 1
r. o

If A' is a finite dimensional semisimple subalgebra of A with

speciles 815 +¢ Shs lemma 2.2.1 tells us that we may find elements

€95 «+ 5 €, such that (si,ej) = 513' Then every species has the same
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i
primitive orthogonal idempotents. This gives a direct sum decompo-

2
value on ei as on ei, and zero on eiej, and so the e. are

sition
r
A = @ Ae, .
i=1 1
Thus every species of A 1is a species of some Aei and is zero on

the Aey, J # 1.

If H 1s a subgroup of G, we get a ring homomorphism
TG g A(G) - A(H) Dby restriction of representations, and a linear
3

map (which is not a ring homomorphism in general) i A(H) = A(G)

H,G
given by induction of representations.

2.2.2 Theorem
If H is a subgroup of G, then

(i) A(G) = Im(iH,G) B Ker(rG’H)
as a direct sum of ideals.
(ii) A(H) = Im(rG’H) ) Ker(lH,G)
as a direct sum of vector spaces.
Proof

(i) It follows from 2.1.2 that Im(iH G) and Ker(rG H) are
3 3
ideals. We proceed by induction on |H|. If |H| = 1, then
codim(Ker(rG,l)) = dim(Im(il,G)) = 1. Since il,G(l) £ Ker(rG,l)
the result follows. So suppose |H|>1, and that for any K < H,

A(G) = Im(iK G) + Ker(r Then A(G) = 32 Im(iK G) + N Ker(r
2 K<H ? K<H

and so Im(r ) =r (5 Im(i ) + N Ker (r ). Let
G,H GH oy K,G Ke<H Im(rG,H) H,X

G,k

1 =a+b in this decomposition. Then since b = l-a 1s invariant
unger NG(H), we have, by the Mackey decomposition theorem (2.1.4),
b4 4y = |NG(H):H|.b, and so b ¢ rG,H(Im(iH,G))' Hence
Im(rG’H) = PG,H(Im(iH,G))' Now if x ¢ A(G), choose vy ¢ Im(iH,G)
with x4y = y+y. Then x =y + (x-y) ¢ Im(lH’G) + Ker(rG’H).

Now write 1 = a' + b' in this decomposition. If

3 = 1 t o=

X € Im(lH’G) n Ker(rG’H), then x xa' + xb 0.

(11) Write A = Im(rG’H) and A, = Ker(iH,G). We show by
induction on |K|, for subgroups X =< H, that if M is a TK-module,
then MfH e Ayt A2. By the Mackey theorem,

Mm% = 3 MBy 4

H  yen  k%nH

H

6K
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Ir KB < H, then M4 o m o .

K8nH 2
H

Al + A2

o™

1r K& § H, then M% +
kEny

Since M+G+H [3 Al, some positive multiple of M+H 1s in Al + A

by the inductive hypothesis.

2,
and hence so 1is M+H.
Now suppose X ¢ Al n A2, with x = u+H. By (1), we may assume

that u e Im(iH,G)' Let e+G be the idempotent generator of Im(iH,GL
Then u = u.e$G = (u+H.e)+G = (x.e)+G. Write e = v+H + W with
V+H € Al and W g A2. Then

u = (x.v+H)+G + (x.w)+G = x+G.v + u.w+G = 0. a

2.2.3 Corollary
Let H = G and let Vl and V2 be TH-modules, and wl and

w2 be TG-modules.

(1) 1 v %, = va% then v 1% = v 4%,
(11) 10 Wpet® =2 W 0% then W vy = Wby
Proof
(1) v % - va® o, In(iy o) N Ker(rg ) = 0 by 2.2.2(1).

o™

(11) wl+H - w2+H Im(rG,H) n Ker(iH’G) =0 by 2.2.2(ii). a
Exerclses

1. Let G be cyclic of order pn, and k a field of characteristic
p. Show that there are pn 1somorphism classes of indecomposable

kG-modules V ., V n with dim(Vi) = i, and

P
dimkHomkG(Vi’Vj) = min(i,j). If x = Z‘.aiVi and y = ZbiVi, define

l’

(x,y) = zaibjdimkHomkG(Vi’Vj)‘ For x & (a(G) ® R)\{0}, show that

(x,x) > 0. Deduce that a(G) ® R is semisimple, and hence that
2

A(G) 1is semisimple. (See also exercise 3 of 2.18).
2. Now let G be cyclic of order p. Then

R

Vy 3 Vi

5 v eV if 1 #p

i+1 i-1

Vp & Vp if 1 =p

Find the species of A(G).

3. Let G be S3, the symmetric group on 3 letters, and let k
be a field of characteristic 3. What are the simple kG-modules?
What are the indecomposable kG-modules? Draw up a table of tensor
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products of indecomposable modules, and find all species of A(G).
Display the answer in the form of a 'representatlon table', with rows
Indexed by the 1ndecomposable modules and columns indexed by the
specles. Deduce that A(G) 1s semlsimple. For each subgroup H of
G, identify Im(iH,G) and Ker(r
minimal subgroups H with Ker(r

G,H)' For each species s, find the
G,H) < Ker(s). Show that there are
numbers Xi e T correspondlng to the species Sy wilth the property
that for any representatlons V and W, we have

#
dimkHomkG(V,W) = i (si,V)(si,W )/xi.

For each 1ndecomposable module Vj’ find an element Hj ¢ A(G) with

#
i (si,\f‘j)(si,Hk)/k-l = 64y

Show that each HJ 1s of the form X - X' - X", for some short exact
sequence 0 -+ X' + X + X" + 0 of kG-modules.

4. Let kl be an algebralc extenslon of k. Show that the natural
map Ak(G) - Akl(G) given by Ve V ﬁ ky 1s an injection. (This is

a special case of the Noether-Deuring theorem, see for example Curtis
and Reiner(38,p.139).We shall give an unusual proof of this theorem
in section 2.18).
5. Let G be a finite group. Define D(G) to be the Burnside Ring
of G, namely the free abelian group on the set of transitive
permutation representations, with multiplication defined by forming
the Cartesian product and decomposing into orbits. Let
B(G) = b(G) » €.

Z

(i) PFor each conjugacy class of subgroup H of G, find a
species Syt B(G) - ¢ (Hint: 1look at fixed points). Deduce that
B(G) 1is semisimple and that every species is of the form 5y for
some H = G.

(ii) Show that for every H, SH(b(G)) lies in Z.

(i1i) Show that n s, : b(G) » I Z (the products are taken
(my o (H)

over conjugacy classes of subgroups H) is an injection whose image
is a subgroup of index [N [NG(H):H|
(H)

(iv) Show that the primitive idempotents in b(G) are in one-
one correspondence wilth the perfect subgroups of G. In particular
G 1is solvable if and only if 1 1is the only idempotent in b(G).
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2.3 Relative Projectivity and the Trace Map

Let H Dbe a subgroup of G. Let {gi: i ¢ I} denote a set of
right coset representatives of H 4in G. Suppose U and V are
T'G-modules. Then we define the trace map

T w,mi s w,n%  via

H,G'

u.Try o(e) = 2 ((ug;l)¢)gi
> ie I

It is clear that the map TrH,G is 1ndepengent of the cgoice

of coset representatives. If we consider (U,V) and (U,V) as

EndFG(U) - EndFG(V> bimodules, then TPH,G is a bimodule homomorphism

(see 2.3.1(1) & (11)). We write (U,V)g for the image of TrH a

and (U,V)H’G for the cokernel. If H 1is a collection of subéroups,

then we write (U,V)i for the sum of the images of Tr s, He #

and_ (UéV)H’G for (U,V)G/(U,V)i . We also write V3,

v 4, v ana V% ror 0,0, 0, v®C (08 ana @,v)*l

respectively.

H,G

2.3.1 Lemma
(1) It as (UMY ana pe (Vo) then
TrH,G(a)B = TrH,G(aB).
(11) If a e U,V ana B e (V,w)F then
aTrH’G(B) = TPH,G(GB)'
(iii) In particular (U,U)ﬁ is an ideal in EndFG(U).
(iv) If U and W are TIG-modules and V 1is a TH-module,
then for a & (U,V)T and B ¢ (v,

FrH,G(a)Fré’G(B) = TrH’G(aB).

(v) If L < H < G, then TrH,G(TrL,H(a)) = TrL’G(a).
(vi) If H and K are two subgroups of G, then for

a € Hom.,(U,V), Tr (a) = Z Tr (ag).
PHYZ2 772 7TH,G HgK  HBNK,K

(vii) If a ¢ EndFH(U) and B e EndFK(U), then

TrH,G(a)TrK,G(B) = I T (agB) .

r
Hgk  HEB0NK,G
Proof
(1) - (v) are clear from the definition.
(vi) For each double coset HgK, let A(g) Dbe a set of right

coset representatives of B8 N K in K. Then U {gk: k ¢ A(g)}
HgK

is a set of right coset representatives of H in G.
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(vii) TrH,G(a)TrK,G(B) = TPK,G(TrH,G(a)B) by (i1)

=Trp o( 2 Tr (ag)B) by (vi)
G" Hgx  ufnk,K

= Tr ( z Tr (agf)) by (1)
K:6° gex  uB0K,K

: Tr (agg) by (v). o
Hgk HnX,G

A module V 1s sald to be H-projective or projective relative to

H 1if whenever we have a map X: V » X, and a surjection p: W= X
such that as T'H-modules there 1s a map v: V+ W and A=vp, then
there is also a TG-module homomorphism v' with X = v'p

0—> X'—> W

2.3.2 Proposition (D. G. Higman's lemma)

Let V be a TI'G-module and H a subgroup of G. The
following are equivalent.

(1) V 1is H-projective.

(11) Vv 1is a summand of V+H+

(1i1) V 1is a summand of U+G for some TH-module U.

(iv) lV € Im(TrH’G: EndrH(V) + Ener(V)).

G

Proof
(1) = (11): The defining condition implies that the natural
' G
surjection FPH,G(1V+H)' V+H+ + V splits.

(11) = (1ii) 1s clear.
) S -1 G
(111) = (iv): Let p = F‘I'H’G(ILHG).F‘I'H’G (1U+G) 3 EndrH(U+ +H).

Then by 2.3.1(1v), Try o(p) =1 . Thus 1if
’ U4

8 : Vi & U+G+

G
Ut v, —=>>Vy
H H?

H H

then TrH G(6) = lV by 2.3.1(4) & (1i).
tHd
(1v) = (1): Let »: V+ X and p: W~ X and v: VW
as in the definition of H-projective. Let 6 ¢ EndrH(V) with
TPH,G(S) = 1y, and let v' = TrH,G(e“)‘ Then

vy = TrH’G(ev)u = TrH’G(evu) = TrH’G(ex) = TrH’G(e)x =\, o

2.3.3 Corollary
Suppose Te {R,R,ﬁ} . If P ¢ Sylp(G), then every TI'G-module

V 1s P-projectilve.
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Proof )
For each of T = R, R or R, Ta¥?T exists in I, and so
o

_ 1
1y = Trp o raeer - 1v)-
2.3.4 Corollary

Let a ¢ (U,V)G. Then the following are equivalent.
(1) @ (U,Vg

(1i) There are an H-projective module W and maps B: U+ W
and ¥: W~V such that « = By.

Proof
(1) ~ (11): Take W = Vet and let o = Try o(a').
Let B = Fry g(a ) and vy = Fré’G(lV+H). Then
By = FrH’G(a')Fré’G(lv+H) = TrH’G(a').
(11) » (1) : Suppo?e W 1s a summand of X+G.' Let

]
B': UsWer X4% ana v : x4%—>>Wo V . Then
Y

- -1 '
TrH’G(FrH’é(B')Fré,G(y')) = B Y, = a by 2.3.1(iv). o

2.3.5 Corollary
If V, W are TG-modules and V 1s H-projective then so is
VoW,
Proof
Suppose V 1s a summand of X+G. Then V ® W 1s a summand of

x+8 W= (X® w+H)+G. o

Remark

Suppose W 1is a submodule of V, and W and V/W are
projective. Then V 1s also projective, since it is i1somorphilc to
a direct sum of W and V/W. However, the same 1s not true if the
word projectlive 1s replaced by H-projective. For example, let G
be the cyclle group of order four, and let H Dbe the subgroup of
order two. Then there are four isomorphism classes Vl’ V2, V3 and
VM of indecomposable kG-modules, for k +the fleld of two elements.
Thelr dimensions are 1, 2, 3 and 4 respectively. V2 and VM are
H-projective, while Vl and V3 are not. However, there 1s a short

exact sequence
> 0.

00—V > V) @V, > ¥y

Now let G act as permutations on a finlte set S, and denote

by SG the set of fixed points of G on S. Let

Fix,(8) = {H = G: st # @} , and denote by TI'S the TIG-permutation
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module corresponding to S. An exact sequence 0 - X' > X > X" 5 0
is sald to be 3-~spllt if the sequence

0>X'"®rS>X9®TIS>X"3®TIS+0 splits.

2.3.6 Lemma
A sequence 0 = X' > X ¥ X" + 0 1s S-split if and only if it
splits on restriction to every H ¢ FixG(S).

Proof
If we write S = U Si as a sum of orbits of G, then the
sequence 1s S-split 1f and only if it 1is Si—split for each 1, so we
may restrict our attention to the transitive case. Let H be the
stabilizer of a point z in S. If the sequence splits on

o)
restriction to H, then it is clearly S-split since X ® I'S = X4 +G.

H
Conversely suppose f: X" ® I'S » X ® I'S 1is an S-splitting. For
" = ; =
x ¢ X", write (x ® zo)f . i 5 vy £ z;, and let xfo Vor Then
i

fo: X" > X is an H-splitting, since fou =1 and
(xh)fo = (xh ® Zo)f = ((x ® Zo)h)f = yoh = (xfo)h. o

We say that a module V 1is S-projective or projective relative

to S if whenever we have a homomorphism W =+ V =+ 0 which is
S-split, then & is split. Thus if S is t;;nsitive with stablliger
H, then V 1s S-projective if and only if it is H-projective. In
general, V 1is S-projective if and only if it is a sum of H-projective
modules for H e FixG(S), which by 2.3.2 happens 1f and only if it is

a direct summand of V ® TS.

2.3.7 Lemma
If V and W are TI'G-modules and V 1is S-projective then so
is V ® W. '

Proof
This follows from 2.3.5. o

We denote by A(G,H) the ideal of A(G) spanned by the H-projective
modules (see 2.3.5), A(G,S) the ideal spanned by the S-projective
modules (see 2.3.7), and AO(G,H) (resp. AO(G,S)) the ideal spanned
by the elements of the form X - X' - X" where 0 = X' > X > X" >0
is an H-split (resp. S-split) sequence. If H 1is a collection of
subgroups, we write A(G,H) for the i1deal spanned by the A(G,H)
for H e H, and AO(G,H) for the intersection of the AO(G,H) for
He H . Then clearly A(G,S) = A(G,Fixy(S)) and
AO(G,S) = AO(G,FixG(S)). We also write A'(G,H) for A(G,H) where
H 1s the set of proper subgroups of H.
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2.3.8 Lemma

S.

Suppose H 1is a subgroup of G and G acts as permutatlons on
We let H act on S by restriction of the action of G. Then

(1) 1y (A(H,S)) < A(G,S)

(11) 1y (A (H,8)) < A (G,S)

N

(111) rg y(A(G,S)) < A(H,S)
(1v) rG,H(Ao(G’S)) = AO(H,S)
The Proof is an easy exercise. o

We shall see in sectlon 2.15 that in fact for any permutatlon

representation S of G,

A(G) = A(G,S) ® A(G,S).

Exercise

*
Show that V is a projective kG-module if and only if V 3 V

is projective. Deduce that V ® W 1is projective 1f and only 1if
#

V ® W is projective. [Hint: reduce to a Sylow p-subgroup and use
2.3.2].

2.4 The Inner Products on A(G)

on

We define two different billinear forms ( , ) and < , >
A(G) as follows.
If V and W are TG-modules, we let

*
(V,W) = raneroer(V,W) = raneroer(l, V ® W) by 2.1.1(iv).

We then extend (., ) bilinearly to give a (not necessarily

symmetric) bilinear form on the whole of A(G).
* -
Note that (xy,z) = (x,y z), by 2.1.6 (ii).

For T =R or I =R, the bilinear form ( , ) is symmetric.

However, for a field k of characteristic p, ( , ) 1s not

necessarily symmetric. We thus introduce another inner product

<V,W>= dimk(V,W)g (see 2.3)

®»
= daim (1, V ® W)(l} by 2.1.1(iv)

and extend billinearly to the whole of Ak(G).

#
Note that < Xxy¥,z>=<X,y z> . The relationship between the

two inner products ( , ) and < , > 1s given in 2.4.3.

Let Pl = (Pl)kG be the projectlive cover of the trivial

kG-module 1, and let
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-1
Uya Pl ~Q (1)

Vo= Vpa Pl - (1)

*
as elements of A(G) (note that u = v).

2.4.1 Lemma
The following expressions are equal.
(i) < V,W >.
(ii) The multiplicity of (P
Homk(V,W) = V* R W.
(1idi) (u,Homk(V,W)).

(iv) The rank of Z g 1n the matrix representation of kG
ge G

1)xg @s a direct summand of

on Homk(V,w).

In partlcular, < , > 1s symmetric.

Proof
Since each of these expresslons is unaffected by replacing v
by 1 and W by Homk(V,w), we may assume that V = 1. Also,
since each expresslon is addltive in W, we may suppose that W 1is
indecomposable. We shall now show that each of these expressions 1s
1l when W =z P1 and zero otherwise.
(i) If <1,W># 0, then there 1s an element a ¢ W with

2 ag # 0. Let A: P+ W be the projective cover of W, and
ge G

write P = nPl @& P', where P' has no direct summands isomorphilc to
P;. Choose an element a; + a, ¢ nP; @ P! with (a; + az)x = a.

Then z (a; + a,)g # 0. But 2 a,g = 0, since P' has no
1 2 2
geG ge G
invariant elements, and so ( 2 alg)X # 0. Thus the submodule
ge G
spanned by ay is a copy of Pl whose socle z a8 is not killed
ge G

by A . Since Pl 1s injective, thls means that Pl is a direct
summand of W, and since W 1s indecomposable, Plg W. Clearly
<l£l>=1.

(ii) This 1s clear.

(iii) A homomorphism from P1 to W factors through R‘l(l)
unless W = Pl’ since Pl is injective. Thus if W # Pl’ (u,W) = 0.
On the other pand, 1f W= Pl’ then any homomorphism Pl - W 1is
equivalent modulo a multiple of this isomorphism to a homomorphism
factoring through 8_1(1), and so (u,W) = 1.

(iv) This 1s clearly the same as (i).

*
The symmetry of < , > follows since P1 ~ Pl . o
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2.4.2 Proposition
Let V be an indecomposable kG-module with projective cover P
and injective hull Iy. Then we have the following :

(1) ﬁ_l(l) ® Q(V) ~ V & projectives.
(11) u.(By - @(V)) = V = v.(Iy - & H(V))
and in particular wu.v = 1.

(1i1) u.Vv = Iy - e~ t(v)
v.V = PV - (V).
Proof

We have short exact sequences 0 » 1 - Py - ﬁ—l(l) - 0 and
0 - (V) - PV + V » 0. Tensor the first of these with V, and the
second with R_l(l). Then applying Schanuel's lemma (1.4.2), we get

*) @ (1) s e(V) @ P, 8 Vg i(1) ® Py @V,

1 v
which proves (i).

Thus as elements of A(G), we get

u.(Py = &(V)) = Py.Py = (Py.Py = P1.V)

- R—l(l).Pv + 2 1), 2(v)

(note that Pl.Q(V) = P;.Py - P,.V since P;.V 1is projective by
2.1.5)

=V, by (¥) above.
This statement and 1ts dual prove (1i), and (ili) follows
immediately. o

2.4.3 Corollary
Let V and W be kG-modules. Then

(i) (V,W) = <v.V,W> = <V,Homk(V,W)>
= <V,u.W> = <Hom (W,V),u>
(11) <V,W> = (u.V,W) = (u,Hom, (V,W))

= (V,v.W) = (Homk(w,V),v).
(111) (V,W) = (W,v°.V).
Proof
<V,W> = (u,Homk(V,W)) by 2.4.1(iii)

= (u.V,W) by 2.1.6(1).
The rest follow similarly from 2.1.6 and the fact that u.v =1
(2.4.2(11)). «a

2.4.4 Corollary
Let V and W be kG-modules.

If V 1is indecomposable and W 1s irreducible, then
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<V,W>= dimkEnde(w) if vV = Pw
0 otherwise.
Proof
<V,W>= (V,v.W) = (V,Pw - ®(W)) by 2.4.3 and 2.4.2(1i1i1). Since

V 1is indecomposable and Pw is projective, any homomorphic image of
V in Pw lies in Q(W) wunless V = Pw. o
2.4.5 Proposition

If H = G, then

(1)

(i1)

Ugatg T YkH
Yka¥r T VkH
Proof
We have short exact sequences 0 - sz(l)kH > (Pl)kH - lkH -+ 0

and 0 -~ R(l)kG+H -+ (Pl)kG+H -+ lkH -+ 0. Thus (ii) follows from
Schanuel's lemma (1.4.2) and (i) is proved dually. ©

2.4.6 Corollary
If V 4is a kH-module and W 1s a kG-module, then

G

< V,Wt, >=<V4+ ,W>

H
(¢cf£. 2.1.3, Probenius Reciprocity)

Proof
< V,W+H:>= (ukH,Homk(V,W+H)) by 2.4.1
(wgegoHom (V,Wy,)) by 2.4.5(1)
(uqs (Hom (V,W40)4%) by 2.1.3(1)

= (ugg-tom (V49,W)) by 2.1.2(vi)

=<v+% W > by 2.4.1. o

2.5 Vertices and Sources

Let V be an indecomposable T'G-module. Then D 1s a vertex
of V if V is D-projective, but not D'-projective for any proper
subgroup D' of D. A source of V 1is an indecomposable TI'D-module

W, where D 1is a vertex of V, such that V 1is a direct summand of
wi®  (c.f. 2.3.2).
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2.5.1 Proposition
Suppose T ¢ {R,R}.
Let V be an indecomposable TG-module.
}(i) The vertices of V are conjugate p-subgroups of G.

(11) Let W and w2 be two I'D-modules which are sources of

1
V. Then there is an element g e NG(D) with wl =3 Wzg.
Proof
(1) Let D; and D, be vertices of V. Write
- 2 2

ly = Iy° = TrDl,G(a)TrDE’G(B) by 2.3.2

= 3 Tr e (agp) by 2.3.1 (vii)

DlgD2 Dl ﬂD2,G
e : (v,n¢ .
DlgD2 Dl n D2

Thus by Rosenberg's lemma (1.5.5) and minimality of Dl and D2,
for some g & G we have Dlg = D2. By 2.3.3, the vertices are
p-groups.

(i1) Let W be an indecomposable summand of V+D which is a
source of V (cf. 2.3.2). Then W 1is also a summand of
wl+G+ = 9 W, 5 +D. Thus for some g e NG(D), W o wlg. o

D pgp 1 8D

If s 1s a species of AF<G)’ we define a vertex of s to be a
vertex of minimal size over indecomposable modules V for which
(s,V) # 0.

2.5.2 Proposition

Suppose T ¢ {R,R}.

(1) If W 1is an indecomposable module with (s,W) # 0 then
every vertex of s 1s contained in a vertex of W.

(1i) The vertices of s are conjugate p-subgroups of G.

Proof

(i) Suppose D 1s a vertex of s, and of V with (s,V) # O.
If (s,W) # 0, then (s,V® W) # 0, and so (s,X) # 0 for some
indecomposable direct summand X of V ® W. But every vertex of X
is contained 1n both a vertex of V and a vertex of W, by 2.3.5.
By minimallty, D 1s a vertex of X and 1s contalned in a vertex
of W.

(11) follows 1immediately from (i). o

Exercises
An algebra has finite representatlon type if there are only

finitely many isomorphism classes of indecomposable modules; otherwilse
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it has infinite representation type.

1. Show that the group algebra kP of a group P isomorphic to the
direct product of two coples of the cyclic group of order p has
infinite representation type (hint: for k infinite, construct an
infinite family of non-isomorphic indecomposable two-dimensional
representations; then pass down to k finite).

2. (Harder) Show that the group algebra described in exercise 1 has
indecomposable representations of arbitrarily large dimension (hint:
form an amalgamated sum of copies of kP/JZ(kP), or look at Rn(k)).
3. Use the theory of vertices and sources to show that the group
algebra kG of a general finite group G has finite representation
type if and only if the Sylow p-subgroups of G are cyclic (hint:
if a p-group 1s non-cyclic then 1t has a quotient isomorphic to the
group P of exercise 1). See also 2.12.9.

Remark

The algebras of infinite representation type split further into
tame and wild. Roughly speaking, tame representation type means that
the representations are classifiable, whilst a classification of the
representations of an algebra of wild representation type would imply
a classification of pairs of (non-commuting) matrices up to conjugacy.
For a more precise definition, see Ringel's article 'Tame algebras'
in 'Representation Theory I', Springer Lecture Notes in Mathematics
no. 831, p. 155. For modular group algebras of infinite representation
type, it turns out that if char(k) # 2, they are all of wild
representation type. For char(k) = 2, tame representation type
occurs exactly when the Sylow 2-subgroups of G are dihedral,

semidihedral, quaternion or generalized quaternion [ 97 ].

2.6 Trivial Source Modules

A module V is a trivial source module if each indecomposable

direct summand has the trivial module as a source.

2.6.1 Lemma
An indecomposable module has trivial source i1f and only if it
is a direct summand of a permutation module.

Proof
If V 1is a summand of 1H+G, D is a vertex of V, and the
I'D-module W 1s a source, then W 1s a summand of
G _ D . ~
1H+ +D = @ 1 +”. Since D 1is a vertex, W = lD' o

HgD HEND
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We denote by A(G,Triv) the subring of A(G) spanned by the
trivial source modules. It turns out that this subring controls many
properties of species. We shall investigate this in section 2.14.

In this section we shall study the endomorphism ring of a trivial
source module, as an example of the theory set up in section 1.7.

2.6.2 Proposition (Scott)

Let Vl and V2 be the RG-permutatlon modules on the cosets
of Hl_ aid H2. Then the natural map from HomRG(Vl’VZ) to
Homﬁe(vl,vz) glven by reduction modulo (w) i1s a surjection.

Proof

By the Mackey decomposition theorem, HomRG(Vl’VZ) and
Homﬁe(vl,v2) have the same rank, namely the number of double cosets
ngH2' o
2.6.3 Corollary

(1) Any trivial source RG-module 1lifts (uniquely) to a trivial
source RG-module.

(11) If Vl and V2 are trivial source RG-modules, then the
natural map HomRG(Vl’VZ) -+ HomﬁG(Vl’Vz) given by reduction
modulo (x) is a surjection.

Proof

Suppose U 1is a dlrect summand of an ﬁG—permutation module V.
By 2.6.2, the natural map EndRG(V) - Endﬁe(v) is surjective. Thus
by the idempotent refinement theorem (1.7.2), the idempotent
corresponding to U 1lifts to an idempotent in EndRG(V), and U
is thus the reduction modulo (n) of the corresponding direct summand
of V.

It now follows from 2.6.2 that homomorphisms between trivial
source RG-modules 1ift to homomorphisms between their 1lifts.

It remains to prove uniqueness of the 1lift. Suppose wl and
w2 are two trivial source 1lifts of U. Then the identity

automorphism of U 1ifts to maps Wle—Jw whose composite elther

2
way reduces mod (m) to the identity map. Thus by 1.1.3 the

composites are automorphisms, and the maps are hence 1somorphisms. o

Remark
2.6.3 may be interpreted as saying that the natural map
AR(G,Triv) - Aﬁ(G,Triv) is an isomorphlsm.

For the remainder of 2.6, we assume that (R,R,R) 1s a splitting

p-modular system for RG.
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Let G act as permutations on a set S, and let ﬁs, RS and
RS be the corresponding RG RG and RG permutation modules on S.
Let = E(S), E = E(S) and E = E(S) denote the endomorphism rings
EFG(S) for T' = R R and R _respectively.

Now 1.2.3 tells us that E(S) 1is semisimple, so that by 2.6.2,
E, E and E satisfy the conditions required in section 1.7. Also,
by 1.2.3, since (ﬁ,R,ﬁ) is a splitting system for RG, it 1s also a
Eplitting system for E, and so we have as E-modules,

RS = & dim(Ve).Xe where e runs over a set of primitive central
e

idempotents in é, Ve is the correspondlng irreducible RG-module,
and X is the corresponding irreducible E—module As RG -modules,
we have RS.e = dim(X,).V,. Indeed, by 1.2.3, as modules for

E ? RG s

R -~
(1) RS = 2 (X, ® V).
Now let G act on S x S via the diagonal action
(x,y)g = (xg,yg), and write S x § = U S as G-orbits. Let
|S | » and let 2 Genote the suborbit map on ZS
A(i): Z

X > 2 y.
(x,y)eSi

Then the A(i)
for ErG(S) for T =R, R or R. We define a palring of the
suborbits i1+s1' via

form a Z-basis for EndZ,G(ZS), and a TI'-basis

2 2
(X’y) 1 Si « (y)x) € Si'
Then it is clear that

(1), 2
(2) TrFS(A A‘ )y = kiﬁij
The following theorem glves the ldempotent e 1n terms of the

A(i), an expression for dim(Ve) and an orthogonality relation.

2.6.4 Theorem

2 e, A
(1) e = dim(X ). — I -
* oz, e, Wy
i e e
daim(X,)

(11) dim(Vv ) = : -
e z Try (A(l'))Trx (A(l))/ki

1 e e

(111) If e # e! then

(i) (1) -
z Try '(A 1 )Try (A°7))/ky = 0.
1 e e
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Proof
Let e =12 eiA(i). Then by (2),

TrﬁS(A(i')e) k.e

On the other hand, (1) gives
=1 st
TrﬁS(A(l )ey = dim(Ve)TrXe(A(l )y
Hence

- (i)
(3) e, = dim(ve)TrXe(A T /Ky

But Trx (e) = dim(Xe), and so
e
1
aim(v_).z o, (A" Ny ay e = aim(x).
e’ " X X 1 e
i e e
This proves (ii), and substituting back in (3) gives (i). The

relation (iii) follows since Trx (e') = 0. o
e
A central component of RS is a direct summand of the form

RS.e where e 1is a central idempotent in E. A component of RS
is an indecomposable direct summand, and corresponds to a primitive
idempotent in E. The central homomorphism we: Z(E) » R determined
by Xe 1s clearly Just

o, i aiA(l) - i aiTrXe(A(l))/dim(Xe).
Thus two summands of ﬁS lie in the same central component of RS
if and only if the values of the corresponding o are congruent
modulo (n) on Z(E). To calculate the components, however, we need

information about the decomposition numbers of E.

Example

55 acting on the vertices of a dodecahedron

Suborbilt maps: 2

w
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Matrlces for the adjolnt representation of E

1 3 / 3 3
1 11 11 1 101 1
1 1011 1 2 101 1
1 11 1 11 1 1 2
1 1 11 2 1 1 11
1 11 1 1 11 2 1
1 11 1 101 1 1011
3 3 3
Red (3 RO
3 ' 3 3 1
1011 1 110 1
2 1 1 11 1 1
1 11 " 1 1 1
1 > 1 1
1 1 2 11 1
1 111 1
3 \ 3
RS A7) RS

E has four one-~dimenslonal representations and a two-dimenslonal
one, The followlng table glves the matrices for these representations,
and the assoclated characters of A5.

Matrix on V Character of X

A1) a€2) f(3) fCH) A(5) 4 (6) 4(7) p(8) 14 24 3a 58 B*

e 1 3 3 3 3 3 3 1 1 1 1 1 1
e 1 1 -1 -1 -1 -1 11 5 1 -1 0 0
e 1 V5 1 1 -1 -1 -v5 -1 3 -1 0 -b5 ¥
ey 1 -5 1 1 -1 -1 v5 -1 3 -1 0 % b5
1 0Y/-1 1Y/-1 1\/03Y3 0\(-1 1\(-1 1\ 04
®5 (o 1)( 1-1)(-3 0)(1 E) (1-1)( 0 3)( 1-1)(-1 o) b0 1 -1 -
_ =1+V5
(b5 = =LY,

A 2-basls for Z(E) 1s given by zq = A(l), Z, = A(2) + A(B),
= a3 4 a0 | (B (5) | a(6) , 4(8)

NGO NNGY

zZ) and



Central characters p-blocks
Zy 2z, Z3 Zy Zg p =2 p=3 p=>5
o 1 4 4 7 4 a a a
w, 1 2 -4 -1 2 a b b
g 1 2b5 4 -3 * a c a
@, 1 # 4 -3 2b5 a d a
&5 1 -1 -1 2 -1 b b a
Decomposition numbers
p =2 p =3 p =5
wl w2 wl W2 w3 wu Wy Wy
Vl 1 0 1 0 0 0 1 0
V2 1 0 0 1 0 0 0 1
V3 1 0 0 0 1 0 1 0
Vy 1 0 0 0 0 1 1 0
V5 0 1 0 2 0 0 2 0

See also exercise 2 for an example with E commutative.

Exercises
1. Use the argument of 2.2.2 to show that if H 1is a subgroup of G
then

A(G,Triv) = iH,G(A(H,TriV)) ] KerA(G,Triv)(rG,H)

2. Let G = 88, the symmetric group on eight letters, let
H = 85 x S3 be the subgroup fixing an unordered triple of letters,
and let R Dbe the 2-adic integers. Let S Dbe the set of right
cosets of H 1In G, so that S may be thought of as the set of
unordered triples from the elght letters.
(1) Show that there are four orbits S
with ki/IG:HI =1, 15, 30 and 10, for i
respectively.
(1i) Using the basis A(l), A(Z), A(3), A(u) for E, show that
in the regular representation of E, A(z) is represented as the

of G on S x S,
1, 2, 3 and 4

= o

matrix
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0 15
a = 1 6 8
4 8 3

9 6
A(2)

E, and E 1is commutative. Thus the irreducible representations of

~

(iii) Find the eigenvalues of a. Deduce that generates

E are the central homomorphisms, and the components of RS are the
central components.

~

(iv) Deduce that the representations of E are as follows:

INCO TN C IR E VI (D
w0y 1 15 30 10
@, 1 7 -2 -6
oy 1 1 -5 3
wy 1 -3 3 -1

(v) TUse 2.6.4(ii) to calculate the dimension of the ordinary
representation Vi corresponding to each @4 -

(vi) Show that RS is the direct sum of two indecomposable
modules, of dimensions 8 and 48. What is the dimension of the
endomorphism ring of each direct summand?

See also [11] for further information.

2.7 Defect Groups
As 1n section 2.6, we let G act on a set S, and we let A(l)
be the standard basis elements of E(S) corresponding to

Sx 8= 0 Si We define a defect group of Si to be a Sylow
i
p~-subgroup of the stabllizer of a point in Si. This 1s well defined

up to conjugacy in G.

2.7.1 Lemma
If D is a p-subgroup of G, then (ﬁS,ﬁS)g is the linear

span in E(S) of the a‘l)

32,
1

for which D contains a defect group of

Proof
If (x,y) ¢ S x S, let a be the basis element of
EﬁStabD(x,y)(s) corresponding to (x,y), let B be the basls element

of EﬁD(S) corresponding to the D-orbit of (x,y), and let Si be
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the G-orbit of (x,y). Then
TPD,G(ﬁ) = TrStabD(X,y) ,G(a)

= Tr (]StabG(x,y):StabD(x,y)I .a)

StabG(x,y),G

A non-zero multiple of A(i) if
StabD(x,y) € Sylp(StabG(x,y))

0 otherwise.

Thus precisely those A(i) for which D contalns a defect group of
Si appear as traces of basis elements of Eﬁb(s). o

Now suppose e is an idempotent in E(S). Then a defect group
of e 1is a minimal subgroup D such that e e (ﬁS,ﬁS)g. By 2.3.2
and the definition of vertex, if e 1is primitive, a defect group of
e 1is the same as a vertex of RS.e . 1In particular, the defect
groups of a primitive idempotent are conjugate in G by 2.5.1.

2.7.2 Proposition

Suppose e = ZeiA(i)

is a primitive idempotent in E(S) with
defect group D.
(i) D contains a defect group of each Si such that ey # 0.
(11) There is an 1 with e; # 0 such that D 1is a defect
group of Si.
(ii1) Suppose e ¢ Z(E(S)) and R 1s a splitting field. Let
® be the corresponding central homomorphism. If m(A(i)) # 0 then
D 1is contained in a defect group of A(i). Thus the defect groups
of e are the defect groups of each suborbit for which ey # 0 and

m(A(i)) # 0 (there are some since w(e) = 1).

Proof
(i) This follows from 2.7.1 and the definition of defect group

(ii) Since e is in the sum of the (ﬁs,ﬁs)g, as D' runs over
the set of defect groups of the Sg
lemma (1.5.5) implies that for some such D', (ﬁS,ﬁS)g, = (ﬁS,ﬁS)g.
By (1), D contains a conjugate of D', and the result follows by

for which ey # 0, Rosenberg's

minimality of D. . .
(iii) w(A(i)e) = w(A(l)gwge) # 0, s0 A(l)e £ Rad(eE). But
i

eE is a local ring, so e ¢ A*"’eE ¢ (ﬁs,ES)g , where D, 1is a
i

defect group of A(i). Thus Di contalns a conjugate of D. D

The Classical Case

We have an action of G x G on S = {g e G} via
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. -1 SN o oS s
(x,y) : g » x "gy. Then Endﬁ(GxG)(RS) ~ Z(RG), and the primitive

idempotents correspond to the blocks of RG. Each orbit of G x G

on S x S (note carefully how G x G acts on S x S!) contains an
element of the form (1,g), and StabGXG(l,g) = diag(Cy(g)). We then
say that D 1s a defect group of the block B of RG 4if diag(D)
i1s a defect group of the corresponding idempotent in

Endﬁ(GxG)(ﬁs); namely the vertex of B as a G x G-module.

Thus if we define the defect group of a conjugacy class of
elements g ¢ G to be a Sylow p-subgroup of CG(g), then by 2.7.2
the defect group of a block B 1is a maximal defect group over
conjugacy classes whose sum is involved in the idempotent e. More-
over, if R 1is a splitting field and e is the central homomorphism
corresponding to e, then the minimal defect groups of conjugacy
classes of g ¢ G for which me( %2 g) # 0 are the defect groups of

B. If |D| = pd, we say that B ig a block of defeet d. It turns
out that the defect of a block gives some measure of how complicated
the representation theory of the block is. Thus as we shall see in
2.7.5 and 2.12.9, a block has defect zero if and only if there is only
one indecomposable module in the block, and it has cyclic defect
groups if and only if there are only finitely many indecomposable
modules in the block.

We refer to the above case as the classical case, since 1t was
the original case investigated by Brauer.

2.7.3 Proposition (Green)
Let B be a block of RG. Let P ¢ Sylp(G). Then there is an
element g ¢ G such that P n P& is a defect group of B.

Proof
Regard B as an indecomposable trivial source R(G x G)-module
with vertex diag(D) as above. Then P x P ¢ Sylp(G x @), and so
by 2.3.3, B+PXP has an indecomposable trivial source summand with
vertex diag(D). But by the Mackey decomposition theorem,

(Ra)+ =1 GxG,

PxP - taiag(a)t  Yexp

PxP

z : (1,8)
conj. classes diag(G) " ~°°/n(PxP)
of elts. g e G

PxP

= 3 1 +
dtag(pnp8)(1s8)

Now every transitive permutation module for a p-group is indecomposable,
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since Frobenius reciprocity shows that it has a simple socle. Thus
D 1s conjugate to some P N pé, a]

Remaining in the classical case, we have the following proposition

relating defect groups to modules.

2.7.4 Proposition (Green)

(1) Let V be an RG-module. Let D be a p-subgroup of H = G,
and let e be an idempotent in (§S’§S>g§§g(p> Ev(ﬁs,ES)GXl ~ Ra.
Then VWH.e is an RH-module which is D-projective.

(11) Suppose B 1is a block of RG with defect group D. Then

every indecomposable RG-module V in B 1s D-projective.

Proof
(i) Since e 1is H-invariant, V+H.e is an RH-module, which is a

direct summand of V¢ Let X = (RS).e as a trivial source R(GxH)-

H
module. Then X 1is diag(D)-projective, and so by the Mackey decom-

position theorem, is diag(D)-projective. Write a for

Xy
) dlag(H)
the identity endomorphism of X, and write a = Trdiag(D),diag(H)(B)

with B ¢ Enddiag(D)(X)' Thus for v e V,

v=viea) = vz e ((geg 1)l = 2((ve 1) (eB))e

g g
where g runs over a set of right coset representatives of D 1in H.
Thus eB acts on V as an RD-module endomorphism and
TrD’H(eB) = 1y. The result now follows from 2.3.2.
(ii) This 1s the case G = H of (i). o

Remark

We shall show in section 2.12 that in fact there is always an
indecomposable module in B whose vertex 1ls exactly the defect group
D of B.

2.7.5 Corollary (Blocks of Defect 0).

Suppose B is a block of defect 0, Then there is only one
indecomposable module in B, and it is both irreducible and projective.
B 1is a complete matrix algebra over a divisilon ring.

Proof
By 2.7.4(11), B/J(B) 1is a projective B-module, and so as a
B-module, we have B = B/J(B) ® J(B). Thus J(B)/J°(B) = 0, and so
by Nakayama's lemma (1.1.4) J(B) = 0. The result now follows from

the Wedderburn-Artin structure theorem (1.2.4). o

We shall see in the next section that some questions about blocks
may be reduced to questions about blocks of defect 0 (extended first

mailn theorem).
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There 1s also a large body of information available on the
structure of blocks with cyclic defect group, see [51].

Exercise

Find the vertices of the summands in exercise 2 of section 2.6.

2.8 The Brauer Homomorphism

Let D= Hs Ng(D) = G, with D a p-group. Let S be the

fixed points.of D on S. Then SD is invariant under H, and
hence forms a permutation representation of H/D.
We have a natural map

D . D, _
BrH g ¢ Endgy(S) - EndﬁH(S ) = EndR(H/D)(S )

sending a basls element of End (S) to the same basis element of
End— (S ) 1f the corresponding H orbit on S x S is in SD X SD and

to zero otherwise. We define

D . Dy _
BrG’H : EndﬁG(S) - EndﬁH(S ) = EndR(H/D)(S )

to be the composite of the inclusion End— (S)& End (S) with Brg H
>
Then Brg q is called the Brauer map.
2

2.8.1 Lemma
D
BrG,H
X = {p-subgroups of G not conjugate to a subgroup containing D}.

is a ring homomorphism, with kernel (ﬁS,ﬁS)i, where

Proof

(1) D 2
z cyA € Ker(BrG’H) = S;

5 ﬂ(SD x SD) = @ whenever cy # 0

= D 1s not conjugate to a subgroup of a defect

group of Si whenever ¢y £ 0
-z c,at) o (R, ﬁs)i by 2.7.1.

In particular, if we regard End (R(S )) as a subring of EndﬁH(ﬁS),
we have
Endg, (RS) = (RS,RS)Y @ Endg, (R(s))
X RH
as vector spaces, and the map Brg’H is the projection onto the

second factor, and is a homomorphism, since (ﬁS,ﬁS)g is an ideal. o

Returning to the classical case, suppose CG(D) < K = NG(D). Then
dlag(D) is the set of elements of CG(D), and we have an inclusion

(R(Sdiag(D)))gz(ﬁCG(D))

S

End (R(sdiag(D)y, < Endz

ﬁdiag(NG(D)) Rdlag(C,(D))
diag(D

< Z(RK). Composing thils with BerG,diag(NG(D)) gives a
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homomorphism brg K G Z(RG) -~ Z(RK), which 1s also called the Brauer
L]
map. Thls 1s the map sending a class sum to the sum of those elements
of the class lying in CG(D). By 2.8.1, brg K is a ring homomorphism
>

whose kernel is the ideal (ﬁG,ﬁG)gXG c (ﬁG,ﬁG)GXG Z(RG) with

X = {p-subgroups of G x G not conjugate to a subgroup containing
diag(D)}. Moreover by 2.7.1, this is the linear span in Z(RG) of
those conjugacy class sums for elements g e G for which a Sylow

[

p-subgroup of CG(g) does not contain a conjugate of D.

Notation

If X 1s a collectlon of subgroups of G, we denote by Zx(ﬁG)
the subspace of Z(RG) spanned by those class sums for conjugacy
classes with a defect group contained in an element of X .

We have thus proved the followlng theorem.

2.8.2 Theorem

Let D be a p-subgroup of G, and let CG(D) <= K = NG(D). Then
the map brg’K : Z(RG) - Z(RK) given by sending each class sum to the
sum of these elements lying in CG(D), 1s a ring homomorphism with
kernel Zx(ﬁG), where X 1s the set of p-subgroups of G not
conjugate to a subgroup containing D. a

Now let 1 = e + ... F eq be the idempotent decomposition in
Z(RG) corresponding to the block decomposition RG = Bl ® .. d Bs'
Suppose e 1s a primitive idempotent in Z(RK). Then

= D _ D D
e = e.er,K(l) = e.er,K(el) + ..+ e.er,K(es).

Since e 1is primitive, there 1is one and only one 1 with

e = e.er (e,), and e.er (e;) =0 for j # 1. If e corresponds
G,K'71 _ G,K'7J G

to the bloeck b of RK, we write b~ = Bi’ and we say Bi is the

Brauer correspondent of b. If R 1s a splitting field, then we may

reformulate thls in terms of central homomorphisms as follows.
If w 1s the central homomorphism corresponding to b, then
brg’K.m : Z(RG) + R 1s a central homomorphism, and p% 1is the
block of G corresponding to it.

We now prove the classical and permutation versions of Brauer's
first main theorem.

2.8.3 Lemma

Let N = NG(D). If the G-orbit S has defect group D, then

e RO
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si n(sP x sP)y
N-orbit on SP x s

1s a single N-orbit with defect group D. Each
D with defect group D 1s of this form.

Proof

Let (x,y) and (x',y') be elements of Si n (SD x SD), and
choose ge G with (x,y)g = (x',y'). Then D and D® are Sylow
p-subgroups of StabG(x',y') and so we may choose an element
h e Stab,(x',y") with D" = DB, Thus gnh ™l Ng(D), and
(x',5") = (x,y)gn”t

Conversely, 1f (x,y) 1s in an N-orbit on S* x sP with defect
group D, then D e Sylp(StabN(x,y)). If D< D; ¢ Sylp(StabG(x,y))

then D < Nj (D) = NN StabG(x,y) = StabN(x,y). This contradiction
1

D

proves the last statement. o

2.8.4 Proposition

Let N =N (D). Then BrD induces an isomorphism

@,N
(RS, RS) / z (ﬁs,ﬁs)g (RsP RSD)N (&sP RsD)N/D
t< D
Proof
By 2.8.1 and 2.3.1(vi), the kernel of Brd . on (RS RS) 1s

2.8 @,N
z (RS,RS)g,. By 2.8.3, the image is exactly (RSD,RsP )D . (Notice
D'<D

that D is contalned in every defect group for Endg (RS )). o

2.8.5 Brauer's First Maln Theorem (permutation version)

BrG,N establishes a one-one corriépgﬁdgnce between equivalence
classes of primitive 1ldempotents of (RS,RS) with defect group D
(recall that two primitive idempotents are equivalent if they lie in
the same Wedderburn component of (ﬁs,ﬁS)G/J((ﬁs,ﬁS)G)) and equiva-
lence classes of primitive idempotents of (ﬁSD,ﬁSD)N with defect
group D (or equivalently wilth equivalence classes of primitive
idempotents of (RS RSD)N/D In particular if (is,is)g is
commutative, then Brg N establishes a one-one correspondence
between primitive idempotents of (RS, ﬁS)G with defect group D and

primitive idempotents of (RS RSD)N with defect group D.

Proof
This follows immediately from 2.8.4 and the idempotent refinement
theorem (1.5.1). o

2.8.6 Brauer's First Maln Theorem (classical verslon)

Let N = NG(D). Then b - bG glves a one-one correspondence
between blocks of RN with defect group D and blocks of RG with
defect group D.
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Proof
This follows immediately by applying 2.8.5 to the classical

case. o

Warning

The blocks of RN with defect group D are not in general in
one-one correspondence with blocks of R(N/D) of defect zero.

To reduce the case of blocks of defect zero, we have the follow-
ing extension of 2.8.6, whose proof we shall omit (see [65]).

2.8.6a The Extended First Main Theorem

The following are in natural one-one correspondence.

(1) Blocks of G with defect group D.

(ii) Blocks of NG(D) with defect group D.

(i1i) NG(D)—conjugacy classes of blocks of CG(D) with D as
defect group in NG(D), (here, we have NG(D) x NG(D) acting on the
set of elements of Ch(D)).

(iv) (assuming R is a splitting field for ﬁCG(D», Ng (D)=
conjugacy classes of blocks b of CG(D) with D as defect group
in DCG(D) and ING(b):DCG(D)| coprime to Dp. ‘

(v) (assuming R 1is a splitting field for ﬁCG(D)), Ng (D)~
conjugacy classes of blocks b of defect zero of DCG(D)/D with
[Ng(b):DCH(D)| coprime to p. o

Examples

Let G be a simple group of Lie type (see [ 28]) in character-
istic p. Then G has two p-blocks, namely the principal block
(i.e. the block with the trivial representation in it) and a block of
defect zero consisting of the Steinberg representation, whose degree
is equal to the order of the Sylow p-subgroup.

Now let M denote the Monster simple group (sometimes denoted
Fl). Then there is an elemengagy abelian subgroup D of order four
whose normalizer has shape 27. E6(2).S3. From the above, we know
that in characterilstic two, CG(D)/D has exactly one block b of
defect zero, and that therefore NG(D) = Ny(b). Theorem 2.8.6a now
tells us that M has a single block with defect group D.

The following is Nagao's module theoretic version of Brauer's

second maln theorem.

2.8.7 Theorem (Nagao)
Let e be a central idempotent in RG, let D be a p-subgroup
of G, and let CG(D) = K = NG(D). Let H = {p-subgroups Q =< K:

Q#D}. If V.e =V then Vi - Vh.brg () o a(K, H).
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Proof

Embed RK 1in (Rs,Rs)%*K

in the obvious way, and let

f =e - brg’K(e) as an element of (ﬁS,ﬁS)GXK. Then by 2.8.2,
f e (ﬁs,ﬁs)ﬁ?ig(ﬂ). Let f = 3f; be a decomposition of f as a sum
of primitive orthogonal idempotents in (ﬁS,ﬁS)gfgg(H) Then by
Rosenberg's lemma (1.5.5), each f; is in (ﬁs,ﬁs)gigg(Q) for some
Qe H, and so by 2.7.4(1), V+H.fi is Q-projective. Thus
iy = Vig.e = Veg.brg y(e) @ Vit
= Viy.brQ p(e) @ ((® Vey.fy)

i
and the theorem 1s proved. o

2.9 Origins of Species

Before we define the origins of a species, we need an integrality

theorem.

2.9.1 Theorem

Let H =< G. Then A(H) 4is integral as an extension of Im(rG,H)'

(c.f. 2.2.2(11)).
Proof

If a ¢ A(H) then « has only finitely many images
ap, > o under the action of NG(H). Thus a satisfies N (i)
(X’al)(x'a2) «+ (x=a,) = 0, and so a 1is integral over A(H) ,
the fixed points of NG(H) on A(H). Thus we only need show that
A(H)N(H) is integral over Im(rG H)'

Let a e A(H)N(H). For any’ K « H we set

X = T (a®) : K < u8}
HE,K

Denote by UK the subring of A(K) generated by Im(rG’K)

and XK' We may assume inductively that UK is finitely generated as

a module for Im(r We claim that

G,K)'

In(r )y + oz 1 (Uy)
G,H k 2y TKHUK

is a subring of A(H), finitely generated as a module for Im(rG H)’
3
and containing the element a.
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(1) We filrst show that it 1s a ring. It is clear that
Im(r by 2.1.2(iv). If K< H and L < H,

then

a1 Tk, 1) € Tx,u(U%)

y) C

i, (U). 4, (U) ¢ 3 1 (r (U).r (v .
KR 7L, ge H KnL&,H x,kn L8 1&,xn 18 18

by the Mackey decomposition theorem. But

r (U,) € < Im(r ), T (Xp)> < U
K,knL8 X e, kn 18 "k,kn 18 K Kn L8
(11) It is finitely generated as a module for Im(rG H)' By
3
induction, for any K < H, we have
UK = Im(rG’K).b
beY
K
with ’ YK a finite set. So
iK,H(UK) = 3 Im(rG,H)'iK,H(b)'
beYK
(ii1) It contains a.
Since « is invariant under NG(H), we have
a+G+H = |Ng(H):H[a + 3 &y s,
HgH Hn HE

s.t.HnHP< H

2.9.2 Proposition
Let s be a species of A(G). The following conditions on a

subgroup H are equivalent.
(1) Ker(s) = Ker(r )
G,H
(11) Ker(s) % Im(iH G)
3
(iii) There is a species t of A(H) such that for all x e A(G)
(s,%) = (t,x¥y).

Proof
(1) » (i1) by 2.2.2
(ii) » (iii) by 2.9.1 and 1.8.1. a

Note that in 2.9.2 (iii) the species t need not be unique. We
write t ~ s, and say t fuses to s if (iii) is satisfied.
We say s factors through H 1if the equivalent conditions of

2.9.2 are satisfied. An origin of s 1is a subgroup minimal among
those through which s factors. Thus 1f H 1is an origin of s and
K < H then s vanishes on all modules induced from K.

2.9.3 Proposition
Let s be a species of A(G). Then the origins of s form a
single conjugacy class of subgroups.



55

Proof
Let H, and H2 be two origins of s. Then since Ker(s) 1s a
prime ideal,

Ker(s) # Im(iHl,G)'Im(in,G) = & Im(i

xe G Hy N H3,G

1

So for some x & G, Ker(s) # Im(i ). Hence by minimality
X H1n H2
Hl = H2. a]
In section 2.14 we shall clarify the structures of origins and

thelr relationships to vertices of the species.

2.10 The Inductlon Formula

Let s be a species of A(G) with origin H, and let V be a
module for a subgroup K of G. We want a formula for (s,V?G) in
terms of the species of K.

Let t Dbe a species of H fusing to s. Then

(s,v4%) = (5,v4% )

s (%, vEy ng) by the Mackey theorem.

HgK HNn K

Now if H % K&, then (t,VB¢ g+H) is zero by 2.9.2, since H 1is
HNK

an origin of t. Thus we have the following formula.

(1) (s,v4%) = 2 NG (HE) : N (HE) | (t8,vy o)
H® <K H

The sum runs over K-conjugacy classes of G-conjugates of H
contained in K.

In order to convert this into a formula involving species of K,
we must examine the number of species of K fusing to s.

2.10.1 Theorem
Let s be a specles of A(G) with origin H. Regard s as a
species of Im(rG H). Then s extends uniquely to a species t of
>

of t to a species of A(H). The number of extensions is
r = |Ng(H) : Stabg(ty)].

, and NG(H) is transitive on the extensions ti, .. , tp

Proof

By 2.9.2(i1i), s certainly extends to a species of A(H)N(H)

and a species of A(H). Let t be an extension of s to A(H)N(H).
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Then for X e A(H)N(H), the Mackey theorem and the fact that H is an
origin for s imply that (t,x+G+H) = |NG(H):H|(t,x). Thus
(t,x) = (s,fo)/|NG(H):H| is uniquely determined by s.
Now suppose that tl and t2 are two extensions of t to
A(H), and that tl # t% for all g e NG(H). Then by 2.2.1 there is

an element x e A(H) such that (tl,x) = 0 and
-1

(t ,xg) = (tg ,X) =1 for all g e N,(H). Let y = I x8.
2 2 G
geN(H)
Then 0 = (tl,y) = (t,y) = 01 (tz,xg) = 1. This contradiction
geN(H)

proves the theorem. The formula for the number of extensions is

clear. o

By 2.10.1, the contribution in (1) from a particular conjugate
8 is
gy. g g
Z  |Stabg(t ) iNy (H®) | (¢ ,V+Hg)

tg ~s

In this expression, t® runs over the specles of ué fusing to s.
If 84 is a specles for K fusing to s, and with origin Hg, then

by 2.10.1, the number of t% fusing to s_ 1is

o]
|NK(Hg):StabK(tg)| = [Ny (H®) n Staby (s ):Staby(t5)|
Thus
gy, g g = g . g
gz |Stabg (£5) :N, (H™) | (¢ ,V+Hg) INg (H®) N Stab,(s ):Ng(H ) (s,57)
t=~8

o)
Hence we can rewrite (1) as follows.
G . .
(2.10.2) (s,Vt+') = . E'S|NG(Orlg(so))r]StabG(sO):NK(Orlg(so))I(sO,V).
o

In this expression, S, Truns over the species of K fusing to

s, and Orig(so) is any origin of 8,
The expresslion 2.10.2 1s called the induction formula, and it is

a generalization of the usual formula for an induced character.

2.11 Brauer Species

A species s of Ak(G) is called a Brauer species if its origins
have order coprime to p. By Maschke's theorem, the Brauer species
vanish on AO(G,l), and may thus be thought of as species of
A(G)/AO(G,l). We shall first construct some Brauer species, and
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then show that we have constructed them all. It will turn out that
if k 1is a splitting field, then there are as many Brauer species
as there are p-regular conjugacy classes of G.

Let ; be the algebralc closure of k, and let ¥ be the
p'-part of the exponent of G. Then the YEE roots of unity in k
and in € both form a cyclic group of order v. Choose an isomor-
phism between these cyclic groups. Let g be a p'-element of G.
Given an kG-module V, we restrict it to <g> and extend the field
to R. Then each eigenvalue of g 1s a YEQ root of unity in i,
and we define (bg,V) to be the sum of the corresponding roots of
unity in €. It is clear that bg is a Brauer species with <g>
as an orlgin.

2.11.1 Lemma

Let bg be as above. Then there is an element y & A(G,1) with

(bg,Y) # 0 and (bg',Y) = 0 for every bg, # bg.

Proof
This 1s clear if G = <g>, since A(<g>) = A(<g>,1) and the bg
are linearly independent (2.2.1). Let x e A(<g>,1) with this
property, and let y = x+G. Then the induction formula 2.10.2 (which
1ls much easier for the b than for the general species) shows that

g
(bg,Y) #0 and (bg,,Y) = 0 whenever bg, # bg. o

2.11.2 Proposition’
= T
If (bg’wl) (bg,w2) for all p'-elements g then wl and w2
have the same composition factors.

Proof
We may replace W1 and w2 by completely reducible representa-
tions with the same composition factors, wilithout affectling the values
of (bg,wl) and (bg,wz). Let the irreducible kG-modules be
V1 5 N Vr and let the multiplicity of Vi in wl be ay and in
W be b.. By the Wedderburn-Artin structure theorem (1.2.4), we may

cﬁoose el;ments xg e kG with trace Gij on Vj.

Since the trace of an element of G 1is equal to the trace of its
p'-part, the hypothesis tells us that every element of kG has the
same trace on w1 as on w2. In particular, the elements x4 do,
and so a; = bi mod p. Thus we may strip off some common dlrect
summands, divide every multiplicity by p, and start again. The

result now follows by induction. s]

2.11.3 Theorem
A(G) = A(G,1) @ AO(G,l), and A(G,l1) is semisimple. The
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following are equivalent.
(i) s 1s a Brauer species
(i1) s vanishes on AO(G,l)

(1i1) s is of the form bg for some p'-element g e G.

Proof
By 2.11.2, the number of different bg is at least
dim(A(G)/A,(G,1)). But each speciles bg is a species of A(G)/A,(G,1),
and by 2.2.1 they are all linearly independent. Thus we have equality,
and it follows that A(G)/AO(G,l) is semisimple, and its species are
precisely the bg. This proves the equivalence of (i), (ii) and (iii).
Now consider the Cartan homomorphism

¢+ A(G,1) e A(G)—>>A(G)/AL(G,1).

By 2.11.1, this is surjective. By the arguments of section 1.5,
dim(A(G,1)) = dim(A(G)/AO(G,l)), and so c is an isomorphism.
Letting e = c-l(l), we have A(G,l) = e.A(G) and

AO(G,l) = (l-e)A(G). o

Note that if k 1s a splitting field then the number of different
bg is equal to the number of p-regular conjugacy classes of G, by
an argument similar to 2.11.1. Thus in this case, the number of p-
regular conjugacy classes is equal to the number of irreducible

modules.

Exercises

1l. Suppose (ﬁ,R,ﬁ) is a splitting p-modular system for G. Let

X denote the ordinary character table of ﬁG—modules, with the columns
corresponding to p-singular elements (i.e. elements of order divisible
by ©p) deleted. Let D denote the decomposition matrix, and C the
Cartan matrix. Denote by T the Brauer character table of irreducible
modules (i.e. the table whose columns are labelled by the p-regular
conjugacy classes, rows are labelled by the irreducible modules, and
entries (bg,V)) and U the Brauer character table of projective
indecomposable modules. Show that the following relations hold.

X =DT; U=DF%X; ¢ =0tD; U= cCT.

(see section 1.7)
These are sometimes called the modular orthogonality relations.

We shall introduce a generalized form of these relations in section
2.21.

2. Write down the ordinary character table of A5. Find the central
homomorphism associated with each ordinary character, and hence find

the blocks of A in characteristic two. What are the defect groups

5
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of the blocks? Using the isomorphism A5 = L2(N), show that there are
two isomorphism classes of two-dimensional irreducible modules over a
large enough field R of characteristic two. Write down the decompo-
sition matrix, Cartan matrix and Brauer character tables of irreducible
and projective indecomposable modules.

Denote the simple RG-modules by I, 2, 2' and 4 (the numbers
refer to the dimensions). Use the action of A5 on the cosets of a
Sylow 5-normalizer to construct a module whose structure is

I

2 e 2!

(i.e. the socle has dimension one, and is contained in the radical
which has codimension one, the quotient being isomorphic to the direct
sum of 2 and 2') Hint: use the results of section 2.6.

Show that dim Exté(I,I) = 0, using the fact that A5 has no
subgroup of index two. Deduce that P1 has structure as follows.

I

Find the structures of the remaining projective indecomposables.
3. Repeat exercise two for L3(2), and for any other groups that take
your fancy. Some large examples are worked out in [11] and [12]; see
also the appendix.

Remark

One of the most difficult problems in modular representation
theory is to find the decomposition matrices for particular groups
modulo particular primes. This problem has not even been solved in
general for the symmetric groups (although Lusztig's conjecture in
characteristic p, if proved, would give an answer in terms of the
so-called Kazhdan-Lusztig polynomials), despite the fact that so much
is known about the ordinary representation theory. A remarkable fact
about the representation theory of the symmetric groups is that every
field is a splitting field!
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2.12 Green Correspondence and the Burry-Carlson Theorem

For this sectlion we assume our ring T & {R,R}

Let D be a fixed p-subgroup of G and let H be a subgroup of
G containing NG(D). We shall investigate the modules with vertex D,
by means of restriction and induction between H and G. Our main
tool 1s, of course, the Mackey decomposition theorem.

Let

X = (X< X=D8n D  for some g e G\H}

1A

e
y={Y=a:vsD8nu for some g s G\H}

A

Note that Xcy and D Y

2.12.1 Lemma

Let W be an indecomposable D-projective TH-module.

(1) Let Wi, = WewW'. Then W' s a(H, §).

(1i1) Let W+G >V e V' with W a summand of Vyy and V
indecomposable. Then V' ¢ a(G, X).

Proof
(i) Let U be an indecomposable D-module with U4+ = W & wo.
Then
G ~ G G
U+ g = W4 ‘g @ wo+ +H
But by the Mackey decomposition theorem,

ury, = it @ Ut with U' & a(H, §).

Thus

G P G o P '
W+ ‘g ® Wo+ gy ¥ W a wo 2 U

and so by the Krull-Schmidt theorem, W+G+ W e W' with

H
W' ¢ a(H, 4).

(11) V' 1is D-projective. Suppose V' 1s not X-projective.
Choosen an indecomposable summand Vl of V' which is not X-projec-
tive,and suppose Dl = D 1is a vertex of Vl' Let Ul be a source of
Vl' Then Ul 1s a summand of V1+Dl, and so for some indecomposable

summand W1 of V1+H’ Ul is a summand of W1+Dl. Thus wl 1s not

§ -projective, and hence V'+H is not Y-projective, contradicting
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(i). o

2.12.2 Theorem (Green Correspondence)

There is a one-one correspondence between indecomposable TG-
modules with vertex D and indecomposable T'H-modules with vertex D
given as follows.

(i) If V 1s an indecomposable TG-module with vertex D, then
V+H has a unique indecomposable summand f(V) with vertex D, and
Viy = £(V) ¢ a(H,y).

(ii) If W 1is an indecomposable TI'H-module with vertex D, then
w+G has a unique indecomposable summand g(W) with vertex D, and
Wi - g(w) ¢ ale,n).

(ii1) f(g(W)) = W and g(f(V)) = V.

(iv) f and g take trivial source modules to trivial source
modules.

Proof

(1) Let S be a source of V and let S+H =W e W' with W
an indecomposable module such that V is a summand of W+G. By lemma
2.12.1(i), W is the only summand of W+G+H with D as vertex, and
the rest lie in a(H,4). But some summand of V+H has vertex D,
H+G, and so we take W = f(V).

(ii) Choose an indecomposable summand V of W+G such that W
is a summand of V+H. Then by 2.12.1(ii), W+G %V & V' with
Vte a(G,X). We take V = g(W).

(iii) and (iv) are clear from (i) and (ii). a)

since V 1is a summand of V¥

The following remarkable theorem gives us more information about

induction and restriction in this situation.

2.12.3 Theorem (D. Burry and J. Carlson)
Let V be an indecomposable TIG-module such that V+H has a
direct summand W with vertex D. Then V has vertex D, and V 1is

the Green correspondent g(W).

Proof
Let e = TrD H(a) € (V,V)g be the idempotent corresponding to the
3
summand W of V+H. By 2.3.1(vi), we have

Tr (a) = = Tr (ag)
D,G DgH  DZnH,H
= e + 3 Tr (ag)
DgH D&nH, H
gZ/H

n

e mod (V,V)g
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Since W 1s not Y-projective, e ¢ (V,V)H » and so Try G(a) is an
tdempotent in (V,V)%/((v,")¢ n(v,v)g). Since (v,")% 1s a local
ring, thls means (V,V)G = (V,V)G.TrD G(a) c (V,V)G , and so V 1is
D-proJective. Hence V has vertex 5 and W 1s 1ts Green corres-
pondent. 1]

We shall now reinterpret the Green correspondence in terms of the
structure of A(G). Recall that A(G,H) 1s the ideal of A(G) spanned
by the H-proJective modules, A'(G,H) 1s the ideal spanned by the
A(G,K) for all K < H, and AO(G,H) is the ideal spanned by elements
of the form X - X' - X" where 0 + X' > X > X" 5+ 0 1s a short exact
sequence of TI'G-modules which splits on restriction to H.

2.12.4 Lemma
If H =2 G then

A(G) = A(G,H) ® AO(G,H).
The idempotent generators of A(G,H) and AO(G,H) lie in A(G,Triv).

Proof
By 2.11.3,

A(G/H) = A(G/H,1) 9 A (G/H,1).

Identifying A(G/H) wilth its image under the natural inclusion
A(G/H) & A(G), we have

A(G) = A(G).A(G/H) = A(G).A(G/H,1) + A(G).A (G/H,1)

A(G,H) + AO(G,H).

Since clearly A(G,H).AO(G,H) = 0, this proves the direct sum decompo-
sition. Since A(G/H,1) c A(G,Triv), the ldempotent generators are
in A(G,Triv). a

2.12.5 Lemma
Suppose H 1s a subgroup of G contalning the normalizer of the
p-subgroup D. Then s .H and 1H G induce 1lnverse lsomorphlsms
3 >

a(G,b)/a'(G,D) = a(H,D)/a'(H,D).

These isomorphlsms send trivial source modules to trivial source
modules.
Proof

This 1s clear from 2.12.2. 1]

2.12.6 Theorem (Conlon)
(1) A(G,H) 1s a direct summand of A(G), whose ldempotent
generator lies in A(G,Triv).
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(1i1) A(G,H) has a canonical direct summand A"(G,H) with
A(G,H) = A'(G,H) & A"(G,H).
(1i1) A(G,H) = ® A"(G,D), where D runs over one representa-
D<H
tive of each G-conjugacy class of p-subgroups of G contained in H.

Proof
We prove these results by induction on |H|. By 2.11.3, they are
true for H = 1, since A'(G,1) = 0.
Suppose the theorem 1s true for all K < H. Let ey be the

1dempotent generator for A(G,K). Then eﬁ =1~ I (l-eK) is the
K< H

idempotent generator for A'(G,H), so that eﬁ lies in A(G,Triv).
Put

A"(G,H) = A(G,H).(l—eﬁ).
Then by 2.12.5,
A(Ng (H) ,H) /A" (N (H) ,H) = A(G,H)/A"(G,H) = A"(G,H)

is an 1somorphism sending trivial source modules to trivial source
modules. In particular, by 2.12.4, A"(G,H) has an idempotent
generator lying in A(G,Triv). Thus (1) and (ii) are proved. (iii)
follows since each A"(G,D) has a basls consisting of modules with
vertex D, modulo A'(G,D). o

We now have a theorem relating the Green correspondence to the
Brauer homomorphism.

2.12.7 Theorem

Let D be a p-subgroup of G, and let N = NG(D). Denote by f
and g the Green correspondence between modules for G and N with
vertex D, as in 2.12.2. If V is an indecomposable RG-module with
vertex D, and e 1s the block 1dempotent for RG with V = V.e,
then f£(V) = f(V).brg’N(e).

Proof
By 2.8.7, Yy - V+N.brg N(e) does not have f(V) as a summand.
L]
The result thus follows from 2.12.2. o

This together with the followling theorem shows how to reduce
questions about the representation theory of a block to questions
about representations of the defect group.

2.12.8 Theorem
Let D be a normal p-subgroup of @, and let B be a block of
RG with defect group D and block idempotent e. Then every



indecomposable RD-module that is not induced from a proper subgroup is

the source of some indecomposable module in B.

Proof
The only simple RD-module is the trivial module lp. So if 1D+G.e =0
then it would follow that for every RD-module V we have V+G.e = 0.

D+G.e # 0, and for every

Since §D+G.e = B, this is not the case. So 1
RD-module V we have V+G.e # 0. Since V+G+D is a direct sum of conjugates
of V, it follows that if V has vertex D then so does every indecomposable

summand of V+G.e.

2.12.9 Corollary (representation types of blocks)

A block B of RG has finite representation type (i.e. there
are only finitely many isomorphism classes of indecomposable modules
in B) 1if and only if a defect group D of B 1is cyclic.

Proof

By 2.12.7 and Brauer's first main theorem (2.8.6) 1t suffices to
prove the result in the case where D =2 G.

If D 1is cyelie, all modules in B are D-projective by 2.7.4,
and there are only finitely many indecomposable D-modules by 2.2
exercise 1.

If D 1s non-cyclic, then by 2.5 exercise 1, there are
infinitely many isomorphlsm classes of indecomposable modules for D
and so the result follows from 2.12.7 and 2.12.8. o

Exercise

Suppose a Sylow p-subgroup P of G 1s a t.1. set (l1.e. for
g ¢ G, elther PP =P or P P2 = 1), wlth normalizer 'N. Show
that Green correspondence glves a one-one correspondence between non-
projectlive 1ndecomposable TI'G-modules and non-projective 1ndecomposable
IN-modules.

2.13 Semisimplicity of A(G,Triv).

We are stlll concerned with representatlon theory over
T ¢ {R,R}.

In order to show that A(G,Trliv) 1s semisimple, we shall first
construct some specles for 1t, and then demonstrate that the elements
of A(G,Trlv) are separated by the specles we have constructed.

A group H 1s sald to be p-hypoelementary 1f H/Op(H) 1s cyclilc
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(recall that O_(H) denotes the largest normal p-subgroup of a group
H). Let Hypp(G) be the collection of all p-hypoelementary subgroups
of G.

Let V Dbe a trivial source T'G-module, and suppose H ¢ Hypp(G).
Let V+H = V1 ® V2, where V1 is a direct sum of indecomposable
modules with vertex Op(H) and V2 is a direct sum of indecomposable
modules with vertex properly contained in O _(H). Then Op(H) acts
trivially on Vl’ and so Vl is a module for H/Op(H). Let b be a
Brauer species of H/Op(H), and define (SH,b’V) = (b’Vl)' Then
clearly SH,b is a species of A(G,Triv).

2.13.1 Proposition
Suppose V and W are trivial source T'G-modules and
(SH,b’V) = (SH,b’w) for all pairs (H,b). Then V = W.

Proof.
Suppose without loss of generality that V and W have no
direct summands in common. Let D Dbe a maximal element of the set of

vertices of -summands of V and W. Suppose V+NG(D) =Vt @& V" and

w+N (D) = W' @ W', where V', W' are sums of modules with vertex D,
G

and V", W' are sums of modules whose vertex does not contain D.
Since (SH,b’V') = (SH’b,W') for each palr (H,b) with

Op(H) = D, V! and W' are projective representations of NG(D)/D,

and all Brauer speciles of NG(D)/D have the same value on each.

Thus by 2.11.3, we have V' = W', Let Vé and Wé be isomorphic

indecomposable direct summands of V' and W'. Thus by 2.12.2, the

Green correspondents g(Vé) and g(Wé) are 1somorphic direct summands

of V and W. This contradiction completes the proof of the

proposition. o

2.13.2 Corollary
A(G,Triv) 1s semisimple, and the Sy p are its species. o
3

Thus by 2.2.1 and the dilscussion following it, we have idempotents

ey p € A(G,Triv) with the property that
L

= 1 if (H,b) is conjugate to
(H',b")

(H,0° nr,p1)

0 otherwlse
There is a corresponding direct sum decomposition of A(G)

A(G) = @& A(Q).e
H,b

In this decomposition, H and b run over conjugacy classes of pairs

H,b
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(H,b) with H ¢ Hypp(G) and b a Brauer species of H/Op(H) with
origin H/Op(H).

2.13.3 Proposition

(1) eq = z 4 b is the ildempotent generator for
Op(H) <D ’
A(G,D).
(i1) eB = z ey b is the idempotent generator for
Op(H)=D ’

A"(G,D) (see 2.12.6).

Proof
By 2.12.6(1), the idempotent generator for A(G,D) is the sum of
the eH,b
Similarly, the idempotent generator for A'(G,D) 1is the sum of the

lying in it, namely the 4 b for which Op(H) < D.
3

eH,b for which Op(H) < D. o
2.13.4 Proposition
(1) A(G) = z Im(iH G)
HsHYPp(G) ?
(i1) n Ker(rG H) 0
HeHyp (G) ?
p
Proof
By 2.13.1, n Ker NG ) = 0. Thus by Exercise
HeHypp(G) A(G,Triv) " G,H
1 of 2.6, A(G,Triv) = b iH G(A(H,Triv)). Thus
HsHypp(G) ?
z Im(i ) 1s an ideal of A(G) containing the identity
H,G
HeHypp(G)
element, proving (i). Then (ii) follows by 2.2.2. o

2.13.5 Proposition
Let H < G. Then

(1) The idempotent generator of Im(i ) is Z e
H,G (X,b) K,b
>
KsHypp(G)

K=< H

(11i) The idempotent generator for Ker(r ) is Z e
G,H (K,b) K,b
KsHypp(G)

K not conjugate
to a subgroup of H

(the sums run over G-conjugacy classes of pairs (X,b).)

Proof
This follows immediately from 2.13.4 and exercise 1 of 2.6. o
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Finally, we prove Conlon's induction theorem.

2.13.6 Theorem (Conlon)
There exist rational numbers XH e @ for each conjugacy class of
p-hypoelementary subgroup H such that

1y = Z Al +G

G HsHYPp(G) HH

(the sum runs over a set of representatives of conjugacy classes of
p-hypoelementary subgroups).

Proof
Let C be the Q-linear span in A(G,Triv) of the permutation

modules 1H+G. Then exactly as in 2.2.2, for any subgroup H we have

0g = 1y gloy) @ KerOG(rG,H)

Now by 2.13.4,

n Ker, ( ) 0
HeHyp, (6)  %¢ O
and so
z i (64) = ©
H
HeHyp (G) 2@ G
P
as required. o
Exercise

Use 2.13.3 and 2.13.5 to show that 1f N g G has index pn, then
A(G,N) = Im(iN G). Deduce that a(G,N)/iN G(a(N)) is a (possibly
k] 3
infinite) p-group of exponent dividing pB.
In fact, Green has shown [54] that if k 1s algebraically closed
h G,N) = i N)).
then a(G,N) 1N,G(a( )

2.14 Structure Theorem for Vertices and Origins

This section consists of just one theorem describing the nature
of the vertices and origins of a species. The proof of the theorem is
a good illustration of the influence which the subring A(G,Triv)
exerts on the structure of A(G).

2.14.1 Theorem
Let s be a species of AL(G), T ¢ {R,R} . Then
(i) All origins of s are conjugate.
(11) All the vertices of s are conjugate.
Let H be an origin of s. Then
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(1ii) H is p-hypoelementary.
(iv) Op(H) is a vertex of s.

Proof
(i) is proved in 2.9.3.
(1i) is proved in 2.5.2(ii).
(iii) Suppose H 1is an origln of s. By 2.13.4, we have

Im{i = z Im(1i )

KsHypp(G)
K <H

H,G’ X,G

By 2.9.2, Ker(s) # Im(iH G), and so for some K ¢ Hypp(G) with K < H,
2
Ker(s) # Im(iK G)' By minimality of H, K = H.
3
(iv) Since H 1is an origin of s, by 2.13.5 s does not vanish

on 2 ex b but does vanish on Z ex b* Thus s does
(K,b) ? (K,b) >
KeHyp  (G) ‘ KeHyp, (&)
K =H K < H

not vanish on some eH o’ and so by 2.13.3, s does not vanish on
3
n : .
eOp(H)' Thus s does not vanish on eOp(H)’ but does vanish on

e for every D' < Op(H). Hence Op(H) is a vertex of s. o

D'

2.15 Tensor Induction, and Yet Another Decomposition of A(G)

In this section, we introduce the notion of tensor induction, and
use it to prove that for any permutation representation S of a group
G, we have the decomposition A(G) = A(G,S) & AO(G,S) (see Theorem
2.15.6), as promised in section 2.3. The proof of this theorem is
another good illustration of the influence which A(G,Triv) exerts
on the structure of A(G).

Suppose H = G and V 1is a TH-module. Then V %:FG splits

T
naturally (as a vector space) as a direct sum of blocks V » &y for
gy @ set of right coset representatives of H in G, and G permutes
these blocks in the same way as it permutes the right cosets of H.
Thus ; (Vo gi) has a natural structure as a TG-module, and is
i

written V § G, and called ' V tensor induced up to G '. The basic

properties of tensor induction are as follows.

2.15.1 Lemma

Let H = G, and 1let Vl and V2 be TrH-modules.

. G G G
(1) vy 83vy) 3% =v 3 gv2§ .



69

G G
(11) (v, o v, $ ¢ = vl§ ov. % X with Xe 3 Im(L

).
2 Ko G K,G

(iii) If H' = H and W 1is a TH'-module, then

Wﬂ‘H gG € z Im(iK G)
K< G 4
KNH =< H!

(iv) § induces a ring homomorphism

]
i : A(H)Y/ 2 Im(i ) + A(G)/ = Im(i
H,G K< H K,H G

)
K= K,G

which takes the identity element to the identity element.
(v) If 0+ V' +V~+ V"> 0 is an S-split short exact sequence
of T'H-modules, then

v3%sors

il

v e vty $ % g rs.

Proof
(i) 1is clear from the definition.

(11) (v, 8 V) 3 G 3 ((V, ® V,) » g;)

1

? (V, 2 g4) ® ? (v, ® g3) & X

where X = ® ( ®(V, 9 gi))
3;=1,2 i 931
not all ji
equal

Thus, as a TI'G-module, X splits as a direct sum of submodules

corresponding to the G-orbits of ways of choosing the ji's. Each

such summand is a module induced from the stabilizer of such a choice.
(iii) Let gy be coset representatives of H 1n G, and hJ

be coset representatives of H' 1in H. Then

w+H$G = 9 (( ®W ® h;)) ®g.)
. s J 1
1 J
= ] (® (W9 h, gi)).
possible i Ji

choices of
one h, for
i

each 1
Thus as a TI'G-module, W+H g @ splits as a direct sum of submodules
corresponding to the G-orbits of ways of choosing the ji's. Each
such summand is a module induced from the stabilizer of such a choice,
and the elements of H stabilizing such a choice are contained in an

H-conjugate of H'.
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(iv) This follows immediately from (i), (ii) and (iii).
(v) As a TG-module, V §G has a natural filtration
G

=U, =0, = ... 50, =V 3¢ (n-= |G:H|) where

v 3

1
U. = <(® Vv.®g.)® (® v. ®¢g;), for J a subset of
J 147 - ied T
]
size j of the right cosets of H 1in G, and vy o v,

vy e V>

It is easily seen that

' " n
v ev) A =u e » U/U

Thus we must show that tensoring with I'S splits the filtration
v §G = UO < Ul < ... = Un =V %G; i.e. we must find a left inverse
Yj for the natural map

®5: Uy 3 TS » (Uy ® 18)/(Uy_;

J J

1
Suppose f: V TS +»V ®TIS 1is an S-splitting for
0 +V' >V V" 5 0, and let

S) = (U,/U. S.
® TS) (J/J_l)®r

"

"
( 5 ov.ex)f= % (v.f.) ®x
xesS % xes XX
with the f‘x linear maps from V" to V. Since f 1s a TIH-module

homomorphism, we get th = hth for h ¢ H.
The typical generator for (Uj ® TS)/(UJ._l ® I'S) is
1"
(( ® (vi ? gi)) 8 ( ® (v, ® gi))) ® x. We define Y. to be the
143 igJd i J

\ "
map sending this generator to (( ® (vy ® g;)) 3( ® (v;f _; ®g;)))®x.

idd ied X8y
It is easily checked that Yj is a TIG-module homomorphism left
inverse to éj. o
Remark

When trying to prove, for a group G, that A(G) = A(G,S)tBAO(G,S),
we only have to show that 1 =a+8 ¢ A(G,S) + AO(G,S). This 1s because
A(G,S) and AO(G,S) are ideals of A(G) whose product is zero, and
so 1if x ¢ A(G,S) n AO(G,S) then

x = x.1 =x.a +x.8 =0.

2.15.2 Lemma
Suppose D 1is a p-group and S 1is a permutation representation
of D with D £ FixD(S). Then



71

A(D) = AO(D,S) + Z Im(i

).
K<D K,D

Proof
Without loss of generality D acts transitively on S. Let D!

be the stabilizer of a point in S, and D" a maximal subgroup of D
containing D'. Then AO(D,S) z AO(D,D"). Since the group algebra of
D/D" 1is indecomposable (see 2.1 exercise 1), A(D/D",1) = Im(i

1,0/D"
is one-dimensional. Thus

1A<D) e A(D/D") AO(D/D",l) ® A(D/D",1) by 2.11.3

AO(D/D",l) ® Im(il,D/D")

I N

A, (D/D") + Im(iD",D)

<A (D,S) + 2 Im(d o
K<H

K,D)'

2.15.3 Lemma
Suppose H =G and Op(H) ¢ Fix,(S). Then

A(H) = AO(H,S) + I Im(i )

K<H K,H

Proof
Let D = Op(H) 4 FixG(S). Then by 2.15.1 and 2.15.2

AO(D,S) + 2 Im(i )

K,D A(H)

12 5 AD)/ 2 Im(iy ) = K<D
’ K<D ’ 2 Im(ig ) Z Im(i
K<D 2 K<H

K,H)

takes the identity element to the identity element. But it also takes
A (D,S) 1into A (H,3) + Z Im(i ) by 2.15.1 (v) and (ii), and so
o o] K< H K,H

1 e A (H,S) + 2 Im(i
A(H) o 2 K< H

K,H) : .
2.15.4 Lemma
If He Hypp(G) then A(H) = A(H,S) #® AO(H,S).

Proof
If Op(H) e FixH(S) then A(H) = A(H,S), by 2.3.3. If

0 (H) ¢ Fix, (S), then by 2.15.3, A(H) = A (H,3) + 2 Im(i
p H ° K< H

induction, for each K < H, A(K) = A(K,S) ¥ A,(K,S), and so by 2.3.8,
Im(iy ) € A(H,S) + A (H,S). ©

K,u) BY

2.15.5 Theorem

For any group .G and permutation representation S, we have
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A(G) = A(G,S) & AO(G,S).

Proof

By 2.13.4(1i), A(G) = z Im(i
HeHypp(G)

Im(iH,G) c A(G,S) + AO(G,S) for H e Hypp(G). o

H,G)‘ By 2.15.4 and 2.3.8,

2.15.6 Corollary
If H=< G then A(G) = A(G,H) 4 AO(G,H). s}

2.15.7 Corollary
If s 1s a species of A(G), then D contains a vertex of s

if and only if for every D-split short exact sequence
O+ V! >V + V" 5 0 we have
(s,V) = (s8,V") + (s,V"). o
Remark
Dress [45] has shown that in fact 4a(G) = a(G,H) @ ao(G,H); i.e.
A(G)/(a(G,H) + aO(G,H)) is a p-torsion group, cf. 2.16.5.

2.16 Power Maps on A(G)

In this section we construct maps wn: ak(G) - ak(G) called
the power maps. These are ring homomorphisms, and have the property

that if bg is a Brauer species then (b n,x) = (bg, wn(x)).

g
These are the modular analogues of what are called the Adams operations

in ordinary representation theory. We shall use these maps to construct
the powers of a general species, and we shall investigate the origins
and vertices of the powers of a species.

We begin by constructing the operators wn in the case where

n 1is coprime to p. Let n be a natural number coprime to p, and
let T =< a: a? = 1> bea cyclic group of order n. Let ¢ be a
primitive nth  root of unity in the algebraic closure of k and let
n be a primitive nE—I’l root of unity in €. If X 1is a module for
T x G, then we denote by X N the elgenspace of a on X with
N (2

elgenvalue el. Then X i is a T x G -invariant direct summand of

n €
X, and X = 9 X 1

i=1 ¢

Now let V be an kG-module. Then [V §Tx G] N restricts to a
. . [
kG-module, and whenever < ats =< ad> , we have [V $T§<G] 1 > [V §TXG] 3

& 15
as kG-modules. We define



n
Vv = 3 oty & X8 L &A@,

2.16.1 Proposition
If Vl and V2 are kG-modules then

(1) vy e V) = (V) + (V)
(11) ¥V 3V, = YV VY,
Proof

(i) As a module for G, we have

$(vy 8V,) = »  (V, ®...% V, ).
2 171,21 1n
i=1,2

Under the action of T, there are two fixed summands, @n(Vl)
and gn(v2). Apart from these, each orbilit forms a module for T x G
of the form Y ®Z, where Y 1is a permutation module for T on the
cosets of a proper subgroup. Thus as an element of A(G),

n (Y 2], =o0.
1
€

ft 3

i
Hence the result.
. n n n
(11) (V] @ Vy) = (V) ® 3°(V,).
Hence

]
=

n n n
BV 8 V)] 4 = 3 BRIy BNV

J

Thus we have

n .
n 1 n
(v v,) = 3 @ (v, ® V)] .
vihie el = e, 1% elda
N R A I S I ey
1,3=1 1743 277, 1~y
= D VY, . e

By 2.16.1, we may extend Wn linearly to glve a ring endomor-
phism of A(G). In fact, the image under ¥"  of an element of a(G)
is in a(G), as the followlng proposition shows.

2.16.2 Proposition
For d dividing n, let

in the algebraic closure of k. Then

€4 be a primitive dEE root of unity

P =z ow@rov A8
d|n d
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(Here, p 1is the Mdbius function of multiplicative number theory)

Proof
Whenever <a'» = <a’'> , [V ng G] g & [v %Tx G] P Thus
3 €
n n fry 4T G
Voo = s oty 1,
1=1 €
= 3 ( z eé) v $Tx ¢ i
d|n (i)d)":l d
l=1=4d
= 2 u(a) [V ng G]e . o
d|n d
Example

If p # 2, we have
v2 (V) = 82(V) - A%(V).

Thus, in particular, 1f V is 1rreducible then the Frobenlus-
Schur indicator is defined by

5 +1l if V 1is orthogonal
Ind(v) = (1, v=(V))= -1 if V 1is symplectic
0 otherwise.

(Recall that ( , ) is the inner product on A(G) given by
bilinearly extending (U,V) = dimkHomkG(U,V)).

2.16.3 Definition
We deflne the nth power of a species s of A(G), for
n ¢ NW\pl, via
(s™,x) = (s,¥"(x)).
Proposition 2.16.1 shows that % is again a specles of A(G).

2.16.4 Proposition
If b is a Brauer species of A(G) (see section 2.11)

corresponding to a p'-element g, then b is the Brauer species

corresponding to gn.
Proof
Let V be a kG-module, and let b' Dbe the Brauer species
corresponding to gn. We may choose a basis Vis sees Vo, of V

conslsting of eigenvectors of g. Let vig = Xivi’ Then as
k <g>-modules, V = @< Vo> and so

n

(o7, V) = (b,y" (V)

r n T n
(b’ Z v (<Vi>)) = Z (b’ v @Vi>))

1

1
x? = (b',V). o

"
LS

i=1
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As our flrst application, we give Kervalre's proof of a theorem
of Brauer.

2.16.5 Theoremn
The determinant of the Cartan matrix is a power of p.

Proof

This is the same as saylng that the cokernel of the Cartan
homomorphism

ci a(G,1) » a(G) + a(G)/a,(G,1)

is a p-group.

Let m be the p'-part of the exponent of G. If x & a(G,1l)
then wm(x) 1s an element of a(G,l1) by 2.16.2, and any Brauer
species has value dim(x) on Wm(x) by 2.16.4. Thus by 2.11.3,
if x ¢ a(G,1) then dim(x).1l & Im(ec).

For each prime q # p dividing |G|, let Q be a Sylow gq-subgroup
of G. Then 1Q+G ¢ a(G,1) since it is induced from a projective
kQ-module. Thus |G:Q|.1 ¢ Im(c). It now follows from the Chinese
remainder theorem that |G| .1 ¢ Im(c), where |G|  1is the p-part
of the order of G. Hence if x ¢ a(G)/a,(G,1) then |G|p.x e Im(e),
and the theorem is proved. a]

Remark
This could be rephrased as saying that a(G)/(a(G,1) + a,(G,1))
is a p-torsion group; see the remark after 2.15.7.

We now wish to prove that wmwn =wmm. We start off with a lemma.

2.16.6 Lemma

Let Sn denote the symmetric group on n letters. Then there
is a subgroup Tn of Sn having the following properties.

(i) Tn contains a cyclic group of order n which is transitive
on the n letters.

(ii) If n = nqn, then Tn contains the direct product of the
cyclic groups of orders nq and Ny, in its direct product action
on the n 1letters.

(iii) If a prime ¢ divides |T then g also divides n.

nl

Proof
Let n =Hpil . Then we have a subgroup
o s a = Sn
i
P3

with direct product action on the n points. Let Pi be a Sylow
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pi-subgroup of S . ? and let
b3

Then properties (i) and (iii) are clearly satisfied. To check property

i

8. Y
. . i i
(i1), let n = nin, with n; = Hpi s Ny = l'Ip:.L , and Bi + vy =a
Let Qi X Ri denote a Sylow p-subgroup of S Bi x S ' = S ay R
Ps Ps P
with Qi x Ri < Pi' Then HQi>< HRi < Snlx Sn2 contains the
appropriate direct product of cyclic groups. [u}

2.16.7 Theorem

Proof
Without loss of generality, we may assume that k 1is a splitting
field for Tmn (see 2.2 exercise 4). Thus by property (iii), p

does not divide and so the representatlon theory cf kTmn is

LR
the same as the representation theory of GTmn. In particular, the
central idempotents of kTmn are in natural one-one correspondence

with the central idempotents of CTmn, and kTm is semisimple.

By properties (i) and (ii) of Tmn’ and thendefinition of the V¥
operators, wmwn(V) and wmn(V) are of the form I Xi(&mn(v).ei)
and I ki(®mn(v).ei), where the e ar? the primitive central
idempotents of Tmn’ and'the xi and Xi are independent of V.
Moreover, the Xi and xi may both be expressed in terms of induced
characters from the subgroups of Tmn given in the definition, and
hence 1f we keep m and n constant and vary p over primes not
dividing mn, the Xi and xi do not vary. Thus 1t is sufficient
to prove the result in the case where p divides neither mn nor
]GI. In this case, every species is a Brauer species, and modules

are characterized by the values of Brauer species. By 2.16.4, we have

(b, ¥™W V) = ™)
((™™,v)
(o™, v)

(b, V™)) .

[{]

1
Thus the xi and Xi are equal, and the result is proved. o
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We now extend the definition of Wn to include all n e N as
follows. Let F denote the Frobenius map on a(G) or A(G). Thus
if V is a module, F(V) is the module with the same addition and
same group action, but with scalar multiplication defined by first
ralsing the field element to the ng power, and then applying the old
scalar multiplication. The map F commutes with Wn for n coprime

a

to p, and so we may define, for any n e IN with n =p N, and n,

coprime to p,
n
vy = F2 y O(v)
It 1s easy to check that propositions 2.16.1 and 2.16.4, and theorem

2.16.7 remain valid with the definition, and so we extend definition
2.16.3 appropriately.

Remark
If we define
v o) 1
w2(x) \yl(x) 2
Vo = Vo v Ve 3
n-1
¥ (x) .. vix)

then these A-operations make A(G) 1into a special Ai-ring (see [62]).
In fact the subring a(G) = a(G) ® Z(%) is stable under these
z

operations, see [14].

. n A .
Next, we examine the effects of V¥ on origins and vertices of
species.

2.16.8 Definition
If H 1s a p-hypoelementary group and n = pa.no with n,

[n]

coprime to p, we let H denote the unique subgroup of index

({H|,n ) in H.

2.16.9 Lemma

Let be as in sectlon 2.13. Then

54,b

n _
(sy p) = Syn] o
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Proof

Let V be a trivial source RG-module and let V+H = wl ® w2,

where wl 1s a direct sum of modules with vertex OR(H) and
1
Wy e A (G,H). Then by 2.16.1, " (V)vy = w“(V+H) = ¥ + w“(wz),

w“(wl) is a linear combination of trivial source modules with vertex
t
0,(#), and ¥y (W) e A (G,H). Thus
n _ n
((syy, )"V = (s 9" (V)
(b,y" (W)
n
(0™ ,up)

(SH[n] bn,V). o

3

2.16.10 Lemma

n
¥ (eH b) =2 e, .,
4 H ,b
where the sum runs over one representative of each G-conjugacy class
t 1 1
of pairs (H ,b') with (H )[n] =H and (b )n = b.
Proof

n n
¥ (e ) = Z (s , v s V(e )).e [
H,b all i ,b H,b H' ,b

A 1
(H ,b )
(Here, the sum runs over one representative of each G-conjugacy
1
class of palrs (H ,b').)

= 3z (s ' ' s € ).e [
P, hyn ? TED T
by lemma 2.16.9.
. . . ' [n] t\n .
Thus the coefficlent of e , , 1is one if ((H ) ,(b )7) 1is
H ,b
G-conjugate to (H,b) and zero otherwise. o

2.16.11 Theorem

(1) If H 1s an origin of s, then H[n] is an origin of s

(1i) If D 1s a vertex of s, then D 1s also a vertex of st

Proof

(1) If H 1is an origin of s, then for some Brauer specles b

of H/Op(H) with origin H/Op(H), (s,eH b) = 1. Thus by lemma
b
2.16.10,
(s"e ) = (s, V(e ) = 1.
>Tplnd o0 glnd oo

bl
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Hence H[nJ 1s an origin for st
(1i) By 2.14.1, we may take D = Op(H), and the result follows

from (1). o

2.17 Almost Split Sequences

In this sectlon, we construct certaln short exact sequences,
called almost spllt sequences, of modules for the group algebra kG.
These were first constructed by Auslander and Reiten [5] in the more
general context of modules for an Artin algebra. We shall restrict
our attention to group algebras, since this makes the arguments easier
to follow. It turns out that the exlstence of these sequences depends
upon an Interesting identity, namely Theorem 2.17.5. The reader
happy with abstract categorical arguments should also see Gabriel's
lmpressively short proof of the exlstence of almost split sequences
for arbiltrary Artin algebras in [53]. See also the remark at the end
of 2.17.

In the next section we shall see that these short exact sequences
play an important role 1n the structure of A(G), namely they give us
certaln 'dual elements' under the inner products 1lnvestigated in
sectlon 2.4, to the basis of A(G) consisting of indecomposable

modules.

2.17.1 Lemma
Let U and V be kG-modules. Then there 1s a natural dualilty

(u,nH « (v, amyloC

Proof
By 2.1.1(iv), we have
#*
w,mb% = " 3 u,x)1eC

1,6

* 1,G
and (v, ®U) = (k,V ® QU)

* *
By Schanuel's lemma, V ® QU = @(V ® U) # P for some projective
module P, and so by 2.3.4,

#* #*
e, v o e« (k, (v & Uy ¢ .
Thus we must show that
* #* #*
x, oV ® U = (v @ u)T T .

In fact we shall show that for any module X,
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e, e % = (Lt HY

Without loss of generality, X has no projective direct summands.
Let PX be the projective cover of X. Then since kG 1s a symmetric
algebra, there are as many copies of the trivial module in the head

as in the socle of PX’ and there 1s a natural isomorphism between
the spaces glven by multiplication by Z g.
geG
1,G G * *
Thus  (k, X)) & (6P = (B0 & (L HY o

Applying 2.17.1 twice, we get

2.17.2 Corollary (Feit)
(U,V)l’G &~ (RU,RV)l’G

The isomorphism of 2.17.2 may be given the following interpreta-
tion. Let PU and PV be the projective covers of U and V. Then
any map from U to V 1lifts to a map from Py to PV’ and the image
of QU 1lies in &V. Thus we obtain a (not necessarily unique) map
from ®U to ®V. However, if a map from U to V factors through
a projective module, then so does the induced map from &U to &V,
and vice-versa. Thus we get a well defined inJection, and since the
spaces are of equal dimension, this i1s an isomorphism.

In particular, when U = V, we write Egng(U) for (U,U)l’G.
The above map from Egng(U) to ggng(ﬂU) clearly preserves
composition of endomorphisms, and so we have the following result.

2.17.3 Proposition
There is a natural ring isomorphism

Ende(U) < Ende(RU). o

But this means that both sides of 2.17.1 are Ende(V)—End U)

kG(
bimodules. Is the given isomorphism a bimodule isomorphism?
Clearly the first two isomorphisms given in the proof are bimodule

isomorphisms. So we simply need the following proposition.

2.17.4 Proposition
There 1s an Ende(V)—Ende(U) bimodule isomorphism
# * #
(V' 3 U,k)l’G = (V8 en)to%) s
namely the map induced by the map
# * #*
Y: (V ® U,k)G > (V3 SeU)l’G)
#

®
given as follows. For y e V*, x e Py and oe (V & U,k)G,

((y* ® x)( zG g) + (V* ? RU)g)(wY) = (y* Bx 4V » eU)p .
ge
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Proof

* *
V' ® SBU)G is spanned by elements of the form (y ®x)( ZG g)
ge

# *
with y @ xg V @ PU. To see that vy 1is well defilned, let ays

* %
ane V ®P with (a; - a.)( 2 g)e (V ® RU)G. Then any
2 U 1 2 ge G 1

homomorphism from V* b PU to k with V* ® QU in its kernel has

al*— as ig its kernel. ¥ 1s clearly suzjectivi,eaid . 1
(V' ® U,k)l ¢ Ker(y). By 2.17.1, dim(V ® QU)~>7) = dim(V ® U,k) *",
and so y 1induces an isomorphism, which clearly preserves the bimodule
structure. o

2.17.5 Theorem
There are Ende(V)—Ende(U) bimodule isomorphisms
%
(0,0 = v, 2?8 2 Exel(v, 220)

Proof
We have already proved the first isomorphism. To prove the second,
we have a short exact sequence

0»522U..P52U..52U»o

which gives rise to a long exact sequence (see 1.4)

0> (v, ?0% 5 (w2 )% - (v, 20y

1 2.\G 1 G
(—)ExtG(V,SE U) »ExtG(V,PRU) = 0.

Since the image of (V,PSZU)G in (V,SZU)G is exactly (V,QU)E, the
second isomorphlsm follows. The naturality of the long exact sequence
means that this is a bimodule isomorphism. o

We are now ready to examine the almost split sequences.

2.17.6 Definition
An almost split sequence or Auslander-~Reilten sequence is a short

exact sequence of modules 0 - A + B% C +0 satisfying the following
conditions.

(i) A and C are indecomposable.

(ii) o does not split.

(ii1) If p: D »C 1is not a split epimorphism (i.e. unless C
is isomorphic to a direct summand of D and p 1s the projection)
then p factors through c.

Auslander and Reilten proved for a general Artin algebra that for
each non-projective C there 1s a unique almost spllt sequence ter-
minating in C, and gave a recipe for obtaining the module A. It
turns out that for group algebras A = 920, as 1s seen in the
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following theorem.

2.17.7 Theorem

Let C be a non-projective indecomposable kG-module. Then
there exists an almost split sequence terminating in C. This sequence
is unique up to isomorphism of short exact sequences, and its first

term is isomorphic to 920.

Proof

(1) We first prove existence. By 2.17.5, we have
*
((c,0)*H " = mxei(c, 2°0).

If C 4is not projective, then (C,C)l’G is a local ring by 1.3.3,
since (C,C)g is not the whole of (C,C)G. Thus as an
Egng(C)—Egng(C) bimodule, or even as a one sided module, Exté(C,QZC)
has an irreducible socle, and any two extensions generating this socle
are equivalent under an automorphism of C, and hence give rise to
equlvalent short exact sequences. We claim that a generator
0 - 920 - XC $c¢cs0 for SocExté(C, 920) has the desired properties.
Clearly properties (1) and (ii) are satisfied, so we must check (iii).
Let  v:eC » 2°C_ with image in (2C, 220)7*% = Bxel(c, 2%C) our
generator for SocExté(C,92C). Thus our short exact sequence 1s a
pushout of the form

0 > Q@C > PC > C > 0
" I
0 >Q°C > X > C > 0

C o

by construction. Given p: D> C we get a diagram

iD
0 > @D > P > D > 0
1 D
: il
0] > QC > PC > C > Q0
vd “
0 >92C > X > C > 0
o! C o

Then
p ¢ D> C is a split epimorphism

o pg (C,D)l’G - (C,C)l’G has 1. in its image

e pg is surjective

o o ¢ Extlc,e%0) (=(ec, 220)1 %) 5 Exeg(D,2%0) (2(2D,2%0) 1Y)
is injective

where p# is the adjoint of py under the duality given in theorem

2.17.5.
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p# does not have y 1in its kernel
1
oY £ (SBD,SBZC)Cl}

1
® p ¥ does not factor through iD

s

s

e o does not factor through [}
. . 2 . . _ ! .
F?r if e PD -~ ®°C with 1y = p y and “'PD - Pc - XC then
W = Ao vanlshes on ®D, and so gives a map from D ¢to XC whose
composite with o is 0.
(11) We now prove uniqueness. Suppose 0 + A +B » C - 0 is

another almost split sequence terminating in C. Then we get a

diagram
0 > 920 > XC > C > 0
gl I
0 > A > B > C > 0
4L
0 > 920 > X > C > 0

o
The map a9, is not nilpotent, and is hence an isomorphism by
1.3.3. Hence by the five-lemma, the two sequences are isomorphic. a]

2.17.8 Proposition
!
If 0 - A 3 B> C~>0 is an almost split sequence and p:A > D
is not a split monomorphism (i.e. unless A 1s isomorphic to a direct
summand of D and p 1is the injection) then e factors through o'.

Proof
Suppose p does not factor through o'. Then in the pushout

1
[}

0 >

the second sequence does not split. Thus we may complete a diagram

0 R, > C 0
I

0 D > E C 0
A

0 > A B > C > 0

Since ppe!' 1s not nilpotent it is an isomorphism, and so p is

a split monomorphism. o

2.17.9 Corollary
If 0»-A->B-+C-> 0 is an almost split sequence then so is



#* # #*
0-+-C - B -+~ A -+ 0. o

2.17.10 Proposition

An almost split sequence 0+ A > B+ C » 0 splits on restriction
to a subgroup H if and only if H does not contain a vertex of C
(or equivalently a vertex of A)

Proof
Suppose the sequence splits on restriction to H. Then for any
H-module V,

dimkHomkH(V,B+H) = dimkHomkG(V,A+H) + dimkHomkH(V,C*H)
and so by Frobenius reciprocity (2.1.3)

. G _ G G
dlmkHomkG(V+ ,B) = dimkHomkG(V+ LAY + dimkHomkG(V¢ ,C).

This means that
0 » Hom, o(V4%,8) » Hom .(v4+%,B) % Hom .(v4+%,c) » 0
%G ; Mg > kG >

is exact (c¢f. 1.3). Thus C is not a direct summand of V+G, since
otherwise by definition of almost split sequence, the projection
v4+% 5 ¢ would not be in Im(s).

Conversely if the sequence does not split on restriction to H
then the identity map on C+H is not in the iTage of
HomkH(C+H,B+H) -+ HomkH(C+H,C+H) and hence FPH,G(lC+H) is not in

. G G
the image of ?OmkG(C+H* ,B) -+ HomkG(C+H+ ,C) (2.1.3). Thus the

natural map Fr (1 ): C+ +G + C does not 1ift to a map from
H,G C+H H

C+H¢G to B, and so by definition of almost split sequence, it is
a split epimorphism. Thus H contains a vertex of C (2.3.2). @

Remark

In fact, almost split sequences also exlist for lattices over an
R-order (see [6], [76], [80], [Bl]) and hence for RG-modules (recall
the convention introduced in 1.7 that RG-module means finitely
generated R-free RG-module). The construction, however, is very
different, so that for kG-modules A = 920 while for RG-modules
A =2 @C. In some sense, this corresponds to the fact that for kG-modules
(o, x (v, eu)t°% (see 2.17.1 and 2.17.5) while for RG-modules,
(o, = (v,0nd.

The existence of almost split sequences for RG-modules does not
seem to lead naturally to non-singularity results of the type proved
in 2.18, but most of the theory developed in sectlons 2.28 - 2.32
applies with not much change, to modules for RG (see [92]).
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2.18 Non-singularity of the Inner Products on A(G)

In this section we use the almost split sequences, constructed
in the last section, to investigate the inner products ( , ) and
< 5 > On A(G)-

2.18.1 Lemma
If C and D are indecomposable kG-modules, and

2

0 —> @ C —> XC — C —> 0

is the almost split sequence terminating in C, then the following
hold.
(1) If C #D then

0+ (0, 220)% + (0,x% + (0,0)% 4 0
is exact.
(ii) The sequence
0 (¢,270)% » (0,x)% » (€,0)% » socExt(C,e%C) » 0
is exact, where this 1s the truncation of the long exact Ext sequence.

Proof
This follows immediately from the proof of 2.17.7. o

2.18.2 Definition
If V 1is an indecomposable kG-module, let

ay = dimk(Ende(V)/J(Ende(V))).

Note that if k 1s algebraically closed then dy = 1 for all modules
V.
Let (V) = {éoc(v) if V is projective

XBV - @V - ¥ otherwise
as an element of A(G), where

0 —> QV —> Loy — 5V ——> 0

is the almost split sequence terminating in xV. Then (V) 1is
called the atom corresponding to V. We extend T to a semilinear

map on A(G) by setting

T(ZaiVi) =z aiT(Vi).
The reasons for these definitions will become apparent.
2.18.3 Lemma

v.t(V) = V - Rad(V) 1if V 1is projective
vV + QZV - XV otherwise

where



86

0 —»SZZV—>XV—>V—>O

is the almost split sequence terminating in V.
(Recall v = Pl - @(1))

Proof

If V is projective, this is 2.4.2(1ii). If V is not projective,
then 2.4.2(iii) shows that v.t(V) = =@(<z(V)) =V + RZV - XV modulo

projectives. But by 2.11.3, A(G) = A(G,1) & AO(G,l). Since
(V) ¢ AO(G,l), so 1s v.t(V). Since V + 92(V) - Xy 1s also in
AO(G,l), this proves the lemma. o

2.18.4 Theorem
(Vy,v.t(W)) = < V,t(W) > = {dv if vaew
0 otherwise.
Proof
If W is projective, this follows from 2.4.4. Otherwise,

<V,t(W)>= (V,v.t(W)) by 2.4.3
(V.0 + 9°W - X;) by 2.18.3
gd if Vew

v
0 otherwise by 2.18.1. o

2.18.5 Corollary
<, > and ( , ) are non-singular on A(G), in the sense that

given x # 0 in A(G), there is a y & A(G) such that <x,y># 0
and a z & A(G) such that (x,z) # 0.

Proof
If x = ZaiVi then +1(x) = 2 aiT(Vi), and so
|2 d, 2 O

vy

with equality if and only if x = 0. Thus we may take y = v(x)

< X,T(X) > = Zlai

and 2z = V.y. o

2.18.6 Corollary
Suppose U and V are two kG-modules, and for every

kG-module X,
dimkHomkG(U,X) = dimkHomkG(V,X).
Then U = V.

Proof
This follows immediately from 2.18.5. o

2.18.7 Corollary

Suppose A(G) = Al @ A2 is an ideal direct sum decomposition of
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A(G), and suppose A; and A, are closed under the automorphism *

of A(G) given by taking dual modules. Then <, > and ( , ) are
1

non-singular on A; and Ay, and in A(G), AT = A, and A5 = A

wlth respect to either inner product.

Proof
Let ™ and Ty be the projections of A(G) onto Al and
A2. Then given x ¢ Al and ¥ ¢ A2, we have

*
<X, ¥y> = <1,x .y> = <1,0> =0

since Al'AZ = 0. Thus if x ¥ 0, < x,nl(r(x))> =< x,t{x)> # 0.

Thus < , > 1s non-singular on Al and A; = A2. The same argument
works for ( , ), with v.t(x) 1in place of =(x). o
2.18.8 Corollary

(1) In(iy o) = Ker(rg )"

(11) Ker(rG’H) = Im(iH,G)

(111) A(6,H) = a_(c,m"
(1v) A (G,H) = AG,H)
Proof

(1) and (ii) follows from 2.18.7 and 2.2.2(i), while (iii) and
(iv) follow from 2.18.7 and 2.15.6. o

2.18.9 Corollary

The following are equivalent condition on an indecomposable
kG-module V.

(i) V 1is H-projective.

(ii) T(V)+H # 0.

(iii) Tensoring with V splits every H-split short exact
sequence.

Proof

(1) « (ii) follows from 2.17.10, while (i) = (iii) follows from

2.18.8 (iii). o
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2.18.10 Definitions

The glue for a short exact sequence 0 > X' > X » X" - 0 1is the
element X - X' - X" of A(G). Thus if V is a non-projective
indecomposable then (V) 1s a glue.

A glue is irreducible if 1t 1s non-zero, and is not the sum of
two non-zero glues as an element of A(G).

2.18.11 Lemma
If X - X' - X" 1is the glue for 0 -+ X' » X » X" > 0 then for
any module V, <X - X' - X", V> = 0.

Proof
The number of copiles of Pl in the direct sum decomposition of
X ® V 1is at least the sum of the number of copies in X' ® V and the
number of coplies in X" ® V since Pl is both projective and
injective. o

2.18.12 Theorem

(1) Every non-zero glue can be written as the sum of an atom
and a glue. Thus every irreducible glue is an atom.

(i1i) The atoms are precisely the simple modules and the
irreducible glues.

Proof
First we note that the sum of two glues is a glue, since we can
add the exact sequences term by term as a direct sum.
(1) Suppose 0 > Y' &+ Y T ¥Y" . 0 is an exact sequence with
Y - Y' - Y" # 0 its glue. If Y" 1s decomposable, Y" = W' & 2",
then Y - Y'" - Y" 1is the sum of the glues for

0> n tW") 5 Yo 2" 50
and

0~y > o L) > wn > o.
At least one of these is non-zero, and SO we may assume by induction
that Y" is indecomposable. Thus n 1s not a split epimorphism.

Letting 0 - QE(Y") > Xyn= Y" > 0 be the almost split sequence
terminating in Y", we have the following commutative diagram.

0 > y! > Y > y" > 0

4 L

0 —°Y" > XYII——‘> y"

> 0

The left-hand square is a pushout diagram, and so we get an exact

sequence
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0 —> Y' — Y® " Y" —— XY"———4> 0

The given glue 1s the sum of the glue for this sequence and the atom
corresponding to the almost split sequence terminating in Y".

(11) If V is a projective indecomposable module, then < (V)
1s a simple module. If V 1s a non-projective indecomposable, then
t(V) is a glue. Suppose it 1s not irreducible. Then by (i) it is
the sum of another atom, say T (W), and a glue. But

<t(V) =t (W),W> = —dw by 2.18.4, contradicting 2.18.11. Conversely
by (i), every irreduclble glue 1s an atom, and clearly every simple
module 1s an atom (V = T(PV)). o

If k 1is algebraically closed, we formally think of each
representation V as consisting of (possibly infinitely many) atoms,
namely the simple composition factors and some irreducible glues
holding them together.

vV = Z<V,W>T(W)
W
indec.

Thils formal expression has the right inner product with each
indecomposable module Y, because each dY 1s one, and so

< (2 <V,W>t(W)), Y> =2 << V,W>1(W), ¥>
= <V,Y> by 2.18.4.

Thus the expression has the right inner product with any element
of A(G), and so since the inner praducts are non-singular, this is a
reasonable formal sum to write down.

We consider atoms to be in the same block as the corresponding
indecomposable modules. Then in the formal sum above, an indecomposable
module can only involve atoms from the same block.

Exercises
1. Suppose kl is an extension of k. Show that the natural
map Ak(G) - Ak (G) preserves the inner products ( , ) and < , >
1

Use 2.18.5 to deduce that this map is injective. This is called the
Noether-Deuring theorem, and a more conventional proof is given in
[37], p. 200-202. ‘

Now suppose kl is a separable algebraic extension of k. Show
that Akl(G) 1s integral as an extension of Ak(G).

2. (1) Show that a short exact sequence 0 - X' > X > X" > 0
splits if and only if the glue X - X' - X" 1s zero, namely if and
only if X =X' & X" (hint: examine the long exact sequence
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assoclated wilth HomkG(X",—) and count dimensilons).

(1i) Show that a sequence 0 - 92U - X->U~> 0 (with U
indecomposable) 1s almost split 1f and only 1if its glue is irreducible.

{ii1i) Trying to generalize (i) and (ii), we might conjecture that
whenever we have two short exact sequences 0 -+ Xl *"Xl - Xl - 0 and
0 - X - X2 - X + 0 wilth Xl = X Xl = X2 and Xl = X2, there 1s
an 1somorphism of short exact sequences. The followlng 1s a counter-
example., Let G be the fours group (a direct product of two copies
of the cyelic group of order two), and k a fleld of characteristic
two. Let X; = Xj = Rz(k) Then there are isomorphic one dimensional
submodules X; and X, with X /xl % X,/X; % k ® R(k), but there is
no automorphism of Xl taking Xl to X2.

3. (i) Show that there 1s an almost split sequence

0+ 2%(k) + 2(Rad(P,)/Soc(P))) » k + 0

(11) Let U and V be indecomposable modules and suppose k 1s
*
algebraically closed. Show that U ® V has the trivial module as a

direct summand 1f and only 1f the followlng two condltions are
satisfied

(a) U=V and

(b) p4 dim(U)

* *
(hint: consider the composite map HomkG(U,V) - U®V -»(HomkG(V,U)) H
the corresponding map HomkG(U,V) <] HomkG(V,U) -+ k 1is given by

a®b > Tr(ab). This factors as

HomkG(U,V) kY HomkG(V,U) - Ende(U) -+ k. Now use 1.3.3.)

(iii) Let U be an indecomposable kG-module. Tensoring the
sequence of (i) with U and using the fact that Qz(k) 3 U = 92(U) ®
projective (Schanuel's lemma), we obtain a short exact sequence

O—»SBZ(U)—>X—>U->O.

Show that this sequence 1s always either split or almost split,
and is almost split if and only if pA4 dim(U). (Hint: let
x =k + Qz(k) - R(Rad(Pl)/Soc(Pl)); use the identity (U*.V,x)=(V,U.x),
together with (i11) and question 2).

(iv) Show that the linear span A(G;p) in A(G) of the
indecomposable modules whose dimension is divisible by p 1s an
ideal, and that A(G)/A(G;p) has no non-zero nilpotent elements.

(v) Suppose H 1s p-hypoelementary with OP(H) eyclic. Show
that A(H;p) consists of induced modules. Use 2.2.2 and 1lnduction
to show that A(H) 1s semisimple.

(vi) Using the results of 2.13, show that for any group G,
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A(G,Cyc), the linear span of the modules whose vertex is cyclic, is
semisimple.

4, Let G be an elementary abellan group of order eight, k a
field of characteristic two, and V = Rad(Pl)/SOC(Pl).

(1) Show that if W 1s a submodule of V then either dim(W)=1
or dim(W N Soc(V)) > 1. Deduce that V is indecomposable.

(11) Using 3(iii), show that V ® V= @(V) & 8(V). Thus V 1is
self-dual, but V ® V has no self-dual indecomposable summands.

2.19 The Radical of dimkExtg

We define bilinear forms ( , )n for n=2 1 as follows. If U

and V are kG-modules, we let

(u,v), = dimkExtg(U,V).

We extend this bilinearly to give (not necessarily symmetric) bilinear
forms on the whole of A(G). The purpose of this section is to use

the results of the last section to obtain information about the radicals
of these forms, which in fact turn out all to be the same.

2.19.1 Lemma
(1) There is a natural isomorphism Extg(U,V) ~ (ﬁnU,V)l’G
(11) (U, V), = @",V) -<e"U,V » = ((1-w)e"U,V).
Proof

(1) The short exact sequence
0 - QU » PU - U0 .

gives rise to a long exact segquence

0> (0,07 > (2, 2 (20,1

(;)Exté(U,V) > Extg(Py,V) » Exté(ﬁU,V)—i)
= 0

2
C;Eméahw »EHG@UN)+
=0

Thus Ext3(U,V) = (20,v)%/In(e) = (2U,")1*%, ana for n = 2,
Ext§(U,V) = Exth T(U,V).

(11)  dim(e"U, 1% = ("u,v) - <™,V > by (1)
((1-w)e"u,V) by 2.4.3. a

2.19.2 Definition

Md(,)n={xs MGN(XJ%]=OfM’ﬂl v e A(G)}.
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Since 2.4.3 implies that (x,y) = (u2y,x) we have

Rad( , ), = {x e A(G) : (y,x), = 0 for all ¥y & A(G)}.

2.19.3 Lemma
Suppose U 1is a periodic kG-module with even period 2s, i.e.
92S(U) =~ U, Then as elements of A(G),

U = u’S.u.

Proof
By 2.4.2(11), we have the following congruences modulo A(G,1).

2 ZS.QZS

U=z -u.2(U) = u .QZ(U) = .. = U U = uZS.U

Now u = 1 modulo AO(G,l), and so U = u2s

result now follows from 2.11.3 o

.U modulo AO(G,l). The

2.19.4 Theorem
Rad( , ),
and elements of the form

is the linear span in A(G) of the projective modules

es i i
o (=1)" 2 (U)
i=1
for U a perilodic module of even period 2s.
Proof

Suppose X = EaiV:.L ¢ Rad( , )n' Then for Vi non-projective we

have

_ n

0= (x,7(R Vi))n
= (@"x,7(@"V)) - < @%x,7(2"Vy) > by 2.19.1
(x, T(Vi)) - < X,T(Vi)>

= - (X,V.T(gvi)) - <X,T(Vi)>
(since by 2.18.3 if v, is non-projective T(Vi) = —V.T(Bvi))

= - < X,T(Bvi)> - < X,T(Vi)>

= — (coefficlent of BVi) - (coefficient of Vi)
Hence

(coefficlent of V;) = - (coefficlent of QVi)

Thus if a; # 0, Vi is projective or periodic of even period.
Conversely, if V is periodic of even period 2s, then by

2.19.3 we have

(1-u) (L+ut ... +u=s"hy = ¢



and so  (1+u+ ... +u°>"1)V ¢ Rad( , ), by 2.19.1. But
2s-1 &8 it
(1+u+ ... + u YW= 2 (-1)" €V modulo projectives by
i=1

2.4.2(111). o

2.20 The Atom Copying Theorem

This 1s a very short section in which we use the Burry-Carlson
Theorem to investigate the behaviour of atoms under induction. For
simplicity we assume k 1is algebraically closed.

2.20.1 Theorem (Atom Copying by Induction)

Let D be a p-subgroup of G, and let H be a subgroup of G
with NG(D) < H. Let V be an indecomposable kG-module with vertex
D and Green correspondent W. Denote by ~t the map given in 2.18.2
both for G and for H. Then

~and = o)
Proof
By the Burry-Carlson theorem (2.12.3), if U is an indecomposable

kG-module, then U+H has W as a direct summand if and only if
U >~ V, and then only once. Hence

< U,T(W)%G - 1(V) > = < U¢H,T(W)> - <U,=(V) > by 2.4.6
= 0 by 2.18.4,
since all the dv's are 1. Hence by 2.18.5 T(W)+G - (V) = 0. o

Exercise
Suppose V 1s a kG-module with a Sylow p-subgroup P as vertex,
and W 1is the Green correspondent of V as a kNG(P)—module. Show

that T(V)+NG(P) = g(W).

2.21 The Discrete Spectrum of A(G)

In this section, we investigate what happens when we project the
information we have obtalned onto a finite dimensional direct summand
of A(G) satisfying certain natural conditions (2.21.1). We obtain a
pair of dual tables Tij and Uij analogous to the tables of values
of Brauer species on the set of irreducible modules and the set of
projective indecomposable modules. Indeed, the 'Brauer summand' A(G,1)
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turns out to be the unique minimal case (2.21.9). The set of species
1] 1
of all such summands forms the discrete spectrum of A(G).

2.21.1 Hypothesis
A(G) = A ® B 1s an ideal direct sum decomposition, with projec-

tions nl:A(G) + A and n2:A(G) -+ B. The summand A satlisfies the
following conditions.

(i) A 1is finite dimensional

(i1) A 1s semisimple as a ring

(1ii) A 1is freely spanned as a vector space by indecomposable
modules

(iv) A 1s closed under taking dual modules.

Remarks
(1) Any finite dimensional semisimple ideal I 1is a direct

summand, since

A(G) = T @ n Ker(s)
S

where s runs over the set of species of A(G) not vanishing on I.
(Note that if I as an ideal of A(G) then any species s of I
extends uniquely to a species of A(G). TFor let x ¢ I with
(s,x) = 1. Then for any y ¢ A(G), and any extension t of s to
A(G), we have (t,y) = (t,y)(s,x) = (£,y)(t,x) = (£,xy) = (s,xy).
Moreover, it i1s easy to check that (t,y) = (s,xy) does indeed define
a species of A(G).)

(ii) If A satisfies 2.21.1 (i), (i1i) and (iii) then the span
in A(G) of A and the duals of modules in A form a summand
satisfying (i), (i1), (iii) and (iv). Thus (iv) is not a very severe

restriction.

If Al and A2 are summands both satisfying 2.21.1 then so are
A1 + A2 and Al n A2. We define A(G,Discrete) to be the sum of all
A satlsfying 2.21.1. Any element of A(G,Discrete) 1lies in some
summand A satisfying 2.21.1.

We write AO(G,Discrete) for the intersection of the B's given
in 2.21.1. Note that A(G,Discrete) & AO(G,Discrete) is not

necessarily the whole of A(G)  (the fours group is a counterexample).

2.21.2 Conjecture
Let H = G. Then

(1) ry H(A(G,Discrete)) c A(H,Discrete)
3

(ii) iH G(A(H,Discrete)) < A(G,Discrete)
3
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2.21.3 Examples

(i) By 2.11.3, A = A(G,1), B = AO(G,l) satisfy 2.21.1. We
shall call this case the Brauer case.

(ii) It is shown in [M.F. O'Reilly , 'On the Semisimplicity of
the modular representation algebra of a finite group', Ill1. J. Math.

9 (1965), 261-2767] that the ideal A(G,Cyc), spanned by all the A(G,H)

for H cyclic, 1s a finite dimensional semlsimple 1deal (see also
exercise 3 to 2.18). We write A(G) = A(G,Cyc) & AO(G,Cyc). Thus
A = A(G,Cyc) and B = AO(G,Cyc) satisfy 2.21.1. We shall call this
case the cyclic vertex case, since A(G,Cyc) has a basis consisting

of the modules with cyclic vertex.

(iii) Let G be the Klein fours group and k an algebraically
closed field of characteristic 2. Then Ak(G) has infinitely many
summands satisfying 2.21.1. Thus A(G,Discrete) 1is infinite
dimensional. It turns out that AO(G,Discrete) is isomorphic to the
ideal of €[X,X *
X =1 (for more information see the appendix). Thus the set of

] consisting of those functions which vanish at

species of A(G) breaks up naturally into a discrete part and a

continuous part. Is there a general theorem along these lines?

2.21.4 Lemma
Suppose A(G) = A ® B as in hypothesis 2.21.1. Then < 5 >
and ( , ) are non-singular on A,

Proof
This is a special case of 2.18.7. o

2.21.5 Definitions
Let Sq5 s Sy be the species of A, and Vl’ ey Vn the
indecomposable modules freely spanning A. Let Gi = T(Vi) (see
2.18.2).
The atom table of A 1is the matrix
Tyy = (sj,Gi) = (Sj,ﬁl(Gi))
The representation table of A 1is the matrilx

Ui,j = <S,j )Vi)

Let A = my(a(G)) and a4, = AN a(@).
2.21.6 Lemma
A and A, are lattices in A, and la/agl = det(<Vy,V5>) if k
is algebraically closed.
Proof
For x & a(@), <nl(x),Vi> = <x,Vi> ¢ Z. Moreover,

<Gj’vi> = 5ij if k 1is algebraically closed. al
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2.21.7 Lemma

If x ¢ a(G) then (si,x) is an algebraic integer.

Proof
The Z-span in A of the tensor powers of ﬂl(X) form a sub-
lattice of A. Since thils lattice satisfles A.C.C., this implies
that for some m,

(ry ()™ & Z-span(L,my (x), .. 5 (v (x)™ ),

This gives a monlc equation with integer coefficients satisfied by
the value of every species of A on x. a

2.21.8 Open Questlons
(1) For x ¢ a(G), is (si,x) always a cyclotomic integer?
(i1) Is A/AO always a p-torsion group?

2.21.9 Lemma
A(G,L)c A (n

Proof

Since nl(l) is the identity element of A, it 1s non-zero,
and hence by 2.21.4, for some J, <Vj,l> = <Vj’"l(l)> # 0. Thus
by 2.18.4, some Vj is equal to Pl‘
Now look at the set of values (b ’Pl) of Brauer species on Pl'
Suppose there are m different values (bgl’Pl) e s (bgm’Pl)'

Let N be the kernel of the action of G on Pl' This has
order prime to p since Pl is projective. (In fact N = Op,(G)
but we shall not need to know that). Then the bg's for which
(bg’Pl) = dim(Pl) are precisely those bg with g ¢ N (how can
dim(Pl) be written as a sum ?f dim(Pl) roots of unity?). Since
the Vandermonde matrix (bgi,gJ(Pl)) is non-singular, some polynomial
in Py (which is hence an element of A) has value |G/N| on
those bg for which (bg’Pl) = dim(Pl) and zero on the rest. By
2.11.3, this element must be the group algebra of G/N. Now since
A is closed under taking direct summands, every projective module
for G/N 1lies in A. But the idempotent generator e for A(G/N,1l)
lies in A(G,l) since N has order prime to p, and every Brauer
species of G has value 1 on e. Thus e 1s the idempotent

generator of A(G,l), and so A(G,1) €< A. a

Since Pl ¢ A, we may choose our notation so that P1 = Vl‘
By 2.2.1, the matrix Uij is invertible. We define
L, =z @™
J

m, = (U~

1 i,j<l’vj>

il
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Thus <1,Vi> = 3 Ui.m., and so for any x e A(G) and y e A we

3 J
have the following equations.
<l,y> = g (sj,y)mj
# *
<X,y> = <l,x ¥ >= I (8.,x )(s,:,y)m,.
3 J J J
But now by 2.21.4, this means the "ﬁ are non-zero, and sO we

may define
cJ = c(sj) = CG(sj) = l/mJ .
Thus we have, for x e A(G), ¥y & A,
*
(sj,x )(sj,y)

2.21.10 <X,y>= I S
J J
Now let p; = (si,u) = (si,nl(u)). By 2.4.3, for x & A(G) and
vy ¢ A, we have (x,y) = <X,u.y> , and so by 2.21.10 we have
#
pj(sj’x )(SJ »Y)
2.21.11 (x,y) = 2 o
J J
#

Now let )
and replacing each representation by its dual. Let C Dbe the diagonal

be the matrix obtained from U by transposing

matrix of ci's. The orthogonality relations 2.21.10 can be written
in the form Tctut =1, 1.e. ufr = c.

2.21.12 Question

Is it true in general that U# = U+, the Hermitian adjoint of U?
In other words, is it true that (s,x*) = (s,x) ? This would imply
that the Cj are real algebraic numbers. Are they algebraic integers?

2.21.13 Proposition
1
Suppose H=<G, A satisfies 2.21.1, and re H(A) c A with
1 3

A satisfying 2.21.1 (e.g. in the examplesof 2.21.3 (i) and (ii),
we could let A' be A(H,1) and A(H,Cyc) respectively) Suppose

s 1s a species of A which factors through H, and t 1s a species
of A' fusing to s. Then

cg(s) = |Ng(Orig(t)) N Staby(t): Ny(0rig(s))|.cy(t)

Proof
Choose an element x ¢ A such that s has value 1 on x
and all other species of A have value zero on x, and an element
Y € A' such that ¢ has value 1 on y* and all other species of
A' have value zero on y*. Then by 2.4.6, <y$G,x > = <y,x+H> s

and so
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* G
(s;,y f()(:i»X) (tj,y*)(tj,x+H)
CG Si

[ao)

o DM

CH(tj)

Thus by the choice of x and vy,

cG(S) ey ()
- _(s,x) - 1
ety ey ()

But the induction formula 2.10.2 gives

#
(s,y +%) = |Ny(Orig(t)) N Stabg(t): Ny(Orig(t))l
thus proving the desired formula. o
2.21.14 Corollary
Suppose s 1s a specles of two different summands Al and A2

of A(G) Dboth satisfying 2.21.1. Then the two definltions of cG(s)
colincide.

Proof
Take G =H, A= Al and A' = Al + A2 in the proposition to
conclude that the values of cG(s) as specles of A4, and of
Al + A2 coincide. o

2.21.15 Corollary
t
Let H=< G and V be an H-module, and A, A as in 2.21.13.

Then
a cq(s)
(s,V47) = z 50 (SO,V)
sOAJS H*" 0o
]
where §, Truns over those species of A fusing to s.

Proof
Thilis follows from 2.21.13 and the induction formula 2.10.2. u]

2.21.16 Corollary
Let A = A(G,1). Then cg(b,) = |Cq(e)]

Proof
If G = <g» +thils is an easy exercise. For the general case
apply 2.21.13 with H = <g> , 8 = bg and t = bg. Then
Ny (Orig(t)) n Staby(t) = Cp(g), and Ny(Orig(t)) = <g> . Thus

calbg) = [Cqle): <e>] . l<g=| = Jcg(e)]. o
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2.22 Group Cohomology and the Lyndon-Hochschild-Serre Spectral
Sequence HP(G/N,HY(N,V)) = BP*9(a,v).

In this chapter I attempt to provide a brief description of the
tools from group cohomology theory necessary for the study of
complexity theory and varieties for modules (see sections 2.24-2.27).
I have made no attempt at completeness.

A free resolution of 2 as a 3G-module is an exact Sequence

O<——Z<——XO<——— Xl <
€ al 32

with the Xi free 2G-modules. The map ¢ 1is called the augmentation
map. It is easy to see that given two free resolutions we can find

R »l
Lo

1
e’ 3 3

maps

0 «— 7 <———

and that any two such sets of maps are chain homotopic, namely given

t .
Ay and i there are maps hi.X -+ X +1 such that

- t = - -
Ay A aihi—l + h, 31+l (in fact this depends only on the X,
being free).
If V is a 2G-module, taking homomorphisms from (Xi,ai) to

V gives a cochain complex

with
Vo o= HomZG(Xi’V)

o))
i

= HomﬂG(ai+1’V) (i.e. the map obtained by
).

composition with 3141

We define cohomology groups
. . n
#h(x,v) = Ker(sd)/Im(stt
G

) 150
#°(X,V) = Ker(s®) = V

Given two free resolutions Xi and Xi,

gives rise to a map A¥: HYX',V) o omt (X,V), and since any two  X;

a map of resolutions Xi

*
are homotopic, they give rise to the same Xi' In particular, if
Ryt Xi -+ X then X, oy is homotopic to the 1dent1ty map,_and s0
u;x; = 1. Thus we have a natural isomorphism gt (X,V) = gt (X ,V), and
so the cohomology groups are independent of choice of free resolution.



Thus we may simply write Hl(G,V).

The bar resolution is the free resolution given by letting Xi

be the free #G-module on symbols [gl| RN Igi], g5 ¢ G, and
n-1 1
legql --- leylo, = [ggl -v0 le,_qJde, + 2,0 eyl - le 18141
o leyl
+ (-De,l - eyl
[Je = 1.
The submodules of X; generated by those [gll - Ign] with

some g4 = 1l form a free subcomplex which we may quotient out to
obtain the normalized bar resolution (ii(G),gi).

Remark
The bar resolution becomes more transparent if we write it in
terms of the #-basis

-1 -1 -1
(ggs-++s8n) = [gogy leyesl - lg, 18,7 e,

(Bgser-5808 = (8,85..-,8,8)
a n-1i
(Bgs+--58, )0, = iio(—l) (Bor+ 585 1981475+ 18y)
In particular, this makes it easier to check that it is indeed a
resolution.
If Xi and Yi are resolutions of Z, then so is
X ® ¥)., = 2 X ® Y , with boundary homomorphism
i t+g=i P q
pra=1i
*) (x®y)s =xoys + (-1)98) 5 9y,

Thus there 1s a map of resolutions 4: X; - (X ® X)i’ and any two
such are homotopic. Such a map is called a diagonal approximation.

For the (normalized) bar resolution, we use a particular diagonal
approximation called the Alexander-Whitney map

n
(gyl -+ lgyd8 = jio Cepl -+ leyleyy -8y ® [Bgyql - gyl

A diagonal approximation gives rise to a cup product on the
cochain level as follows. If fl e U and f2 € v then
£, v T, 6 (Ue W™ is given by x(fy v £,) = (xa)(f; ® f,). For
example, the Alexander Whitney map gives

Cepl +o legyyd(fp v Tp) = legl - legdesy - 85497

3 [gi+ll b ]gl+j]f2



101

deg(f,)
Since (flu f2)5 =fyuv £8 + (-1) £i6 v £ by (%), the
cup product of two cocycles is a cocycle, and the cup product of
a cocycle and a coboundary, either way round, is a coboundary. Thus

we get a cup product structure
u:H(G,U) & B (G,v) » BT (a,u o V),

and it 1is easily checked that since any two diagonal approximations

are homotopic, all diagonal approximations give rise to the same cup
product structure at the level of cohomology. The following properties
of the cup product are easy to verify.

2.22.1 Lemma
(1) (x v y)vz=xv (yv 2z
(1i) Let t:U @ V V ® U be the natural isomorphism. Then

(_l)deg(x)deg(y)y

= +

(x v y)t = U X. o

Remark

We shall often denote cup product operations simply by juxtaposi-
tion.

The maln properties of the cohomology groups Hi(G,V) are as
follows.

(1) A short exact sequence 0 - Vl -> V2 -> V3 -+ 0 gives rise
to a long exact sequence in cohomology:

0 > HO(G,V) » HO(G,V,) ~ HO(G,V3) 5 Hl(G,Vl) 5 Hl(G,Vz) -

(1i) Universal Coefficient Theorem

Suppose G acts trivially on V. Then there is a short exact
sequence

n+l

0 > HNG,2) ® V » HYNG,V) ~ Torf(H (G,2),V) > 0

which splits, but not naturally.

(i?i) A map gf groups Gy -+ G, gives rise to a map of cohomol-
ogy Hl(GZ,V) - Hl(Gl,V) for each 1, and these maps commute with
cup products.

(iv) Kunneth Formula

Suppose G acts trivially on V. Then there 1s a short exact

sequence

0+ 1 Hl(Gl,W) 2 B (G,,V) - Hn(Gl x G2,V)-—j)
i+j=n

7, .1 J .
C; 2 Tory(#l (6, 2,1 (6,,7)) » 0

it+j=n+l

which also splits, but not naturally.
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If k 1s a field, then
[ * *
H (Gl x G2,k) > H (Gl,k) % H (G2,k) as graded rings,

and if U and V are kGl— and kG2 -modules

H'(G) x G,,U® V) = H (G),0) ® H (G,y,V).

Note that the Kinneth Formula depends on Gl and G2 being
finite, whereas most of this section does not.

(v) If V is an kG-module, we may regard V as a ZG-module.
Then Vi, and hence Hi(G,V), have natural k-module structures, and
for 1> 0, HY(G,V) = Extg(k,V).

(vi) Suppose Gl is a subgroup of the group of units of kG,
whose elements are of the form Zaigi with Zai = 1. Then since the
concepts of resolution and diagonal approximation are purely module
theoretic constructions, we get a homomorphism of cohomology

Hi(G,V) -+ Hl(Gl,V) commuting with cup products, in the sense that

1+]

!

Bl (ay,k) » #(a,v) 2> 1 6y, V)

gla,k) » #l(a,v) —2— wlt(a,v)

commutes. Beware that this makes no sense with k replaced by an
arbitrary module U, since the action of kG on U ® V does not
commute with the inclusion kGlc+ kG.

(vii) In [48] it is shown that if A 1s a commutative ring
satisfying A.C.C. then H*(G,A) (regarding A as a 2G-module with
trivial action) satisfies A.C.C., and that if V is a AG-module finitely
generated over A, then H*(G,V) is a finitely generated module
for H“(G,A). By 2.21.1, H*(G,A) is not necessarily commutative,
but the subring HeV(G,A) =P H2i(G,A) is commutative.

Now suppose V 1is a kG-module. We form the Poincaré series

£, (8) = 3 £ aim (H(G,V)).

# #

Then since H (G,V) 1is a finitely generated module over H (G,k),
it follows from 1.8.2 and the remark following it that gv(t) is a
i) where kl s ey kr

r
rational function of the form f(t)/igl(l—t
are the degrees of a set of homogeneous generators of H¥(G,k), and

f(t) 1is a polynomial with integer coefficients.
(viii) If H 1is a subgroup of @G, we have natural maps

* ®
H(G,V) » H (H,Viy)

PESG’H « A
tH (H,V+ - H (G,V)

H,G )

) - ut e, vd%
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given as follows. A resolution of 2 as a ZG-module is also a
resolution as a 2H-module, and HomZG(Xi,V) < HomWH(Xi,V). Thus
G-~cocycles may be regarded as H-coecycles, and G-coboundaries are
H-coboundaries. Thus we obtain a (not necessarily injective) map
resG’H:Hi(G,V) > HY(H,V¢y)  (this is the map induced by the inclusion
Her G). Similarly, let {gJ} be a iet of right coset representatives
of H 4in G. Then TrH’G(x) =3 g3 xg, is in Homy,(X,,V), and
TrH,G commutes with 64+ Thus we obtain a map

o (H, V) - whE, V).

Now if X = {Xy,3,56} is a free resolution of V as a ZH-module,

then we can form the tensor product of chain complexes @ (X ® gj) as
J

H,G

a complex of 2G-modules, as in the tensor induction construction.

G
If Y 1s a free resolution of Vé as a 2G-module, we know that there
exist chaln maps Y 453X ® gJ), and that any two such are homotopic.

J
Thus for 1 even, if x ¢ Hom,,(X,,W), 2(x ® g,) ¢ Hom ~(®(X ® g,) ,w%G),
H 1 p J 2G j J
and composing with ¢ gilves

NormH’G(x) = 4. ? (x ® gJ) € HomZG(YlG:Hli,wéc).

It is shown in Lemma 4.1.1 of Benson, Representations and Cohomology,
II: Cohomology of groups and modules (CUP, 1991) [the original
reasoning in these notes was incorrect at this point]that Normpy g sends
cocycles to cocycles and coboundaries to coboundaries, and hence

induces a well defined map for i even

|a:H|1
G

1 16 .. 1c.
normH,G:ExtkH (V,W) + Exty (V®G,W®G) )

These maps satlsfy the Mackey type formulae

resG’KtrH’G(x) = I tr (r (x8))

€es .
HgX 1% K,X u®,u8 nk

(if V=W=Kk) res, ,iorm; ~(x) = I norm (res (x8)).
G, K TH, G HegK u8n K,k HS,HB K
(ix) Let P ¢ Sylp(G). Then trP,GresG’P(x) = |G:P|.x, and so
res is injective.
G,P

(Warning: 1t 1s not in general true that normy .res, H(x)=x|G:H|)
3 3

(x) Shapiro's lemma

If V 1s a 2H-module then there is a natural isomorphism
ala,v4%) = ul(n,v); more generally, if U is a 2G-module and V
is a ZH-module then there are natural isomorphilsms
Ext:(U,v4%) = Exti(Uvg,V) and Ext3(v4%,0) = Exgy(V,0+,). These are
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proved by induction on i, starting with Frobenius reciproclty and
using the long exact sequence in cohomology.

Now suppose N 2 G, and V 1s a 2G-module. Our intention is to
develop the Lyndon-Hochschild-Serre spectral sequence comparing
P9, v) with HP(G/N,HYUN,V)). We use the normalized bar resolution,
and we let Vi = Hosz(ii(G),V) for 1= 0 as above. We filter Vi
by

FPyl = vt p=o0

{f ¢ v, [gl ..]gi]f = 0 whenever
at least 1i-p+l of the gj are in

N} 0<p=1

0 i<op

It is easy to see that (vai)51 c F‘ij'+l and F’pVi > Fp+lV

and that the cup product map takes FpUi ® ryd into Fp+q(U ® V)
We also introduce a second flltration of Vi as follows.

i

i+j

PPyl = vt p <0

{f e vi: [gll..lgi]f depends only on
the cosets Ngj for j = p}, O<p=1i
0 1 <p
This also satisfies (FPv1)st ¢ FPvI*l ang ¥Pvi o FPHyl, mnis
filtration has the disadvantage that it 1s not compatible with the cup
product, but the advantage that it is easier to calculate with. The
fact that they give rise to the same spectral sequence willl follow

from the following lemma.

2.22.2 Lemma
#d (FPY1/FPvl 5) = 0.
Proof
This follows from an explicit calculation with cocycles and
coboundaries. Note that ﬁle c FpVi slnce any subset of {1,..., 1}
of size at least 1i-pt+l contains an element of ({1,..., p} . o

2.22.3 Proposition
The inclusion FPV

(1) v w(@EPvle) = mI(FVhe)
(11) &: 89 (FPVi/FPTIvE ) o B (FPVI/FPHIvE )

1 c Fle induces 1somorphisms

IR

Proof
(i) follows from 2.22.2 and the long exact sequence of cohomology.

(ii) follows from (i) and the five-lemma. o
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We now construct the spectral sequence. Set

P29 = pPsd(y) = | pPYPTA p+q = 0
0 ptq < 0
P,4 o gP»q(y) = pP»>d,pPtl,a-1
gP»9 = gP-9(v) = pP-9/pP*s

Note that Eg’q = 0 whenever p< 0 or q< 0. Set

D]’i’q = D]’i;Q(v) - Hp+q(Dg’q(V),5)

= pb+q ptg-1
= Im(&
Ker (6 | p,q)/ m( | p—l,q+l)
L Io

(o)
yP+a pPyP*a )

HD+Q(ﬁPVp+q’5)

IR

Eg,q = Eﬁaq(v)= Hp+q(Eg’q,5)
gPta (pPyP+a pPHlybta oy

HPH(FPYPHAFPHLYPYG )

14

Then the short exact sequence
0 - Dp+l,Q'l N Dp’q > Ep’q +> 0
o] o) o)
gives rise to a long exact sequence

p+l,q-1 ., Psq ___ _ oP,d
0 » D] 5d D] N E
1

Notice that by thils stage 1t does not matter whether we started
with FPyP*d op pPyP*a

Setting D, =Dy (V) = & Dﬁ’q(v)
P,4
and B = E (V) = e EPY(W)

p’q
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we fit these homomorphlsms together to make an exact couple

1
Dy ——/>D1
k;‘\\\ <
By

1.e. each palr of consecutive maps is exact.

Every time we have an exact couple as above, we obtain a spectral
sequence as follows. The spectral sequence arising from the particular
exact couple we have described is called the Lyndon-Hochschild-Serre

spectral sequence.

N . 2 . N .
Since Jlkl = 0, we have (kljl) = 0. Thus setting d, = lil’
(El,dl) is a cochain complex. We define
D2 = Im(il)

E, = H(El,dl)

12 = il|D2 D2 -+ D2

If x e Dy, write x = yi, and define xj, = yjl + Im(dl) to

obtain
Jp # Do~ Ep
Ir zZ + Im(dl) e E5, define (z + Im(dl))k2 = zkl to obtain
ky @ E2 -+ D2.

2.22.4 Lemma
The maps j2 and k2 are well defined, and

i
2
Dy > Dy
kgx\\ ¢//(j2 is an exact couple.
Ea

Proof

Easy diagram chasing. o

The couPle D2,E2,i2,j2,k2 is called the derived couple of
Dl’El’il’jlfkl' Continuing this way, we obtain exact couples

Dn,En,in,'n,kn for. each n =z 1. Dn and En are bigraded as follows.
1l,q-1

P,q .pPt
Dp? Im(1 _:DP77

P,q
> Dn—l)
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. gP»49 | ppin-1l,q-nt+2
d - Ker(dn_l. En-l . En_lz )
n . gp-tl.qtn-2  op.,q
Im(dn-l C B En-l)

i has bidegree (-1,1)

jn has bidegree (n-1,-n+l)
kn has bidegree (1,0)
dn = knjn has bidegree (n,-n+l).

Each DP'Y is a submodule of Dg’q , and we write DE’q for
n an,q. Since each Eg’q is a subquotient of Eg;% we may find
n

P,4 . »P.q P.q P,q P.q P.q P,q
subgroups Dj Zo’7 227772 2577 2 ... 2 By?R o By’ 2 By

= Dg+l,q-l such that EP’9 = zP»9/BP»9  ye gert 2zP'9 =n zP-9 |
n n n oo L n

BE’q =U Bg’q and Ef’q = ZE’q/BE’q . Note that since Eg’q =0
n

whenever p < 0 or q< O and since 4 has bidegree (n,-nt+l), it
follows that for n > max(p,q) + 1, Eg’q = EE;& = EE’q . (In fact
it can be shown [50] that there exists a value of n independent of
p and q such that Eg’q = EE;% = EE’q ).
Remark

The maps dn:Eg’n_l -+ EE'O are called the transgressions or
face maps.
2.22.5 Theorem

1 29w
i) 5w

R

Homg,y (X, (6/N) , HI(N, V)
HP (G/N,HI(N, V)

14

(iii) HPY9(G,V) has a filtration FPHPT4(G,V) such that
FPuPta (G, v) /PP P (6, v) =~ EP 96, v

Sketch of Proof
(i) We have a homomorphism

o4, FPyPTa HomG/N(ip(G/N),HomN(iq(N),V))

given as follows. If ¢ ¢ %pr+q,
= g P,q =
(|- Ing1C08 |- 18,1 Cop™" ™) = [g1]..Ig,Inyl. Ingl o.
pp,q induces a map

ofr% D 9(W) =~ Homg) (X, (6/M) ,HI(N, V)

MG/N
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pP.q

and a somewhat lengthy calculation shows that Py

is an isomorphism.
(ii) A similar calculation shows that
a9 oPod - (1) pE-l,q 5
where 6 1s the coboundary homomorphism for the complex
HomG/N(XP(G/N),Hq(N,V)). Thus pg’q induces an isomorphism from
B 9wy = H@EE 9w ,dap) ro  wP(e/N,HI(N, W)
= H(Homg (X, (G/N) ,HI(N, V) ,6) .

iii or n > max(p,q , we have EZ’" = E_’*' , and the

exact sequence

> pP-0+2,qtn-2 > pP-ntl,gin-1 ~gP 4 > pPtl.q -
k n i n J n k n
n n n n
reduces to

0 » Im(uPTI(FPTlyPHey - HP+q(c,V))-f)

(;>Im(HP+Q(§PVP+Q) N Hp+q(G,V)) N EE,q 4+ 0

Thus 1f we filter Hp+q(G,V) by letting

FPEPHY(G,v) = m@PTI(FPVPTYy o wPtd(c, )
we have

FPrPT (g, v) = #P9 (e, V)

FPRPYI(G,v) /FPTIEPTa(c,v) =~ EP-9(V)

PPt vy = 0. o

We express the information given in the above theorem by writing
wP(6/n, 13y, v)) = PTG, V).

Another computation similar in nature to all the others we have
avoided writing out shows that the natural cup-product structures on
the two sides of 2.22.5(i) are related by

1 | 1 1 ]
(uwv V) pE+P »qtq’ _ (_1)P q(u pg,q v v p? »q ),
(we BD W), v e BR'IW), uvve B AU 2 1)),

Since the cup product on E; satisfies

(u v V)dl =u v le + (_l)deg(v) ud1 v v

] )
(where deg(v) =p' +q'" if v e Eg 9 ), it follows that a cup
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product structure on E2 is induced, and so on, at each stage
satisfying

_ . deg(v)
(u v v)dr u vdr + (-1) udr vV,

The cup product structure at the E_ level is just the graded version
* *
of the cup product H (G,U) ® H*(G,V) - H (G,U ® V).
Setting V equal to the trivial module Kk, we get maps

P.,q 2 P a4’ L gPtP'.atq’

EL (U) ® E (k) E 49
making Er(U) into a module over Er(k), and likewise E_(U) 1into a
module over E_(k).

As an example of an easy application of the spectral sequence we
give the following.

2.22.6 Proposition
There is a five term exact sequence

0 - ul@/m, v - ule, vy - 5lay, Y L w2e/n,vY - w26, V)
Proof
By 2.22.5 we are looking for maps
0.1 g0:2
0 el . [Sho] -sdl Lg20 L [T
w EE’O
We have at the E, level the following maps
an
r
)4
o Eg’l » .
a0t
E%"O £2:0 >
Thus
E%’O o Ei’o
Eg’l = Ker(dg’l)
EZ’O o~ Coker(dg’l)
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and the proposition is proved. a

2.22.7 Corollary
Suppose G 1is a p-group, and the map G -+ G/2(G) induces a

monomorphism HZ(G/@(G),Z/pZ) - H2(G,27p2). Then &(G) = 1, i.e. G
is elementary abelian.

Proof
- *
Since H(G/2(G),2/p2) = HY(G,Z/p®) ( =[G/2(G)] , see exercise 1)
the above exact sequence implies that Hl(é(G),Z/pZ)G/é(G) = 0.
Hence @(G)/éz(G) = 1, and so $(G) = 1. o

Exercises

i

1. Let G be a p-group. Using the isomorphism Hl(G,Z/pZ)
Ext;(2/pZ,2/p2) show that HI(G,2/p®) = [G/3(®)1" =

*
(J((Z/pZ)G)/JZ((Z/pZ)G)) (hint: 1look at matrices of shape

((1) ;) over 2/p?).

2. Let G be a cyclic group of order p, G = <g>, and let V be a
2G-module. Using the resolution

[ al 82 83
0 < 2 < (2G) , < (ZG)l < (ZG)Z <
given by
e (1)0 g ]_
3, + (L), (1L + g+ + p—l) i even
i i g+ .. T8 i-1
a1 - g>i-]. i odd

calculate Hl(G,V) (it is clear that Hl(G,V) is a subquotient of
V since each term in the free resolution above is a one-generator

module). In particular, show that
z i=20
B (G, 2) = z2/p2 i even, i# 0
0 i odd
and

wi(e,z/pw) = wpx for all 1

[4

(compare this with the universal coefficient theorem).
Write down the long exact sequence associated with the short exact
sequence 0 - @ - Z > Z/pZ - 0 of coefficients.

Using the diagonal approximation
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(Dgtr 8 = Z(l)q+1Aq,r
(1)q+rAq,r = (1)q‘® (1, r even
(g)q® L), q even, r odd
- z (g, ®@", q odd,
0= i< j=p-1 d

r odd

(check that this is indeed a diagonal approximation; you will need
the identity

(Lel-g3 g)( z gl ®gh)
0=si< j=p-1

= (gt 4P H ® 1 - 18 (14gh..4+gPhH )

*
show that the ring structure of H (G,Z/pZ) is as follows.

(1) p # 2:

generators u, Vv

deg(u) = 1, deg(v) =2

u2 =0, uv = vu (i.e. E(u) ® P(v))
(i1) p = 2:

generator v

deg(v) =1

no relations (i.e. P(v)).

Show that if o 1is a generator for HZ(G,Z/pZ) then for any
G-module V, multiplication by a yields an epimorphism
HO(G,V) - HZ(G,V) and isomorphisms Hq(G,V) - Hq+2(G,V) for q > 0.

3. Use the Kunneth formula to calculate the cohomology ring of an
arbitrary elementary abelian group.

4, Let Pe Sylp(G), and let V be a kG-module. Suppose P 1is a
t.i. subgroup of G (i.e. for g ¢ G, either P& = P or

Pn P& = 1), with normalizer N. Show that Tess y is an isomorphism
between H*(G,V) and H*(N,V). (Hint: use trN’G and the Mackey
formula) . ’

5. Calculate H*(As,k) for k an algebraically closed field of

(1) characteristic 2
(ii) characteristic 3
(iii) characteristic 5.

*
(Hint: wuse question 2 to calculate H (P,k) for P ¢ Sylp(As), then
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*
use a spectral sequence to calculate H (NG(P),k), and finally use
question 4 to complete the calculation).

6. (P. Webb)
With the constants Ay as in 2.13.6, show that if U and V
are modules for G then

(i) dim Ext?(U,V) = z Ay dim Exth(Ud.,Ve.)
M Bxtg He Hyp, (G) g MRty Sy Yy
(ii) dim HU(G,V) = z Ay, dim HP(H,V)
k He Hypp(G) B
(iii) £y, () z Ay £ (t)
v He Hyp, (G) H =Wy

(in these sums, H runs over a set of representatives of conjugacy

classes of p-hypoelementary subgroups).

7. Let G be a p-group and V a kG-module. Using the long exact
sequence of cohomology, show that

() 16 Maime (V) = dimV = |G| dim@ (V)

(ii) |G|-2dimk(V) < |G|‘1dimkzs(V) < dimkHl(G,V)

A

dim @ (V) = |G|dimV

(iii) Given n > O,

A

16/ Yim v < dimH™(6,V) = |G|PdimV
(use H(G,V) =~ HI(G, ™ 1(v)))
(iv) Given m, n > O,

dim HP(G,V) = |G| lm-n]+3 dim H(G,V) .

A

2.23 Bockstein Operations and the Steenrod Algebra

In this section we describe the operations in cohomology
necessary for the study of complexity theory in section 2.24. We
begin with the Bockstein operations.

The short exact sequence

A
O»Z»zﬁZ/pZ»O,

where the left-hand map is given by multiplication by p, gives a

long exact sequence in cohomology
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x A
—95 g, 2) Bl 19(G,2/p2) _‘a. e, —1tL

Ve define . = vouc :HI(G,2/pD) » H9"1(G,2/p2). This map B is
called the Bockstein map. It is easy to verify that the following
are satisfied.

(1) pZ=0
(11) (xy)p = x(yp) + (-1)9B) (xpyy .

We shall also need the Steenrod operations on cohomology. These

operations are in fact quite difficult to construct, and so we shall
be content to list their properties and to take their existence for
granted.

2.23.1 Theorem .
There exist unique operations Pl:Hn(G,Z/pZ) -+ Hn+21(p_l)(G,Z/pZ)
(called the Steenrod operations, or reduced power operations)

satisfying axioms (i) - (v):

(i) Pl is a natural transformation of functors.
(ii) P° =1

In case p = 2 we write Sq21 for pl and Sq2i+1 for Plﬁ
The Sq1 are called the Steenrod Squares.
(1ii) (p # 2) If deg(x) = 2n then =xP" = xP

n then xSqn = x2

(p = 2) If deg(x)
(iv) (p # 2) If deg(x) < 2n then xP =0
(p = 2) If deg(x) <n then xSqn =0

n . .
(v) Cartan formula If p # 2, (xy)P! = _ZO(xPl)(yPn_l)
—_— i=

n . .
If p=2, (xy)S¢® = 2 (xSq)(ysq™™H)
i=0

The axioms (i) - (v) imply
(vi) Adem Relations, p # 2
If b < pa then
[b/p] : (p-1)(a-j)-1 : _s

5 (_1)b+J PJPa+b ]

b-pj

Pan -

i=0

If b =< a then
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[b/p] : (p-1)(a-3) 5 :
PaﬁPb - 5 (_1)b+j < P a-J > PJPa+b-JB

j=0 b-pj
[(b-1)/p] s (p-1) (a-j)-1 ; s
+ 3 (_1)b+J 1 PJBPa+b-J
j=0 b-pj-1
(vii) Adem relations , p = 2
If 0< b < 2a then
b/2] a-1-j . .
b I ( > jo,ath-j
Sq?sq® = . Sqls
q oq Z b-2j q-oq

§=0
(viii) For p # 2, =x e HY(G,2/p2) - xPL = 0 for 1 > 0.

(ix) For p # 2, xe¢H(C,2/p?) - x Pt = (i) -1

i
Proof
See [89] and [90]. See also exercises 1 and 2 for a sketch of the
construction, and [99] for a more extensive discussion. o

The algebra generated by the Pi and # subject to the Adem
relations is called the Steenrod Algebra A(p). Thus A(p) has a
natural action on H*(G,Z/pZ). See [68] for a discussion of A(p)
and its dual.

let T= 3 P' if p#2, and T= z Sq*© if p = 2. By
i=0 1=0

axiom (iv), T has a well defined action on H*(G,Z/pz) since for
given x, only finitely many of the xPY  are non-zero. Moreover,
the Cartan formula shows that T 1is an algebra homomorphism.

2.23.2 Lemma
Let x ¢ H2(G,Z/pZ). Then

xT = x + %P P+ 2
x + xP + xB p=2
Proof
For p # 2, this follows from 2.23.1(ix). For p = 2, it
follows from (iii) and (iv). o

We are now ready to prove a theorem of Serre on Bocksteins for

pP-groups.

2.23.3 Theorem (Serre)

Suppose G 1is a p-group. If G 1is not elementary abelian,
then there are elements X{ s .., Xy of [G/é(G)]* 5 Hl(G,Z/pZ)
such that (xlﬁ) - (xrB) = 0 as an element of Hzr(G,Z/pZ).
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Proof
If G 1is not elementary abelian, then 2.22.7 tells us that the
map H2(G/@(G), Z/pZ) ~ H2(G,Z/p2) is not injective. By exercise 2
of 2.22 and the Kﬁnneth formula, if Y1 o -0 2 ¥y form a basis for
Hl(G/@(G),Z/pZ) then {yiB} U {yiyj,i < j } form a basis for
H2(G/@(G),Z/p2). Thus there is a non-trivial linear relation

*) z vi¥5 + Zbp(n® = 0
i< j 1] i Kk k‘\7k
as elements of H2(G,Z/p2). If all the ajj are zero, take r =1
and X = Zbkyk. Thus we may assume that some a; s is non-zero.
Applying the element BPl B e A(p) to the relation (*¥), and using
the relations 2.23.1 (v), (viii), (ix) and the relation B2 - s
we obtain
P . P =
o aij((yiﬂ) (YjB) (yiB)(ij) ) 0.

i<
Note that Py 2.22.1(iii), the y P commute.

Let k be an algebraic closure of 2Z/pZ, and denote by 1 the
(homogeneous) ideal of i[Xl, e, Xn] generated by the relations
among ylﬂ P ynﬁ‘ Thus we have shown that U # 0. Moreover,
by 2.23.2, U is stable under the operation of replacing X Aby
X + Xip (since (yiB) B= 0). Denote by ¥ the wvariety in k"
defined by U, and denote by F the Frobenius map
(G TN Kn)F = (Klp, e, Knp) on in‘ Then if v e ¥ , so is
A (v + vF) for any constant A,

We show by induction on 1 that the linear subspace Wi(v)
spanned by v, vF , .. , vF1 is in 9, Sgppose true for i-1.

Let 0 #w =wv+wy(vE) + .. +wi(vF') & W;(v). Let * be
a solution of the algebraic equation

i-1
i-1 W, W, w
p i ( 1—1 ( l -
by ( iy * + T O;
j-1
-1 w]_ )P
let uy ( (J—) (T for 1= j = i-1, and let
i-1 .
u= 3 uj(vFJ) 3 Wi_l(v). Then it is easy to check that
j=1
w = X%(u + uF) ¢ ¥ . Hence Wi(v) € ¥ and so W) = J Wi(v) c v,
i

This means that ¥ is a union of subspaces stable under F, and
hence ¥ is contained in the union of all hyperplanes stable under F,
of which there are only finitely many. These hyperplanes are defined
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by the equations represented by xip = 0 for the non-zero elements

X; ¢ Hl(G,Z/pZ). Thus H(xiB) represents an equation which vanishes

on Y. Thus by Hilbert's Nullstellensatz, some power of H(xiB) is
i
in 1, thus proving the theorem. o

Finally, we examine the relationship between the Bockstein

operations and the Lynson-Hochschild-Serre spectral sequence.

2.23.4 Proposition (Quillen, Venkov)

Let G be a p-group and V an kG-module. Let xB be the
Bockstein of an element x of Hl(G,z/pZ) < Hl(G,k). Regarding x
as an element of [G/@(G)]*, let H be the corresponding maximal
subgroup of G. Then

FPHPTA (G, V). (xp) = FPT2EPHAT2 (¢ v)
in the filtration arising from the spectral sequence
P (6/H,1%(H, V) - #PYY(G,V).

Proof
Let X & Hl(G/H,k) be the element corresponding to x. Then
XB ¢ E%’O(k), and since d%’o

=0 for all i, xp has images v
in E2'%0) for all i. If v ED'3(V) then by 2.22.1(i),
- . 2 =
(Vyi)di = V(Yidl) + (-1) (Vdi)Yi = (Vdi)yi
Thus the map
P,q9 ., gP,4 p+2,q
by : EY (V) - Ej W)
given by multiplication by y; commutes with di‘
We shall prove by induction on i that
(a) bE’q is an epimorphism for p =2 0
(b) bg’q is an isomorphism for p = i-1 (see diagram)
Case 1 1i =2
In this case we are looking at
HP (6/H,H9(H, V) ~ BPY2(e/m, BT, V))

and since G/H 1is cyclic of order p, the result follows from
exercise 2 of 2.22.

Case 2 i > 2, and (a) and (b) are true up to i-l.
(a) Given V ¢ EE+2’q, choose an inverse image v in E?f%’q s
so that vdi_1 = 0. By the inductive hypothesis (a), we may write
= P,q = =
v=ub; q, uce Efl] . Then Udi-lbi-l ubi-ldi-l 0 and
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ud gbti-1,q-i+2
i-1

i-1 ¢ and so by inductive hypothesis (b),

ud; ; = 0. Thus e Eg’q is an element with Gbi = V.

qn
1
v
P,q //’ pl s
EY> > » T
1 Y N4
/ /.”, i \di
i ) b
-bi epi R b Q' ;1. >
L4 | L

—>p

(b) Given u e Eg’q with p = i-1, choose an inverse image

u in EE:% wuth ud; ; = 0. Suppose Gbi = 0. Then
ub; ; = yd; 1 for some 7y ¢ Eg:i+3’q+l . Now p-i+3 = 2, and so we

may write y = zb; 1, z E§:1+I’Q+l

(a). Then

by the inductive hypothesis

(u - zd; _1)b; 7 = vyd; g - zb; 1d; 1 =0
and so by the inductive hypothesis (b), u = Zdi-l’ and so u =0
in Eg’q.
Having proved (a) and (b), it follows that

bP 4. FPHP T (G, vy /PP P (g vy o FPHIRPHIF2 (g yy /EPT3pPtAt2 ¢ vy

given by multiplication by xB is an epimorphism. The result
follows immediately. o

Exercises
1. (Construction of Sql)
Let T = <t : t2 = 1> be a cyclic group of order 2 and let

R be the resolution
1-t 1+t 1-t
0 < V4 2T< 2T < aT <

of 2z as a 7ZT-module. Let X be a resolution

3 3 3
0 < Z<EX0< 1X1< 2X2< 3

of Z as a 2G-module. Then X ® X (defined via the formula (*) in
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section 2.22) is a (not necessarily free) 2(G X T)-resolution of 2,

deg(x)deg(x,)
where t acts via (x;® x,)t = (-1) (x,®xy). X®R

is a free 2(Gx T)-resolution of 2, by letting G act on X and
act on R. Use the existence and homotopy of maps from X® R to
X ® X to show that

(i) There exists a sequence of chain maps {Dj, j 20} of
degree j from X to X® X such that D, commutes with augmenta-
tion and for j > O, aDj + Dja = Dj-l + (-l)JDj_lt.

(ii) 1If {Dj, j= 0} and {D! , j= 0} are two such sequences
then there exists a sequence {E., j 2 0} of chain maps of degree j

from X to X® X such that E; =0 and for j> 0,
j-1 - b !

.+ (- 2 = =E, .+ (- . + (D, , - D. .
°E; + (-1 77Eg Eyop + (GDIEg je 4+ (D54 - Dy_p)

(=

Given a 2G-module V, let Df be the induced map of degree -j
from Homzc(g ® X,V) to HomZG(K,V). 1f &? € HomZG(Xm,V) and
Ve HomZG(Xn’V) define u w“w v= (u® v)Di € Hosz(Xm+n_i,V).
Show that

(u v V6 = ¢Drov v o+ (DPas v
- (-l)iu i1 V- 1™y o, u .

If x e HomZG(Xn,Z/ZZ) define

Show that .
(i) If x6 =0 then (xSq¢~)8 =0 .
. s i _ *

(ii) (x6)Sq” = ((x ® x8)D_ _; + (x6 ® x6)D . ;) ®

. ; . *
(1ii) (x; + x2)Sql = xlSql + xZSq1 + (xl ® x2)Dn_i+l 6'
te
(iv) If sq a

is defined using another sequence {Dj,j > 0}
*
then xSql -x8q "= (x® x)En_i_l 5

Deduce that there are well defined operations

i

sqt . BNG,2/22) - HMME(G,2/22)

(a) If deg(x) =n then xSq" = %2

approximation.
(b) If deg(x) > n then xSqn = 0 by definition.
(¢) If x ¢ H®(G,%/2Z), choose a cochain u e Hosz(Xn,ZVAZO

since D, 1s a diagonal
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whose reduction mod 2 represents x. Then us is in
HomZG(Xn+1,ZZV4ZD( o Hosz(Xn+l,2/22)) and represents 2.x B in

Hn+l(G,Z/22). By examining (u Vn-23-1 u) & show that xSq2J

represented by the cocycle

B is

(xp) wp_pgop WU v g5y (B Fuu, o5 pu

Hence quJB = Sq2J+l and Sq2j+1 g = 0.

(d) Construct a particular diagonal approximation for the
resolution 0+« 2Z/22 +(2/2Z2)T <+ (Z/22)T + ... and use it to
n . .
show that (xy)Sq® = z (xSqb)(ysq™™1).
i=0
(e) Using the bar resolution, show that the D. may be chosen
= . o _
so that [xll..|xj]Dj = [xl|..|xj] E) [xl]..|xj]. Deduce that Sq° = 1.
Remark
Using the bar resolution of Z as a 2G-module, we can give
explicit maps Dj as follows.
If m is even, we set

[x1|..|xn]Dm =05 < tpe ?'< ;= n[xl|..|xiolxio+l..xil xil+1]..|xi2
xiz+1..xi3 xim—l+1,'.'xim] xim+l"xn ® [xi°+1|..|xil
xil+l"xi2 xi2+1|..|xi3 xim+1]..|xn 1
If m 1is odd, we set
mlL.un]%n=05io<ir:?<im5n[X%+ﬂ.4xﬁ.%fﬂ .'XH
xi2+1|..|xi3 xim_l+1|..lxim]xim+l..xn ® [xll..lxio xi°+1..xil
. xim+l|"|xn]

(and zero if n < m). Note that D0 is just the Alexander-Whitney

2 (Hard) Mimic the above construction for p odd. Let
T= <t : tP = 1> and use the existence and homotopy of maps from
X ®R to ®P(§) to construct maps P with suitable properties.
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Beware that you will also construct the zero operation many times as
well!

Remark

Serre ([84] , p. 457) has shown that the Steenrod operations
commute with the transgressions in the Lyndon-Hochschild-Serre
spectral sequence; you will need to use this fact in the following
exercises. For a more general account of how the Steenrod operations
fit into spectral sequences, see [82], [86] and [87]. What happens is
that Steenrod operations are defined on each page Eg’q of the
spectral sequence. They go up the page (increase ¢) until property
(iv) on the first component of degree tells us that they should be
generically zero. Thereafter they go to the right (increase ©p) with
a certain 'indeterminacy' which is killed on a later page of the
spectral sequence (there is no indeterminacy at the E2 and E_
levels), until property (iv) on total degree tells us that they
should be zero.

A zZero

> P

These maps commute with the differentials d and agree with the

r,
* *

Steenrod operations we know and love, on the Eg’ s E2’° and E_

levels. They also satisfy Adem relations and Cartan formulas (v. loc.

cit.).
3. Let G be the dihedral group of order eight and let Z = Z(G).

Use the spectral sequence HP(G/Z,Hq(Z,Z/ZZ)) = Hp+q(G,Z/ZZO and the
above remark to calculate the ring structure of H (G,Z/2Z).

4, Repeat the above exercise with G equal to the quaternion group
of order eight.

Remark
Quillen [74)] has shown the following by similar methods. Suppose
0+ 2/22Z » G +E -+ 0 is an extension of an elementary abelian two
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group E by a central subgroup of order two. Since
* *
H (E,Z/22) = S(E ), the symmetric algebra on the dual of E as a
vector space, the given extension corresponds to a certain quadratic
*
form Q(x) ¢ SZ(E ). Let B be the associated bilinear form. Then
) oi-1 2t
Q(x).Sq7Sq” .. Sq = B(x,x" )

i
for each i. Each B(x,x2 ) 1is a non-zero-divisor modulo the ideal

*
generated by the previous ones in S(E ), for 1 = i < h, h being
the codimension of a maximal isotropic subspace of E, and for i = h

i
the B(x,x2 ) are in the ideal generated by the previous ones. The
spectral sequence HP(E,Hq(Z/ZW,Z/ZZO)a Hp+q(G,ZVZZO therefore
converges at the Epiq level, and in fact

h-1

2" oy @ 2/221w

H'(6,2/22) = (S(E")/<Q(x) ,B(x,x°), .. , B(x,x ]

where w h is an element of degree 2h (appearing on the left-hand
2

wall of the spectral sequence). See also [100] for a partial analysis
of the corresponding case in odd characteristic.

2.24 Complexity

In this section, we shall define the complexity of a module, and
develop some properties of this notion. The Alperin-Evens theorem
(2.24.4(x1iii)) 1is one of the main goals.

2.24.1 Definitions

Suppose X 1is a k-vector space graded by the non-negative
integers. We say X has growth ¥(X) = a provided a 1is the
smallest non-negative integer such that there exists a constant "
with dim (X)) = pna-l for all n = 1. If there is no such a we
write y(X) = =,

If V 1is a kG-module, let

—>P2—>P1—>Po—>v—>0

be the minimal projective resolution of V. Namely Po is
the projective cover of V, P1 is the projective cover of the
kernel of P, -V, and so on. We define the complexity of V to be
cx(V) = ch(V) = v(B,).

The fact that c¢x(V) 1is always finite will emerge in the course of
the proof of 2.24.4, but of course easier arguments could be given if
that was all we wanted to prove (cf. 2.22, property (vii) of cohomology
and 2.31).
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The p-rank of a group G 1is the rank of the largest elementary
abelian subgroup of G.

A module V 1is periodic if for some n # 0, V = 2. The least
such n 1is called the period of V.

2.24.2 Lemma
Let G be a p-group and V a kG-module. Let xB be the
Bockstein of an element x of Hl(G,Z/pZ) < Hl(G,k). Regarding x
as an element of [G/é(G)]*, let H be the corresponding maximal
subgroup of G. Then
(G, V) /HT(G, V). (xp)) = ¥ (B, Vo) .

Proof
By 2.23.4, H™2(G,V).(xp) = FH™(G,V), and so by 2.22.5,
Hn(G,V)/(Hn_Z(G,V).(xB)) has a subspace isomorphic to Ei’n~l(V)
with quotient isomorphic to ES’n(V). Since G/H 1is cyclic, we have

FHY G,V /ENG, V). (x0)) = y(BDR(W) o EXPTL(w))

< v (H°(G/H,H (1, V)) o HL(G/H, B 1 (1, V)))

, s y@@v o B, v
(since Hl(G/H,W) is a subquotient of W for any module W; see 2.22

exercise 2)
*
= y(H (H,V)). o

2,24.3 Lemma
Let G be a p-group, and let V be a kG-module. Then

(i) If H 1is a subgroup of index p in G then
* *
y(H (6,V)) = v(H (H,V¥p) + 1
(ii) If G 1is not elementary abelian then

+(E¥(G,V)) = max ¥ (8, V4))
H<G

Proof
(i) Let y(H*(H,V+H)) = c. Let xp be the Bockstein of an element
x of Hl(G,k) corresponding to H. Then by 2.24.2,

+ (G, V) /H (€, V) . (xp)) = v(H (H,Vep).

Hence for some constant X,
dim(E™(G, V) /H 2 (G, V) . (x8)) =
dim@E 26, V) . (x8) /H 4G, V) . (x8)2) = A(m-2)¢7L

1

and so on. Thus
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dmE (G, M) = an® Lt + v @-2) + v @-w! 4
1
< x» n® for some constant {.
(ii) Choose elements X) s .. s XL of Hl(G,Z/pZO c Hl(G,k) in
accordance with Serre's theorem (2.23.3). Let H, be the correspond-

K3 * l
ing subgroups of G, and c; = T (H (Hi,V+H )). Then since the xiﬁ
i

commute (see 2.22.1(iii)), 2.24.2 implies that for some constants

)‘l’ .. ,)\r,
n n-2 ¢l

dim(H" (G,V)/H (G,V).(xlﬁ)) < Xln

dim(H2(6,V) . (xq8) /HY 4G, V) . (3y8) (x,B))

cy-1
= dim@Y2(6, V) /HHE, V) L (x,8)) = A y(n-2)
and so on. Thus
n cl—l c2-l cr-l
dim(H"(G,V)) = xln + Xz(n—Z) + .+ Xr(n—Zr)
max(ci)—l
= (Z)\i) [n]

2.24.4 Proposition
(i) If H = G then cxH(V+H) < ch(V).
(ii) If H=G and W is a kH-module then ch(W+G) = cxH(W).
(iii) ch(V) = maxY(ExtG(V,S)), where S runs over the simple
S

kG-modules.

(iv) If G 1is a p-group, ch(V) = Y(H*(G,V*)), where V* is «
the dual of V (in fact we shall see in 2.25.9 that ch(V) = ch(V))‘

(v) If 0 » vy - Vo V3 + 0 1is a short exact sequence of
kG-modules then ch(Vi) = max(ch(Vj),ch(Vk)), {i,j,k} = {1,2,3}.
In particular, the two largest complexities are equal.

(vi) ch(V oW = max(ch(V),ch(W)).

(vii) If D 1is a vertex of V, then ch(V) = ch(V+D).

(viii) ch(V ® W = min(ch(V),ch(W))

(ix) ch(V) = ch(k)

(x) ch(V) =0 if and only if V 1is projective.

(xi) ch(V) = 1 if and only if V 1is periodic @& projective.

(xii) 1If G 1is a p-group and H is a subgroup of index pn
then cxH(V+H) < ch(V) = cxH(V+H) + n.

(xiii) ch(V) = mgx ch(V+E) as E ranges over the elementary

abelian p-subgroups of G (Alperin,Evens).
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(xiv) ch(k) equals the p-rank of G.
(xv) ch(V) is bounded by the p-rank of G ior all V.

(1) A projective resolution of V is also a projective
resolution of V+H.

(ii) 1Inducing up a projective resolution of W to G gives a
projective resolution of WfG, with the property that the original
resolution is a summand of the restriction (Mackey decomposition).

(iii) Let Sl’ e s Sm be the simple kG-modules with projective
covers Pl’ e, Pm' Let di = dimkEnde(Si). If

.- R2 - Rl - Ro + V > 0 1is a minimal projective resolution of V,

then

. n s
dlmkExtG(V,Si) = dlmkHomkG(Rn,Si)

it

di.(multiplicity of P; as a summand
of Rn)
Hence dimy (R ) = z(dim(P;)/d;) .dimExt}(V,S;).
(iv) If G is a p-group, then k 1is the only simple kG-module,

and so (iii) gives

exg(V) = v (Extg(V,K))

il

¥ (Bxtg (k, V)
MCHTRY

(v) This follows from (iii) and the long exact Ext sequence.
(vi) This is clear by forming the direct sum of the resolutions.

P G . ..
(vii) ch(V) > ch(V+D) = ch(V¢D+ ) = ch(V), by (i), (ii) and
(vi).
(viii) Tensoring a projective resolution of V with W gives
a projective resolution of V ® W.

(ix) This follows from (viii) since V Ve k.

1

(x) This is clear.

(xi) Assume without loss of generality that V has no projective
direct summands. Let .o Pl - Po + V + 0 be the minimal projective
resolution of V. By 1.8.6 there is a homogeneous element x of
positive degree j in H*(G,k) such that cup product with x induces
an injection from Hn(G,M* ® S) Extg(M,S) to Ext2+J(M,S), for n
sufficiently large, and for each simple module §S. Since
Y(Extg(M,S)) < 1, this injection is an isomorphism for n sufficiently

large. On the chain level, cup product with x 1is represented by a
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map from P, to Pn+j’ which since the resolution is minimal (cf.

the argument for (iii)), is an isomorphism commuting with the boundary
homomorphism, for all n sufficiently large. Thus oM = Rn+jM

for some n, and 80 since M has no projective summands, this
implies that M= @M (Eisenbud, [47]).

Remark

There is a much easier argument over a field which is algebraic
over the ground field: pass down to a finite field, and remark that
there are only finitely many modules of a given dimension.

(xii) By induction we need only prove this for n = 1. The
first inequality follows from (i), while the second follows from (iv)
and 2.24.3 (i).

(xiii) This follows from (i), (iv) and 2.24.3(ii).

(xiv) ch(k) = mﬁx ch(k) by (xiii).

< p-rank of G by (xii).
Equality follows from the explicit structure of H*(E,k) given in
2.22 exercise 2,
(xv) This follows from (ix) and (xiv). o

2.24.5 Corollary (Chouinard)
A kG-module V 1is projective if and only if V+E is projective

for every elementary abelian p-subgroup E of G.

Proof
This follows from 2.24.4(x) and (xiii). o

2.24.6 Corollary
A kG-module V 1is periodic if and only if V+E is periodic for

every elementary abelian p-subgroup E of G.

Proof
This follows from 2.24.4(xi) and (xiii). o

2.24.7 Corollary
Let G be a p-group and V a kG-module whose restriction to

some maximal subgroup is projective. Then V 1is periodic.

Proof
This follows from 2.24.4(x), (xi) and (xii). o

Example

In [64], Landrock and Michler examine the structure of the
projective indecomposable modules for Janko's simple group J; over a
splitting field of characteristic 2., It turns out that there is a
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simple module V of dimension 20 and a subgroup H of Jq
isomorphic to L2(ll) such that Viy is projective. A Sylow
2-subgroup of H 1is contained to index two in a Sylow 2-subgroup of
Jl (which is in fact elementary abelian of order eight), and so by
2.24.7, V 1is periodic. 1In fact, there is a short exact sequence

0 +83(V) + P »23(V) » 0
and so V has period 7.

Exercises
1. Let G be a p-group and V a kG-module. Let xB be the
Bockstein of an element x of Hl(G,Z/pZ) < Hl(G,k). Let H be the
maximal subgroup of G corresponding to x, and let FPHp+q(G,V)
be the filtration associated with the spectral sequence
HP(6/m, 1%, v)) = HPTI(G,v).
(i) Using exercise 7 of 2.22, show that for q = 1,
. . + .
dim EP'9 < aim &) < |H| T2 qim L (H, Ve .
(1ii) Show that
n
. . - - + .
dlkaz’o = riz dlmkE? r,r-l g™ 2 dlmkHl(H,V+H).
(iii) Let U(n) denote the kernel of multiplication by xB on
B . n,o, oN,0 n+2,0 .
(G,V). Using the fact that the map b2 : E2 - EZ given
by cup product with x8 is an isomorphism for n = 1 (cohomology
of cyclic groups), show that
dim U(n) = dim (H"(G,V)/FPH"(G,V)) + dim (U(n) N F'H"(G,V))
n-1

< . r,n-r . n+2,0
= rZO dlmkEm + dlkam

< n+4 .. 1
< 2|H| dimy H™ (H,Viy) .

2. (Carlson [25])

Let G be a group and  V a kG-module with vertex D. For a
subgroup H of G, write Vg = W ® P where P 1is projective and
W has no projective summands, and define coreH(V) = W. Show that
there is a constant BG depending only on G such that if V has
no projective summands then

dlmkV < BG. Em:xD, dlmkcoreE(V)

E elem.
abelian
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(Hint: first reduce to G = D by the theory of vertices and
sources, then use Serre's theorem 2.23.3 together with exercise 1(iii)

and exercise 7(iii) of 2.22.)

Remark
This exercise may be used to give an alternative proof of the

main results of this chapter, see Carlson [25].

2.25 Varieties associated to modules

In this section, we introduce an affine variety associated with a
given kG-module V. This is a certain subvariety XG(V) of the
spectrum XG = Max(HeV(G,k)) of maximal ideals of the even cohomology
ring. At this point it is appropriate to remark that if A is a
commutative Noetherian graded. ring, and A' 1is the subring generated
by the Ay for i divisible by a given matural number n, then
Max(A) = Max(A'), the isomorphism being given by Mw M N A'.

Thus it is fairly natural to pass down to the even cohomology, to
obtain a commutative ring. It will turn out that the dimension of
XG(V) is equal to the complexity of V.

In the case where G 1is elementary abelian, we show that XG(V)
is naturally isomorphic to a variety Yn(V) defined in terms of the
restriction of V to certain cyclic subgroups of kG.

In the next section, we shall see how the variety associated to a
module for an arbitrary finite group is controlled by the restrictions
to elementary abelian subgroups.

Throughout this and the next two sections, we assume that k is

algebraically closed.

2.25.1 Definitions

Let g = Max(Hev(G,k)), the set of maximal ideals of Hev(G,k),
as an affine variety with the Zariski topology. Since 1&V(G,k) 1is a
graded ring, we may also consider XG = Proj(HeV(G,k)), the set of
homogeneous ideals, maximal in the ideal I of elements of positive
degree. There is a natural morphism XG\{O} »»iG, where 0 1is the
point in XG given by the ideal 1I. This homomorphism takes an
ideal to the ideal generated by the homogeneous elements in it. We
have dim(XG) = dim(Xg) - 1.

We denote by AnnG(V) thi ideal of HeV(G,k) consisting of
those elements annihilating H (G,V). The support of a module V,
written XG(V), is the set of all maximal ideals M e Xq which
contain AnnG(V ® S) for some module S. We denote by IG(V) the
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ideal of HeV(G,k) consisting of those elements x such that for all
modules S, there exists a positive integer j such that

H'(G,V ®S).xJ = 0. If H=< G, then HY(H, Vi ®8) = B (G,v ® 5t by
Shapiro's lemma, and so reSG,H(IG(V)) < Iy,

2.25.2 Lemma

Suppose 0 + V' + V+ V" 5> 0 1is a short exact sequence of kG-
modules, and Xy e AnnG(V'), Xy € AnnG(V”). Then XXy © AnnG(V).

Proof

This follows from the long exact sequence of cohomology. al

Thus in the definition of I,(V), it is sufficient to check for
S equal to the direct sum of the irreducible kG-modules.

2.25.3 Proposition
X5 (V) = Max(H®V(G,k)/I5(V)).

Proof

If M e XG(V) then since M 1is prime, IG(V) € M. Conversely,
suppose IG(V) c M. Let S be tbe direct sum of the irreducible kG-
modules. Then x ¢ M implies x) ¢ AnnG(V ® S). Hence M ¢ Xg(V). a

In particular, since IG(V) is a homogeneous ideal in B® (G,k),
XG(V) is a subvariety of X, consisting of a union of lines through
thr origin. Thus XG(V) = Proj(Hev(G,k)/IG(V)) is a projective
subvariety of Xg.

2.25.4 Proposition
*
dim(Xo(V)) = ch(V ).
Proof
Let S be the direct sum of the irreducible kG-modules. By
2.24.4(ii1), cxg(V) = T (C,V 3 8))

= v@H®V@G,V ® 9))

= @6, /I5(V)) by 2.25.3
= dim(XG(V)) by 1.8.7. o

Remark
I *
We shall see in 2.25.9 that ch(V ) = ch(V).

If G =E 1is an elementary abelian p-group, there is another
variety YE(V) which we may associate to a module V. J = J(kE) is
a subspace of kE of codimension 1, and if x ¢ J, then 1 + x is an
invertible element of kE of order p. Before defining YE(V), we
need proposition 2.25.6.
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2.25.5 Lemma
Suppose V 1is a kE-module. If x ¢ J has the property that

V+k<1+x> is free, then a basis e , .., ey of V may be found

with thé following properties.

(1) E acts upper triangularly (i.e. for g ¢ E, e;8 = e;

mod <€y41s -+ 1 g >).

(i1) The element 1 + x ¢ kE is in Jordan canonical form.
Proof
Find a basis f1 s ey fn of V such that 1 + x is in
Jordan canonical form. Then the centralizer of 1 + x in GL(V)
consists of all matrices whose p x p blocks are of the form

N N X

1 2 'p . Thus the collection of upper triangular

AMoM

O

matrices in this group form a Sylow p-subgroup, and so E may be

conjugated into upper triangular form without disturbing 1 + x. o
2.25.6 Proposition
Suppose V 1is a kG-module. If x, ye J, and x = y mod J2,
then V+k<1+x> is free if and only if V+k<l+y> is free.
Proof
Suppose V+k<1+x> is free. Choose a basis ey » . s & for V

as in 2.25.5. Then the entries on and immediately above the diagonal
for y are the same as for x. Thus yp_1 has rank at least ua/p
(since the lEE, (p+l)EE, . (n-p+l)1:-}-l rows are linearly independent),
80 V+k<l+y> ig free. o

For V # 0, we now define YE(V) to be the subset of Yg = J/J2
consisting of zero together with the image in Y; of the set of
x ¢ J such that V+k<1+x>
YE(V) =@ . Since x ¢ YE(V) if and only if the rank of the matrix
representing %P7l ig less than dim(V)/p, YE(V) is defined by poly-
nomial equations (namely the vanishing of certain minors), and is
hence a subvariety of Yg-

The following theorem was conjectured by Carlson, and proved by

is not free. For V = 0, we define

Avrunin and Scott [ 9 ].

2.25.7 Theorem
There 1s a natural isomorphism YE =~ XE, which has the property
that for every module V, the image of YE(V) is XE(V).
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Remark
Before reading the proof, if the reader is not familiar with the
cohomology of cyclic groups, he should turn back to 2.22, ex. 2.

Proof of 2.25.7
It is clear from 2.22 exercise 1 that Hl(E,k) is naturally

isomorphic to (J/Jz)*.. Now, the Bockstein homomorphism

B: Hl(E,k) - HZ(E,k) is injective (see 2.23 and 2.22 exercise 2),
and if 10 -0 5 Vg form a basis for Hl(E,k) then

{y;e}y U {yiyj: i< j} form a basis for HZ(E,k). For p odd,
the subalgebra of HEV(E,k) generated by Hl(E,k)B forms a
complement to J(HeV(E,k)). For p =2, yB = y2 for each

Ve Hl(E,k). Thus in either case, Max(HeV(E,k)) is a vector space
dual to HI(E,k)p = HI(E,k) = (J/32)¥, and hence X
isomorphic to Y

E is naturally

Now suppose Ex e J. As remarked after 2.22.1, the map
kal+x> « kE gives rise to maps H*(E,k) - H*(<l+x>,k) and
H*(E,V) - H*(<1+X>, V) commuting with cup products and the Bockstein
map. Thus x determines a line through the origin in each of Xg
and YE’ and so we must check that one is in XE(V) if and only if
the other is in YE(V) (note that each of XE(V) and YE(V) is a
union of lines through.the origin).

First, if the line determined by x in iE is in YE(V), then
V+k<l+x> is not free. Thus the support of H (<l+x>, V) in

> SET is the whole of > ST and so by the commutativity of the
diagram
ev * v *
H "(E,k) x H (E,V) —¥——> H (E,V)
res res

*® *®
H®V(<1+x>,k) x H (<l4x>,V) —¥—> H (<l+x>,V)

it follows that the image of x<l+x> in XG is in XG(V).
Conversely, suppose V¥ e Lt is free. Let F be a subgroup of
kE containing 1 + x, and isomorphic to E. The inclusion F ¢ kE

induces an isomorphism kF = kE. Thus we have a spectral sequence
HP (F/<l+x> K (< 1+x>, 7)) = BPFO@F,v) = #PT9E, M),

and since HY(<l4x>,V) = 0 for q # 0, this spectral sequence
converges at the E, level. This implies that
H*(F/<1+x>,V<l+x>) o H*(F,V), the isomorphism being given by the
composite of the natural maps

B (F/<ltxs, V<IFE>y L g @, vy L B (F,V). Thus regarding H' (F,V)

* *
as an H*(F/<l+x>,k)—module via the natural map H (F/<l+x>,k) - H (F,k),
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*
the above isomorphism is an H (F/<1l+x>,k)-module isomorphism. In
particular, Evens' theorem (see 2.22, property (vii) of cohomology)
says that HEV(F/<l+x>, VS'")  and hence HEV(F,V), is finitely

generated as an H*(F/ <l+x>, k)-module.

Now the composite map H*(F/<1+x>,k) - H*(F,k) - H*(<l+x>,k)
sends all positive degree elements to zero. Letting P be the kernel
of H*(F,k) - H*(<l+x>,k), we know that the points on the line
XE = XF corresponding to <l+x> are the maximal ideals containing
P. What we are asking is how many of these maximal ideals contain the
annihilator of HeV(F,V). However, we know that HeV(F,V)/HeV(F,V)P
is a finitely generated module over H*(F/<l+x>,k)/{elts of positive
degree} =~ k, and is hence a finite dimensional vector space. In
particular, this implies that only finitely many maximal ideals
contain its annihilator, and so only finitely many points of  SL
belong to XE(V). Since k is an infinite field, this implies that

X<l+x> n XE(V) = {03}. o

2.25.8 Corollary (Dade)
Let V be a module for an elementary abelian group E. Then

. R , 2 .
V 1is free if and only if for every x ¢ J\J s v+k<l+x> is free.

Proof )
If VvV 1is free, it is clear that V+k<l+x> is free. 5
Conversely, suppose V+k<l+x> is free for all x ¢ J\J . Then
YE(V) = 0, and hence XE(V) =0 by 2.25.7. Thus by 2.25.4, ch(V) =0,
and so by 2.24.4(x), V 1is projective. o

2.25.9 Corollary (Carlson)
*
For any group G and any module V, ch(V) = ch(V )
*
= cxg(V 3 V') = v(Extg(V,V)).

Proof
By 2.24.4 (iv) and (xiii), it is sufficient to prove this for G
elementary abelian. 1In this case, ch(V) = dim(YG(V)). But

V+k<l+x> is free if and only if v+k<l+x> is free, which in turn
happens if and only if (V ® V )+k<l+ is free, and so

* * x>
YG(V) =Y (V') = YG(V ® V). Now use 2.25.4 and 2.25.7. o

2.25.10 Corollary
Let E; = E, be elementary abelian p-groups and V a kEZ—module.
*

Identifying X with a subspace of X via res , Wwe have
El E EZ'El

2
XEZ(V) n XEl = XEl(V). (see also 2.26.8)
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Proof

This follows immediately from 2.25.7, since it is clear from the
definition that YEZ(V> n YE1 = YEl(V). o
Exercise
1. A kG-module V 1is said to be endotrivial if V ® V* ~ k & P, where
k 1is the trivial module and P is projective. Using 2.24.5 and 2.18
exercise 3(ii), show that V is endotrivial if and only if V+E is
endotrivial for every elementary abelian p-subgroup E of G.

Show that Vig is endotrivial if and only if

dim End p (W) = 1 + (dimV - 1)/|E].

Deduce that Vg 1is endotrivial if and only if th is endotrivial

+x >

for each x ¢ J(KE). Show that if x - y ¢ JZ(kE) then th+x> is
endotrivial if and only if th+y> is endotrivial.
Remark

Dade [40] has shown that the only endotrivial modules for an
abelian p-group are the modules &T(k) & projective and
8% (k) ® projective (n = 0).

Using this result, Puig has shown that for an arbitrary finite
group, the multiplicative group of endotrivial modules (modulo
projectives) is finitely generated.

2.26 The Quillen Stratification

We now investigate. the variety X (V) 1in relation to the
elementary abelian subgroups of G. It turns out that it is a disjoint
union of strata, one for each conjugacy class of elementary abelian
subgroup E, and that each stratum is 'homeomorphic to'" a quotient of
an affine variety determined by V+E by a regular group of automor-
phisms (see theorem 2.26.10)

2.26.1 Proposition
IV = (;\ resé%E(IE(V))

elementary
abelian

Proof
It is clear from the definitions that I.(V) ¢ n res it (1.(N).
G - E G,E*"E
Let P ¢ Syl (6). Then resg p: H*(G,k) - H'(P,k) is injective, and

so Ig(V) = reséIP(IP(V)). Thus it is sufficient to prove the



133

proposition for G = P a p-group. We work by induction on |P|. 1If
P 1is elementary abelian, the proposition is clear, so assume P is
not elementary abelian. Choose elements Kys e o5 XooE Hl(P,Z/p20 in
accordance with Serre's theorem (2.23.3), and let Pl, e, Pr be the
corresponding maximal subgroups of P.

For each x., we have a spectral sequence

l ’ .
HP (p/p, 1Y (R, V) - HPTI(R, V)

and by the Quillen-Venkov lemma (2.23.4), F n+2(P v) = 1" (P, V)(x g).
Suppose x H*(P,k), such that for all 1, resp p (x) ¢ IP (V). We
RS i

must show that x ¢ IP(V). We have resp P (x) ¢ H* (P )P

* * *
= HO(P/Pi,H (Pi,k)) = Eg’ . Now E2 acts on Eg’ (V), and for some

j independent of p and gq, x annihilates each Eg’q(V) (since
Hp(P/Pi,Hq(P~,V)) is a subquotient of Hq(Pi,V), see 2.22 exercise 2).
Since x ¢ H (P,k), resP P (x) 1is an element of Eg’* which survives
to the E_  level, and at each stage the J—h power annihilates each
Ep q(V) Thus at the E, level, xJ annihilates each EE q(V),

so  H'(P,V)x] CF 2y*p, vy = H (P, V) (xlﬁ) Thus

B2, Wx2T ¢ B (2, V) (x)8) . . (x,P) = o

If H 1is a subgroup of G, we have a map H ¢ = resg HE
Xg > Xg- It is clear that tH,G(XH(V)) < XG(V) since

resg H(IG(V)) S»IH(V)' One of our goals in this section will be
theoéem,2.26.8, which is a sort of converse to this.

2.26.2 Corollary

= U e copon
elementary
abelian
Proof
Clear. o

Remark
2.26.2 and 2.25.7 enable us to reduce questions about Xg(V)
to questions about cyclic subgroups of the group algebra of order p.

XG = t7§J tE,G(XE) . o
elementary

abelian

2.26.3 Corollary
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2.26.4 Corollary .
An element x e H'(G,k) is nilpotent if and only if res, E(x)
is nilpotent for all elementary abelian subgroups E of G.

Proof
This is the case V =k of 2.26.1. s}

For E an elementary abelian p-group of rank r, we know that
XE is a vector space of dimension r. We define

XE=XE\ UJ

t X))
E'< g ELEVE

+ +
X8~ tg,¢¥p)> X5,k = tg,c&p)

+

X (V) = X (M) \EL<JE tE',E(XE'(V))

Xg g (V) = tg &g , X g (V) = tp c(XE(M).

Thus XE is the space XE with all the hyperplanes defined over
2/pZ removed.
Let op = I (xB8). Then

cp may be regarded as an
xeH! (E,2/p2)

element of the coordinate ring of Xp, and the open set defined by og
is X+. Thus the coordinate ring of the variety XE is
H®V(E, k) [o;:l] )

We now use the norm map (see 2.22, properties of cohomology
(viii)) to ensure that HeV(G,k) has enough elements.
2.26.5 Lemma

Let E be an elementary abelian p-subgroup of G, and let
ING(E) :E| = p%.h with (p,h) = 1. Then

(1) There exists an element PE of HeV(G,k) such that for
elementary abelian p-subgroups E' of G,

resG,E.(pE) = 0 if E 1is not conjugate to a subgroup

of E'
pa
(cE) if E=E
(ii) If y e HeV(E,k) is invariant under NG(E) then there
is an element y' ¢ HeV(G,k) with

a
resg p(y') = (yop)P .
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Proof

(i) Let =z = normE,G(l +-GE). The Mackey formula gives

& hn
resG,E(z) = (1 +-cE)p :

a
1+ h(crE)p + terms of higher degree.

Also, if E 1is not conjugate to a subgroup of E', then resG,E(z) =1,
since for any proper subgroup E" of E, resE,E"(GE) = 0. Thus we
may take (l/h) times the homogeneous part of 2z of degree

pa.deg(oE) as our  op.

(ii) Suppose without loss of generality that y is homogeneous.
Let z' = normy G(1 +vy GE). Then

a
res; p(z') = 1 + h(y oE)P + terms of higher degree.

Thus we may take (l/h) times the homogeneous part of z' of
degree p2.deg(y cE) as our y'. o

2.26.6 Definitions

Given x e Xg, 2.26.3 shows that there exists an elementary
abelian p-subgroup E = G and'y ¢ XE such that x = tE,G(y)‘ If
such a pair (E,y) satisfies the minimality condition that there does
not exist a subgroup E' < E and z e XE' with y = tE',E(z) we
say that E 1is a vertex of x and y 1is a source (by analogy with
section 2.5).

2.26.7 Theorem

(i) Given x ¢ XG, suppose (El’yl) and (Ez,yz) are both
vertices and sources for x. Then there is an element g e G with
Elg = E2 and ylg =95

(ii) (Quillen stratification of XG)

XG is a disjoint union of the locally closed subvarieties Xg E’
as E runs over a set of representatives of conjugacy classes of
elementary abelian p-subgroups of G. The group WG(E) = NG(E)/CG(E)

acts freely on XE, and tE c induces a finite homeomorphism

+ +
Xg/W(E) ~ Xg g
The topology on XG is given as follows. The natural map
1%m XE -+ Xg is a finite homeomorphism. (The morphisms in the

limit symbol are compositions of inclusions and conjugations).

Note
The finite homeomorphism XE/WG(E) - Xg E is called by Quillen
an "inseparable isogeny", since it means that at the level of
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coordinate rings, there are inclusions

a
KIXg/Wg(E)] 2 KIXS gl 2 KIXE/MG(E) 1P

where pa is the power of p appearing in 2.26.5. 1In fact the
argument can be strengthened to show that p? may be taken to be the
p-part of |CG(E):E| , see [9].

Proof of 2.26.7

For each elementary abelian subgroup E =< G, we have a map

+

XE - Xz E ° Lemma 2.26.5 shows that for the corresponding map of

coordinate rings

k[f’E] > KX glle g 1
kXg] = HVER[opl]

the p?-th power of any element of k(XE) invariant under W,(E) 1is
in the image. This means that if we look at the extensions of
function fields -

K(Xg g) & k() ¢, kKD
the first extension is purely inseparable, while the second is Galois,
with Galois group WG(E)‘ Thus the map XE/WG(E) -+ XE,E
homeomorphism (or inseparable isogeny).

is a finite

Next, if El is not conjugate to a subgroup of E2, then by

2.26.5, and zero on Xg E. Thus

1 2

the different XE E are disjoint for non-conjugate E's. Moreover,
2.26.3 shows that the union of the XZ E
proof of (i) and the first part of (ii).

pEl is invertible on XG,E

is XG' This completes the

It now remains to study the glueing together of. the XE,E to
form XG” Since there are only finitely many elementary abelian
p-subgroups of G, and for each one the map XE -+ XG,E is finite, it
follows that the map lim X, -+ XG is finite. The bijectivity

E
follows from the fact that the Xg p are disjoint. a
Example

R. Wilson [94] has shown that Lyons' simple group Ly has
exactly two conjugacy classes of maximal elementary abelian subgroups,
of order 23 and 24 , with normalizers 23,L3(2) and 24.3A7.

These may be chosen to intersect in a subgroup of order 22. Thus Xg
has two irreducible components, of dimension three and four, and their
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intersection has dimension two.

2.26.8 Theorem
Let H be a subgroup of G, and V a kG-module. Then

Xy (V) =ty e (Kg).
Proof
It is clear that ty G(XH(V)) - XG(V), so it remains to show
that tp o(Xg(W) € Xy(M | Let x ¢ ty o(Xg(V). By 2.26.2 we may
choose El < G, and yi € XEl(V), with tH,G(x) = tE,G(yl)' Let

(E2,y2) be a vertex and source of x. Then (E2,y2) are also a
vertex and source of tH G(x), and so by 2.26.7(1i), there exists
gc G with E,5=<E and t (v,% =vy;. By 2.25.10,

E, 8. E

2 1
it follows that v,8& ¢ X (V), and so v, ¢ X (V), and
2 £.8 2 E,
2

x = tEZ,H(YZ) g XH(V). a

The following theorem summarizes some of the main properties of
the cohomology varieties. See also 2.26.10, 2.27 and 2.28.7.

2.26.9 Theorem
Let H =< G, let V be a kG-module and W a kH-module.
(i) dim(XG(V)) = ch(V) N
(11) Xg(V) = Xg(V) = X, (V 8 V) = Xg"V)
(iii) If O - Vi > Vo + V3 + 0 1is a short exact sequence of
kG-modules then XG(Vi) c XG(Vj) U XG(Vk) for ({i,j,k} = {1,2,3}
(iv) XG(V ® V') = XG(V) U Xg(v")
(v) XG(V 2 V") Xe(V) n XG(V‘)
. - -1
(Vl) XH(V+H) - tH,G(XG(V))
‘s Gy _
(vii) X W) = tH,G(XH(W))
(viii) XG(V) = {0} if and only if V 1is projective

(ix) XG(V) = % tE,G(XE(V+E)) as E ranges over the set of
elementary abelian p-subgroups of G.

(x) If (p) denotes the Frobenius map on both modules and
varieties than XG(V(p)) = XG(V)(p>

Proof

(i) See 2.25.4 and 2.25.9.

(ii) By 2.26.2 it suffices to prove these equalities for G = E
elementary abelian. Thus by 2.25.7 we must show that

YR (V) = YE(V*) =Y (V2 vy = Y (@) .
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But this follows from 1.4.4 and the definition of YE(V).
(iii) This follows in a similar way from 2.25.7 and 2.26.2.
(iv) This is clear.
(v) Consider U ® V as a k(G x G)-module. Then the Kinneth
formula shows that we have

T
RV ® V) &——> X g

X ) % Xg(V) e——> Xo x X

G -
The diagonal map Ge» G x G gives rise to the diagonal map
XG" XG x XG. Hence by 2.26.8,

_ -1 t
XV ® V) = t5 g XggV ® V)

= £ 6 EaW) * Xg')

Xg(W) N Xg(v').

(vi) See 2.26.8.

(vii) Since W+G+H has W as a direct summand,

g Fg) €ty @) © X ).

Conversely if x ¢ XG(WfG), let (E,y) be a vertex and source of x.
Then by (vi), (iv) and Mackey decomposition,

yoo Xg@WiS) = x.C 3 W 4By = U x w8 4) Thus
HgE HENE HgE HENE

replacing (E,y) by a conjugate if necessary, we have

= YE(W+ by 2.25.7, and so E = H

E E
YEXE(W+HOE+) HnE+)
by minimality of E. Now since y ¢ XE(W+E), tg H(y) e XH(W) and
X = tH,G(tE,H(y)) € tH,G(XH(W>)‘

(viii) This follows from (i) and 2.24.4(x).

(ix) See 2.26.2.

(x) The Frobenius map acts on the bar resolution X;(G) and
induces an isomorphism Hom(ii(G), V(p>) o Hom(Xi(G),V)(p commuting

with the 5's. o

2.26.10 Corollary
Suppose V and V' are modules anq XG(V) n KG(V') =0

(i.e. XG(V) n Xg(V') = {0}). Then Exté(V,V') =0 for all i > 0.
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Proof

Xczgw_; V')*= Xo(V) n Xg(V') = {0} by 2.26.9(ii) and (v), and

so by (viii), v ® V' 1is projective. Thus
Exthovvy = vl v eV = 0. o

Remark

It follows from 2.26.9 that if X 1is a subset of XG then the
linear span A(G,X) ¢ Ak(G) of modules V for which XG(V) c X, 1is
an ideal in Ak(G)' We shall obtain some information about these
ideals in 2.27.9.

Finally, we have the module analogue of 2.26.6(ii).

2.26.11 Theorem (Quillen stratification of Xg(V), Avrunin-Scott)
XG(V) is a disjoint union of the locally closed subvarieties

XE,E(V)’ as E runs over a set of representatives of conjugacy

classes of elementary abelian p-subgroups of G. The group

WG(E) = NG(E)/CG(E) acts freely on XE(V), and tE,G induces a

finite homeomorphism

+ +
Xg (V) WG (E) + X§ (V).
The natural map
lim X (V) ~ XG(V)
E
is a bijective finite morphism.
Proof
This follows from 2.26.6(ii) and 2.26.8. o

Note that XE(V) and Xé E(V) are empty unless E 1is
contained in a vertex of some direct summand of V.

Exercise

If X 1is a projective variety of dimension d in P  then
there is a linear subspace of dimension n-d-1 not intersecting X.
Use this fact to show that if V 1is a kG-module and

s = (p-rank of G) - ch(V)

then psldimk(V).

(Hint: first restrict to a suitable elementary abelian subgroup E
of G, and then restrict to a subgroup of kE of order ps to
obtain a projective module).
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2.27 What varieties can occur?

We know from section 2.25 that for every kG-module V we have
a subvariety XG(V) of the variety XG = Max(HeV(G,k)). In this
section we investigate the following questions.

(1) Which subvarieties of Xg occur as XG(V) for some module
v?

(2) Which subvarieties of XG occur as XG(V) for some
indecomposable module v?

We obtain a complete and simple answer to (l), namely that every
homogeneous subvariety of XG is of the form XG(V) for some module
vV (2.27.3).

A partial answer to (2) is given in Carlson's result 2.27.8,
which states thatif V is indecomposable then XG(V) is topologically
connected.

We shall see that every irreducible homogeneous subvariety of
XG occurs as XG(V) for some indecomposable module V, but the
question of exactly which connected non-irreducible varieties can
occur is still open.

The following construction for modules LZ is basic to the
ensuing discussion, and lemma. 2.27.2 is what allows us to prove
results by induction on dimension.

For any kG-module V, there is a natural isomorphism
Ext3(V,V) * (2"v, 1€ by 2.19.1. Thus an element ¥ & ExtB(V,V)
is represented by a homomorphism QM - V, and such a homomorphism
represents the zero element if and only if it factors through a
projective module. In particular, for V = k, the trivial kG-module,
no homomorphisms @™k + k factor through projective modules, and so
for each Z e Hn(G,k) o Extg(k,k) we have a well defined homomor-

phism 2"k + k whose kernel we denote by Lg' Thus we have a
short exact sequence
0 > 2Pk —>> k ——> 0.

>LZ

2.27.1 Lemma
Let ¢ be the natural homomorphism from Extg(k,k) to
Extg(V,V) given by temsoring with V. If ¥ e Ker(¢) then

LZ®V;»9“V®9V®P

where P 1is a projective module.

Proof

We tensor the short exact sequence defining LK with V to

give
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L

0 > L, %V > Pk 2 V

y > V > 0.

Since ¥ ¢ Ker(¢), ¥ ® 1 factors through a projective module.
Thus by 1.4.2 (1),

L®V &P, 29" 2 VooV

y v
where Py is the projective cover of V. Now &%k » V = gl
® projective by 1.4.2(ii), and so the result follows from the
Krull-Schmidt theorem. o

2.27.2 Lemma

For ¥ a homogeneous element of HeV(G,k), XG(Lg) is the
hypersurface XG(g) defined by ¥ considered as an element of
the coordinate ring of  Xj.

Proof
By 2.26.2, X.(L) = |J  t. o(X(L_+.)), and by 2.26.3
4 E elem. E,GEYYE
abelian
XG(g) = l_J tE G(XE(resG E(g))). It thus suffices to prove the
E elem. ’ ’
abelian

lemma in the case where G = E 1is elementary abelian. Following
through the identification of Xy with Yg given in the proof of
2.25.7, we see that we are required to prove that

Yg(L,) = {03 U (X ¢ 3/3%: res = 0

E,<lte (2

But by Schanuel's lemma (1.4.2 (ii)), e"(k)+ k & P

<14+x> =
with P projective (for a cyclic group of order p, eM(k) = k
since n 1is even). Thus resE’ <l+x>(x) =0 if and only if the

map k & P » k 1in the short exact sequence

0 —> Lg+<l+x> — k ®P —> k —> 0

factors through a projective module. If it does factor then

Lg+<l+x> =~ k @ (k) & projective, while if it does not factor then

Lg+<l+x> >~ P, and so we are done. a

2.27.3 Theorem (Carlson)
Every homogeneous subvariety of Xe is of the form XG(V) for
some module V. :

Proof
Suppose X 1s a homogeneous subvariety of XG, and the
corresponding ideal in HeV(G,k) igs I. Since HeV(G,k) is
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Noetherian (see 2.22, properties of cohomology (vii)), I is finitely
generated by homogeneous elements =<l o, ey o Then by
2.26.9(ii) and 2.27.2,

%azl&.gL )=XdBﬁ)n..nxd%8

= X5 n..n Xp(2)
X. o

2.27.4 Corxollary
The map X w» A(G,X) (see remark after 2.26.9) is an inclusion

preserving injection from the set of subsets of KG to the set of
ideals of Ak(G)' o

2.27.5 Corollary
Every irreducible homogeneous subvariety of XG is of the

form XG(V) for some indecomposable module V.

Proof
This follows from 2.27.3 and 2.26.9 (iv). )

2.27.6 Lemma
Suppose Zq and %, are homogeneous elements of Hev(G,k)
of degrees r and s respectively. Then there is a short exact

sequence 0 - T (L. ) - L &P > L + 0 with P a projective
) £1%2 21
module.
Proof v
Tensor the short exact sequence 0 - Lg - Qs(k) 28 k-0
2

with Qr(k) to obtain a short exact sequence
0 - szr(Lg ) ® projective - gr+s(k)<9projective > 2%(k) » 0
2

Since projectives are injective (1.4.4), we may subtract out
projective modules from the first two terms to obtain

0 - szr(Lg ) > 2"TS(k) & P 5 25(k) » 0.
2

We now form the pullback diagram
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0 0
r .
0 > 27 ( ) > I, ® P > 0
", £1%2 1
b r+s Vs
0 > Q (I_Z ) ——= @ (k) P > (k) > 0
2
2122 21
W

2.27.7 Theorem (Carlson).

If XG(V) < X1 U X,, where X and X, are homogeneous
subvarieties of XG with Xl n X2 = {0}, then we may write
V= Vl D V2 with XG(Vl) c Xl and XG(VZ) < X2.

Proof

We prove this by induction on d = dim(Xl) + dim(Xz). The
result is clear when d = 0 or 1, so suppose d > 1. Choose
Z1 and Zy homogeneous elements of HeV(G,k) of degrees r and s
respectively, with

(1) X XG(gl) and dim(X2 n XG(gZ))

(ii) X, ¢ XG(gZ) and dim(X1 n XG(zl)) 1)

Then XG(V) cX UX,c XG(gl) U XG(gZ) = XG(glgz) and so
£1%9 ¢ IG(V)r Thus replacing £ and Zy by suitable powers, we

]

In

dim(Xz) -1, and
- 1.

dim(X

may assume that glzz ¢ Ker(¢), where ¢ 1is the natural map from
* * *
Extg(k,k) to Extg(V,V) = H'(G,V ® V). Thus by 2.27.1

#

L ® V = Qr+s(V) ® (V) & projective.
Z1%2

Now tensor V with the short exact sequence given in 2.27.6 to

obtain

ot (V) @ (V) @ projective - L, ®V 0.
1

0+, ) 3V »
L2
Now by 2.26.9 and 2.27.2,
xG(LZl ® V) = Xg(V) n Xg(%q)

and XG(ﬂr(LZZ)cbV) = Xo (V) n Xg(x,) .
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Thus by the inductive hypothesis, Lg ® V= Wl & Wz with
1

T
Xg(Wy) € X 0 Xg(2)) and Xg(Wy) € X,, and sar(ng) BV =W, ®W

2
1 T
with XG(Wl) < X1 and XG(WZ) < X2 n XG(gz). Now by 2.26.10,

1 1
Exté(wl,wz) = (0 and Exté(wz,wl) = 0. Thus we have

Qn(V) & @(V) @ projective = Vl ® V2
where there are short exact sequences

1
0—>W1—>V1—>W1—>0

and
1

The result now follows from 2.26.9(ii) and the Krull-Schmidt theorem.

2.27.8 Corollary
If V 1is indecomposable then iG(V) is topologically connected
(in the Zariski topology). o

We now have enough information to state the main properties of
the ideals A(G,X) introduced after 2.26.10 (see also 2.28.8).

2.27.9 Theorem

Let H = G, let X be a subset of XG and X' a subset of XH‘

(1) A(G,X) 1is an ideal in A(G)
(11) At o(0) 2 x5 1(AG,X)
1 1

(1i1) AG,ty (X)) 2 iy G(AMH,X))

(iv) A(G,X) 1is closed under taking dual modules and under Q.
*

(v) If Vs v* ¢ A(G,X) then so are V and V .

(vi) A(G,X) 1is closed under taking extensions of modules.

(vii) A(G,p) = A(G,l), the linear span of the projective modules.

(viii) A(G,X1 n XZ) = A(G,Xl) n A(G,XZ)

(ix) A(G,X1 U XZ) el A(G,Xl) + A(G,Xz) with equality if
XN X2 =9.

(x) If X 7 X, then A(G,X;) § A(G,X,)

(xi) wn(A(G,X)) c A(G,X) for n coprime to p (see 2.16),
while wp(A(G,X)) = A(G,X(p)), where (® is the Frobenius map on
varieties. Thus if X = X(p), A(G,X) 1is stable under the operations
AT,

Proof

(i) See 2.26.9(iv) and (v).

(ii) See 2.26.9(vi).

(iii) See 2.26.9(vii).

=]
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(iv) See 2.26.9(ii).

(v) See 2.26.9(ii)

(vi) See 2.26.9(iii), 1i = 2.

(vii) See 2.26.9(viii).

(viii) Clear.

(ix) This follows from 2.27.7.

(x) See 2.27.4.

(xi) Suppose XG(V) ¢ X. Then for n coprime to p, Wn(V)
is a linear combination of direct summands of. sn(V), and hence lies
in A(G,X). For n =1p, 2.26.9(x) tells us that
wp(A(G,X)) E.A(G,X(p)). Finally, the A?  are linear combinations

of the = yo. a

Note that it is difficult to make a ring theoretic statement
corresponding to 2.26.9(ix). It is tempting to write

A(G,X) = n rélE(A(E,télG(X))), but this is false in general. For
E 2 ’

example, the right hand side contains V, - V; - Vg whenever

0 - Vi~ Vy - V3 + 0 1is a short exact sequence which splits on

restriction to every elementary abelian p-subgroup of G, and we know
that there are plenty of these by 2.15.6.

2.28 Irreducible maps and the Auslander-Reiten Quiver

In this section, we describe a certain directed graph associated
with the almost split sequences, and describe its elementary proper-
ties. The results of sections 2.28 to 2.32 are summarized in theorem
2.32.6.

2.28.1 Definition

Suppose U and V are indecomposable kG-modules. A map
x: U+ V 1is irreducible if X 1is not an isomorphism, and whenever
A= uv is a factorization of X , either py has a left inverse or
v has a right inverse.

Let Rad(U,V) be the space of non-isomorphisms from U to V,
and Radz(U,V) be the space spanned by the homomorphisms of the form
ap with a ¢ Rad(U,W) and 8 ¢ Rad(W,V) for some indecom-
posable W. Then the set of irreducible maps is precisely
Rad(U,V) \Rad?(U,V). The space Irr(U,V) = Rad(U,V)/Rad’(U,V) is
an Ende(U) - Ende(V) bimodule. Let its length as a left
EndegU)—module be ayy and its length as a right Ende(V)—module
be ayy - Note that if k 1is algebraically closed then
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agy = agy = dim Irr(U,V).
The Auslander-Reiten quiver of G 1is the directed graph whose

vertices are the indecomposable modules, and whose edges are as

follows.
U - v if  TIrr(U,v) =0
1
(2 s 3rpy)
v if  Irr(U,V) + 0
A L}
U > v if agy =agy =1

2.28.2 Lemma

If A:U + V 1is irreducible, then A 1is either an epimorphism
with an indecomposable kernel, or a monomorphism with an indecompos-
able cokernel.

Proof
A

i
> U/Ker(})}
either an epimorphism or a monomorphism. Suppose A 1is an epimor-

The factorization U > V shows that X\ 1is

phism with kernel A & B. Then there is a factorization

v

U p'>U/A

> U/(A ® B) = V.

If either p has a left inverse or v has a right inverse, it is
easy to see that U 1is decomposable. A similar argument works when
A is a monomorphism. o

2.28.3 Proposition

(1) If V 1is not projective, let the almost split sequence
terminating in V be 0 —> RZV —_ XV 2>V —> 0. Then
A: U=~V is irreducible if and only if U 1is a summand of Xy and
A= iU ¢ with iU: U - XV the inclusion.

(ii) If U is not projectiv?, let the almost split sequence

beginning with U be 0 —> U -2 > X , ——> 520 —> 0. Then

#u

A: U=+ V 1is irreducible if and only if V is a direct summand of

X and A=o0 v with My X +V the inclusion.
52y v V" T2y

(iii) If U and V are both projective then there are no
irreducible maps U - V.

Proof

(1

Y
e
g L
2 g v

0-——>SBV—>XV > > 0
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Since X\ 1is not an isomorphism, 2\ factors as uwo . Since o)
does not have a right inverse, u has a left inverse. Thus we may
take p = iU. Conversely suppose U 1is a direct summand of XV
with inclusion iy and i = wv.

v ————

[ > W
iUl ’," lv
2 L5

0 > @V > > V > 0

If v does not have a right inverse, then v factors through o ,
and so u has a left inverse.

(ii) This follows in a similar way from 2.17.8.

(iii) This follows from 2.28.2 and the fact that projective
modules are injective. o

This proposition implies that the Auslander-Reiten quiver is a

locally finite graph.

Remark
It follows from 2.28.3 that ayy
as a direct summand of the middle term of the almost split sequence

is the number of copies of V

starting with U, and that any is the number of copies of U as a
direct summand of the middle term of the almost split sequence

terminating with V.

2.28.4 Lemma

Suppose U and V are indecomposable kG-modules and £:U -+ V
is not an isomorphism, and is non-zero.

(i) There is an irreducible map g: U - U' and a map h:U' - V
with gh # 0.

(ii) There is a map g:U - V' and an irreducible map h: V > v
with gh # 0.

Proof
We shall prove (ii); (i) is proved dually using 2.17.8. Suppose

V 1is not projective.

LU
a P
.o £

2 e’
0—-—>5‘3V——>XVB>V > 0

Write Xy = & X; and f =q = ZagBy with  ay: U > X; and

Bi:Xy » V. Since f # 0, some a By # 0, and By 1is an irreducible
map. On the other hand if V is projective then £ factors through
the injection Rad V » V. a]
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2.28.5 Proposition
Suppose U and V are indecomposable kG-modules, and f£:U - V
is not an isomorphism, and is non-zero. Suppose .there is no chain of
irreducible maps from U to V of length less than n.
(i) There exists a chain of irreducible maps
g g g
U= U, l>Ul Z .. > U, —— U,

and a map h:U_ -+ V with g 8, .. g h # 0.
n 152 n

(ii) There exists a chain of irreducible maps

h h h
n n-1 1 _
Vg > Vo1 > > vy >V, =V
and a map g: U~ V, with ghh , .. hy # 0.
Proof
This follows from 2.28.4 and induction. o

The projective modules often only get in the way when we are
looking at the Auslander-Reiten quiver, and so we define the stable
quiver to be the subgraph of the Auslander-Reiten quiver obtained by
deleting the vertices corresponding to the projective modules and all
edges meeting them.

Note that the only irreducible maps involving a projective
indecomposable module P are P ——=>P/Soc(P) and Rad(P)>——> P.
Thus if an almost split sequence involves a projective module, it is
of the form 0 -+ Rad(P) - P & Rad(P)/Soc(P) - P/Soc(P) - 0.

2.28.6 Proposition

Any two modules in the same connected component of the stable

quiver have the same complexity.

Proof
Clearly ch(QZV) = ch(V) = ch(82V). Take V of minimal
complexity in a connected component of the stable quiver, and adjacent
to a module of strictly larger complexity. Then by 2.24.4(vi) and
2.28.3, we obtain an almost split sequence whose middle term has

larger complexity than the ends, contradicting 2.24.4(v). o

In fact, more than this is true.

2.28.7 Proposition

If U and V are in the same connected component of the stable
quiver, then XG(U) = XG(V).



149

Proof

By 2.26.10 and 2.25.7, we only need check that for each cyclic
subgroup P of kG of order p, Uvp is free if and only if V*P
is free. If this is false, then without loss of generality, there is
a directed edge from U to V in the stable quiver. Suppose Vip
is free while U&P is not. Then (RZV)¢P is also free, and so U+P
is a direct summand of an extension of a free module by a free module,
and is hence free. Similarly if Uty 1is free while Vip is not,
then (ZgU)+P is also free, and so V+P is again a direct summand
of an extension of a free module by a free module. o

2.28.8 Corollary

Given a subset X ¢ XG’ the bilinear forms ( , ) and < , > are
non-singular on A(G,X).
Proof
If V 1is an indecomposable module with XG(V) c X, then by
2.18.3, v.t(V) & A(G,X), and by 2.26.9(ii), (V) & A(G,X). The
result now follows from 2.18.4 as in the proof of 2.18.5. o

2.29 The Riedtmann Structure Theorem

We now wish to describe the structure theorem of Riedtmann
(2.29.6). This theorem describes the structure of an abstract stable

representation quiver, of which the stable quivers described in 2.28

are an example. The necessary terminology is given in the following
definitions. The proof of the structure theorem involves a variant
of the classical 'universal cover' construction.

2.29.1 Definitions

A quiver Q consists of a set of vertices Qo’ a set of arrows
Ql’ and a pair of maps dg, dl: Ql -+ Qo' For a ¢ Ql’ we call
ado € Qo the head of o and adl the tail. For x ¢ Qo, we set

x+ = {ado roa g Ql and adl = x}

X = {adl :a e Ql and ado = x}

A morphism of quivers ¢: Q » Q' 1is a pair of maps
bo: Qy Qé and ¢7 : Qp - Qi such that the following squares

commute.



Q]_ ————> Q]_ Q]_ —_—

QO .—O._.>
Q 1is called locally finite if x+ and x  are finite sets for
all x € Qo'
To a quiver Q without loops or double arrows (i.e. subquivers

of the form x{) resp. X zy) We assoclate a graph § whose
vertices are the vertices of Q, and two vertices x and y are
joined by an edge if there is an arrow x -y or x+«y 1in Q. A
quiver is called a directed tree if Q has no subquiver of the form
x ?y and Q 1is a (connected) tree.

A stable representation quiver is a quiver Q together with an
automorphism hA: Q + Q called the translation such that the follow-

ing conditions are satisfied.
(1) Q contains no loops or double arrows.
(11) For all x ¢Q,, x = (xM)7.

Example

The stable quiver of kG 1is a locally finite stable representa-
tion quiver, with translation o}

A morphism of stable representation quivers is a morphism of
quivers commuting with the translation. A stable representation quiver
is said to be connected if it is non-empty and cannot be written as a
disjoint union of two subquivers each stable under translation (note
that this does not imply that the underlying quiver is connected).

To a directed tree B we associate a stable representation quiver
ZB as follows. The vertices of 2B are the pairs (n,x), n ¢ 2,

X & Bo' For each arrow x -+ y and each n ¢ Z, we have two arrows
(n,x) +» (n,y) and (n,y) - (n-1,x). The translation is defined via
(n,x)N = (n+l,x). We regard B as embedded in ZB as {(0,x)}

Examples
If B = ﬁ‘}"" then B =
Iﬂ'
and ZB = /\Axf\.j‘\‘/‘
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If B = then B and ZB are again as above.

Keep this example in mind when reading the proofs of 2.29.3 and 2.29.6.

2.29.2 Lemma

Let B be a directed tree and Q a stable representation quiver.
Given a quiver morphism ¢: B - Q there is a unique morphism of
stable representation quivers f: 2B + Q such that (0,x)f = x ¢.

Proof
(n,x)f = x¢ A is clearly the unique such morphism. o

2.29.3 Proposition
Let B and B' be directed trees. Then 2B = ZB' if and only

if B~E'.
Proof
B may be obtained from 2B/ by replacing each double edge

(:$:> by an undirected edge o , and so ZB ¥ 2B’ implies

Bx=B
send it to (0,x) in ZB& . Since B 1is connected we may extend

Conversely suppose B B'. Choose a point x e B, and

this uniquely to a morphism B - 2B' in such a way that the induced
morphism B » B' is our given isomorphism. Now by 2.29.2, we get a
morphism of stable representation quivers ZB - ZB' which is clearly
an isomorphism, since it sends (n,x) to (n+ax,x), where vertices
of B and B' have been identified by the given tree isomorphism,

and a, are integer constants depending only on X. o

2.29.4 Definitions

A group I of automorphisms of a stable representation quiver Q
is called admissible if the orbit of a point x does not intersect
xt U x .. The quotient quiver Q/1, defined in the obvious way, is
clearly a stable representation quiver.

A morphism of representation quivers £: Q -» Q' is called a
covering if for each vertex x ¢ Qo the induced maps x - (xf)~
and x+ - (xf)+ are bijective. It is clearly enough to check that

x+ - (xf)+ is bijective for each x ¢ Qo'

Example
The canonical projection Q - Q/I, for I an admissible group

of automorphisms of Q, is a covering.
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2.29.5 Lemma

Let B be a directed tree, n : ZB - Ql a morphism of stable
representation quivers, ¢: Q - Q' a covering, and (n,x) a vertex
of 2B. Then for each vy ¢ Qo with y¢ = (n,x), there is a unique
morphism v: ZB -+ Q with Y¢= 1w and y¢ = (n,x)n.

ZB
L! l
Q5 Q'
y F—e (n,x)n
Proof
Renumber 2B so that n = 0. Then the map (0,x)¥ =y clearly
extends uniquely to a map from B to Q whose composite with ¢ 1is
w . The result now follows from 2.29.2. o

2.29.6 Structure Theorem (Riedtmann)

For each connected stable representation quiver Q there is a
directed tree B and an admissible group of automorphisms
0 ¢ Aut(2B) such that Q = ZB/T. The graph B associated to B is
defined by Q wuniquely up to isomorphism, and 0 is uniquely
defined up to conjugation in Aut(ZB).

Proof
Given Q, we construct B as follows. Choose a point X e Qo,
and let B have as vertices the paths

ay Ty a
X > Y1 > Y > e > Yn (n =2 0)

for which y; # Vit for 1 =i = n-2. The arrows of B are

a a a (1_1

1 n-1 1 9n
(x ——> yp —> .. —= yn_l)-*(x >y —> > Yool T yn).

Then clearly B 1is a directed tree.
The quiver morphism B + Q given by

a a
1 n

(x > ¥ > .. > yn) — In

extends uniquely, by 2.29.2, to a morphism $: 2B -+ Q.
We check that ¢ : ZB - Q 1is a covering morphism. If

O.l (In
u= (x > Y1 > .. > yn) e B, then
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+ a a B
u = {(x 1 vy .. o Yn z)
such that zx» #y 4} n>20
{(x B z)} n =20,

and so
0w = (0w, veu U {(-1,v), veu}

has image {z ¢ y: cozn # yn—l} U {yn_1 X_l} y: in Q. Hence

[}

(m,w)* has image (yA™F as desired.
Now let HI be the fundamental group of Q at x, namely the

group of morphisms of stable representation quivers p:2B - ZB with
p¢ = ¢ . Since ¢ 1is a covering morphism, [1 is admissible. Hence
by 2.29.5, Q = zB/I

Also by 2.29.5, if 2B - Q and ' - Q are two such covers

t -
then we obtain inverse isomorphisms 2B T 2B'. Hence 01 = g 1 g,

- g
and by 2.29.3, B =3B . o

The stable representation quiver 2B 1is called the universal
cover of Q, and the isomorphism class of B is called the tree class
of Q.

We also have another graph associated with Q. We define the
reduced graph A of Q to be the graph obtained from Q/» by
replacing each double edge 4::::> by an undirected edge P
It is clear that an automorphism of Q determines an automorphism
of A

2.29.7 Lemma

There is a natural map x from the tree B to the reduced
graph A which satisfies

(1) x is surjective

(ii) If x and y are adjacent points in B then xx # yx

Proof
The composite map ZB - Q - A 1s surjective, and has the
property that (n,x) and (nt+l,x) have the same image. Thus it
determines a well defined surjective map x: B - A . Now Q = B/
with [ an admissible group of automorphisms, by 2.29.6, and so
property (ii) follows from the definition of admissibility. o

We shall see in the next two sections that the tree class and
reduced graph of a connected component of the stable quiver of kG
are quite restricted in possible shape.
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Now the translation 92 on a component Q of the stable
quiver of kG preserves the labelling (aUV,aﬁV) on the edges, and

so we have a labelling on Q/ﬂz. Moreover, since agy ~ a'2 and
Q°V,U

i) on the reduced graph.

any = a
uv QZV,U
Lifting this back via x gives a labelling on the associated tree.

, h lab i -
we have a labelling (alJ aj

2.30 Dynkin and Euclidean diagrams

In the last section, we saw that associated with each component
of the stable quiver of kG we have a tree together with a labelling
of the edges with pairs of numbers (aij’aji)' In this section, we
define the notion of a subadditive function on a labelled graph, and
show that the existence of such a subadditive function imposes severe
restrictions on the possible shape of the graph (theorem 2.30.6). 1In
the next section, we shall construct a subadditive function on the
labelled tree associated with a component of the stable quiver of kG,
and then investigate the various possibilities given by theorem 2.29.6.

A labelled graph is a graph together with a pair of positive
integers (aij'aji) for each edge i — j. As usual, we omit the

labels when ajy = ay; < 1. We also use «r> and &= to signify

the labelled edges 2.0 | and EETE N respectively. If T 1is
a labelled graph then TPP is the labelled graph with ai? = ajyy- A
labelled tree is a labelled graph which is a tree. The Cartan matrix
CT of a labelled graph T (not to be confused with the Cartan
matrix of an algebra) is the matrix whose rows and columns are
indexed by the vertices of the graph, and with entries

2 if i = j

Cij = -aij if i
0 otherwise

j is an edge

We shall be interested in the following labelled graphs.

(i) The finite Dynkin diagrams

An - [P —o — o E6 - 1 -

Bn e=——— >——————e E7 - - I .

C ‘:ﬁ:,__. “ e ———2 E8 s I - .
n

Dn :::>._—_1 e -—o—e F4 —

(n nodes) GZ —
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(ii) The infinite Dynkin diagrams

B, —ta— A, —
1 1 1 1 1 1
C‘:° L=
1 2 2

(iii) The Euclidean diagrams

1
>2
X — :n < e - 2,2)
n o1 1 1 1 1 1 mw 7/ "2z o/
1
}2
B —a . B
no1 Y11 T ¢ I 32 3 3 1
2
no 17 2 2 1 71 2 3 4 3 2 1
3
.1 «
Dn>—v...-—<1 Es.f I-
1~ 2 2 2 2, 1 2 3 4 5 6 4
EE CP———e .. e F - . £ —
noo 9 2 2 °1 4l 7T 3 Y2 1
N 1 .
8D e F .
nooT ) 2 2 2N 42 172 37 4 2
5131:;:'——0 1 &210——$
nooo172 2 2 2 1 2 1
1
(n+l nodes) 6 -— e
22 7 23
Remark

For the moment, ignore the numbers. attached to the vertices of
the Euclidean and infinite Dynkin diagrams. These will appear in the
proofs of 2.30.3 and 2.30.5.

Given two labelled graphs Tl and T2, we say that Tl is
smaller than T2 if there is an injective morphism of graphs
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p: T; = T, such that for each edge i — j in Ty, @35 < 85 2. 5
1] ip,JpP

and strictly smaller if p can be chosen not to be an isomorphism.

Note that a labelled graph may be strictly smaller than itself (see

A~ for example).

2.30.1 Lemma

Given any labelled graph T, either T 1is a Dynkin diagram
(finite or infinite) or there is a Euclidean diagram which is smaller
than T (both possibilities may not occur simultaneously).

Proof

Suppose there is no Euclidean diagram which is smaller than T.
ysing An’~ T has no cycles, and is hence a labelled tree. Using
éll and élZ all edges of the form +~—— , == or fzié? . Usinév
G21 and G22, if €= occurs then T & GZ' Using"Bn, Cn i?d BCn,
T has at most one edge of the form e=. Using BDn and CDn’ if
there is an edge of the form «== then T = ... +—=s=—0» . . ;
using ﬁhl and §42 this forces T = F4, Bn’ Cnl B, or C_ . Other-
wise T 1is a tree with single edges, and using D, it has at most
one branch point. Using Eg, E7 and E8 now completes the proof. a

2.30.2 Definition
A subadditive function on a labelled graph T 1is a function

ty di from the vertices of T to the positive integers satisfying

z dicij > 0 for all j. A subadditive function is called additive
i

if ?-dicij =0 for all J.

2.30.3 Lemma

(i) Each Euclidean diagram admits an additive function.

(ii) 1If T°P  admits an additive function then every sub-
additive function on T 1is additive.

(iii) Every subadditive function on a Euclidean diagram is
additive.

Proof
(i) The numbers attached to the vertices of the Euclidean
diagrams in the illustration form an additive function in each case.
(ii) Suppose d 1is a subadditive function on T. By hypothesis

1
there is a function d' such that z Cijdj = Q for all 1i. Thus
]

1
while =z dic.. > 0 and dj > 0 for each j.

0= 3 d,c..d 2 1
i

i, A
Hence d 1is additive..
(iii) follows from (i) and (ii). o
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2.30.4 Lemma
Suppose T and T' are connected labelled graphs and T is

strictly smaller than T'. Suppose also that d 1is a subadditive
function on T'. Then identifying T with a subgraph of T', d
restricted to T 1is a subadditive function on T which is not
additive.

Proof

For j a vertex of T,
1
2d, = 3 diagT ) 2 P diagT)
I et J ieT J
i4j 143

Since T 1is strictly smaller than T', for some j ¢ T the right
hand inequality is strict, and so the restriction of d 1is not
additive. o

2.30.5 Lemma

Each of the infinite Dynkin diagrams admits an additive function.

(i) For A_ there are also subadditive functions which are not
additive.

(ii) For the other infinite Dynkin diagrams every subadditive
function is a multiple of a given bounded additive function.

Proof

The numbers attached to the vertices in the illustration form an
additive function in each case.

(1) A_ 1is strictly smaller than itself, and so by 2.30.4 there
is a subadditive function which is not additive.

(ii) For A: , given a subadditive function d, choose a vertex
i with d; minimal.. Then the sum of the two adjacent dj is at
most Zdi, and so each equals di. Inductively we find that the
function is constant and additive.

For B_, C_ and D_, given a subadditive function we generate

a subadditive function on A’ as follows.

—
d, <=4, d, o o —dy— dj— d——dj—d, —..
do=’r=dl—d2—— cob= L — dy—— dp—2d—— dj——d, — ..
d

3 .. —dy—dj——d s dj— d,—

The result follows immediately for B_ and C_. For D_ we
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obtain d, + d) = dj. Subadditivity forces 2d = d; and 2d_ 2 d,
whence d, = dé, and the result follows. o

The following is a generalization by Happel, Preiser and Ringel
of Vinberg's characterization of the finite Dynkin and Euclidean
diagrams. See also [15].

2.30.6 Theorem

Let T be a connected labelled graph, and d a subadditive
function on T. Then

(i) T 1is either a Dynkin diagram (finite or infinite) or a
Euclidean diagram.

(ii) If d 1is not additive then T 4is a finite Dynkin diagram
or A .

(iii) If d 1is additive then T 1is an infinite Dynkin diagram
or a Euclidean diagram.

(iv)) If d 1is unbounded then T = A

Proof

(1) Suppose rfalse. Then by 2.30.1 there is a Euclidean diagram
which is strictly smaller than T. Thus by 2.30.4 there is a sub-
additive function on this Euclidean diagram which is not additive,
contradicting 2.30.3 (iii).

(ii) This follows from 2.30.3 (iii) and 2.30.5 (ii).

(iii) Suppose false. Then T is a finite Dynkin diagram by (i),
and hence so is T°P. Thus TP is strictly smaller than some
Euclidean diagram. Thus by 2.30.3 (i) and 2.30.4 TP admits a sub-
additive function which is not additive, contradicting 2.30.3 (ii).

(iv) If d 1is unbounded then T 1is infinite, and so by (i) it
is an infinite Dynkin diagram. Hence by 2.30.5 (ii) T >A_. o

2.31 The tree class of a connected component of the stable quiver

We now wish to construct a subadditive function on the labelled
tree determined by a connected component of the stable quiver of kG,
and to determine when this function is additive. In order to do this,
we take another look at Poincaré series. 1In 2.22 we saw that Ev(t)
is a rational function of the form f(t)/.g (1-t i). We can also

i=

form another Poincare series nv(t) =3 tndim(Pn), where

. Py P1 - Py~ V »0 is a minimal projective resolution of V.
Since for S simple the number of times Pg occurs as a summand of

Pn is dimkExtg(V,S)/dimkEnde(S), we have



159

dimk(PS).dimkExtg(v,S)

dimkEnde(S)

dimk(Pn) = g

simple

Now, Exté(V,S) = H*(G,V* % 8) 1is a finitely generated module
for H*(G,k) by Evens' theorem (see 2.22, properties of cohomology
(vii)). Thus by 1.8.2, nv(t) is a rational function of the form

r k.
f(e)/, T (1 - ¢t l), where the ki are independent of V, and f

i=1
has integer coefficients. It now follows from 1.8.3 that the pole of
nv(t) at t =1 has order c = ch(V), and that the value of the
analytic function lei) nv(t)(l-t)c at t =1 1s a positive integer.
We denote this wvalue by n (V). This will in fact form our subadditive

function.

2.31.1 Proposition

1) (V) = nEV)

(ii) If 0-V' 2 V- V'L 0 1is a short exact sequnece of
modules of the same complexity (cf. 2.24.4(v)), then

AW s (V) +q V).

(iii) If 0 » RZV -+ XV +V + 0 1is an almost split sequence,
then n(XV) < 2q(V); 1if n(XV) < 2n(V) then V 1is periodic, and for

some n the middle term X n of the almost split sequence
Qv
0 > Qn+2V + X o ™ @™ 4 0 has a projective direct summand.
Qv
Proof

(1) nye) = ¢t ”gv(t) + constant.

(ii) Without loss of generality V' and V" have no projective
direct summands (although V may have) since these split off from
the sequence without affecting n(V') + (V") - n(V). Thus if

. > Pi N P; +V 40 and oo+ P{ + P; + V' 50 are minimal
projective resolutions then there is a projective resolution

. >Pl ®@P) >+ Pl @ P+ V0. Thus ny (t) tyu(t) - ny(e) is the

Poincaré series of a graded module, and so the value at t =1 of
(nv,(t) + nvn(t) - nv(t))(l—t)c cannot be negative (see 1.8.3).
(iii) By 2.28.6, V, Xy and QZV have the same complexity.

X ~ Qn(xv) unless and only unless X has a projective direct
Qv Qv
summand. Thus the minimal projective resolution of Xy is the sum

of the minimal projective resolutions of V and QZV except at
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those places where X a has a projective direct summand. If this
RV
happens for only finitely many values of n, then

nv(t) + n 2 (t) - g (t) 1is a polynomial in t, and hence
Qv v

n(XV) n(v) + n(RZV) - 2q(V). Otherwise, V must be periodic, since
there are only finitelymany projective indecomposables, each of which
appears in only one almost split sequence. o

2.31.2 Theorem
(i) (Webb, [92)) Let T be the tree class of a connected com-
ponent Q of the stable quiver of kG. Then T 1is either a Dynkin
diagram (finite or infinite) or a Euclidean diagram (apart from An).
(ii) The reduced graph 4 of Q 1is also either a Dynkin diagram
(finite or infinite) or a Euclidean diagram (this time An is allowed) .

Proof
By 2.31.1, n(V) defines a function on Q which commutes with

92, and satisfies 2(x) 2 £ _n(y). Thus n gives a subadditive
yex

function on both T and A. The result thus follows from
2.30.6 (1i). o

Remark \

If k is algebraically closed then each ayy = agy (see
definition 2.28.1) since the irreducible modules for Ende(U) and
Ende(V) are one dimenfional. ~Thus only the diagrams of type A, D,
E, A (but not All)’ D and E occur.

2.31.3 Corollary
The length of Irr(U,V) as a left Ende(U)—module and as a

right Ende(V)—module are at most four, and if k 1is algebraically
closed, dimkIrr(U,V) < 2.

Proof
Among the list of Dynkin and Euclidean diagrams, the maximum 243
appearing is four, and if a;: = as; then the maximum value appearing

is two; indeed, we may further observe that aij‘aji is at most four. o

2.31.4 ‘Corollary
The number of direct summands in the middle term of an almost

split sequence is at most five, and if equal to five, then one of the
summands is projective.

Proof
Among the Dynkin and Euclidean diagrams, the maximal possible

value of 2 a,. 1is four. o
j o4
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2.31.5 Corollary

Let P be a (non-simple) projective indecomposable kG-module.
Then the maximal possible number of direct summands of Rad(P)/Soc(P)
ig four.

Proof
Apply 2.31.4 to the almost split sequence

0 - Rad(P) - P @ Rad(P)/Soc(P) - P/Soc(P) = 0. o

Following Webb, we now investigate each of the possibilities
allowed by 2.31.2 in turn.

Case 1 The Finite Dynkin Diagrams

2.31.6 Lemma
Suppose a connected component Q of the stable quiver of kG

contains a periodic module. Then every module in Q 1is periodic.

Proof
This follows from 2.25.4 and 2.24.4(xi). Alternatively, we may
prove this directly as follows. If x 1is periodic with x = anx

then an induces a permutation on x , which is a finite set by
2.28.3, and so some power of an stabilizes x  pointwise. Hence
by induction all modules in Q are periodic. o

2.31.7 Proposition

Suppose the tree class T or the reduced graph A of a component
Q of the stable quiver of kG 1is a finite Dynkin diagram. Then Q
has only finitely many vertices.

Proof
Suppose T or A 1is a finite Dynkin diagram. Then by 2.30.6
7 defines a subadditive function on T or A which is not additive.
Hence for some module V belonging to Q, n(Xv) < 2n(V). Thus by
2,31.1(iii), V 1is periodic. Hence by 2.31.2 every module in Q 1is
periodic, and so Q has only finitely many vertices. o

2.31.8 Proposition

Suppose a component Q of the stable quiver of kG has only
finitely many vertices. Then Q consists of all the non-projective
modules in a block of kG with cyclic defect group.

Proof
Let A be the linear span in A(G) of the modules in Q.
Suppose the modules in A do not constitute the set of non-projective
modules in a complete block. Then there is a non-projective
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indecomposable module V outside A and a module W in A such

that there is a non-zero homomorphism from V to W. Now by 2.18.3,
for each indecomposable module U in A, v.t(U) ¢ A, and so by

2.18.4 ( , ) 1is non-singular on A. Since A 1is finite dimension-
al, this means that there exists x ¢ A such that (x,U) = (V,U) for
all U ¢ A. Let Wo be an indecomposable module in A such that x
has a non-zero coefficient of W, Then

0 # (X,V.T(wo)) (see 2.18.5)
= (V,V.T(Wo)).

Thus by 2.18.4 V = WO since V and W, are indecomposable. This
contradiction shows that Q consists of all the non-projective
modules in a block B of kG. The fact that B has cyclic defect
group follows from 2.12.9. o

Remark

In fact in [77] and [52] it is shown that if B is a block of
kG with cyclic defect group then the tree class of the corresponding
connected component of the stable quiver is equal to the reduced
graph, and is the Dynkin diagram A, . However, the other finite
Dynkin diagrams come up in algebras of finite representation type
which are not blocks of finite group algebras.

Case 2 Infinite Quiver Components

In case 1, we saw that either T = A  or Q has infinitely many
vertices. We shall now show that if Q 1is infinite then there are
indecomposable modules in Q with an arbitrarily large number of
composition factors. We shall then give two applications of this.
First, we shall show that in the special case where Q has a periodic
module, T = A_. We shall then go on to consider the Euclidean
diagrams, and show that if T 1is Euclidean then there is a projective

module attached to Q.

2.31.9 Lemma (Harada, Sai)

Let Vg, .. , V be indecomposable modules, each having

27-1
at most n composition factors, and suppose fi:Vi_1 - Vi is not an
isomorphism. Then fle"f n_y = 0.
ot
Proof

Write |U| for the number of composition factors of a module U

(and |0| = 0). We show by induction on m that

[Im(f; .. £ . )] =n-m. The assertion is clear for m =1, since £
27-1
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is not an isomorphism. Suppose true for m - 1. Write

f=f £ £ and h = £ £ . By the

.. _ , g = _ N ..
1 ol l_l o 1 om l+1 om_q

inductive hypothesis |Im(f)] =n -m+ 1 and |Im¢h)| =n -m+ 1.
If either inequality is strict, we are done, so suppose they are

both equalities, and suppose |Im(fgh)| = n - m + 1. Then
Im(f) n Ker(gh) = 0 and Im(fg) N Ker(h) = 0. Thus by counting
composition factors, V o = Im(f) ® Ker(gh) and
27-1
\ oo Im(fg) ® Ker(h). Since each is indecomposable, gh is injective
2

and fg 1is surjective. Thus g 1is an isomorphism, contrary to
hypothesis. s}

2.31.10 Theorem (Auslander)

Suppose Q is an infinite component of the stable quiver of
kG. Then Q has modules with an arbitrary large number of composition
factors.

Proof
Suppose to the contrary that all modules in Q have at most n
composition factors. Suppose U and V are indecomposable modules
and (U,V) # 0 (recall (U,V) = dimkHomkG(U,V)). If U e Q, then
also V e Q. For if V ¢ Q, then by 2.27.5 there is a chain of
irreducible maps

and a map h:U -V with g; .. g h # 0, contradicting 2.31.9.
27-1 2-1

The dual argument also shows that if V & Q then U e Q.

Now for any indecomposable module V in Q, there is a projective
module P with (P,V) # 0, and hence P e Q. Thus every module is
Q 1is connected by a chain of irreducible maps of length at most
2.1 to a projective module. Since there are only finitely many
projectives in Q, and Q has finite valence, this shows that Q
is finite, contrary to assumption. s}

2.31.11 Theorem
Suppose an infinite component Q of the stable quiver of kG
has a periodic module . Then the tree class of Q is A .

Proof
By 2.31.6, every module in Q 1is periodic. If V 1is periodic,
then n(V) may be expressed in the form
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(Hki).(average dimension of Rn(V)).

Since Q 1is infinite, 2.31.10 shows that n(V) 1is unbounded.
Thus by 2.30.6(iv), the tree class of Q 1is A_, o

Finally, we examine the Euclidean diagrams in the next section.

2.32 Weyl groups and Coxeter transformations

In this section, we examine the geometry of a certain rational
vector space associated with the graphs discussed in 2.30. Our goal
is to prove proposition 2.32.4 and theorem 2.32.5. Finally, we
summarize the results of sections 2.28 and 2.32 in our final theorem,
2.32.6.

A valued graph T 1is a finite labelled graph such that there
exist natural numbers fi’ one for each vertex of T, with
aijfj = ajifi’ for each edge i — j in T. Note that all the
finite Dynkin and Euclidean diagrams are valued graphs, and that the
numbers fi’ when they exist, are uniquely defined up to Sonstant
multiplication on each connected component. The matrix Cp = (cijfj)
is called the symmetrized Cartan matrix, and is self-transpose.

Given a valued graph T, we form the rational vector space QT

with the points t; of T as basis, and we bestow QT with the

symmetric bilinear form given by Cr

<x,y > = Z c,sf.xiy.
i,i 1] 1177
(x=2 X by, ¥ = z yiti).
The Weyl group W(T) is the group generated by the reflections

<§,ti>
Xw, = x-2 —>— t;
<ti’ti>

It is easy to check that the w; are transformations of order two

preserving the bilinear form. By examining the two point graphs we
see that the order of wiwj is 2, 3, 4, 6 or <« for

a =0,1,2,3 or = 4 respectively.

ij #ji
2.32.1 Lemma

Let T be a connected valued graph.
(i) T 1is a finite Dynkin diagram if and only if < , > 1is positive
definite on QT.
(ii) T 1is a Euclidean diagram if and only if < , > 1is positive

semidefinite on QT. In this case every null vector is a multiple
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of the vector given by the additive function shown in 2.30.

Proof
Suppose T 1is a Euclidean diagram. By 2.30.3(i), there is an
additive function t; m di on T. Thus we have
1 Xy ;_12
< X,X »= - by d.d.c..f.( == - )
Z 1% P e 8y s di 3

which is positive semidefinite since the ¢ are negative for i # j,

i3
and the di and fi are positive. Moreover for a null vector, all
*i
the g~ hust have the same value so that the null space is one
i
dimensional.

Since every Dynkin diagram is strictly smaller than a Euclidean
diagram, it follows that < , > 1is positive definite on the Dynkin
diagrams.

If T 1is neither Euclidean nor Dynkin then by 2.30.1 there is a
Euclidean diagram T' which is strictly smaller than T. If T'
contains all the points of T, then a null vector for T' has
negative norm for T. Otherwise choose a point of T adjacent to
a point of T', and add a small enough multiple of the corresponding
basis element to the null vector for T', to obtain a vector of

negative norm. o

2.32.2 Lemma

Suppose T 1s a Euclidean diagram. Let n be the null vector
given by the additive function shown in 2.30. Then W(T) preserves
<n> and acts as a finite group of automorphisms of QT/<E?

Proof
Since <n> 1s the radical of < , > , <n»>is preserved by
W(T). Since the matrices in W(T) have integer entries with respect

to our basis t W(T) acts as a discrete subgroup of the compact

i t
orthogonal group on QT/<§ >, and this action is therefore finite. a

We now define a Coxeter transformation to be a product of all the

W taken once each in some order. Let T be a Euclidean diagram

and let ¢ be a Coxeter transformation. By 2.32.2, ¢ has finite

order m on QT/<E? , and so we may define the defect ac(§) of
a vector X ¢ QT via

xc'=x+ 3, n.

Thus a3, 1is a linear form QT +Q and a.(x) =z ac(ti)xi.
i
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The map 3, gives us a splitting QT = Ker(ac) ® <n>.

2.32.3 Lemma

The following two conditions on a vector x ¢ QT are
equivalent.

(i) x has infinitely many images under ¢

(1) 3.(x) # 0.

If (i) and (ii) are satisfied then some image of x has
negative coordinates.

Proof
This is clear from the preceding discussion. a

Now let B be a directed labelled tree. A slice of 2B (see
section 2.29) is a connected subgraph of 2B containing one
representative of each point in B. If S 1is a slice, we write S+
for the adjacent slice {(n+l,x) : (n,x) ¢ S} .

An additive function on 2B 1is a function £ from the vertices

of 2B to the positive integers with the property that

fx) + £(x2) = 2 f(Y).ayx

yex~
where ayx is to be interpreted as the number aij where t; is
the image of y and tj is the image of x in B.

2.32.4 Proposition
If B 1is a Euclidean tree then every additive function on 2B

takes bounded values.

Proof

Let f be an additive function on 2B. If S 1is a slice of
ZB then we have a corresponding vector Xg € QB whose iEh
coordinate x4 is the value of f on the unique vertex in S Llying
above t; ¢ B . It is easy to check that if the vertex (n,t;) ¢ S
is a sink (i.e. all directed edges in S involving (n,ti) go
towards (n,ti)) then the slice S.wi obtained by replacing (n,ti)
by (n+1,ti) in S satisfies

5w, T X Vi

by the definition of additivity of £. Since B is a tree, we may
choose an ordering for the vertices of B in such a way that each
t; is a sink for S.wl...wi_l. Thus the associated Coxeter element
¢ takes S to the adjacent slice S+. Since f only takes positive
values it follows from 2.32.3 that Xg has only finitely many images

under c¢. This implies that f takes on only finitely many
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different values on ZB. a

2.32.5 Theorem

Suppose Q 1is a connected component of the stable quiver of kG,
whose tree class is a Euclidean diagram. Then there is a projective
module attached to Q.

Proof
Let 2B be the universal cover of Q, with B a Euclidean
diagram. Suppose there is no projective module attached to Q. Then
the dimension function on Q 1lifts to an additive function on ZB.
Thus by 2.32.4, the dimensions of modules in Q are bounded,
contradicting 2.31.10 (Q has infinitely many vertices by case 1 of
2.31). o

Finally, the following theorem summarizes the results of sections
2.28 to 2.32,

2.32.6 Theorem

Let Q be a connected component of the stable quiver of kG.
Then associated with Q we have a tree class T and a reduced
graph 4, both of which are labelled graphs, together with a natural
surjective map x: T + A, which never identifies adjacent vertices
of T. Each of T and A 1is either a Dynkin diagram (finite or
infinite) or a Euclidean diagram.

(1) T 1is a Dynkin diagram if and only if A 1is a Dynkin diagram,
which in turn happens if and only if the modules in Q belong to a
block B with cyclic defect group. In this case Q consists of
all the non-projective modules in B, x: T - A 1is an isomorphism,
and T = An'

(ii1) If T 1is not a Dynkin diagram then there are indecomposable
modules in Q of arbitrarily large dimension.

(iii) If Q contains a periodic module then every module in Q
is periodic and T = A .

(iv) If T 1is a Euclidean diagram then there is a projective
module attached to Q. In particular, only finitely many connected
components. of the stable quiver have a Euclidean diagram as their
tree class. o

2.33 Galois Descent on the Stable Quiver

In 2.29, we introduced the concepts of tree class and reduced
graph for a connected component of the stable quiver of kG-modules.
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In this section we investigate what happens under field extensions,
and we see that the reduced graph behaves much better than the tree
class.

Let k be a field of characteristic p and let K be a finite
Galois extension of k. Then 6 = Gal(K/k) acts on the set of
indecomposable KG-modules as follows. If V 1is a KG-module and
o & 6, let V° be the representation with the same underlying set
and the same action of G, but with new scalar multiplication by A\
equal to the old scalar multiplication by A\%. It is clear that
I sends almost split sequences to almost split sequences and
irreducible morphisms to irreducible morphisms. Thus € acts as
automorphisms on the stable quiver of KG-modules, and hence also
permutes the connected components.

Denote by ek K the natural map AL (G) + AK(G) given by
Ve V i K, and by fK,k the natural map AK(G) -+ Ak(G) given by

Ve (1/|K:k]V 6.

2.33.1 Lemma
(1) e K and fK,k are ring homomorphisms.
(ii) e x is injective (see also exercise to 2.18).
(iii) AK(G) = Im(ek,K) @ Ker(fK,k) as a direct sum of ideals.
(iv) e, g Preserves the inner products ( , ) and < , >

A].SO, (ek’Kx’Y) = (x’fK,ky) and <ek,KX,Y> =< x,fK’kY> .

Because of (i) - (iv), we shall identify Ak(G) with its image
under e x from now on.
(v) If V 1is an indecomposable kG-module and

V®K-= Vl ®. .0 Vn then & = Gal(K/k) acts transitively on the
k
isomorphism types of the V.
(vi) Ak(G) is the set of fixed points of & on AK(G) (but
note that ak(G) is in general smaller than the set of fixed points
of & on aK(G)).

(vii) e, g commutes with the map t defined in section 2.18.

Proof
(i) It is clear that er K is a ring homomorphism. Since
Ve E Wi e = ((V+kG E K) E W)+kG = |K:k|(V z W)+kG, fK,k is also

a ring homomorphism.
(ii) and (iii) follow from the fact that ex K followed by fK,k
is the identity map.
(iv) This follows from the identities
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HOmkG(V’W) i K = HomKG(V ﬁ K, W i K)

and ek,K(ukG) = Upas together with 2.4.3.

(v) Suppose 6 does not act transitively on the isomorphism
types of the Vi' Reorder the Vi so that for some k with
l=k=mn, nooneof V;, .., Vk is isomorphic to any
Vi+1 y e Vg, for any o ¢ & . Then the direct sum decomposition

v i K=(Vy 8 ..9V) & (V ; 9.07V)
is stable under the action of &, and hence corresponds to a direct
sum decomposition of V.

(vi) Since every KG-module is a direct summand of some ek’K(V)
with V an indecomposable kG-module, it follows from (v) that
Ker(fK’k) is the linear span of elements of the form W - WP for W
an indecomposable KG-module, and Im(eK’k) is the linear span of

elements of the form s We.
oeh
(vii) Suppose U and V are kG-modules with U ® K = U, .JBUm
k
and V E K = Vl ® .. D Vn' By (vi), all the <« Ui’ek,K (V) > are

equal, and so

<Ui’ek,K (V) > (l/m)<ek,K(U)’ek,K (V) >

L]

(1/m) < U, (V) > by (iv),

dU/m if UxV
0 otherwise.

On the other hand

n
<Ui: Tek,K(V)> = jil <Ui) T(VJ‘)>
= dU .(no. of Vj isomorphic to
L oyy if U=v
i
0 otherwise.

But dU = dU/(m.(no. of Vj isomorphic to Ui)), since the extension
i

K/k 1is separable. Thus e, K'r(V) and Tey K(V) have the same inner
product with every element of AK(G), and so by 2.18.5 they are
equal. o
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2.33.2 Proposition

Suppose V 1is a non-projective indecomposable kG-module with
V®K=V1$ ..&)Vn. Suppose O»RZV»XV»V—>0 is the almost
split sequence terminating in V. Then tensoring with K, we obtain
the direct sum of the almost split sequences terminating in the \/E

2 2
0 - V1 ®..9 R Vn - le [ ) Xvn - Vl ®,, ® Vn -+ 0.

Proof
We have

1 2 1 2
Exth(V, V) ® K = EerG(V : K, @V ® K)

k k

11

1 2
ExtKG(V1 ®..9 Vn, Q Vl .. Q Vn).

R

The almost split sequence 0 - QZV - XV + V +> 0 corresponds to a
generator x for the socle of Ext&G(V, QZV) = (Ende(V)/J(Ende(V)))*
Now Ende(V)/J(Ende(V)) is a division ring D, and without loss of
generality we may take x:D + k to be the reduced trace function (i.e. tensor
D with a splitting field, so that it becomes an algebra of matrices,
and then x takes a matrix ta its trace, which is in k). Then since K is
a separable extension of k, D ® K is a direct sum of complete matrix
algebras over division rings with k in their centres (1.2.4) and
x ® K is still the reduced trace function. Thus as an element of

k
ExtI]iG(Vl ®.. &V, 92V1 & .. o szn), X z K represents the sum of
the generators for the socles of ExtéG(Vi, QZVi), and so our sequence
is the direct sum of the almost split sequences. o

2.33.3 Proposition
Let q be a connected component of the stable quiver of kG-

modules. Then the direct summands of V ® K for V ¢ q belong to a
k

finite set of connected components Ql’ P Qn of the stable quiver
of KG-modules, and ¢ acts transitively in the Q-

Proof
Choose a module V ¢ q, and let Vl PN Vm be the isomorphism
classes of summands of V ® K. By 2.33.2 and induction, if W e q,
k

and Wl is a direct summand of W ® K, then Wl is in the same

k
connected component as one of the V-
connected components., and by 2.33.2, 6 acts transitively on them. o

Thus there are at most m
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Definitions

In the situation of 2.33.3, we say Q » .-, Q, lie above q.
If Q 1is a connected component of the stable quiver of KG-modules,
we define the decomposition group [ to be StabG(Q), and the
decomposition field k9 to be the fixed field of GQ.

2.33.4 Proposition

Let Q be a connected. component of the stable quiver of KG-

modules, with decomposition group GQ and decomposition field Kd.

Let Ql s e, Qn be the images of Q wunder &, and let q be the
component of the stable quiver of kG-modules, over which they lie.
Let “UJ be the component of the stable quiver of KdG—modules over
which Q 1lies. Then
(i) Q 1is the only component of the stable quiver of KG-modules
lying over W s
(ii) there is a natural isomorphism -07 ~ q, and
(iii) ) is the quotient of Q by the action of
6q = Gal ®/x%y .
Proof
(i) This is clear from the definition of Kd.
(ii) The isomorphism is given as follows. If V ¢ q, then

Ve Kd has a unique summand in 1@ , since Gal(K/k) 1is transitive
k

on the isomorphism classes of summands of V ® K (2.33.1(v)), and

k

GQ is precisely the setwise stabilizer of those summands lying in

Q. The isomorphism in question takes V to this summand. This is

clearly a quiver isomorphism by 2.33.2.

(iii) This is clear. o

Since GQ acts on Q, this passes down to an action of GQ
on the reduced graph A of Q (but not on the associated tree, as we
shall see).

The reduced graph 4, for Y may be obtained as follows. The
vertices of A, are the orbits of GQ on 4. To find the new
157 pick a representative io of the orbit i, and
add together with aio'jo as jo runs over the elements of the orbit
j connected to i.

multiplicity a

Example
Let G = A4, k = Fz and K = F4. Let Q be the component of

the stable quiver of KG-modules corresponding to the component of the
Auslander-Reiten quiver containing the projective modules (see
Appendix). Let ‘1¢ be the corresponding component of the stable
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quiver of kG-modules. Then the tree class and reduced graph of Q
are A: and Ag. The Galois group Gal(K/k) acts on A5 as follows,

and so the reduced graph of 1¢, is

B3 = =<
Since the tree class of 1¢ is also §3, we see that the behaviour of
the tree class under Galois descent 1is less easy to predict,
We define the inertia group TQ of Q to be the pointwise
stabilizer in G of the reduced graph of Q, and the inertia field
K® to be the fixed field of TQ. The following proposition is clear.

2.33.5 Proposition
(i) The reduced graph of the component of the stable quiver of

KG-modules corresponding to Q is isomorphic to the reduced graph
of

(ii) GQ/TQ acts faithfully as a group of graph. automorphisms
on the reduced graph of Q, and is hence either cyclic or isomorphic
to a subgroup of SA' o
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Appendix

Representations of particular groups

In this appendix, we list some information about the representa-
tion theory of particular finite groups. The amount of information
given varies with the size of the group. We pay special attention to
the representation theory of the Klein fours group, since this is a
good example of many of the concepts introduced in the text. Our
notation for the tables is a modification of the 'Atlas' conventions
[36), as follows.

If A 1is a direct summand of A(G) satisfying hypothesis
2.21.1, we write first the atom table and then the representation
table. The top row gives the wvalue of c¢(s) (calculated using
2.21.13). The second row gives the ZEE power of s, for each
relevant prime ¢ in numerical order (a prime is relevant for a
species s 1if either zllOrig(s)l, or p||0rig(s)| (p = char(k)) and
5](p-l)). The third row gives the isomorphism type of an origin of s,
followed by a letter distinguishing the conjugacy class of the origin,
and a number distinguishing the species with that origin, if there is
more than one. Thus for example S3A2 means that the origin is
isomorphic to S,4, and lies in a conjugacy class labelled 'A' ; the
species in question is the second one with this origin. For the power
maps (second row), the origin is determined by 2.16.11, so we only give
the rest of the identifier.

The last column gives the conjugacy class of .the vertex of the
representation. If there is more than one possible source with a
given vertex, the dimension of the source is given in brackets.

By 2.21.9, the Brauer character table of modular irreducibles
always appears at the top left corner of the atom table. Similarly
the Brauer character table of projective indecomposable modules always
appears at the top left corner of the representation table.

For the irreducible modules in the atom table, we also give the
Frobenius-Schur indicator, namely

+ 1if the representation is orthogonal

- if the representation is symplectic but not
orthogonal

o 1if the representation is neither symplectic
nor orthogonal.

(For char k # 2, this is (1, vz(V)), see example after 2.16.2).

David J. Benson: Modular Representation Theory, Lect. Notes Math. 1081, 173-220 (2006)
DOI 10.1007/b15289 3 © Springer-Verlag Berlin Heidelberg 2006
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Irrationalities

The irrationalities we find in these tables are as follows.

(-1 +v) if n= 1 (mod 4)
bn =

= N

7 (-1 + ivm) if n= 3 (mod 4)

i.e. the Gauss sum of half the primitive nEE roots of unity.

ez"l/n is a primitive nth root of unity

zn =
yn = zn + zn

rn =vVa
in = ivn

*m denotes the image of the adjacent irrationality under the Galois
automorphism zn (zn)m

* denotes the conjugate of a quadratic irrationality.

** denotes *(-1).

x&an denotes x + x*m.

Projective modules

We give the Loewy structure of the projective indecomposable
kG-modules. This is the diagram whose iE}—1 row gives the simple
summands of the it? Loewy layer, namely the completely reducible
module L;(V) = v3'"1/vs®, where J = J(kG). In this diagram, simple
modules are labelled by their dimensions, with some form of decoration

(e.g. a subscript) if there is more than one simple module of the
same dimension.

Auslander-Reiten Quiver

We use dotted lines to indicate the arrows involving projective
modules, so that the stable quiver may be obtained by removing these
arrows and the projective modules attached to them. When the tree
class of a connected component is equal to the reduced graph, we only
give the former. If they are different, we give both, and we write
(tree class) -+ (reduced graph).

Cohomology
* *
We give H (G,2) and H (G,k) in the forms Z[generators]/(rela-

tions) and k{generators]/(relations), where the relations

Xy = (_l)deg(x)deg(y)yx are to be assumed. We also give the Poincaré
series g (t) = ztndiman(G,k).

Acknowledgement
I would like to thank Richard Parker for his permission to
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reproduce extracts from his collection of decomposition matrices and
Brauer character tables.

C2 , the cyclic group of order two

i. Ordinary characters

2 2

P power A
ind 1A 2A
+ 1 1

+ 1 -1

H'(C,,2) = 2[x1/(2x), deg(x) = 2.

ii. Representations over Fz Representation type: finite.

Decomposition matrix and Cartan matrix

I I
D = 1 c= I
1' 1
Atom table and representation table for A(G)
2 -2 2 -2
p power A P power A
ind 1A 2A 1A 2A vtx
+ 1 1 2 0 1A
-2 1 1 2A

Projective indecomposable modules

I
I

Almost Split Sequences

I
0+I-+I->I-20

Auslander-Reiten Quiver

I ~~" s

I e .01

Tree Class Al
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Cohomology

*

H'(Cp.k) = kix], deg(x) =1,  xSq* = x?

1
(8 = 1%
Max(HEV(C, k) = Al (k)

Proj(HeV(Cz,k)) is a single point.
A Ring Homomorphism

If H=<t> is a cyclic subgroup of a group G with |H| = 2,

then (1+£)2 = 0, and
Ve Kerv(l+t)/ImV(l+t)

is a ring homomorphism from A(G) to A(CG(H)/H).

V4, the Klein fours group ( = Cy x C2)

H(V,,%) = 2lx,y,21/(2x,2y,2z,2°-xy2-x%y)
deg(x) = deg(y) = 2, deg(z) = 3.

Representations over FZ Representation type: tame.

The set of species of Ak(VA) falls naturally into three subsets.

(i) The dimension.

(ii) A set of species s, parametrized by the non-zero complex
numbers z ¢ C\{0}

(iii) A set of species SN A parametrized by the set of ordered
pairs (N,1) with N ¢ N\{0} and X ¢ PI(k).

The set of indecomposable representations also falls naturally
into three subsets.

(i) The projective indecomposable representation Pl of dimen-
sion four.

(ii) The syzygies of the trivial module Vo = k

= m - m
vo= (k) and v_ = 7).

(iii) The set of representations Vn A parametrized by the set
of ordered pairs (n,\) with n ¢ N\{0} and X ¢ Pl(k), having
dimension 2n, and Q(Vn,x) =] Vn,x
Matrices for these representations are given as follows. Let

2 2 .
V4 =<g1,8y: B] = 8y = 1, 8189 = 8981 >. Then Vn,x is the
representation
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g, = gy W
0 I 0 I

where . I represents an n x n identity matrix, while JX represents
an n x n Jordan block with eigenvalue .

For » = = , the representation is

g *+ g, b
0 I 0 I
Aut(V,) = S, =<h, hys n 2 =n,? = (hhpd =1, gl -
4 3 1 B2 2 172 » 81 T &1
hl h h2
82 = B182, 81" =8y, 8y =g > acts on the set of representations
as follows. P; and V_  are fixed by al automorphisms, and

h, : Vn,x - Vn,1+x , h2 Y

1 ™ Va1

Define infinite matrices A,B,C and D as follows

N
1 2 3 4 5
112 0 0 0 0
212 2 0 0 O
A = n+y 312 2 2 0 O
412 2 2 2 0
52 2 2 2 2
y
1 2 3 4 5
1IVZ -vZ0 0 O
212 2 0 0 O
B = n+y3y 2 2 2 0 0
41 2 2 2 2 0
5 2 2 2 2 2
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+2

1 2 3 4 5
122 0 "0 0
2i0 -2 2 0 O
_ 3lo o -2 2 o
C = m Z4lo o o0 -2 2
5/10 0 0 0 -2
N
N
1 2 3 4 5
1]2-2V7 242vZ 0 0 0
2 | vZ-2 -~2-2 2 0 0
D = nt+ 3 0 0 -2 2 0
4 0 0 0 -2 2
5 0 0 0 0 -2

Let 0 represent an infinite matrix of zeros. Then the representation
table and atom table for V, are as follows

Representation Table for V, over FZ

SN,

s, ///——_——‘-_—_-)\\—__‘_—ﬂ—__‘—-—___‘-\\\\$\

Parameters dim |z |(N,=)(N,0)(N,1) [ (N,r )(N,XZ)(N,X3)

Pl (projective) 4 0 0 0 0 0 0 0
v m 2 mj+1] 2| 1 1 1 1 1 1
(n,=) 2n 0 0 0 0 0 0
Vn A (n,0) 2n 0 0 0 0 0
(n,1) 2n 0 0 0 A 0 0 0
(n, Xl) 2n 0 0 0 0 B 0 0
(n,XZ) 2n 0 0 0 0 0 B 0

(n,x3) 2n 0 0 0 0 0 0 B
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Atom Table for V4

Parameters | dim z (N,=) (N,0)(N,1) (N,Xl)(N,Xl)(N,xa)
(simple) 1 1 101 1 1 1 1
m o |-2ta-»4 0 o o 0 0 0
(@,=) 0 0 c o0 o0 0 0 0
(n,0) 0 0 o ¢ o 0 0 0
(n,1) 0 0 o 0 ¢ 0 0 0
(. Ap) 0 0 o o0 o0 D 0 0
(m,xy) 0 0 o 0 o0 0 D 0
(n,rg) 0 0 o o o 0 0
[
L

Direct Summands of A(G)

A(G,Cyc) 1is the linear span of Pl, Vl,O’ Vl,l and Vl’m

A(G,Discrete) 1is the linear span of the elements Pl and all
the Vn,x

AO(G,Discrete) is the linear span of elements of the form
2v, - 2V, - [m|Pl, and is isomorphic to the ideal of C[X,X_l]
consisting of those functions vanishing at X = 1. Letting
AO(G,Discrete) be the subring of A(G) generated by AO(G,Discrete)

and the identity element, we have

A(G) = A(G,Discrete) & AO(G,Discrete)
AO(G,?iscrete) is isoTorphic Ei G[X,X_l] , under the isomorphism
V1 -7 Pl = X, V_1 -7 P1 = X 7. In particular,

A(G,Discrete) @ AO(G,Discrete) is an ideal of codimension one in
A(G), and A(G,Discrete) 1is not an ideal direct summand of A(G),
since it has no identity element.

Power maps
m _
(sz) = s, m odd
z
s m= 2
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e m  odd

(s 2 SN,

sN,f m= 2

unless N=1 or 2, » ¢ {0,l,=} and m= 3 or 5 mod 8, in

which case (sl X)m =5, 5 and (s2 X)m

=81

Almost Split Sequences

0~ Vn+2 - Vn+l P Vn+l - Vn > 0 (n #+ -1)
0> Vl - Vo ® VO ® Pl -+ V-l > 0

0~ Vn,X - Vn+l,X ® Vn-l,X - Vn,X + 0 (n > 1)

Auslander-Reiten Quiver

4 ~
(2,2) 2, 12,2 2,2y (2,2) (2,2)
..... >V, >V, > Vg >V 4 >V_o ceen

vy, TRy Ay Ay A
1, 2,08 3,200 4 2\G—”

O e PLK))

Tree Classes

~

A12’ and a Pl(k)- parametrized family of A_ 's.

Cohomology

*

H (Vg4 k) = k[x,y] deg(x) = deg(y) =1
sl = x2,  ysql = 32

£ (t) = 1/ (1-t)?

Max (H®V (V, k) = 82 (x)

Proj (HeV(V4,k)) ~ PL(k) , and may be identified with the parametrizing
set for the Vn,x in such a way that iG(Vn,X) = {\}. Thus there is

a one-one correspondence between the connected components of the stable
quiver and the non-empty subvarieties of ic. Note that for a general
group there may be many connected components of the stable quiver with

the same variety.
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Remark
For representation theory of v, over an arbitrary field in
characteristic 2, see under the dihedral group of order 2o,

The Dihedral Group D
on

*
H (Dg,2) = 2[w,x,y,z1/(2w,2x,2y,4z, y2- wzZ, x2- wX)
deg(w) = deg(x) = 2, deg(y) = 3, deg(z) = 4.

Representations over a field k of characteristic 2 (not

necessarily algebraically closed) [79] Representation type: tame

First we describe the finite dimensional indecomposable modules
for the infinite dihedral group

G=<x,v: x2 = y2 =1l>,

and then we indicate which are modules for the quotient group

Dpg = <%, ¥: x=y2=1, @ni=@oi>.

-1 1

Let I be the set of words in the letters a, b, a and b~
such that a and a ! are always followed by b or b1 and vice-
versa, together with the 'zero length words' 1, and 1. If C is
a word, we define C™1 as follows. (1)"1 =1_, (1,)7} =1_; and
otherwise, we reverse the order of the letters in the word and invert

each letter according to the rule (a_l)_1 = a, (b_l)_1 =b. Let El
be the set obtained from ® by identifying each word with its inverse.
The nEE power of a word of even length is obtained by juxta-

posing n copies of the word. Let ' be the subset of # consist-
ing of all words of even non-zero length which are not powers of
smaller words. Let 1, be the set obtained from #' by identifying
each word with its inverse and with its images under cyclic permuta-
tions

£y oo By w88y -- fo g

The following is a list of all the isomorphism types of finite

dimensional indecomposable kG-modules.

Modules of the first kind

These are in one-one correspondence with elements of ml. Let

Cc = £q -. &, e 0. Let M(C) be a vector space over k with basis
Z, » -+ » 2, onwhich G acts according to the schema
14 14 14
1 n
kz < kz, < kz, <o kz 4 < kz



182

where x acts as _" l1+a"and y acts as 1+b (e.g. if
C = ab laba™l  then the schema is

kz < 2 kzq b kz, < a kz3 <-b sz & kz5
and the representation is given by

1 1

1 1 1 1

X o 1 _ 1
1 1 1
1 1 1 1
1 1

It is clear that M(C) = M(C_l).

Modules of the second kind

These are in one-one correspondence with elements of B, x ¥

where

» = {(V,p): V 1is a vector space over k and ¢ is an
indecomposable automorphism of V }

(an indecomposable automorphism of a vector space is one whose

rational canonical form has only one block, which is associated with
1

a power of an irreducible polynomial over k). If (C,(V,p)) e B x ¥

with C it 2 TEEIT 2 let M(C,V,¢) be the vector space
n-1

® V: with V. =2V on which G acts according to the schema
i=0

"

where again x acts as 1+ a " and y acts as "1+b as
above. It is clear that if C and C' represent the same element
of ]1)2 then M(C,V,p) = M(C',V,q)

A module represents the quotient group D4q if and only if
either

(i) the module is of the first kind and the corresponding word
does not contain (ab)q, (ba)q or their inverses,

(ii) the module is of the second kind and no power of the
corresponding word contains (ab)q, (ba)q or their inverses, or
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(iii) the module is the projective indecomposable module
M((ab)d(ba)™9, k, id) (of the second kind).

Almost Split Sequences

(a) Modules of the first kind

We define two functions L and R from words to words as
follows. Let A = (ab)q_la and B = (ba)q_lb. If a word C starts

with Ab—l or Ba_l then CIL is obtained by cancelling that part;

otherwise CLy = aA"'bc or Blac  whichever is a word. Similarly if

C ends in aB-l or bA-l, CRq is obtained by cancelling that part;
-1 1

otherwise CRq = Ca B or Cb "A, whichever is a word.

Rq and Lq are bijections from ® to itself, and we have
Rqu = LqRq, and QZM(C) x M(CRqu). The almost split sequence
terminating in M(C) 1is
0~ M(CRqu) -+ M(CRq) D M(CLq) + M(C) - 0

unless C or C°l is AB_l, in which case it is

0+ M(CR4L) » M(CR)) & M(CL,) ® Py - M(C) - 0
i.e.
0+ MAIB) - M((ab)? L) & M((ba)3 L) @ M((ab)9(ba) Y, k,1d)
> M(AB'l) + 0
or C = A, in which case 0 - M(aA) - M(ab~la) - M(a) - 0.

(b) Modules of the second kind

For an irreducible polynomial p(x) ¢ k[x], let (Vn p’ °n p)

‘be the vector space and endomorphism with one rational canonical block

. . n 2 ~
associated with (p(x)) . Then g M(C’Vn,p’¢n,p) =Y M(C’Vn,p’ ¢n,p)
and the almost split sequence terminating in M(C,Vn p’ ®n p) is
0 -+ M(C’Vn,p’wn,p) nd M(C’Vn+l,p’¢n+l,p) ® M(C’Vn—l,p’ ¢n—l,p)
nd M(C’Vn,p’ ‘Pn’p) -0 (n > 1)
and

0~ M(C,V]_’P: (pl’p) -+ M(C;VZ,p: ‘Pz’p) d M(C’Vl,p’ ‘Pl’p) + 0

Auslander-Reiten Quiver of D ne Bz 3

(a) Modules of the first kind
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These fit together to form an infinite set of components of type

ZAl“
,\\\$ i/// \\\Sﬁ :T/, . .\\\5 /i/ .
/_,M(CRq) M(CRqu ) M(CL{{
\ .
: M(CRq)/ \'\M(CLq‘{y .
s ) ’/;/a \\\\\5A © ////7 \\\\ﬁ ( f//ji
M(CR L M(C M(CR 'L h
= q qa q
- \q\;{(CL )/ \M CR ‘1/ Ity
g 0 e
e —
\M(CLqZ) M(CRq_qu) M(CRq'Z)

together with the following special components.

M(A) T3 MWURY) & S M(ARqZ); )

M(B) & M(BR) < M(BR DT ...

= A =
(note that ARqLq and BRqLq B)

\‘:4 a7 1T T~
a7 ler ) M(AB™'R ) m(aB L 1)
. —7 \ -1 /, \ -1 /,
X /M(A B) ——= P —-}M(AB )\
' —
\’M(A‘lBLq) \M(AB'qu) M(AB'lkq'l)
. .

-1
L =A
Rq q B)

(b) Modules of the second kind

(note that AB~

For each C ¢ D, and each irreducible polynomial p(x) ¢ k(x]
there is a component

M<C'Vl,p’¢l,1>)&-’ M(Crvz’p:wz’p)\‘\.’ M(C»V3’p:¢3,p)&_/

Tree Classes
(a) All components A..
(b) All components A_.
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Cohomology of D _, n = 3
on

*
H (D k) = kix,y,ul/(xy)
2
degree Sql qu
x 1 x2 0
y 1 y2 0
u 2 u(x+y) u2
- 2
£ () = 1/(1-t)
Proj(HeV(D n,k)) is a union of two copies of Pl(k) intersecting in
2
a single point.
Varieties for Modules
1 1 1 1

Write X, =®_ U P, , where P, N B = {=}= {=,} . Label in

G a

such a way that Pi corresponds to < x,(xy)q:> and P% corresponds
to < (xy)q,y:> . By the Quillen stratification theorem (2.26.7) we
have a homeomorphism

- 1

X< x,(xy)ds ~ [Pa
Label X in such a way that x corresponds to 0, (xy)9

<x, (xy) 9>

corresponds to o , and (xy)qx corresponds to 1, and write the

homeomorphism as A > A(l+r). Label E% similarly with respect to

<(xy)q,y >. Then the varieties for the above modules are as follows.

B _ 1 1 . +]1 +]1

Fooe) = (eluel i c~att b
e if c~a'l . atl bur ¢ 2 (ap)7la
el ir  c~b*l bt bue ¢ 2 a)?l

{0,} if ¢~ (a)¥7la
(0.} if ¢~ (ba)37lp
AL 0
X, QM(C, ( - >)) = (=} unless € ~ (ab)37lap7!
or C ~ (ba)q—lba_1
My} if €~ (ab)3lap7l

P,y if €~ (ba)3 lpa~l
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QB’ the Quaternion group of order eight

H*(Q8,2) = 2[x,y,21/(2x,2y,82,x2,y2,xy - 4z)
deg(x) = deg(y) = 2, deg(z) = 4.

Representations over @2

Representation type : tame
All modules are periodic with period 1, 2 or 4.

Auslander-Reiten Quiver

The tree class of each connected component of the stable quiver

is A_.

Cohomology

.

H (Qg.k) = kix,y,z]/ (% + xy + y%, x7, y2)

degree Sql Sq2 Sq4

x 1 x2 0 0
v 1 y2 0 0
z 4 0 22

g () = (1+t+t2)/(l—t)(l+t2)
Max (H%V(Qg,K)) =l )

PrOj(Hev(Qg,k)) is a single point.

C the cyeclic group of order p, p odd

P 3

H'(C,.®) = 2[x1/(px), deg(®) = 2.

Representations over Fb Representation type: finite.

Representation Table

There are p indecomposable representations Xj’ 1l =<j=<p, of
dimension j, corresponding to the Jordan blocks with eigenvalue omne.
There are p species s, , sp—l with



Sk

Power Maps (sk)p =
(Sk)q =

)

]
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- in(jkn/p)
(51X = —oiatin /oy
k
- - D",
=els = 13 cos (kn /p)
k
qk if p4fgq

Almost split sequences

0 - X; » Xj+1 &) Xj—l > Xj > 0
Auslander -Reiten Quiver
— — —_) y T
e ¥op— e %pole. K
Tree class Ap—l
Cohomology
* 2
H (Cp,k) = kix,yl/ (x%) deg(x) = 1,
1
yp~ = yP
1
Ek(t) = 1-¢

Max (K (C, k) = 1 (k)

Proj(Hev(Cp,k))

is a single point.

03 : atom table and representation table
3 6 -2 3
P power ALAl AlA2 P power
ind 1A 3A1 3A2 1A
+ 1 1 1 3
0 3 -1 1
0 -3 -1 2
The general p-group
Structure of the Group Algebra (Jennings,

Let

Define Hl =P,

and

P be a p-group, and k

[611)

deg(y) = 2, xB =

AlAl
3A1

Y,

yB

ATA2
3A2

1
1

a field of characteristic

vix

1A
3A(L)
3A(2)
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= (p)
Hi = < [Hi_l,P] s H(i/p) >
where (i/p) 1is the least integer which is greater than or equal to
i/p, and HXp denotes the set of p-th powers of elements of H, .
Then {H;} is minimal among series {Gi} with
[Gi.P1 < Gy
P
and X ¢ Gi = X ¢ Gip'
d.

In particular, Hi/Hi+-1 is elementary abelian, say of order p .

Define 4(x) =1 +x + .. +xP L and

d d d .
Fp) = (0 LoD 2. L. L e B = zaxt
(m 1is the last value of i with d; # 0). Then the dimension of
the i+l-th Loewy layer of the group algebra (which is the only
projective indecomposable module) is

dim (I P/ @aEn Iy = 4.
In particular, the Loewy length of kP is
£ =1+ 3 i.d;(p-1)
i

Since FP(x) = xz_lFP(l/x), we have aj; = a, _;; and so the Loewy

and Socle series of kP are the same.

3

Groups of order p2 and p (p odd) [66]

*

1 (2/p%2,2) = 21x1/(p%x), deg(x) = 2.

H*(T/pz x 2/pZ, D) = 2[x,y,z1/(PX,py,pz,2°)

deg(x) = deg(y) = 2, deg(z) = 3.

*

1 (2/p32,2) = Zix1/(p%%) , deg(x) = 2.

u*(z/p%z x 2/pZ,®) = Zx,y,21/ (p>x,py,pz,2%)

deg(x) = deg(y) = 2, deg(z) = 3.

*

H (Z/pZ xZZ/pZ’ x XpX,2) = UIxX1,Xy,X3,Y1:Y2:Y3,21/(PXy,PXy,PX3,PY1:PYy;
PY3.P2.¥1 ¥y V3 »Z ,ylz,yzz,y3z,yzy3+xlz,y1y3+x22.Y1Y2+x32,xlyl+xzy2
+ x3y3)

deg(xl) = deg(xz) = deg(x3) =2, deg(yl) = deg(yz) = deg(y3) = 3,
deg(z) = 4.

If G=<g,h: g =hP =1, h™'gh = g!™ > then
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i,xzi,zizj)

deg(w) = 2, deg(x) = 2pt+l, deg(y) = 2p, deg(z;) = 2i.

* 2
H (G,Z) = Z[Wyxxy:zlr"yzp_l]/(pwspx!p y,pzi,XZ,WZ

If G=<g,h,k: g2 =hP =P =1, [g,h] = k, [g,k] = [h,k] = 1> then
* 2
H (C.2) = ZIx),%y,X3,%,X5,%6,Y7 -, 3]/ (PX) ,PX),PX4, DXy, PXs,P Xg,
2 2
PYi:X3 Xy ,xlyi,xzyi,x3yi,x4yi,x5yi,yiyj,x1x3-xzx4,xlpx3-x2px4,

-1 p- - - -
Pl )Pl GesmeP Ty (x5 P ey (g2 P

P, _. P P_
X Ry"Ky VX X5 Ky
%, (x5-x,P 1)
deg(xl) = deg(xz) = 2, deg(x3) = deg(x4) = 3, deg(xs) = 2p-2,
deg(xé) = 2p, deg(yi) = 2i+2.

The p-hypoelementary groups with cyclic 0p k=F

Representation type: finite.

Let H =<x,y: xpr = ym =1, x = x% > where a 1is a primitive

dEE root of unity modulo pr, d divides p-1 and d divides m.

Let 6 be a primitive mEl'—1 root of unity in k with a = Sm/d as

elements of the prime field F_. There are m irreducible modules

X (eq), 1 =q=m for H, which are one dimensional and are given

by xw (1), vy v (eq) as matrices. If 1 =n = pr, there are m

indecomposable modules of dimension n. These are denoted xn(eq),

1 < q =m. These account for all the irreducible mo@ules. Xn(eq)
Xl(an_l 09y, We write

1R

is uniserial, with Loewy layers Li(Xn(eq))
Xn for Xn(l).

The case r =1

[

1. The following

relations are sufficient to determine the structure of A(G).

In this case H has order p.m, (p,m)

q o~ q
Xl(e ) ® X, = xn(e )

Xy 9% =X () ®ox ,, if 1=

Xp(a) @ Xp if n
th

Let X be a primitive 2m~— root of ﬁnity in ¢. Then the

A
=]
A

o

]
o

representation table is as follows.
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Brauer species Non-Brauer species
Species
dim b s <

Repn yt (1=t<m itl,t (1_t1<p,
- O=t<m)
q 2qt ,1- 2mt/d 2qt+t (n-1ym/g Sin(nty/p)

X (&%) n A ( )] A :
n 1- x?mt?ﬁ s:Lnitl w/p)

Almost split sequences (general r)

N qy q qy q
0 Xj(e) Xj+l(e ) & Xj_l(a 87) Xj(a 6%) » 0
15j<pr, 0=q<m

Auslander-Reiten Quiver

® m modulesﬁ—;ﬂ
in each layer

The stable quiver is obtained by deleting the top layer, which consists

of the modules X r(eq), and all the arrows connected to them.
P

Tree class A

—_— r
p -1

Cohomology pF # 2)

* 2
H (H,k) = kix,y]/(x") deg(x) = 1, deg(y) =2

1
xp =y, yp = 0, yP~ = yP.

£ () = 1/(1-t)
Max (Y (H,k)) =/ml(k)

Proj (H®V(H,k)) is a single point.
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S3: atom table and representation table, k = F3

6 2 12 -4 -4 -4
P power A AlAl AlA2 AlAl AlA2
ind 1A 2A 3A1 3A2 S3A1 S3A2
+ 1 1 1 1 1 1
+ 1 -1 1 1 -1 -1
0 0 3 -1 -1 -1
0 0 3 -1 1 1
0 0 -3 -1 i -1
0 0 -3 -1 -i i
6 2 12 -4 -4 =4
P power A AlAl AlA2 AlAl AlA2
1A 2A 3A1 3A2 S3A1 S3A2 vtx
3 1 0 0 0 0 1A
3 -1 0 0 0 0 1A
1 1 1 1 1 1 3A(1)
1 -1 1 1 -1 -1 3A(L)
2 0 -1 1 -1 i 3A(2)
2 0 -1 1 i -1 3A(2)

The Alternating Group A4

i. Ordinary Characters

We display in one table, according to 'Atlas' conventions, the
ordinary characters of A4, 2A4, S4 and 254. Note that there are two
isomorphism classes of isoclinic groups 284, and to get from the
character table of one to the character table of the other we multiply

the bottom right hand corner by 1i.

12 4 3 3 2 2
P power A A A A A
ind 1A 2A 3A B** fus ind 2B 4A
+ 1 1 1 1 : + 1 1
o 1 1 z3 *k I + 0 0

o 1 1 i z3
+ 3 -1 0 0 1 -1
ind 1 4 3 3 fus ind 2 8
2 6 6 8
- 2 0 -1 -1 : oo 0 i2.
o 2 0 -z3 *k ‘ + 0 0

o 2 0 *k -z3
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ii. Representations over FZ

Representation type: tame.
Write o, o for the primitive cube roots of unity in both k
and C.
_ i 2 2 _ .3 _ _ h_

h Let A4 = <81, 8y h: &1 I &y = h” =1, 8187 T 8781, 81 < 89>
gy = 818> . Let h act on P~ (k), the parametrizing set for
representations and species for V4, via h:x & 1/(1+\). Then

A4 A4
Voo 4+ T=V ot if and only if X and o represent the same
n,Aa n,uw
element of Pl(k)/<h>.
The indecomposable representations of A, are obtained by taking
direct summands of representations induced up from V4, and are as

follows.
(i) The projective covers P Pm, Pg of the simple modules
l, » and .
(11) W (a) = ¢"a), « & {l,®, &}, ne 2
Ay 1 _
(i) W, =V 4T, v e @ (R)/<h)\Me , 8}, n e v \{0}
(iv) W (@), W S (), e efl, o, 8} , ne N\(0}
These last representations, of dimension 2n,,are the direct
A A
summands of Vn m+ 4 and Vn 5% 4 . They are defined as follows.
Wn’m(a) = wn,m<l) 9 a ae {1, o, o}
Wn'a(a) = Wn’g(l) R a
.2
uL S =i @)

e|e
o

and W (1) 1is given in terms of matrices as follows.
\

:I: \
\O 1T/ \O T

e el
e g
//

o
gl e

.
€ €|
ele

o

w
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-n+4
w
-n+2
]

Tensor products modulo projectives are as follows. If m = n,

I3

Wm’m(l) 2 Wn’w(l) = Wz’w(l) if m=n=1

2.Wm’m(l) if n 2 (mod 3)

m

Wm’m(m) @ Wm’m(w) otherwise.

|
o

Wm,m(l) 2 Wn,a(l) =
The species of Ak(A4) are as follows. There is one species for
each h-orbit on species of V4, there are two Brauer species corres-
ponding to <h> , and there are the species whose origin is A4,
namely
(i) two sets of species s, and sz2 parametrized by the
complex numbers z ¢ €\{0}, and

s 2 s and s
n,o’ n;z ’

gl N

(ii) four sets of species s s

n,w n,

The representation table and atom table are as follows.

Let A, B, C and D be as in the representation table and atom
table of V4, and define further infinite matrices E and F as
follows.

N
=N
1 2 3 4 5 6
1 r2 -r2 0 0 0 0
2 2 2 0 0 0 0
E= n+ 3 -1 -1 -1 0 0 0
4 -1 -1 -1 -1 0 0
5 2 2 2 2 2 0
6 -1 -1 -1 -1 -1 -1

-
.

(each column repeats with period three where it is non-zero)
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N
>
1 2 3 4 5 6 7 8 .

1 2+r2 2-r2 0 0 0 0 0 0
2 1+r2 1l-r2 -1 0 0 0 0 0
F= nq 3 0 0 -2 -1 0 0 0 0
4 0 0 0 1 2 0 0 0
5 0 0 0 0 1 -1 0 0
6 0 0 0 0 0 -2 -1 0
7 0 0 0 0 0 0 1 2
8 0 0 0 0 0 0 0 1

We use the 'Atlas' format to make clear the relationship with the
tables for /R

Representation Table

7
[Parameters dim z (N, =) (N,0) (N, 1) | (¥, 0) (N, &) (N,x)(N,xh)(N,xh) fus [ h | z | (M,0) (N,®)
(projective) | 4 0 o o0 o 0o o 0 0 0 : 1|0 0 0
m 2kl+1 | 2 1 1 1 1 1 1 1 1 : e | 2® 1 1
(n,=) 2n 0 A 0 0 ofo 0 0
(n,0) 2n 0 0 0 0 0 [
(n,1) n 0 0 0
(n,w) 2n 0 B0 e |0 E 0
@@ n 0 0 0o B 0 ¢ |0 0 E
(a,u) 2n 0 Bs,, 0 0 0o 0 0
(@0 2n 0 0 0 0 Bs, 0 {
h2
@,u) 2n 0 0 o B,
Atom Table
. - h 12 -
Parameters | dim z (N, =) (N,0) (N,L)[{N,w) (N,a) |[(B, AN, AVDH(N,A" )| fus| h z (N, w) (N, o)
(simple) 1 1 1 1 1|1 1 1 1 1 0 1 11
n 0 -2 la-n?f 0 o o] o o 0 0 0 o L] 0 o
(n,=) 0 0 c o0 o 0 0 o o
(n,0) 0 0 0 ¢ o0 0 0 {
(n,1) 0 0 o o0 ¢
(n,o) 0 0 D 0 : | o 0 F 0
(n,2) 0 0 0 0 b 0 0 0 F
() 0 0 D6, 0 0 0 0 o 0
B o
(o, 0 0 0 0 0 Dpe, O
2
A 0 0 00 ey,
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meZ, n =1,
e e {0, 1} , ¢ = dimension (mod 3)
A and p 7run over a set of representatives in El(k)\{O,l,“,m, @}

under the action of h, and & represents the matrix which is the

Ap
identity if X = p and zero otherwise.

Almost Split Sequences

0

4

Woao(a) > Wy (aw) ® Wy (a0)> Wo(a) - 0

0

¥

W (a) »Wy(aw) @ Wy(am) ® P »W_j(a) + 0

a e {l, , o} , n ¢ Z\{-1} .
0 - Wn’m(am) - Wn+1’m(a w) © wn_l’m(aa) - Wn,m(a) -0
0+ W (a0) »W, (a ) - W () -0
0 - Wn’g(aa)—+wn+l,6(am) W 1 g(aw) » W, (a) >0
0 - wl,a(aZ) Wy Slaw) ~ W) ~(a) >0

ce {l, o, o} , n > 1.

(a)
/7W2(l) W, (1) W_p (1)
~. A \\\3 A ~
. wl(a))“‘>Pm“'“>w_l(a)) W_3(a))
™~ _///z \\\\» *‘//)H \\\\& _,//2 ™.
Wy (@) W, (@) W_, (@)
E -7 ™~ e \\\$ e ~. -
. Wi(1)-=-3>Py--->W_; (D) W_4(1)
\\» //27 \\$ //)ﬂ ~a //2 ~
Wy (w) W, (@) W_p(w)
. -~ \\\s ///2 \\\s A7 -\\ﬁs _
' W (@)---3P_~--5>W_; (@) W_4(@@)
. w
™~ N PN 7 ™
W, (1) W, (L) W_, (1)
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(Identify top and bottom lines to form a doubly infinite cylinder)

(b) Two connected components, for a« = and a« = o as follows.
W1’a(12\\\§§ ////7 (;2\\» ////27 (qz\\u\ ////;7 oD
Wz’a(l) w (E)

~S 7
@ Wy (@ Wy (D
7

\ (_)/
/ A\w
A7

,-\
Q
~

r

1 5 o (D
o ///7 \\\\ 7 \\\
(Identify right hand and left hand edges to form a singly infinite

cylinder)

(c¢) For each A e (Pl(k)/<h>)\\{w, w}, a connected component as
follows.

LA R "2 ke 3“.._./ b e

Tree Classes and Reduced Graphs

2 — A
(b) Two copies of A — A

(a) A

(c) A (Pl(k)/<h>) \{w, ©} - parametrized family of copies of
A —_— A

Remark

Over a non algebraically closed field k of characteristic two,
the components corresponding to (b) and (c¢) above are still of type
A

correspondlng to (a) above) is of type A:
splits in %k and of type B3 - B3 otherwise.

> A_, but the component containing the trivial module (i.e.
> A if xZ 4+ x +1

5

5 In the latter case, denote by kg the splitting field for
x“ +x +1 over k, and denote by Wn(2) and P2 the modules which
when tensored with kl give Wn(w) ) wn(w) and Pw & PE respectively.
Then the appropriate component of the Auslander-Reiten quiver is as
follows.
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JRUSNG N W (L) W2,
2 \ V ° "\ / "2 \ .
-
W (2)= - > P W_q (2) W 3(2\)
‘\\i /////’” \\\\\\s ////?” \\\\\\ﬁ //////7 )
(D) W, (2) L@
//7 o ° C{ \—7) V-2 \\<i\§$ ‘
» 2 / \ / P
Wy (1) L) Res
L ‘//7
\\§$ P ,/'/
1

(Do not make any identifications)

Cohomology of 4, over IF,

. -
H (A4,k) is the set of fixed points of h on H*(V4,k) =kkx,y],

namely the subring generated by u = x2 + xy + yz, v=x" +xy+y
and w = x3 + xy2 + y3. Thus

H*(A4,k) = k[u,v,w]/(u3 + v2 + vw + wz)

degree Sql qu
u 2 vtw u?
v 3 u2 uw
W 3 u2 uv

g () = (L-t+c2)/(1-t) 2 (1+e+e?)
Proj(HeV(A4,k)) is the irreducible conic in Ez(k) given by x% = X)X,

Cohomology of 8, over Fz

H*(S4,k) = klx,y,z)/ (xz)

restriction
degree Sq1 qu to A,
b4 1 xz 0 0
y 2 z+xy y2 u
z 3 XZ vz viw

£ () = (1+eD)/(1-0) 2 (14eted)



Proj (HZV(S,, k)
a single point.

ii.

The Alternating Group Ag,

is a union of two copies of @l(k)

Ordinary Characters
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intersecting in

and its coverings and automorphisms.

(see remarks under Ay

60 4 3 5

P power A A A
ind 1A 2A 3A 5A
+ 1 1 1 1
+ 3 -1 0 -b5
+ 3 -1 0 *
+ 4 0 1 -1
+ 5 -1 0
ind 1 3 5
2 6 10

- 2 0 -1 b5

- 2 0 -1 *

- 4 0 1 -1

- 6 0 0 1
Representations over IF,

Decomposition matrix

I 22 4
1 0
1 0
1 1
1 1

6 2 3

A A AB

fus ind 2B 4A 6A
++ 1 1 1

l + 0 0

++ -1

++ -1 1

fus ind 2 8 6
8 6

I - 0 0 0

00 0 0 i3

00 0 i2 0

Representation type: tame

Cartan Matrix

I 2, 22 4
I 4 2 2
21 2 2 1
22 2 1 2
4 1
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Atom Table and Representation Table for A(G,Cyc)

60 3 5 5 -4 60 3 5
P power A A A A p power A A
ind 1A 3A 5A1 5A2 2A 1A 3A 5Al
+ 1 1 1 1 12 0 2
- -1 b5 * 0 8§ -1 *
- 2 -1 * b5 0 8 -1 b5
+ 4 1 -1 -1 0 4 1 -1
0 0 0 0 -2 6 0 1
Representation table for A(G,Triv), G = Ag, k = FZ
p power A A A A A BA AA
3A 5A B* 2A  V4A  A4A  B** vtx
12 0 2 2 0 0 0 0 1A
8 -1 b5 * 0 0 0 0 1A
8 -1 * b5 0 0 0 0 1A
4 1 -1 -1 0 0 0 0 1A
6 0 1 1 2 0 0 0 2A
5 -1 0 0 1 1 z3 *k V4A
5 -1 0 0 1 1 *% z3 V4A
1 1 1 1 1 1 1 1 V4A
Projective Indecomposable Modules for A5 over FZ
I 21 22
21 I I
I 2y 2
22 I I
I 21 22

5

A
5A2

b5

-4
2A

N O O O O

vtx
1A
1A
1A

1A
2A
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Projective Indecomposable modules for S5 over FZ

1 4,
i 4, i
4y 1 I 4y
4y 4

I I
. I

4y I
4 I 2

I

Projective Indecomposable modules for 2A5 over Fz

I 2, 2,
2 2 i I
1 2
I i \\2 \\\2
2 1 A
2, 2y 1 I
4
I i
2y 2y 2y 2,
2y 2, 1 I
I I
/22 /21
2, 2 1 1
I 2y 2,

Green Correspondence between A4 and A5

Since a Sylow 2-subgroup of Ag is a t.i. subgroup with normal-
izer A4 (see exercise to 2.12), Green correspondence sets up a one-
one correspondence between non-projective modules for A5 and for A4
in characteristic two. This correspondence takes almost split sequences
to almost split sequences, and so the stable quivers are isomorphic.

The atom copying theorem (section 2.20) gives the atom table as follows.
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Atom Table
Parameters 1A 3A 5A1 5A2 zj (N,=) (N,m)j (N,Zf)j (N,N)
trivial 1 1 1 1 1 1 1 1 1
L2(4)-natural 21 -1 b5 * 0 0 G 0 0
dual 22 -1 * b5 0 0 0 G 0
Steinberg 4 1-1 -1 0 0 0 0 0
m; 2™ ra-z2dd o 0 0 0
(n,=) 0 C 0 0 0
D i=j
(n,0); 0 0 Wi O 0
_ D i=j
(n,a); 0 o o PHE o
(n,p) 0 0 0 0 DGXu

In this table, D and F are as given under V4 and A4, and

G=(r2, -r2,0,0, ...)

ie {l,o0, o }

3 and u frun over a set of representatives in Pl(k)\{O,l,w,m, w}

under the action of t w1/(1-t), and & represents the matrix which

An
is the identity if x = p and zero otherwise.

Almost split sequences for A5 over Fé

These are given by applying Green correspondence to the almost
split .sequences for LY The sequences involving projective modules
are as follows.

0+ g(W (1) » P & g(W (@) @ g(W () » g(W_ (1)) -0
0> 80 @) =2y @ gl (1)) + g (@) + 0

0+ B 5()) = Py B gy 5(1)) + gy @) =+ 0

The Auslander-Reiten quiver may thus be obtained from that for
A4 by relocating the projective modules as indicated above.



Cohomology

It again follows from the fact that a Sylow 2-subgroup of A

a t.i.

iii.

subgroup with normalizer

202

Aq

5

is

(see 2.22 exercises 4 and 5) that

HY (Ag k) = ' (A, k).

Representations over Fé

Decomposition matrix

Representation type:

I 4
31 3
1 1 0 I
3 1 4
1
1
32 31
4 0 1 3
2
5 1 1
Atom Table and Representation Table for Ak(G)
60 4 5 12 -4 -4 -4 6 2 12 -4
p pover A A A ALAL AlA2 AlAl AlA2 A A ALAL Ala2
ind 1A 24 SA B* 3Al 3A2 53A1 S3A2 _ fus_ind 2B 4A 6AL 6A2
T+ 11011 1 T 1 1 11 T 1
+ 3-1-b5 * 0 0 0 0 +# 00 0 0
+ 3-1 *-b5 0 0 0 0 A
+ 40 -1 -1 1 1 -1 -1 + -2 0 1 1
o0 0 0 3 -1 -1 -1 00 3 -1
o0 0 0 3 -1 1 1 00 3 -1
00 o0 0 -3 -1 . 00 -3 -1
o0 0 0o -3 -1 1 00 -3 -1
§0 4 5 5 12 -4 -4 -4 6 2. 12 -
p power A A A AlAl AlA2 AlAl AlA2 A A AlAL AlA2
1A 24 5A B* 3Al 3A2 S3ALl S3A2 fus B 44 6AL 6A2
§ 2 1 1 7o 0 0 [ 0 2 o0 0
3 -1-b5 * 0 0 0 0 00 0 0
3 -1 * b5 0 0 0 o |
9 1-1 -1 0 0 0 0 -3 1 0 0
1 11t 1 1 L 1 1 11 1 1
4 0-1 -1 1 1 -1 - 20 1 1
5 10 0 -l 1 -t 1 -1 1 -1 1
5 10 0 -1 1 FR— -1 1 -r 1

Cartan matrix

finite

I 4 3
2 1
1 2
1
4 -
AlB1 ALB2
$3B1 5382
1 1
0 0
-1 -1
-1 -1
1 1
i -1
-1 i
-4 - <4
AlB1 AlB2
S3B1 S3B2 vtx
0 0 1a
0 0 la
1A
0 0 1A
1 1 3A(1)
-1 -1 3A(l)
-1 1 3A(2)

3A(2)
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The Alternating Group Ag, and its coverings and automorphisms.

i. OQOrdinary Characters

s P
6 GL, (9) My g
30 8 9 9 4 5 5 2424 4 3 3 . .10 4 4 5 5 2 4 4
P power A A A A A A A A AABBC A A ABDAD A A A
p'partA A A A A A A A AABRC A A AADBD A A A
ind 1A 2A 3A 3B 4A SA B* fiis ind 28 2C 4B 6A 6B fus ind 2D 8A B* I0A B* fixs ind 4C 8C Dir
+ 1111111 + 1 1 111 + 1 1 1 1 1 +=+ 1 1 1
+ 51 2-1-1 00 + 3-1 1 0-1 + 00000 + 0 00
+51-12-100 + 1-3-1 10 l
+ 8 0-1-1 0-b5 * + 00000 + 2 0 0b5 * + 0 00
+ 8 0-~1-1 0 *-b5 +H+ 2 0 0 *Db5 l
+ 9100 1-1-1 + 3 3-1 0 0 + 1-1-1 11 : + 1-1-1
+10-2 11000 : + 2-20-11 + 01222 0 0 : oo 0i2-2
1 4 3 3 8 5 5 2 4 8 612 416 16 20 20 416 16
2 6 6 81010 2 4 8 612 16 16 20 20
- 4 0-2 1 0-1-1 -0 0 0 013 - 00000 -
- 4 0 1-2 0-1-1 oo 0 0 0i3 O L
- 8 0-1-1 05 * - 00000 : -~ 0 0 0y20%*3 -
- 8 0-1-10 *-b5[ : — 0 0 0*7y20
-10 01 12 0 O - 00000 : — 0yl6*% 0 0 -
-10 01 1200 l : -- Q%1376 0 O L
1 23 3 4 55 2 2 4 6 6 2 8 81010 4 8 8
3 6 12 15 15 12 24 24
3 6 12 15 15 12 24 24
02 3-1 0 0 L-b5 * 02 * o+ 02 0 0 0
02 3-1 0 0 1 *-bSL * o+
02 6 2 0 0 0 1L 1 * + * o+ 002 01242
02 91 0 0 1-L-1 * <+ * o+ 1002 1-1-1
0215-1L 0 0-1 0 0 * <+ * o+ 002 1L 11
1L 4 3 3 8 55 2 4 8 612 416 16 20 20 416 16
612 6 6 2430 30 6 12 16 16 20 20 12 48 48
312 24 15 15 12 48 48
2 810 10
3 24 15 15
6 24 30 30
02 6 0 0 02 1 1 02 * - 02
02 6 0 0 021 ll * - L7
0212 0 0 0 0bS * 02 * - o2
0212 0 0 0 O *bSl * - L7



204

ii. Representations over FZ Representation type: tame
Decomposition Matrix Cartan Matrix
I 4 42 81 82 I 4 42 81” 82
1 1 0 0 I 8 4 4
5 1 1 0 41 4 3 2
5 1 0 1 42 4 2 3
9 1 1 1 8, 1
10 2 1 1 82 1
1
8 1
Triple Cover
31 32 9 3 32 9
3 1 0 0 31 3 2 1
3 0 1 0 32 2 3 1
6 1 1 0 9 1 1 2
9 0 0 1
15 1 1 1




¥,

8
A
12
12
-16
A
8A4

over

8
A
A

1A 3A 3A 5A B* 2A 4Al 4A2

40

12
12
16

A
A

-1
*
-b5 0
6
6
0
*
-1
-16 16
A
8A1 B8A2 8A3

*
A(2A6,Cyc)

15 15
15 15
*2+b5

0 02+4b5

0 0

0 -1
-b5
-1
-1
16

205
representations
A A A A
3

-1 -1
00

-16
A A

360
A p power
24
8

20
10
30

3

3

24
24
24
36
42
30
-10

BA AA

-10
2A 6A 6B 10A B* 4AL 4A2

12

A
6 12 12
6 12
A AA BA

A

ind 1A 3A 3B 5A B* 2A 4AL 4A2
*
10 -720 -18 -18

atoms
-1 -b5
-1 * -b5
15 15
15 15
0 * -b3
18 10

360
ppower A A A A
-1
02
720 18

02
02

Atom Table and Representation Table for A(A6,Cyc) and A(3A6,Gyc) over

Atom Table and Representation Table for

ind 1A 3A 3B 5A B*

ppower A A A A

—HooOoOoONOOOOOoONNNN
v 1 '

HOO0OO0OOQOCOOONNNNNN
' [
HOOOOOOOQOOONNNN
| [
—HOO0O0OO0ONOOOONNNNNN
[

A1O000O00OOOONNOOOO
1

HOOOONOOOONNOOO®
Vo

HdrH¥ NOOOOOOOOOOQ
[ ..m.
HAHNX OOOO000OOO0O0
0 .,_D
—
1

HOOOODOOOOOO
'

1121100000000000
DA

AT FTOOVOOOODOODOOO

oo+
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720 18 18 10 10 -720 -18 -18 -10 -10 -16 16 -16 16 16 -1g
p power A A A A A AA BA BA AA A A A A A A
ind 1A 3A 3B 5A B* 2A 6A 6B 10A B* 4A]1 4A2 BAl BA2 B8A3 BA4
80 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
48 6 0 -2 =2 0 0 0 0 0 0 o0 0 0 0 0
4 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
16 -2 -2-2b5 * 0 0 O 0 0 0 0 0 0 0 0
16 -2 -2 *-2b5 0 0 0 0 0 0 0 0 0 0 0
40 4 4 0 0 40 4 4 0 0 0 0 2 0 0 0
24 3 0 -1 -1 2 3 0 -1 -1 0 0 0 0 0 0
24 0 3 -1 -1 24 0 3 -1 -1 0 0 0 0 0 0
8 -1 -1 -b5 * 8 -1 -1 -b5  * 0 0 0 0 0 0
8 -1 -1 *-p5 8 -1 -1 *  -b5 0 0 0 0 0 0
20 02 2 0 0 20 2 2 0 0 4 4 0 0 0 0
60 6 6 0 0 20 2 2 0 0 4 -4 0 0 0 0
10 1 1 o0 0 1 1 1 0 0 2 2 2 2 2 2
30 3 3 0 0 30 3 3 0 0o 2 2 2 -2 2 -2
50 5 5 0 0 30 3 3 0 0 2 -2 2 2 -2 -2
70 72 7 0 0 1 1 1 0 0 2 -2 2 -2 -2 2
Projective Indecomposable Modules for A6 over FZ
I 41 42
41 42 I I
I I 4y 41
42 41 I I
I I 4y 4, 81
41 42 I I
I I 42 41
by 4y I 1
I 41 4
Projective Indecomposable Modules for 3A6 over FZ
9 3 32
3,3, 3, /
9 9 3l 9
/32 \ /3

(and duals of these)
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Projective Indecomposable modules for

S

over FZ

41 42 I 41 I
I 41 42 I 42 I 41
42 I I 41 I 42 I
I 42 41 I 41 I 42
41 I I 42 I 41 I
I 41 42 I 42 I 41
42 I I 41 I 42 1
42 I 41 41 I 42
I 1
Projective indecomposable modules for MlC over FZ
I 8
8 1 I
I 8 I
I I 8
8 I I
I 8 I
I I 8
8 I I
I 8 I
I I 8
8 1 I
I 8 I
I 8

16

16
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Projective indecomposable modules for PGL2(9) over @‘_2
I 81
81 I I
I 81 I
I I 8l
81 I I
I 81 I
I I 81 82 3
81 I I
I 81 I
I s 81
81 I I
I 81 I
I 81
iii. Representations over F3 Representation type: wild
Decomposition Matrix Cartan Matrix
I 3 32 4 9 I 31 32 4 9
1 1 0 0 0 I 1 4
5 1 0 0 1 31 2
e 11 2 2
8 1 1 0 1
8 1 0 1 1 4 4 2 2 5
10 0 1 1 1 9 1
9 1
Double Cover
21 2 6 6 21 2 61 6
4 1 1 0 0 21 5 1 2
4 1 1 0 0
8 0 1 1 0 22 4 2 1
8 1 0 0 1
10 1 1 1 0 61 1 2 0
10 1 1 0 1
6,] 2 0 2
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Projective Indecomposable Modules for Ag over W
I 31
4 4 4
I I I 31 32 I 32
4 4 4
3
1 1
4
I I 31 32
4 4 4 9
I I 31 32
4
Double Cover
2 2y
2 2 & 21 2 6
2l 25 21 61 22 22 2 62
2 % & 21 21 &5
21 22



iv. Representations over

FS:

Representation type:

360

p power
p' part
1A

bt o+
(= U IV R

10

ind

N

ind

02
02
02

oW WwwH

—
n

ind

o2
o2

OB WM WOe

]
N O e b o

=~

M N O O O O

)
—

=
[y

w

W PP HENOW H PPN Rk

ow O o o

w
e

1
W H H N HE W HHE N ERPo
=~

O O e O O F o

oW o o o
i
—

m
[=
®

fus

ind

+

ind

02

24
A
A

2C

-1

=~
0 O N K H H EPP e
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Brauer character table

finite

o o o

3
AB
AB
6A

1
0
-1
-1
-1

3
BC
BC
6B

1
-1

0
-1

1
12
12
r3

o o

12
12

fus

fus

fus

fus

ind

Tt

ind

ind

0 4 4 2 4 &
A A A A A A
A A A A A A
2D 8A B* fus ind 4C 8C D**
111 + 1 1

0 0 0 I + 0 0

2 0 0 : +H+ 0-2 -2
0r2 -r2 : oo 012 -i2

416 16 fus ind 4 16 16
16 16

00010

0 yl6 *5 L o

0 *13 ylé

2 8 8 fus ind & 8 8
12 24 24
12 24 24

o002 1i2-1 **
oo02 0 12 -i2
oo2 1 1 1

4 16 16 fus ind 4 16 16
16 16 12 48 48
12 48 48

1 02
7



6

AB

5
AB  AB
AB
6B 10A 12A

3

6
A AB BC

A AB BC
2C 4B 6B

-1

A
A
-3

A
A
1

120 24 12
fus ind 2B

211

7
A
A
-1
b7

and its coverings and automorphisms.
Bx*

7
A
A
A
-1

12
-1

1

24 36
A
A

10
10
14
14
15
35

Ordinary Characters

2520
power

p' part
ind 1A 2A 3A

P

The Alternating Group A7,

10 24
10 24

12
12

6

—e

6

5
10

ok
~b7

-b7

-1
-1

-1 r2
-r2

-1
-1

2
-4

0

14
14
20
290
36

12

7
21
21

5 6 7
15 6 21
12 15 6 21

4
12

N0

+2

b7

*%k

-1
3
-3

o2 15
o2 15
21
21
24
24

o2
o2
o2
02
02

6 12 10 24
12 10 24

8

4

7
42
21
la
21
42

7

12 42
14

21

42

8 5 12
24 30
8§ 10

24 15 12 21
24 15

24 30

W0 Mo Mo

o2

1
Q ¥ b7

-r2

0

0

24
02 24
o2 36

02
02
o2



ii.

15
21
35
14

10
10
14

15
15
21
21

Representations over Fz
Representation type: tame
Decomposition Matrix
1 14 20 4y 42 6
1 0 0
1 1 0
1 0 1
1 1 1
0 1 0
0 0 1
0 11
1 01
1 1 1
Triple Cover
6 15 241 24
1 0
0 1
0 1
1 1
1 1
1

24
24

212

Cartan Matrix

14

14
20

15
24

24
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over FZ

A(A7,Cyc)

Atom Table and Representation Table for

~<

<

o<

36
A

2520
P power

3B 5A 7A  B¥* 24 4A1 4A2

3A

ind 1A

*k
~-b7

-b7

-1

*%*

14

-12

8
A

4A2

-8
A
4A1

24

36

2520
P power

AA
6A

A
2A

A
3A

1A

72
24
24
40

**

b7

b7

*%*

64 -2 -

56
100

20

50
86

over F2

A;

Projective Indecomposable Modules for

20

14

—
o
O
~
o
— o~
<+ o
o~ —
T o &
<+ H O
— Q
o H
~ //
<
—

20



iii. Representations over

Representation type:

Decomposition Matrix

I 10, 10, 13 6

1
10
10
14
14
35

6 1
15 0
21 1

N ==
H o oo r o
H o o RF OO
H R P oo o

214

104
10
13

15

(]

Cartan Matrix

lOl 10, 13 6 15

B~ N NN

R NN
=N RN
w R =N

Projective Indecomposable Modules for A7 over F3

1
10, 10, 13 13
I I I I I
10, 10, 13 13
I

15

10,

15

15

10

2

I

13
I
10

2

13
I I
10, 10, 13
I I
13
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The Linear Group L3(2) , and its coverings and automorphisms.

i. Ordinary Characters

168 8 3 4 7 7 6 3 4 4
P power A A A A A A AB A A
p' part A A A A A A AB A A
ind 1A 2A 3A 4A 7A B** fus ind 2B 6A 8A B*
+ 1 1 1 1 1 1 ++ 1 1 1
o 3 -1 0 1 b7 *% + 0 0
o 3 -1 0 1 *%k b7
+ 6 2 0 0 -1 -1 + 0 r2 -r2
+ 7 -1 1 -1 0 + 1 -1 -1
+ 8 0 -1 0 1 ++ 2 - 0 0
ind 1 4 3 8 7 7 fus ind 4 12 16 16
2 6 8 14 14 12 16 16
o 4 0 1 0 -b7 *% I - 0 0 0 0
4 0 1 0 *% -b7
- 6 0 0 r2 -1 -1 : -- 0 0 ylé *3
- 6 0 0 -r2 -1 -1 : -- 0 0 *5 ylé
- 8 0 -1 0 1 1 : -- 0 r3 0 0
ii. Representations over FZ
Representation type: tame
Decomposition Matrix Cartan Matrix
I 31 3, 8 I 31 3, 8
1 1 0 0 I 2 1 1
3o 1 0 11 3 2
3 0 0 1
6] 0 1 1 3t 2 3
7 1 1 1 8 1
8 1
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Atom Table and Representation Table for A(L3(2),Cyc) over Fﬁ

168 3 7 7 -8 -8 8
P power A A A A A A
ind 1A 3A 7A Bx* 2A 4A1 4A2

+ 1 1 1 1 1 1 1
o 3 0 b7 *k 1 1 -1
o 3 0 *%k b7 1 1 -1
+ 8 -1 1 1 0 0 0
0 0 0 0 -2 2 0
0 0 0 0 0 -2 2
0 0 0 0 0 -2 -2
168 3 7 7 -8 -8 8
P power A A A A A A
1A 3A 7A B** 2A 4A1 4A2 vtx
8 2 1 1 0 0 0 1A
16 1 b7-1 *% 0 0 0 1A
16 1 *%k b7-1 0 0 0 1A
8 -1 1 1 0 0 0 1A
20 2 -1 -1 4 0 0 2A
26 2 -2 -2 2 2 2 4A(L)
14 2 0 0 2 2 -2 4A(3)

Projective Indecomposable Modules for L3(2) over FZ

3 3
1N 2
N
33, / 3, / 3
I 3 1 3,
3
2 \ 1
\ /3 3/
3 2
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>

Atom Table and Representation Table for A(23:L3(2),Cyc) over

WON
[&]
=

0O A

) [&]
=

O m N
m
=

0 m—

| m
=

2 g
=

O <

—

Y3
o)
T3S
N <O
M N
1

N<¢m

M TN

|

N < <

[< N

—

]

M~
*
m

<<
™~

O < <
[32)

g W

/4eM

a2

— O

[aPye]
=]
Qe

*k

b7

b7

**

8
C

8 -8
B C
4A2 4Bl 4B2  4C1l 4C2  vtx

16 -8
A B

A

6 7 7-192 -32 -32 -6 ~-16
A A A A A A AA
2A 2B 2C 6A 4Al

1A 3A 7A B¥**

1344
p power

1A
1A
1A
1A
2B

0 4B(1)
0 4B(3)

64
128
128

*%

2 b7-1

2
-2

0

*k h7-1
1

64
160
2n8
112
160
208
112
160
208
112

0
0

2c

2 4C(1)
-2 4C(3)

2

2

2A

0 4A(1)
0 4A(3)

0
0

2A

32

-1 0
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The Sporadic Group M11

i. Ordinary Characters

7920 48 18 8 5 6 8 8 11 11
P power A A A A AA A A A A
p' part A A A A AA A A A A
ind 1A 2A 3A 4A 5A 6A 8A  B¥¥* 11A  B**
+ 1 1 1 1 1 1 1 1 1 1
+ 10 2 1 2 0 -1 0 0 -1 -1
o 10 -2 1 0 0 1 i2 -i2 -1 -1
o 10 -2 1 0 0 1 -i2 i2 -1 -1
+ 11 3 2 -1 1 0 - -1 0 0
o 16 0 -2 0 1 0 0 bll *%
o 16 0 -2 0 1 0 0 0 *%  bll
+ 44 4 -1 0 -1 1 0 0 0
+ 45 -3 0 1 0 0 - -1 1 1
+ 55 -1 1 -1 0 -1 1 0 0
ii. Representations over FF,
Representation type: tame
Decomposition Matrix Cartan Matrix
I 10 44 16, 16, I 10 44 161 162
1 1 0 0 I 4 2 2
10 0 1 0 10 2 5
10 0 1 0 44 2 1
10 0 1 0 161 1
11 1 1 0 16, 1
44 0 0 1
45 1 0 1
55 1 1 1
16 1
16 1
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over Fz

Atom Table and Representation Table for A(Mll,Cyc)
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16
16
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200
120
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1 bll *k

-2

0

% bll

1

0
0
2
2
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-2

2

372 12
110
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286
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Projective Indecomposable Modules for Mll over FZ
/I\ /0\ /4
ﬁo 4r \\\\
I\II
44\\\\ 10

e L\

| f
4? 10 1? 44 16, ,16,
I



[1]
[2]
[3]
[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

(131
[14}

[15]

(161
(171
[181]
[19]
[201]

[21]

221

References

J. L. Alperin, 'Periodicity in Groups', I1ll. J. Math. 21 (1977)
776-83.

J. L. Alperin, L. Evens, 'Representations, resolutions, and
Quillen's dimension theorem', J. Pure Appl. Alg. 22, 1-9 (1981).

J. L. Alperin, L. Evens, 'Varieties and elementary abelian
subgroups', J. Pure Appl. Alg. 26 (1982) 221-227.

M. F. Atiyah, I. G. Macdonald, 'Introduction to Commutative
Algebra', Addison-Wesley, Reading, Mass. (1969).

M. Auslander, I. Reiten, 'Representation Theory of Artin
Algebras, III: almost split sequences', Comm. in Alg. 3 (3),
239-294 (1975).

M. Auslander, 'Existence theorems for almost split sequences',
Oklahoma Ring Theory Conference, March 1976.

M. Auslander, I. Reiten, 'Representation theory of Artin
Algebras, IV: invariants given by almost split sequences', Comm.
in Alg. 5 (5), 443-518 (1977).

G. S. Avrunin, 'Annihilators of cohomology modules', J. Alg. 69,
150-154 (1981).

G. S. Avrunin and L. L. Scott, 'Quillen Stratification for
Modules', Invent. Math. 66, 277-286 (1982).

V. A. Ba¥ev, 'Representations of the group Z, x Z, in a field

of characteristic 2 ', (Russian), Dokl. Akad. Nauk . SSSR 141
(1961), 1015-1018.

D. J. Benson, 'The Loewy structure of the projective indecompos-
able modules for A in characteristic two', Commun. in Alg.,
11 (13), 1395-1432, 1983,

D. J. Benson, 'The Loewy structure of the projective indecompos-

able modules for A9 in characteristic two', Commun. in Alg.,
11 (13), 1433-1453,7 1983.

D. J. Benson. R. A. Parker, 'The Green Ring of a Finite Group',
J. Alg. 87, 290-331 (1984).

D. J. Benson, 'Lambda and Psi Operations on Green Rings',

J. Alg. 87, 360-367 (1984).

Berman, Moody and Wonenburger, 'Cartan Matrices with Null Roots
and Finite Cartan Matrices', Indiana U. Math. J. 21 (7-12) 1972,
1091.

R. Brauer, Collected Papers, Vols. I-III, MIT Press, 1980, ed.

P. Fong and W. Wong.

D. Burry, J. Carlson, 'Restrictions of modules to local subgroups'
Proc. A.M.S. 84, 181-184, 1982.

J. F. Carlson, 'The modular representation ring of a cyclic
2-group', J. L.M.S. (2), 11 (1975), 91-92.

J. F. Carlson, 'Periodic Modules over Group Algebras', J. L.M.S.
(2), 15 (1977), 431-436.

J. F. Carlson, 'Restrictions of modules over modular group
algebras', J. Alg. 53 (1978), 334-343.

J. F. Carlson, 'The dimensions of periodic modules over modular
group algebras', Ill. J. Math. 23 (1979), 295-306.



[22]

[23]

[24]
[25]
[26]
(271
[28]
[29]
[30]
(31}

[32]

[33]
[34]
[35]
[36]
[37]
(38]
[39]

[40]

[41]

[42]

[43]

222

J. F. Carlson, 'The complexity and varieties of modules', in
'Integral Representations and their applications', Lecture Notes
in Mathematics 882, p. 415-422, Springer-Verlag 1981.

J. F. Carlson, 'Complexity and Krull Dimension', in 'Representa-
tions of algebras', Lecture Notes in Mathematics 903, p. 62-67,
Springer-Verlag 1981.

J. F. Carlson, 'The structure of periodic modules over modular
group algebras', J. Pure Appl. Alg. 22 (1981), 43-56.

J. F. Carlson, 'Dimensions of modules and their restrictions over
modular group algebras', J. Alg. 69, 95-104 (1981).

J. F. Carlson, 'Varieties and the cohomology ring of a module',
J. Alg. 85 (1983), 104-143.

J. Carlson, 'The variety of an indecomposable module is
connected', to appear, Invent. Math. 1984,

R. Carter, 'Simple groups of Lie type', Wiley-Interscience,
1972.

L. Chouinard, 'Projectivity and relative projectivity over group
rings', J. Pure Appl. Alg. 7 (1976) 278-302.

S. B. Conlon, 'Twisted Group algebras and their representations',
J. Aust. Math. Soc., 4 (1964) 152-173.

S. B. Conlon, 'Certain representation algebras', J. Aust. Math.
Soc., 5 (1965) 83-99.

S. B. Conlon, 'The modular representation algebra of groups with
Sylow 2-subgroups Zy % Z2 ', J. Aust. Math. Soc. 6 (1966),
76-88.

S. B. Conlon, 'Structure in representation algebras', J. Alg. 5
(1967), 274-279.

S. B. Conlon, 'Relative components of representations', J. Alg.
8 (1968), 478-501.

S. B. Conlon, 'Decompositions induced from the Burnside algebra',
J. Alg. 10 (1968),-102-122.

J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, 'An
Atlas of Finite Groups', to appear, OUP 1985.

C. W. Curtis and I. Reiner, 'Representation theory of finite
groups and associative algebras', Wiley-Interscience 1962.

C. W. Curtis and I. Reiner, 'Methods in representation theory',
Vol. I, J. Wiley and Sons, 1981.

E. C. Dade, 'Endo-permutation modules over p-groups II', Ann. of
Math. 108 (1978), 317-346.

L. E. Dickson, 'On the algebra defined for any given field by the
multiplication table of any given finite group', Trans. AMS 3,
285-301, 1902.

V. Dlab and C. M. Ringel, 'Indeéomposable representations of
graphs and algebras', Memoirs of the A.M.S. (6) 173, 1976.

P .- Donovan and M. R. Freislich, 'Representable functions on the
category of modular representations of a finite group with cyclic
Sylow subgroups', J. Alg. 32, 356-364 (1974).

P. Donovan and M. R. Freislich, 'Representable functions on the
category of modular representations of a finite group with Sylow
subgroup C, x C, ', J. Alg. 32, 365-369 (1974).



[44]
[451]

[46]

[471]

[48}
[49]
[501]
[51]
[52]

[53]

[54]
[551]
[56]
[57]

[58]

[591]
[60]
[61]
[62]
[63]
[64]

[65]

223

L. Dornhoff, 'Group representation theory, part B', Marcel Dekker,
New York, 1972.

A. Dress, 'On relative Grothendieck rings', Repn. Thy., Proc.
Ottawa Conf. SLN 488, Springer, Berlin 1975.

A. Dress, 'Modules with trivial source, modular monomial
representations and a modular version of Brauer's induction
theorem', Abh. Math. Sem. Univ. Hamburg 44 (1975), 101-109.

D. Eisenbud, 'Homological algebra on a complete intersection,
with an application to group representations', Trans. A.M.S. 260
(1980) 35-64.

L. Evens, 'The Cohomology ring of a finite group', Trans. A.M.S.
101, 224-239 (1961).

L. Evens, 'A generalization of the transfer map in the cohomology
of groups', Trans. A.M.S. 108 (1963) 54-65.

L. Evens, 'The Spectral Sequence of a Finite group extension
stops', Trans. A.M.S. 212, 269-277 (1975).

W. Feit, 'The representation theory of finite groups', North
Holland, 1982.

P. Gabriel, C. Riedtmann, 'Group representations without groups',
Comm. Math. Helvetici 54 (1979) 240-287.

P. Gabriel, 'Auslander-Reiten sequences and representation-finite
algebras', Repn. Thy. I, Proc. Ottawa Conf. SLN 831, Springer
Berlin 1980.

J. A. Green, 'On the Indecomposable Representations of a finite
group', Math. Zeit., Bd. 70 (1959), S. 430-445.

J. A. Green, 'The modular representation algebra of a finite
group', I1l. J. Math. 6 (4) (1962), 607-619.

J. A. Green, 'Some remarks on defect groups', Math. Z. 107,
133-150, 1968.

J. A. Green, 'A transfer theorem for modular representations',
Trans. Amer. Math. Soc. 17 (1974), 197-213.

D. Happel, U. Preiser, C. M. Ringel, 'Vinberg's characterization
of Dynkin diagrams using subadditive functions with applications
to DTr-periodic modules', Repn. Thy. II, Proc. Ottawa Conf. SLN
832, Springer, Berlin 1980.

D. G. Higman, 'Indecomposable representations at characteristic
p ', Duke Math. J. 21, 377-381, 1954.

G. Hochschild, J.-P. Serre, 'Cohomology of group extensions',
Trans. A.M.S. 74 (1953), 110-134.

S. A. Jennings, 'The structure of the group ring of a p-group
over a Modular Field', Trans. A.M.S. 50 (1941), 175-185.

D. Knutson, ' A-rings and the representation theory of the
symmetric group', SLN 308, Springer, Berlin 1973.

0. Kroll, 'Complexity and elementary abelian subgroups', Ph.D.
thesis, Univ. of Chicago, 1980.

P. Landrock and G. 0. Michler, 'Block structure of the smallest
Janko group', Math. Ann. 232, 205-238, 1978.

P. Landrock, 'Finite group algebras and their modules',
L.M.S. lecture note series, 1984.



[ 66]

[67]
[68]

[69]

[70]
[711
[72]
[73]
[74]
[75]
[76]
[771
[78]
[79]

[80]

{81}

[82]
[83]
[84]
[851]
[86]
[871
[88]

[891]

224

G. Lewis, 'The Integral Cohomology Rings of Groups of Order p3',

Trans. A.M.S. 132, 501-529, 1968.
S. MacLane, 'Homology', Springer-Verlag, 1974.

J. Milnor, 'The Steenrod algebra and its dual', Ann. of Math.
vol. 67, no. 1, 150-171, 1958.

H. J. Munkholm, 'Mod 2 cohomology of D2 and its extensions by
Z2 ', Conference on Alg. Topology, Univ. of Illinois at Chicago

Circle, June 17-28, 1968, p. 234-252.

H. Nagao, 'A proof of Brauer's Theorem on generalized decompo-
sition numbers', Nagao Math. J. 22, 73-77, 1963.

D. Quillen, 'A Cohomological criterion for p-nilpotence’, J. Pure
Appl. Alg. 1, 361-372 (1971).

D. Quillen, 'The spectrum of an equivariant cohomology ring, I ',
Ann. of Math. 94, 549-572 (1971).
1

D. Quillen, 'The spectrum of anequivariant cohomology ring, IT ',
Ann. of Math. 94, 573-602 (1971).

D. Quillen, 'The Mod 2 Cohomology Rings of Extra-Special 2-groups
and the Spinor Groups', Math. Ann. 194, 197-212 (1971).

D. Quillen, B. B. Venkov, 'Cohomology of finite groups and
elementary abelian subgroups', Topology 11, 317-318 (1972).

I. Reiten, 'Almost Split Sequences', Workshop on permutation
groups and indecomposable modules, Giessen, September, 1975.

I. Reiten, 'Almost split sequences for group algebras of finite
representation type', Trans. A.M.S. 335, 125-136, 1977.

C. Riedtmann, 'Algebren, Darstellungskdcher, Ueberlagerungen und
Zuruck', Comm. Math. Helvetici 55 (1980), 199-224.

C. M. Ringel, 'The Indecomposable Representations of the Dihedral
2-groups', Math. Ann. 214, 19-34, 1975.

K. W. Roggenkamp and J. W. Schmidt, 'Almost split sequences for
integral group rings and orders', Commun. in Alg. 4, 893-917,
1976.

K. W. Roggenkamp, 'The construction of almost split sequences
for integral group rings and orders', Commun. in Alg., 5 (13),
1363-1373, 1977.

J. Sawka, '0Odd primary operations in first-quadrant spectral
sequences', Trans. A.M.S. 273 (2), 1982, 737-752.

L. L. Scott, 'Modular permutation representations', Trans. A.M.S.
175, 101-121, 1973.

J. P. Serre, 'Homologie Singuliére des Espaces Fibrés', Annals
of Maths. 54, 3 (1951), 425-505.

J. P. Serre, 'Sur la dimension cohomologique des groupes
profinis', Topology 3, 413-420 (1965).

W. M. Singer, 'Steenrod Squares in Spectral Sequences, I ',
Trans. A.M.S. 175, 1973, 327-336.

W. M. Singer, 'Steenrod Squares in Spectral Sequences, II ',
Trans. A.M.S. 175, 1973, 337-353.

W. Smoke, 'Dimension and Multiplicity for Graded Algebras',
J. Alg. 21, 149-173 (1972).

N. Steenrod, 'Cohomology operations, and obstructions to
extending continuous functions', Colloquium Lectures, 1957.



[901]
[911]
[92]
(93]

[94]
(951

[96]
(971
(98]

[991

225

N. Steenrod, 'Cohomology operations', Ann. of Math. Studies no.
50, Princeton 1962 , (Notes by D. Epstein).

R. G. Swan, 'Induced representations and projective modules',
Ann. of Math. vol. 71, no. 3, 552-578, 1960.

P. J. Webb, 'The Auslander-Reiten quiver of a finite group',
Math. Z. 179, 97-121, 1982.

P. J. Webb, 'On the Orthogonality Coefficients for Character
Tables of the Green Ring of a Finite Group', preprint.

R. A. Wilson, 'The Local structure of the Lyons Group', preprint.

J. R. Zemanek, 'Nilpotent Elements in Representation Rings', J.
Algebra 19, 453-469, 1971.

J. R. Zemanek, 'Nilpotent Elements in Representation Rings over
Fields of Characteristic 2 ', J. Algebra 25, 534-553, 1973.

V. M. Bondarenko and Yu.A. Drozd, 'The representation type of
finite groups', Zap. Nau¥n. Sem. LOMI 57 (1977), 24-41.

M. F. O'Reilly, 'On the modular representation algebra of a
finite group', Ill. J. Math. 9 (1965), 261-276.

H. R. Margolis, 'Spectra and the Steenrod Algebra', North-Holland
1983.

[100] M. Tezuka and N. Yagita , 'The varieties of the mod p cohomology

rings of extra special p-groups for an odd prime p', Math. Proc.
Camb. Phil. Soc. (1983), 94, 449-459,



226

Index

aG) 25 8P4 107
a6 26 8P4 107
A(G) 25
A(G,H) 33 bar resolution 100
A (G,H) 25 block 13ff
A?(G,H) 33 block idempotent 14
A"(G,H) 63 Bockstein map 113
A(G,H) 33 Brauer correspondence 50
A (G,u) 33 Brauer's first main theorem 51
A?G;S) 33 - , extended 52
AO(G,S) 33 Brauer map 49ff
A(G,X) 139,142,144 Brauer's second main theorem 52
A(G,Cyc) 91,95 Brauer species 56ff
A(G,Discrete) 94 Burnside ring 29
A,(G,Discrete) 94 Burry-Carlson theorem - 61, 93
A(G,Triv) 40, 64Ef ey = elsy) = cglsy) 7
A.C.C. (iii) cxq (V) 121
Adams operations 72 Carlson 131, 141
additive function 156 Cartan formula 113
Adem relations 113 Cartan homomorphism 58
admissible automorphism 151 Cartan invariants 13
Alexander-Whitney map 100,119 Cartan matrix 13, 17, 154
almost split sequence 79ff, 81 - , of a p-group 25
Alperin-Evens theorem 123 central component 42
alternating group A4 (ix), central homomorphism 14, 17

171, 191££ central idempotent 13
alternating group A5 198 chain homotopy 99
alternating group Ag 203 Chouinard's theorem 125
alternating group A7 211 classical case 46

ascending chain condition (iii) cohomology of groups 99£f

atom 85 - , of cyclic groups 110
atom copying theorem 93 - , of elementary abelian groups
atom table 95 111
augmentation map 99 - , of modules 6ff
Auslander-Reiten quiver 145ff, commutative algebra 18ff
174 completely reducible 1, 2
Auslander-Reiten sequences 79ff, complexity 121£€
Avrunin-Scott theorem 139 component 42

b 57 composition series 2
g



227

conjugacy of origins 54 Exti 8
conjugacy of vertices 38 endotrivial module 132
connected 150 equivalent idempotents 12
covering morphism 151 essential epimorphism 7
Coxeter transformation 165 essential monomorphism 7
cup product 100 Euclidean diagram 155
cyclic p-group 28,110,230 Evens 102
dV 85 exact couple 106
pPr9 106 £ x 168
P-4 107 F 77
D.C.C.  (iii) Fy 32
Dade 131 FPHPH (G, v) 107
decomposition field 171 FixG(S) 32
decomposition group 171
decomposition matrix le face maps 107
- , of a p-group 25 Feit 80

finite Dynkin diagram 154

decomposition numbers 16
finite generation of cohomology

defect 47, 165 102

defect group 45£f finite representation type 38
- » of a block 47 Fitting's lemma 5

defect zero 48 five term sequence 109
derived couple 106 fours group 95, 176£F
diagonal approximation 100 free resolution 99
dihedral groups 181ff Frobenius algebra 9
directed tree 150 Frobenius reciprocity 24, 36
discrete spectrum 94ff Frobenius-Schur indicator 74,173
division ring 2, 3, 10 fundamental group 153
dodecahedron 42 fusion of species 54
double arrow 150 Gabriel 79

Dynkin diagram 154 Galois descent 167ff

®H,b 65 Gauss sum 174

ek,K 168 glue 88
E = E(S) 41 going-up theorem 18

ﬁ _ E(S) 41 Green correspondence 60ff
E = E(S) 41 Green ring 25

P4 107 Grothendieck ring 26

n group algebra 23

P-4 107 - , of a p-group 25, 187

s group cohomology 99ff

EEQkG(U) 80 growth 121



228

H* (G, V) 100 labelled graph 154
H-projective 31 lambda operations 77
H-split 26 Landrock 125
Happel-Preiser-Ringel theorem local ring 4, 15
158 locally finite quiver 150
Harada-Sai lemma 162 Loewy layer 174
head , 1, 149 Loewy structure 174
Higman's lemma 3L long exact sequence 9, 101
hypoelementary group loop 150
64,77,189 Lyndon-Hochschild-Serre spectral
iH G 27 sequence 104f£f, 116
IG(V) 127 Lyons group 136
Mll 218
idempotent 2, 11
idempotent refinement theorem Max(Hev(G,k)) 127
1,16 Mackey decomposition 24, 103
induced module 24 Maschke's theorem 23
induction formula 55ff Michler 125
inertia field 172 modular representation 15
inertia group 172 monster 52
infinite Dynkin diagram 155
it oo nomy g 102
infinite quiver components
162ff Nagao's lemma 52
infinite representation Nakayama's lemma 1
. typ?, 39 Noether-Deuring theorem 29, 89
1nJect%ve hull 7 norm map in cohomology 102
injective module 6 normalized bar resolution 100
inner products 34ff, 113ff Orig(s) 56
inseparable isogeny 135 ordinary representation 15
integrality theorem 53 origin 53ff. 67Ff
irrationalities 174 orthogonal idempotents 11
irreducible glue 88 orthogonal representation 74, 173
irreducible map 145 orthogonality relations 41,58,97
Iy 125 Py 97
Jacobson radical 1
x 23 p-group 25, 187
kG 23 p-modular system 15, 23
Klein fours group 95, 176ff p-rank 122
Krull-Schmidt theorem 4f £ Pl 34
Kunneth formula 101 pt 113, 119
L3(2) 215 PIM 12
L 140 Proj (H¥V(G,k)) 127

4



periodic module 122, 123
permutation module 39
18,102,158
power maps 72ff

. ’ .
Poincare series

primitive central idempotent
13

primitive idempotent 11
principal block 52

principal indecomposable
module 12

projective cover 7
projective module 6, 174
projective relative to H 31
projective relative to S 33

projective resolution 8
psi-operations 72ff
quaternion group Qg 186

Quillen stratification
132££,135,139

Quillen-Venkov lemma 116

quiver 149

rG,H 27

resg g 102

R 15

R 15

R 15

R-form 16

Rad dim Extg] 91

Rad(U,V) 145

radical 1

reduced graph 153,174

reduced powers 113

reflection 164

regular representation 1

relative projectivity 30ff

relevant prime 173

representation ring 25

representation table 95

representation type 38, 64
- resolution 99

restricted module 24

Riedtmann structure theorem
149ff

Rosenberg's lemma 13

SH b 65

S 41

2
5% 41

S3 in characteristic three
28, 191

S-projective 33
S-split 33

sqt 113, 117
Schanuel's lemma 6
Schur's lemma 2
semiperfect ring 8
semisimple 1
semisimplicity of A(G,1) 57
semisimplicity of A(G,Cyc)

’

semisimplicity of A(G,Triv)
6

4fF
Serre's theorem on Bocksteins
114
Shapiro's lemma 103
slice 166
smaller 155
gocle 1
source 37f£f, 135

species 26,38,53,55,56,67,74
- , factoring through subgroup
54

- , fusion of 54
- , origins of 53
spectral sequence 104f£
splitting field 4
splitting p-modular system 15
stable quiver 148
stable representation quiver

149
Steenrod algebra 114
Steenrod operations 113

Steenrod squares 113



strictly smaller 156
subadditive function 156
suborbit map 41
support 127
symmetric algebra 10, 13
symmetrized Cartan matrix
164
symplectic representation
74, 173
tH,G 133
trH,G 102
Tij 95
TrH,G 30
A
Tori 8
tail 149
tame representation type 39
tensor induction 68ff, 103
trace map 30
trace map in cohomology 102
transgression 107
translation 150
tree class 153,158,174
trivial source module 39ff,64
u 35
Uij 95

unique decomposition property

universal coefficient theorem

230

wild representation type

100

136

Wilson

X, 41

XV 82

%; (@

X Xg  Xg (V) Xg (V)
Xp, Xp(W)

+ +
X¢,e» *o,60 %6,V X5 g (V)

101
universal cover 153
v 35
Ve 41
vy 95, 176ff
valuation ring 15
valued graph 164
variety 127f£f
vertex 37££,67,135
Webb 112, 160
Weyl group 164

Ty, Y (V) 128
P,q

zP 107
zP 1 107
8 113

+(X) 19 ,121

T 23

G 23

ny (6 158

n(v) 159

AR 77

£y (t) 102

pP:q 107

op 134

(V) 85

I 72ff

V) 8

s() =2 vy 8

(s, V) 26

w,n¢ 24

v@ 24
N5, Vg 30
w,wns, v§ 30

(v, vH:6 yHi.G 30

w, 6 .6 30

(G 34

39

134



91
34
,23

231



Lecture Notes in Mathematics

Edited by J.-M. Morel, F. Takens and B. Teissier

Editorial Policy
for the publication of monographs

1.

Lecture Notes aim to report new developments in all areas of mathematics and their applica-
tions - quickly, informally and at a high level. Mathematical texts analysing new developments
in modelling and numerical simulation are welcome.

Monograph manuscripts should be reasonably self-contained and rounded off. Thus they may,
and often will, present not only results of the author but also related work by other people.
They may be based on specialised lecture courses. Furthermore, the manuscripts should pro-
vide sufficient motivation, examples and applications. This clearly distinguishes Lecture Notes
from journal articles or technical reports which normally are very concise. Articles intended for
a journal but too long to be accepted by most journals, usually do not have this ,,lecture notes”
character. For similar reasons it is unusual for doctoral theses to be accepted for the Lecture
Notes series, though habilitation theses may be appropriate.

Manuscripts should be submitted (preferably in duplicate) either to Springer’s mathematics
editorial in Heidelberg, or to one of the series editors (with a copy to Springer). In general,
manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet be
reached on the basis of the first 2 reports, further referees may be contacted: The author will be
informed of this. A final decision to publish can be made only on the basis of the complete
manuscript, however a refereeing process leading to a preliminary decision can be based on =
pre-final or incomplete manuscript. The strict minimum amount of material that will be con-
sidered should include a detailed outline describing the planned contents of each chapter, a
bibliography and several sample chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts almost
always result in longer refereeing times and nevertheless unclear referees’ recommenda-
tions, making further refereeing of a final draft necessary.

Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

Manuscripts should in general be submitted in English. Final manuscripts should contain at
least 100 pages of mathematical text and should always include
- a table of contents;

- an informative introduction, with adequate motivation and perhaps some historical remarks:
it should be accessible to a reader not intimately familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print
form is still preferred by most referees), in the latter case preferably as pdf- or zipped ps-files.
Lecture Notes volumes are, as a rule, printed digitally from the authors’ files. To ensure best
results, authors are asked to use the LaTeX2e style files available from Springer‘s web-server at:

ftp://ftp.springer.de/pub/tex/latex/mathegl/mono/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/mathegl/mult/ (for summer schools/tutorials).

Additional technical instructions, if necessary, are available on request from
Inm@springer.com.



4. Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online. After acceptance of the manu-
script authors will be asked to prepare the final LaTeX source files (and also the corresponding
dvi-, pdf- or zipped ps-file) together with the final printout made from these files. The LaTeX
source files are essential for producing the full-text online version of the book (see
http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434
for the existing online volumes of LNM).

The actual production of a Lecture Notes volume takes approximately 8 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled to a
discount of 33.3 % on the price of Springer books purchased for their personal use, if ordering
directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: A brief written (or e-mail) request for
formal permission is sufficient.

Addresses:

Professor J.-M. Morel, CMLA,

Ecole Normale Supérieure de Cachan,

61 Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: Jean-Michel.Morel@cmla.ens-cachan.fr

Professor F. Takens, Mathematisch Instituut,
Rijksuniversiteit Groningen, Postbus 800,
9700 AV Groningen, The Netherlands
E-mail: F.Takens@math.rug.nl

Professor B. Teissier, Institut Mathématique de Jussieu,
UMR 7586 du CNRS, Equipe “Géométrie et Dynamique”,
175 rue du Chevaleret

75013 Paris, France

E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:

Professor P. K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,

Oxford OX1 3LP, UK

E-mail : maini@maths.ox.ac.uk

Springer, Mathematics Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany,

Tel.: +49 (6221) 487-8410

Fax: +49 (6221) 487-8355

E-mail: Inm@springer.com



	Title
	Introduction
	Table of Contents
	Conventions and Abbreviations
	Section 1
	Section 2
	Appendix
	References
	Index



