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Mathematics Department, Northwestern University, Evanston,
IL 60201, U.S.A.

Preface

At the Ottawa 1984 fourth international conference on the

representations of algebras ("IeRA IV"), I gave a series of three exposi­

tory lectures entitled "Modules for finite groups : representation rings,

quivers and varieties". The main theme of those lectures was to demon-

strate the connections depicted in the following diagram.

IRepresentation Rings I

These lectures were written up, and will appear in the

proceedings, published by Springer-Verlag in their lecture note series.

At that conference, the organizers of the present conference asked me to

give a similar series of two lectures here at Durham. For the sake of

avoiding exact repetition, what I decided to do was to expand on two of

the topics discussed there. In the first lecture, I discuss the existence

of nilpotent elements in representation rings, treating this topic as an

illustration of the above triangle. This may be regarded as a predigested

version of Benson & Carlson [5]. In the second lecture, I go over the

basic definitions and properties of the cohomological varieties associated

to modular representations, and to illustrate the concepts I describe in

some detail how to find the varieties for the indecomposable modules for the

dihedral two-groups in characteristic two.
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FIRST LECTURE

Nilpotent elements in representation rings

Throughout this lecture, G will be a finite group, and k an

algebraically closed field of characteristic p. All modules will be

finitely generated. We shall omit to mention that some of the results

described here work with suitable modifications for more general rings of

coefficients.

1. TENSOR PRODUCTS

Recall that the (modular) representation ring or Green Ring

(after J.A. Green, who was the first to make any serious study of its

structure) is the complex vector space A(G) having the isomorphism

classes [Vj of indecomposable kG-modules V as basis. MUltiplication is

given by [Vj. [WI = [V 8 WI, where V S W denotes the tensor product over

k, with the usual diagonal G-action. It is known that A(G) is finite

dimensional if and only if the Sylow p-subgroups of G are cyclic, and

otherwise it is not even Noetherian. For most groups the indecomposable

representations are in some sense unclassifiable (for groups with non­

cyclic Sylow p-subgroups, the representation type is wild except when

p = 2 and the Sylow 2-subgroups are dihederal, semidihedral, quaternion

or generalized quaternion [8)).

Despite the fact that the tensor product operation has very

widespread use in representation theory, in general very little is known

about how a tensor product of indecomposable modules breaks up as a direct

sum of indecomposables. This information is reflected in basic ring­

theoretical properties of A(G). As a first step, we determine when the

trivial kG-module k appears as a direct summand of a tensor product.

This appears to be one of the keys to understanding nilpotent elements in

A(G)i as we shall see later in this lecture.

Theorem ([5), Theorem 2.1) If V and Ware indecomposable kG-modules

then V @ W has the trivial modulek as a direct summand if and only if

(i) V. W*

and (ii) p t dim V.
Moreover, under these conditions k is a summand with multiplicity one.

Sketch of proof The trivial kG-module k is a direct summand of V @ W

if and only if we can find homomorphisms k + V S Wand V S W + k with



non-zero composite. This happens if and only if the composite map

( * ,-.J:....~ V p (* *
HO~G W ,V) "fill W-»(HO~G V,W ))

is non-zero. Associated to this we have a map

with n l' 0 if and only if p. i l' O. It turns out that n is just

composition followed by trace.

Since W* is indecomposable and k is algebraically closed,

every endomorphism is of the form ~I + n with n nilpotent. Since

tr(I) = dim W* = dim W, for n to be non-zero, we must have p t dim W,

and we must have elements a E HO~G(W* ,V) and B E HO~G(V,w*) with

tr(Boa) l' 0, namely such that Boa is an isomorphism. Since V is

indecomposable this implies that V = W*. The statement about multi­

plicities is not difficult.

2. ALMOSTSPLIT SEQUENCES

Theorem 1 above may be translated into a statement about

almost split sequences as follows. Recall from [6] or my Ottawa talks
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that with respect to the bilinear form ( on A(G) given by extend-

ing ([U], [V]) = di~HO~G(U,V) bilinearly, we have the following non­

singularity statement. For each indecomposable module V we may find

an element 'o(V) E A(G) such that for U indecomposable

( [U], '0 (V) )
{1 if U=V
o otherwise.

Namely
[V] - [Rad V] if V is projective

{[V] + [1)2 V] - [XV] otherwise

where 0 ~ 1)2 V ~ Xv ~ V ~ 0 is the almost split sequence terminating

in V. In particular, it follows that if x is a non-zero element of

A(G), then there exists y E A(G) with (x,y) l' o.



{
o otherwise.
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With this in mind, Theorem 1 may now be interpreted as saying

that for V and W indecomposable,

if V ~ Wand p t dim V

Since ([V f9 W*], TO (k»

hold.

([V], [W] .T O (k» this means that the following

(i) If P Idim W then ([V], [W]. TO (k» o for all

indecomposable modules V. In particular taking V = W this implies

that the connecting homomorphism HO~G(W,W) ~ Ext~G(w,n2k f9 W) is zero,

and hence the sequence 0 ~ n 2k f9 W ~ X
k

f9 W ~ W ~ 0 splits.

(ii) If P f dim W then for V indecomposable

if V - W
( [V], [W]. T0 (k) )

o otherwise,

and so the sequence 0 ~ n 2k f9 W ~ X
k

f9 W ~ W ~ 0 satisfies the defining

conditions for an almost split sequence, apart from possibly the

indecomposability of n 2k f9 W. This means that if we strip off an inject­

ive (= projective) direct summand from the first two terms of this

sequence, we are left with an almost split sequence.

We have thus outlined a proof of the following theorem. A

different proof appears in Auslander & Carlson [2], which also gives the

corresponding result for RG-lattices, where R is a complete discrete

valuation ring.

Theorem 2 ([2] Theorem 3.6; [5] Proposition 2.15) Let

o ~ n 2k ~ ~ ~ k ~ 0 be the almost split sequence rerminating in the

trivial module k. Let W be an indecomposable kG-module. Then the

tensor product

has the following properties.

(i) It is either split, or almost split modulo an injective

summand.

(ii) It fails to split if and only if p t dim W.
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3. NILPOTENT ELEMENTS IN A(G)

We now translate Theorem 1 into information about the struc-

ture of A(G). Let us denote by A(G;p) the linear span in A(G) of

the indecomposable modules whose dimension is divisible by p.

Theorem 3 ([5], lemma 2.5 and theorem 2.7)

(i) A(G;p) is an ideal in A(G).

(ii) A(G)/A(G;p) has no non-zero nilpotent elements.

sketch of proof (i) This statement is the same as the statement that if

V is indecomposable and p Idim V then for any module wand any direct

summand U of V @ W, we have p I dim U. But this follows by applying

theorem to each side of the equality (V @ W) @ U* ; V @ (W @ U*) .

x = ~ai[Vi] E A(G) with xx* E A(G;p),

= ~ la. 12[v. ~ V~] + I a.;.[v. @ V~]
~ ~ ~ .#" ~ J ~ J

module k, and so we may~ J deduce from

where

(ii) First suppose

x* = La.[V~] ~ Then xx*
~ ~

does not involve the trivial

theorem 1 that x E A(G;p).

Now suppose x E A(G) with x 2 E A(G;p). Let *y = xx

Then yy* E A(G;p), and hence y E A(GiP), and hence x E A(Gip) .

If H is a subgroup of G, we denote by rG,H the restrict­

ion map A(G) ~ A(H). It can be shown using an induction theorem of

isA(G)Thus we may deduce in this case that

Conlon that if the Sylow p-subgroups of G are cyclic then
n -1
H~G rG,H(A(H;P» = O.
semisimple. This was first proved by Green and O'Reilly in the sixties

using some long-winded calculations. The above proof is due to Benson &

carlson [5], where more details may be found. To summarize, we have seen

that whenever A(G) is finite dimensional it is semisimple.

4. COHOMOLOGICALCONSTRUCTIONOF NILPOTENT ELEMENTS

When A(G) is infinite dimensional the story is quite

different. Zemanek [17,18] was the first to show that there can be nil-

potent elements in A(G), by explicit construction of modules

V ~ V ~ WSW = V S W $ V S W, so that (rV] - [W])2 = 0 in

V *W
A(G). I

with

shall outline a general construction due to Benson and Carlson [5], using

cohomological techniques.

The construction depends on some modules L~ introduced by
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Carlson [101 for the purpose of studying the cohomological varieties

associated to modules. They now represent a standard method of passing

from cohomology to representation theory. The definition is as follows.
z n z n z n

If 0 f- s E H (G,k);;; ExtkG(k,k) ;;; HO~G(Q k,k) (where Q V represents

the kernel of the projective cover of V) then s is represented by a

surjective homomorphism e (/n k .... k , whose kernel we denote by ~.

If s = O. we make the convention L = Q2
n

k ~ Qk. The basic lemma iss
as follows.

Suppose V is a kG-module, and suppose

*ExtkG(V,V) (cup-product action; note that

s annihilates the identity element in

ThenEn~G(V» .

it is enough to check that
o

ExtkG(V,V)

Lemma ([111; [51, Theorem 3.3)

s E H
2n(G,k)

annihilates

L
s

0 V - Q2nV $ QV ~ (projective).

Now suppose L happens to be periodic with period two (Le.
s

Q2L ;;; L but QL
s

~ L
s)

, and suppose s annihilates Ext~G (L
s

,L
s)

.
s s

It happens that this forces G to have p-rank one or two, but that under

these conditions there are many examples of such behaviour. We shall list

some below. According to the lemma, we have

L
s

0 L
s

- Q2nLs ~ QL
s
~ (projective)

- L
s
~ QL

s
~ (projective).

Applying 0 twice to this, we obtain

and

QL
S

0 L
s

;;; QL
s
~ L

s
~ (projective)

QL
s

0 QL
s

;;; L
s

~ QL
s
~ (projective).

2
Hence ([LsI - [QLsl) is a linear combination of projective modules.

If L
s

and QL
s

have the same Brauer character (for a p-group this

simply says that they have the same dimension) then ([LsI - [QLsI)2 = 0;

otherwise we would have to adjust by some linear combination of projective

modules to force the square to be zero (note that the linear span in A(G)

of the projective modules is a finite dimensional direct summand, so that

we may project onto its complement).
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We thus have the following theorem, which is a restricted

version of [5], Theorem 3.4.

Theorem 4 Suppose ~ E Hzn(G,k) has the following properties.

and nL~

annihilates

(i)

(ii)

(iii)

is periodic with period two.

have the same Brauer character.

Then is a non-zero nilpotent element of A(G).

Examples (a) For G an elementary abelian group of order pZ, p odd,

and k =lFp'
we have H*(G,k) = A(xl,x Z) ~ k[Yl,y z l with

deg xl = deg Xz = 1 and deg Yl = deg Yz = 2. Then for each

(a: 13) E ]pl (k) and each 1, the element (aYl
n E Hzn(G,k)n ~ + I3Yz)

satisfies the conditions of theorem 4. The ideal in A(G) generated by

the corresponding nilpotent elements is an infinite dimensional nilpotent

ideal. The same also works for Cz x C4 •

(b) For G dihedral of order z", n ~ 3, and k = IF 2' we

have H*(G,k) k[x,y,z]/(xy) with deg x deg y = 1 and deg z = 2.

If a ;oi0 ;oi 13 and n ~ 1 then the element (ax z + 13yz)n E Hzn(G,k)

satisfies the conditions of theorem 4, and so again we get an infinite

dimensional nilpotent ideal in A(G).

(c) If G is a generalized quaternion group, the above

construction produces nilpotent elements, but not in such vast quantities.

The problem is that all kG-modules are periodic.

(d) If G is an elementary abelian 2-group, the above method

produces no nilpotent elements at all, since every periodic module has

period one. For G elementary abelian of order four, it turns out that

there are no nilpotent elements (Conlon [12]). For G elementary abelian

of order 2
n,

n ~ 3, it is still an open problem as to whether A(G) has

nilpotent elements. Since there are standard methods for passing from

subquotients to the whole group, this is essentially the only open case.

Remark The above nilpotent elements all square to zero. I do not know

whether there are ever nilpotent elements of order greater than two,

although this seems likely.
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SECOND LECTURE

VARJETIES FOR MODULES A SAMPLE CALCULATION

In this lecture I shall describe the theory of cohomological

varieties associated to modular representations, and give the details of

a sample calculation to illustrate the concepts. These varieties grew

out of work of Quillen on the structure of equivariant cohomology rings

[14,15], and have been developed by Carlson, Alperin, Evens, Avrunin,

Scott [1,3,9,10,11] etc.

1. Definitions and basic properties

Let G be a finite group and k an algebraically closed field

of characteristic p. Denote by H' (G,k) ~ ExtkG(k,k) the cohomology

ring H*(G,k) if P = 2, and Hev(G,k), the even part of the cohomology

ring if p i 2. Since the cohomology ring is graded commutative (i.e.

xy = (_1)de g(x)de g(y)yx), H' (G,k) is a commutative ring, and so we may

form the maximal ideal spectrum X
G

= Max H (G,k). Since the cohomology

ring is finitely generated, we may view X
G

as a concrete affine variety

in the usual way. Namely if H' (G,k) = k[x
1

, ••• , Xn]/I for some homo­

geneous generators xi and homogeneous ideal I, then X
G

is the variety

in ~n(k) given by the simultaneous zeros of the polynomials in I. In

particular, X
G

is a homogeneous variety (a union of lines through the

origin, where the origin corresponds to the ideal of elements of positive

degree) and we may form a projective variety X
G

= Proj H' (G,k) of one

smaller dimension.

Now if V is a KG-module, we may think of Ext~G(V,V) as

equivalence classes of long exact sequences beginning and ending in V,

where the equivalence relation is generated by morphisms of long exact

sequences which are isomorphisms on the end terms (see Maclane[13]). The

Yoneda splice of long exact sequences gives Ext~G(V,V) a ring structure,

which may be non-commutative. In fact this ring may have complete matrix

is

H'(G,k) ~ ExtkG(k,k)

with V. The image

*and ExtkG(V,V)

Thus if we let

However, there is a natural maprings as quotients.

*~ ExtkG(V,V) given by tensoring long exact sequences

*of this map lies in the centre of ExtkG(V,V),

finitely generated as a module over the image.

- *XG(V) = Max Z ExtkG(V,V), the spectrum of maximal ideals of the centre of

this ring, then we have a map of varieties XG(V) ~ X
G•

We denote by

XG(V) the image of this map, so that the map XG(V) ~ XG(V) is finite



(the pre image of a point is a finite set). Also, since XG(V) is a

(closed) homogeneous subvariety of X
G,

we may form the corresponding

projective subvariety XG(V) of X
G.

Example If G is elementary abelian of order pn, then
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H*(G,k)
if p; 2

A(x1,···,x n) e k[Yl'···'Yn)

if p'"2

where deg(x
i)

; 1, deg(y
i)

; 2, and A(x1, .•. ,x
n)

denotes the exterior

algebra. Thus if we denote by J the radical of nilpotent elements in

H' (G,k) then H"(G,k)/J is a polynomial ring in n variables (x . if
J.

P ; 2 and Y. if p ". 2) and so X
G

~ I\n(k), X
G

~ ]pn-l (k) .
J.

For more general G, Quillen [14,15) has shown that

X
G

~ l~ X
E•

E~G

The direct limit is taken over the set of all elementary abelian subgroups

E of G, and the maps are those induced by conjugations and inclusions.

The "isomorphism" is a homeomorphism in the Zariski topology, or an

"inseparable isogeny" at the coordinate ring level. Avrunin and Scott [3)

have shown that the appropriate generalization to modules is also true:

l~m XE (v-} E) .

E::;G

From the definitions and results given so far, it would seem

that the varieties XG(V) are very difficult to calculate. It turns out

that there is an alternative formulation which makes calculation much

easier. By the above result of Avrunin and Scott, it suffices to treat

the case where G is elementary abelian" In this case, we have the

following rank variety introduced by Carlson [10).

Let Y
G

be the affine space J(kG)/J 2(kG) ~ iAn (where

IGI pn), and let YG(V) denote the image modulo J2 of

{a} U {a E J(kG): V+ 1 is not a free k<l+a> - module} (it turns out
< +a>

that this is a union of co sets of J2). There is a natural isomorphism



X
G

~ Y
G

with the property that for all kG-modules V, the image of

XG(V) is equal to YG(V). This was conjectured by Carlson and proved by

Avrunin and Scott, as the difficult step in proving their theorem mention­

ed above. The proof of statement (ii) of Theorem 1 below also needed this

fact. The variety YG(V) is easy to calculate as the set of zeros of

minors of certain matrices.

The following is a list of properties of the XG(V) which we

shall be using. Some of these properties are quite difficult to prove.

Theorem 1 Let V and W be kG-modules.

(i) XG(V $ W) = XG(V) U XG(W)

(ii) (Avrunin-Scott [3]) XG(V ~ W) = XG(V) n XG(W)

(iii) The dimension of the variety XG(V) is equal to the

complexity of V. Namely if .. ~ Pz + P
1
~ Po ~ V ~ 0 is a minimal

resolution of V, the complexity is defined to be the order of the pole

of the rational function Ltidim p. at t = 1. This measures the rate
.i,

of growth of the resolution. Thus the complexity is zero if and only if

V is projective, and one if and only if V is periodic, and so on.

(iv) (Carlson [11]) If V is indecomposable then XG(V)

is connected in the Zariski topology.

(v) (Carlson [10]) If 0 f. i; E Hzn (G ,k) ~ Ext~ (k ,k)
zn

- HO~G(n k,k), we define Li; to be the kernel of the homomorphism

n
2nk

~ k (as in the last lecture). Then XG(Li;) is the hypersurface

XG(i;) given by taking the zeros of i; regarded as an element of the

coordinate ring of X
G.
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Proofs of these statements may be found in [1,3,9,10,11].

It should be remarked that it follows from (ii) and (v) of this theorem

that every homogeneous (closed) subvariety of X
G

is of the form XG(V)

(express the variety as an intersection of hypersurfaces, and take the

tensor product of the corresponding Li;'s).

We now turn to our sample calculation to illustrate the above

concepts. We have chosen a class of groups for which we have a good under­

standing of the set of indecomposable modules, namely the dihedral two­

groups. The results of these calculations appear without proof in the

appendix of [4], p.18S.
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2. Cohomology of the dihedral two-groups

For the rest of this lecture, let G = <u,v

(uv)2
n- 1 = 1> be the dihedral group of order 2n, and let k be an

algebraically closed field of characteristic two. Then H*(G,k) =

k[x,y,z]/(xy), where deg(x) = deg(y) = 1 and deg(z) = 2. We choose

the labelling in such a way that the generator x E: H1(G, lF2)
subgroup <uvu,v> of index two, while

- 1 1X
G

= Proj(k[x,y,z]/(xy)) =lP
a

UlP
b

,

lines over k intersecting in the

corresponds to theHom(G, 7L./2 3'\)

y corresponds to <u,vuv>. Thus

where lP 1 and lP 1 are projective
a b

common point at infinity: lP 1 n lP 1 = {oo = oo}. We choose the notation
a b a b

so that lP~ Proj(k[x,z]) and lP~ = Proj(k[y,z]), and so that

AX2
+ ~y2 + z 0 is the equation of the pair of points {Aa'~b} c

(IP~ UlP~)\{oo}.

Let H
a

<u,w> and ~ = <v,w> where w = (uv)q, q = 2n- 2,

be representatives of the two conjugacy classes of elementary abelian sub-

groups of order four in G. Then H*(Ha,k) k[xa,za] and H*(Hb,k)

k[Yb,zb] with deg(x a) = deg(za) = deg(y
b)

deg(zb) 1. We choose the

notation so that x = res (x), y = res (y), z corresponds to the
a G,Ha b G,~ a

subgroup <u> of index two in H
a,

and zb corresponds to the subgroup

<v> in ~. Then the restriction maps are as follows.

Generator Image Image

of H* (G,k) under res under res
GG,H ,~a

x x 0
a

y 0 Yb

z z (x + z ) zb (Yb + zb)a a a

Let W1 = Proj H* (H
a

,k) , labelled in such a way that u
a

corresponds to 0 E:lP1 , w corresponds to <£ r and uw correspondsa a a
to 1 Similarly label Al

= Proj H*(H ,k) in such a way thatwe P
b

va b
corresponds Db

Al
corresponds and corresponds lb·to E lP

b
, w to 00 vw tob'

The maps t res* w1 ....lP 1 and t res* : JPl .... lP 1 are
Ha,G G,Ha a a Hb,G G,Hb b b

given by
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A(l+A)
a a

3 • MODULES FOR THE DIHEDRAL TWO-GROUPS

The indecomposable kG-modules (G = D ) were first class-
2n

ified by Bondarenko [7], but we shall rather use the description given in

Ringel [16]. First we describe the finite dimensional indecomposable

modules for the infinite dihedral group

<u,v 1>

1 -1
a,b,a - and b

-1
b and vice-versa,

Let ~ be the set of words in the letters

and a-
1

are always followed by b orasuch that

G = D
2n

and then we indicate which are modules for the quotient group

<u,v : u Z = v Z 1, (uv)q = (vu)q>.

reverse the order of the

ing to the rule (a-
1)-1

together with the "zero length_~ords" 1
a

~~d lb. If C is a word, we

define C-
1

as follows. (la) = 1
b

, (lb) 1
a

; and otherwise, we

letters in the word and invert each letter accord-
-1 -1

= a, (b) b. Let 'VI"1 be the set obtained

from ~ by identifying each word with its inverse.

The nth power of a word of even length is obtained by jux­

taposing n copies of the word. Let ~' be the subset of ~ consist­

ing of all words of even non-zero length which are not powers of smaller

words. Let "W'z be the set obtained from -W-' by identifying each word

with its inverse and with its images under cyclic permutations of the

letters, ~1··· ~n + £n~1 ... ~n-1

The following is a list of all the isomorphism types of

indecomposable kG-modules.

Modules of the first kind These are in one-one correspondence with

elements of ~. Let C

space over k with basis

schema

on which G

M(C) be a vector

acts according to the

kz
n
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where x acts as "1 + a" and y acts as "1 + b". For example, if

C = ab -laba -1 then the schema is

a
+-- kz

3

b+--

and the representation is given by

y

It is clear that M(C)
-1

- M(C l.

Modules of the second kind. These are in one-one correspondence with

elements of """2x '1f where

{ (V,<j» V is a vector space over k and <j> is an

indecomposable automorphism of V}

(since we are only dealing with the case where k is algebraically closed,

an indecomposable automorphism of a vector space is simply a Jordan block) .

If (C, (V,<j»)

vector space

schema

E '\of' x -y with C
n-1

$ V. with V
1
' ~ V

i=O 1

t l tn' let M(C,V,<j>l be the

on which G acts according to the

V2 Vn-2

~ =id
n-l

V
n-l

~ =id
n~~ ----", J

where again x acts as "1 + a" and y acts as "1 + b" as above. It

is clear that if C and C' represent the same element of ~2 then

M(C,V,<j» - M(C' ,V,<j».

A module represents the quotient group G if and only if

either

(i) the module is of the first kind and the corresponding

word does not contain (ab)q, (ba)q or their inverses,
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(ii) the module is of the second kind and no power of the

corresponding word contains (ab)q, (ba)q or their inverses, or

(iii) the module is the projective indecomposable module

M«ab)q(ba)-q,k,id) (of the second kind).

Ringel [16] also calculated which of the above modules are

periodic. It turns out that a module of the first kind M(C) is periodic

if and only if C ~ (ab)q-1a or (ba)q-1b, while all modules of the

second kind are periodic.

4. THE VARIETIES FOR THE INDECOMPOSABLEkD -MODULES
2n

The following theorem gives the varieties for the indecompos-

able kG-modules in terms of the above classification.

Theorem 2 (i) XG(M(C» jpl U ]pI if
±I b±1C 'V a

a b

]pI ±I ±I
if C -v a a

b

but C 1- (ab)q-Ia

if b±1 ±I
C ~ ... b

but C 1- (bal q-Ib

if C ~ (ab)q-Ia

if C ~ (ba)q-Ib

I]p
a

I

{Ob}

{O }
a

(ii) XG(M(C,
(A 0

0 1
A A if C ~ a-Ib(ab)q-I

a

A
b

if C ~ b-Ia(bal q- I

(iii)

We shall prove Theorem 2 by dealing with the various cases in

separate lemmas. The following lemma deals with the first case of (i).

Lemma 1. If V is an indecomposable kG-module with dim(V) Odd, then

XG(V) = XG·



195

Proof. If dim(V) is odd, then for each shifted subgroup <l+a> of an

elementary abelian subgroup E of G, V+<l+a> is not free. Thus

YE(V+E) = Y
E,

hence XE(v+ E)
X

E,
and so XG(V) lim XE(V+E) = XG·-+

E

Lemma 2. A kG-module M(C) of the first kind is periodic if and only if

C ~ (ab)q-1 a or C ~ (ba)q-1 b.

Proof. As mentioned at the end of section 3, this was proved by Ringel

in [16].

Lemma 3.

is not.

(i)
±1 a±l)+ ±1 ±1

M(a is free while M(a a )+<v><u>

+1 b±l)+ +1 b±l)+(ii) M(b- ... is free while M(b- ...
<v> <u>

is not.

Proof. This follows from the explicit description of the action of u

has exactly two non-projective summands,

given by the schema. Thus it can be seen, for
+1

a- )+<v>

basis elements occuring at the end of the schema.

and v on these modules
+1

example, that M(a-

corresponding to the

Lemma 4. (i)

otherwise

(ii) {o }
{ a

F
1

otherwise.
a

Proof. Carlson's connectedness theorem (part (iv) of theorem 1) states

that if V is indecomposable then XG(V) is connected in the Zariski

topology. As explained in section 1, we may calculate XG(V) by restrict­

ions to cyclic subgroups <l+a> of kG. Thus it follows that
- +1 +1
XG(M(a- ... a-» is a connected subvariety of X

G
containing the point

0b but not 0a' by Lemma 3. If C ~ (ab)q-1 a then by Lemma 2, M(C)

is periodic, and so by part (iii) of Theorem 1, XG(M(C» = {Ob}. For all
±1 ±1

other choices of C = a ... a , M(C) is not periodic, and so

dim(XG(M(C») = 1. Thus XG(M(C» =w~. statement (ii) is proved in the

same way.
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We have now completed the proof of part (i) of Theorem 1, and

so we turn to tile non-projective modules of the second kind. According to

section 8 of [16], these are all periodic of period 1 or 2, and so by

Carlson's connectedness theorem their variety consists of a single point

in each case.

Lemma 5. Suppose V is a non-projective indecomposable kG-module M(C,~)

of the second kind. Then XG(V) = {oo} unless C ~ a-
1b(ab)q-1

or
-1 q-1 - 1 -

C ~ b a(ba) , in which cases we have XG(V) ~~a \{oo}, resp. XG(V) C

lP~\{ooL

Hence by part (iii)

XG(V) # {oo}. By the above remark, XG(V) is either a

or a point in ~~\{oo}. Suppose without loss of general­

the former case. Then

Proof. Suppose

point in ~l\{oo}
a

ity that we are in XH (V+ ) = ~, and so
b Hb

XH(V+H) = ~, where H = <uvu,v> of index two in G.

of Theorem 1, V+
H

is projective.

Now when dealing with modules for a p-group, we can distinguish

projective modules from non-projective modules by the action of the norm

element (i.e. the sum of all the group elements as an element of the group

algebra). For the norm element acts as zero on all non-projective in­

decomposable modules. Thus the rank of the corresponding matrix in a given

representation is at most the dimension divided by the order of the group,

with equality if and only if the representation is projective.

The norm element of H is

n =
H

[l+uvu) (1+v)l q/2 .

Let X l+u and y l+v, so that X2 = y2 o. Then

[(y + Xy + YX + XYX)y]q/2

(YXY + Xyxy)q/2

(YX)q-1 y + (Xy)q.

Since V is a non-projective indecomposable kG-module, (Xy)q,

Which is the norm element of kG, acts as zero. Since V+
H

is a projective

kH-module, n
H,

which we now know to act in the same way as (YX)q-1 y, acts

as a matrix whose rank is dim (V) / IHI. SO the rank of (YX)q-1 y on V is
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dim(V)/2q. Looking at the description of how X and Y act on V

according to the schema given in section 3, we see that this is impossible

unless we have C ~ [a- 1b(ab)q-1]r for some r ~ 1 (recall that (ba)q

must not appear in any power of C). Now since a word in 1-1"I is not

allowed to be a power of a word of smaller length, we have r = 1.

A similar argument shows that in the case where XG(V) is a
1 { } -1 q-1point in ~b\ 00 , then C ~ b a(ba) .

To complete the proof of Theorem 2, we must identify some

modules of the form L~ , and use part (v) of Theorem 1.

Lemma 6 Let

rA 1 0 1.1 °1"' ' "a-'b (ab ) q-' 'lo ) ~ M(b- 1a(ba)q-1,
) ,

1
~JA 0

where the matrices on the right hand side of this equation are r x r

matrices.

Proof. It is easy to see by direct calculation or by looking at section 8

of [16] that n2r (k ) ~ M«b- 1a(ba)q-l)-r(a- 1b(ab)q-l)r), a module of

dimension 4qr+1. According to the schema, we have an ordered basis

corresponds

and alltoZ
2qs

corresponds to the homomorphism

zo'.'" z corresponding to this word.4qr

Y2 (r - S) z s E H2r (G, k )With respect to this basis,

to the homomorphism from n2r
(k ) to k sending

other z. to zero, while x 2 (r - s ) z s
a

sending Z2q(2r-s) to and all other to zero. We shall show that

1.1 0_ -1 q-l
L n <z , ... ,z > =M(b a(ba) , ), while
~ o zqr

~O
1
1.1

A 0_1
b (ab) q-l,L n <z 2qr'··· ,Z4qr > ~ M(a ) .

~

1

0 A
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In fact, we shall only show the latter, since the former is symmetrically

identical. In terms of the schema for

I- 0

o 1
I-

), we wish to take

V.
~

V o

<zzqr+i,Zzq(r+l)+i' ... ' Zzq(Zr-l)+i> for 1 ~ i ~ 2q-l, and

L n <zz r Zz ( ) , ••• , Z >, taking as basis for V0 the imagesi;; qr q r+l 4qr _

of Zzq(r+l)'·.·' Z4qr under the map Li;;n<zzqr,Zzq(r+ 1)'···' Z4qr>-+<Zzqr>+

(L n <Z .... , Z » / <Z >. In terms of these bases, the map
i;; zqz 4qr zqz

~ : V1 + Vo of the schema has as its matrix

rl- (r) I-z I-
r

2
0 0

~
0 0

0 0 1 0

Some elementary linear algebra shows that this is conjugate to

the matrix

I- 0

1o I-

Thus we have produced two submodules of Li;; of the appropriate isomorphism

types, which intersect in {a} and span Li;; This completes the proof.

We may now complete the proof of theorem 2. It follows from

lemma 6 and part (v) of Theorem 1 that

I- 0 ru ~ 0
XG(M(a-1b(abl q- 1,

) EIlM(b-1a(ba)q-l, »
1 lo 1

0 l- II
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= {Aa'~b}' Comparing these statements for different values of A and ~,

and using part (i) of Theorem 1, we see that part (ii) of Theorem 2 holds.

Part (iii) follows from part (iii) of Theorem (i).

open Problem Calculate the ring structure of A(D n)' It would be
2

interesting to understand the nilpotent elements in this ring.
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