Lambda and Psi Operations on Green Rings

D. J. Benson
Department of Mathematics, Yale University, New Haven, Connecticut 06520
Communicated by Walter Feit

Received January 4. 1983

Let G be a finite group and k a field of characteristic p (possibly $p=0$). Let $a(G)=a_{k}(G)$ be the Green Ring, or representation ring, formed from the finite-dimensional right $k G$-modules, and let $A(G)=A_{k}(G)=a_{k}(G) \otimes{ }_{l} \mathbb{C}$. In |1| various concepts associated with $A(G)$ were introduced, including the notions of species, vertex, and origin. It is our purpose here to construct operations ψ^{n} and λ^{n} on $A(G)$, analogous to the Adams operators and exterior power operators in ordinary character theory (see, e.g., Curtis and Reiner $\mid 2$, p. $313 \mid$). While the λ-operators are not in fact the same as the exterior power operators when $\operatorname{char}(k) \neq 0$, they do make $A(G)$ into a special λ-ring (see $|3,4|$ for definitions and basic results about λ-rings). The ψ operations will be used to construct the powers of a species (which are again species), thus generalizing the notion of the power maps in ordinary character theory. Finally, we examine the vertices and origins of the powers of a species (Theorem 2).

We begin by constructing the operators ψ^{n} in the case where n is coprime to p. Let n be a natural number coprime to p, and $T=\left\langle\alpha: \alpha^{n}=1\right\rangle$ be a cyclic group of order n. Let ε be a primitive nth root of unity in k, and η a primitive nth root of unity in \mathbb{C}. If X is a module for $T \times G$, then we denote by $X_{\varepsilon^{i}}$ the eigenspace of α on X with eigenvalue ε^{i}. Then $X_{\varepsilon^{i}}$ is a $T \times G$ invariant direct summand of X, and we have

$$
\begin{gather*}
X=\stackrel{\oplus}{i} 1_{n} X_{c^{i}}, \tag{1}\\
A(T \times G)=A(T) \otimes A(G) . \tag{2}
\end{gather*}
$$

Given a module V for G, we let T act on $\otimes^{n}(V)$ by permuting the tensor multiplicands. Then $\otimes^{n}(V)$ is a module for $T \times G$, and $\left.\mid \otimes)\left.^{n}(V)\right|_{\varepsilon^{i}} \cong \mid \otimes\right)\left.^{n}(V)\right|_{g^{j}}$ as G-modules whenever $\left\langle\alpha^{i}\right\rangle=\left\langle\alpha^{i}\right\rangle$. We detine

$$
\begin{equation*}
\psi^{n}(V)=\bigvee_{i=1}^{n} \eta^{i}\left|\Theta \otimes^{n}(V)\right|_{\varepsilon^{i}} \tag{3}
\end{equation*}
$$

as an element of $A(G)$.

Proposition 1. If V_{1} and V_{2} are $k C$-modules then the following hold:
(i) $\psi^{\prime \prime}\left(V_{1} \oplus V_{2}\right)=\psi^{\prime \prime}\left(V_{1}\right)+\psi^{\prime \prime}\left(V_{2}\right)$.
(ii) $\psi^{n}\left(V_{1} \otimes V_{2}\right)=\psi^{n}\left(V_{1}\right) \psi^{n}\left(V_{2}\right)$.

Proof. (i) As a module for G, we have

$$
\otimes)^{n}\left(V_{1} \oplus V_{2}\right)=\bigoplus_{\substack{i_{1}=1.2 \\ \vdots \\ i_{n}=1.2}}\left(V_{i_{1}} \otimes \cdots \otimes V_{i_{n}}\right) .
$$

Under the action of T, there are two fixed summands, $\otimes{ }^{n}\left(V_{1}\right)$ and $\otimes{ }^{n}\left(V_{2}\right)$. Apart from these, each orbit forms a module for $T \times G$ of the form $Y \otimes Z$, where Y is a permutation module for T on a proper subgroup. Thus as an element of $A(G), \sum_{i=1}^{n} \eta^{i}|Y \otimes Z|_{\varepsilon^{i}}=0$. Hence the result.
(ii) $\left(\bar{\otimes}{ }^{n}\left(V_{1} \otimes V_{2}\right)=(\bar{\otimes})^{n}\left(V_{1}\right) \otimes\right)^{n}\left(V_{2}\right)$. Hence $\left|(\bar{x})^{n}\left(V_{1} \otimes V_{2}\right)\right|_{\varepsilon^{i}}=$ $\left.\sum_{j-1}^{n} \mid \otimes\right)\left.\left.^{n}\left(V_{1}\right)\right|_{\varepsilon^{\prime}} i(\otimes)^{n}\left(V_{2}\right)\right|_{\varepsilon^{i} ;}$. Thus we have

$$
\begin{aligned}
\psi^{n}\left(V_{1} \otimes V_{2}\right) & =\grave{i}_{1}^{n} \eta^{i}\left|\otimes{ }^{n}\left(V_{1} \otimes V_{2}\right)\right|_{\varepsilon i} \\
& \left.\left.=\grave{i}_{i, j-1}^{n} \eta^{j} \mid \otimes\right)\left.^{n}\left(V_{1}\right)\right|_{\varepsilon^{i}} \eta^{i-j} \mid \otimes\right)\left.^{n}\left(V_{2}\right)\right|_{\varepsilon^{i} j} \\
& =\psi^{n}\left(V_{1}\right) \psi^{n}\left(V_{2}\right) .
\end{aligned}
$$

By Proposition 1, we may extend ψ^{n} linearly to give a ring endomorphism of $A(G)$. In fact, the image under ψ^{n} of an element of $a(G)$ is in $a(G)$, as Proposition 2 shows.

Proposition 2. For d dividing n, let ε_{d} be a primitive d th root of unity in k. Then

$$
\psi^{n}(V)=\searrow_{d \mid n} \mu(d)\left|\otimes \otimes^{n}(V)\right|_{\varepsilon_{d}}
$$

(Here, μ is the Möbius function of multiplicative number theory.)

Proof. Whenever $\left.\left.\left\langle\alpha^{i}\right\rangle=\left\langle\alpha^{j}\right\rangle, \mid \otimes\right)\left.^{n}(V)\right|_{\varepsilon_{i}} \cong \mid \otimes\right)\left.^{n}(V)\right|_{*}$. Thus

$$
\begin{aligned}
\psi^{n}(V) & \left.=\grave{i=1}_{n}^{n} \eta^{i} \mid \otimes\right)\left.^{n}(V)\right|_{\varepsilon^{i}} \\
& \left.\left.=\sum_{d \mid n}\left(\sum_{\substack{(i, d)=1 \\
1 \leqslant i \leqslant d}}\left(\varepsilon_{d}\right)^{i}\right) \mid \otimes\right)^{n}(V)\right]_{\varepsilon_{d}} \\
& =\left.\grave{d i n} \mu(d)[\otimes)^{n}(V)\right|_{\varepsilon_{d}} .
\end{aligned}
$$

Considering ψ^{n} as an endomorphism of $a(G)$ in this way, we have
Proposition 3. For $x \in a(G), q$ a prime not equal to p, we have

$$
\psi^{q^{t}}(x) \equiv x^{q^{t}} \quad(\bmod q) .
$$

Proof. By Proposition 2, we have

$$
\psi^{q^{t}}(x)=\left[\left.x^{q^{t}}\right|_{1}-\left[x^{q^{t}}\right]_{\varepsilon_{q}} .\right.
$$

Since $\left.\left.\quad x^{q^{t}}=\left[x^{q^{t}}\right]_{1}+(q-1)\left[x^{q^{t}}\right]_{\varepsilon_{q}}+q(q-1) \mid x^{q^{t}}\right\}_{\varepsilon_{q} 2}+\cdots+q^{t-1}(q-1) \mid x^{q^{t}}\right\}_{\varepsilon_{q} t}$, the result follows.

Example. If $p \neq 2$, we have

$$
\psi^{2}(V)=S^{2}(V)-\Lambda^{2}(V)
$$

Thus in particular, if V is irreducible then the Frobenius-Schur indicator is defined by

$$
\begin{aligned}
\operatorname{lnd}(V)=\left(1, \psi^{2}(V)\right) & =+1 & & \text { if } V \text { is orthogonal, } \\
& =-1 & & \text { if } V \text { is symplectic, } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

(Recall that $($,$) is the inner product on A(G)$ given by linearly extending $\left.(M, N)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}(M, N).\right)$

Definition. We define the nth power of a species s of $A(G)$, for $n \in \mathbb{N} \backslash p \mathbb{N}$, via

$$
\left(s^{n}, x\right)=\left(s, \psi^{n}(x)\right)
$$

Proposition 1 shows that s^{n} is again a species of $A(G)$.
Proposition 4. If b is a Brauer species of $A(G)$ (see $\{1,6.12 \mid$) corresponding to a p^{\prime}-element g, then b^{n} is the Brauer species corresponding to g^{n}.

Proof. Let V be a $k G$-module, and let b^{\prime} be the Brauer species corresponding to g^{n}. We may choose a basis v_{1}, \ldots, v_{r} of V consisting of eigenvectors of g. Let $v_{i} g=\lambda_{i} v_{i}$. Then as $k\langle g\rangle$-modules, $V=\oplus\left\langle v_{i}\right\rangle$, and so

$$
\begin{aligned}
\left(b^{n}, V\right)=\left(b, \psi^{n}(V)\right) & =\left(b, \sum_{i=1}^{r} \psi^{n}\left(\left\langle v_{i}\right\rangle\right)\right)=\sum_{i=1}^{r}\left(b, \psi^{n}\left(\left\langle v_{i}\right\rangle\right)\right) \\
& =\sum_{i=1}^{r} \lambda_{i}^{n}=\left(b^{\prime}, V\right) .
\end{aligned}
$$

We now wish to prove that $\psi^{m} \psi^{n}=\psi^{m n}$. We start off with a lemma.
Lemma 1. Let S_{n} denote the symmetric group on n letters. Then there is a subgroup T_{n} of S_{n} having the properties:
(i) T_{n} contains a cyclic group of order n which is transitive on the n letters.
(ii) if $n=n_{1} n_{2}$ then T_{n} contains the direct product of the cyclic groups of orders n_{1} and n_{2}, in its direct product action on the n letters.
(iii) If a prime q divides $\left|T_{n}\right|$ then q also divides n.

Proof. Let $n=\prod p_{i}^{a_{i}}$. Then we have a subgroup

$$
\prod \mid S_{p_{i}^{n_{i}}} \leqslant S_{n}
$$

with direct product action on the n points. Let P_{i} be a Sylow p_{i}-subgroup of $S_{p_{i}^{n}}$, and let

$$
T_{n}=\prod P_{i} \leqslant \prod S_{p_{i}^{a_{i}}} .
$$

Then properties (i) and (iii) are clearly satisfied. To check property (ii), let $n=n_{1} n_{2}$ with $n_{1}=\prod p_{i}^{\beta_{i}}, n_{2}=\prod p_{j}^{\gamma_{i}}$, and $\beta_{i}+\gamma_{i}=\alpha_{i}$. Let $Q_{i} \times R_{i}$ denote a Sylow p-subgroup of $S_{p_{i}^{\beta_{i}}} \times S_{p_{i} i} \leqslant S_{p_{i}^{a_{i}}}$, with $Q_{i} \times R_{i} \leqslant P_{i}$. Then $\prod Q_{i} \times \prod R_{i} \leqslant S_{n_{1}} \times S_{n_{2}}$ contains the appropriate direct product of cyclic groups.

Theorem 1.

$$
\psi^{m} \psi^{n}=\psi^{m n}
$$

Proof. Without loss of generality, we may assume that k is a splitting field for $T_{m n}$. Thus by property (iii), p does not divide $\left|T_{m n}\right|$, and so the central idempotents for $k T_{m n}$ are in natural one-one correspondence with those for $\mathbb{C} T_{m n}$, and $k T_{m n}$ is semisimple.

By properties (i) and (ii) of $T_{m n}$, and the definition of the ψ operators, $\psi^{m} \psi^{n}(V)$ and $\psi^{m n}(V)$ are of the form $\sum \lambda_{i}\left(\otimes{ }^{m n}(V) \cdot e_{i}\right)$ and
$\left.\sum \lambda_{i}^{\prime}(\otimes)^{m n}(V) \cdot e_{i}\right)$, where the e_{i} are the primitive central idempotents for $T_{m n}$, and the λ_{i} and λ_{i}^{\prime} are independent of V. Moreover, the λ_{i} and λ_{i}^{\prime} may both be expressed in terms of induced characters from the subgroups of $T_{m n}$ given in the definition, and hence if we keep m and n constant and vary p over primes not dividing $m n$, the λ_{i} and λ_{i}^{\prime} do not vary. Thus it is sufficient to prove the result in the case where p divides neither $m n$ nor $|G|$. In this case, every species is a Brauer species, and modules are characterized by the values of Brauer species. By Proposition 4, we have

$$
\begin{aligned}
\left(b, \psi^{m} \psi^{n}(V)\right) & =\left(b^{m}, \psi^{n}(V)\right) \\
& =\left(\left(b^{m}\right)^{n}, V\right) \\
& =\left(b^{m n}, V\right) \\
& =\left(b, \psi^{m n}(V)\right) .
\end{aligned}
$$

Thus the λ_{i} and λ_{i}^{\prime} are equal, and the result is proved.
Corollary. The ψ^{n} commute with each other.
We now extend the definition of ψ^{n} to include all $n \in \mathbb{N}$. Let F denote the Frobenius map on $a(G)$ or $A(G)$. Thus if V is a module, $F(V)$ is the module with the same addition and the same group action, but with scalar multiplication defined by first raising the field element to the p th power, and then applying the old scalar multiplication. The map F commutes with ψ^{n} for n coprime to p, and so we may define for any $n \in \mathbb{N}$ with $n=p^{a} \cdot n_{0}$ and n_{0} coprime to p,

$$
\psi^{n}(V)=F^{a} \psi^{n_{0}}(V)
$$

It is easy to check that Propositions 1 and 4, and Theorem 1 remain valid with this definition.

Now we are in a position to define the λ-operations. Unfortunately, these are only defined on $A(G)$, and not on $a(G)$, as the example following the definition shows.

Definition.

$$
\lambda^{n}(x)=\frac{1}{n!}\left|\begin{array}{lllll}
\psi^{1}(x) & 1 & & & \\
\psi^{2}(x) & \psi^{1}(x) & 2 & & \\
\psi^{3}(x) & \psi^{2}(x) & \psi^{1}(x) & 3 & \\
\vdots & & & \ddots & \cdot \\
\psi^{n}(x) & & \ldots & & \\
n-1 \\
\psi^{1}(x)
\end{array}\right|
$$

It follows from [3, pp. 49, 54], Proposition 1, and Theorem 1, that with these λ-operations, $A(G)$ is a special λ-ring. In particular, if we let

$$
\lambda_{i}(x)=\sum_{n=0}^{\infty} t^{n} \lambda^{n}(x) \in A(G)[|t|]
$$

then

$$
\frac{d}{d t} \log \lambda_{t}(x)=\sum_{n=1}^{\infty}(-1)^{n} \psi^{n+1}(x) t^{n}
$$

Example. For $n<p, \lambda^{n}(x)$ is just the exterior nth power of x. However, for example, when $n=p=2$, we have

$$
\lambda^{2}(x)=\frac{1}{2}\left(x^{2}-F^{2}(x)\right)
$$

Proposition 5. The subring $a(G) \otimes_{l} \mathbb{Z}(1 / p)$ of $A(G)$ is closed under the λ-operations, and is hence a special λ-ring in its own right.

Proof. This follows from Proposition 3, Theorem 1 and $\mid 5$, Prop. 1.2|.

Next, we examine the effect of ψ^{n} on origins and vertices of species. The notation is as in $[1$, Sect. 7|.

Definition. If H is a p-hypoelementary group and $n=p^{a} \cdot n_{0}$ with n_{0} coprime to p, we let $H^{|n|}$ denote the unique subgroup of index $\left(|H|, n_{0}\right)$ in H.

Let $s_{I H, b}$ and $e_{H, b}$ be as in $\mid 1$, Sect. $7 \mid$.
Lemma 2. $\quad\left(s_{H, b}\right)^{n}=s_{H|n|, b n}$.
Proof. Let V be a trivial source $k G$-module and let $V \downarrow_{H}=W_{1} \oplus W_{2}$, where W_{1} is a direct sum of modules with vertex $O_{p}(H)$ and $W_{2} \in A^{\prime}(G, H)$. Then by Proposition $1, \psi^{\prime \prime}(V) \downarrow{ }_{H}=\psi^{n}\left(V \downarrow_{H}\right)=\psi^{n}\left(W_{1}\right)+\psi^{\prime \prime}\left(W_{2}\right), \psi^{\prime \prime}\left(W_{1}\right)$ is a linear combination of trivial source modules with vertex $O_{p}(H)$, and $\psi^{\prime \prime}\left(W_{2}\right) \in A^{\prime}(G, H)$. Thus

$$
\begin{aligned}
\left(\left(s_{I I, b}\right)^{n}, V\right) & =\left(s_{I I, b}, \psi^{n}(V)\right) \\
& =\left(b, \psi^{n}\left(W_{1}\right)\right) \\
& =\left(b^{n}, W_{1}\right) \\
& =\left(s_{I /|n|, b^{n}}, V\right) .
\end{aligned}
$$

Lemma 3.

$$
\psi^{n}\left(e_{H, b}\right)=\underline{\searrow} \boldsymbol{e}_{H, b^{\prime}}
$$

where the sum runs aver one representative of each G-conjugacy class of pairs $\left(H^{\prime}, b^{\prime}\right)$ with $\left(H^{\prime}\right)^{[n]}=H$ and $\left(b^{\prime}\right)^{n}=b$.

Proof.

$$
\psi^{n}\left(e_{H, b}\right)-\varliminf_{\substack{\mathrm{al\mid} \\\left(H^{\prime}, b^{\prime}\right)}}\left(s_{H^{\prime}, b^{\prime}}, \psi^{n}\left(e_{H, b}\right)\right) e_{H^{\prime}, b^{\prime}}
$$

(Herc, the sum runs over one representative of each G-conjugacy class of pairs ($\left.H^{\prime}, b^{\prime}\right)$.) Hence

$$
\psi^{n}\left(e_{H, b}\right)=\grave{L^{\prime}}\left(s_{\left(H^{\prime}\right)|n|,\left(b^{\prime}\right) n}, e_{H, b}\right) e_{H^{\prime}, b^{\prime}}
$$

by Lemma 2.
Thus the coefficient of $e_{H^{\prime}, b^{\prime}}$ is one if $\left(\left(H^{\prime}\right)^{[n]},\left(b^{\prime}\right)^{n}\right)$ is G-conjugate to (H, b), and zero otherwise.

Theorem 2. (i) If H is an origin of s, then $H^{[n]}$ is an origin of s^{n}.
(ii) If D is a vertex of s, then D is also a vertex of s^{n}.

Proof. (i) If H is an origin of s, then for some Brauer species b of $H,\left(s, e_{I I, b}\right)=1$. Thus by Lemma 3 ,

$$
\left(s^{n}, e_{H^{[n]}, b^{n}}\right)=\left(s, \psi^{n}\left(e_{H^{(n)} \mid b^{n}}\right)\right)=1
$$

Hence $H^{[n]}$ is an origin for s^{n}.
(ii) By $\left[1\right.$, Theorem 7.8], we may take $D=O_{p}(H)$, and the result follows from (i).

Example. The representation table for the cyclic group of order 3 is

s_{1}	s_{2}	s_{3}
1	1	1
2	-1	1
3	0	0

Applying the operator ψ^{2}, we have

$$
s_{1}^{2}=s_{1}, s_{2}^{2}=s_{3}^{2}=s_{2},
$$

whereas for any prime $q \neq 2$, we have

$$
s_{i}^{q}=s_{i}, i=1,2,3 .
$$

In general what is the role played by the primes q dividing $p-1$ in this theory?

References

1. D. Benson and R. Parker, The Green Ring of a Finite Group, J. Algebra, in press.
2. C. W. Curtis and I. Reiner, "Methods of Representation Theory." Vol. 1, Wiley-In terscience, New York, 1982.
3. D. Knutson, " λ-Rings and the Representation Theory of the Symmetric Group." Springer Lecture Notes in Math., No. 308, Springer-Verlag, New York/Berlin. 1973.
4. P. Berthelot, "Généralités sur les λ-anneaux," in SGA6, Exposé V, Springer Lecture Notes in Math., No. 225, Springer-Verlag, New York/Berlin, 1971.
5. C. Wilkerson, Lambda-Rings, Binomial Domains, and Vector Bundles over C P^{\star}. Comm. Alg. 10 (3) (1982), 311-328.
