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Abstract. In a recent paper of Benson and Symonds, a new invariant was introduced for

modular representations of a finite group. An interpretation was given as a spectral radius

with respect to a Banach algebra completion of the representation ring. Our purpose here is

to take these notions further, and investigate the structure of the resulting Banach algebras.

Some of the material in that paper is repeated here in greater generality, and for clarity of

exposition.

We give an axiomatic definition of an abstract representation ring, and representation

ideal. The completion is then a commutative Banach algebra, and the techniques of Gelfand

from the 1940s are applied in order to study the space of algebra homomorphisms to C. One

surprising consequence of this investigation is that the Jacobson radical and the nil radical

of a (complexified) representation ring always coincide.

These notes are intended for representation theorists. So background material on com-

mutative Banach algebras is given in detail, whereas representation theoretic background is

more condensed.
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Preface

The purpose of these notes is to study the asymptotics of the direct sum decomposition
of tensor products and tensor powers of finite dimensional representations of a finite group
in prime characteristic. This takes us into the world of commutative Banach algebras and
their spectral theory.

This study grew out of the author’s joint work with Symonds [13]. In the introduction
to that paper, the example was given of the two dimensional indecomposable module M for
the cyclic group of order five in characteristic five. In this example, although the dimension
of M⊗n is 2n, the dimension of the non-projective part of M⊗n is roughly τn, where τ is the
golden ratio (see Section 5.1). This led us to define γ(M) to be τ in this example, and to
interpret it as the reciprocal of the radius of convergence of the corresponding generating
function. This, in turn, is interpreted as the spectral radius of [M ] as an element of the
representation ring, with respect to a suitable norm.

Let a(G) be the representation ring, or Green ring of a finite group G over a field k
of characteristic p. This has a free Z-basis consisting of the isomorphism classes of finitely
generated indecomposable kG-modules, with addition and multiplication coming from direct
sum and tensor product.

The complexification aC(G) = C⊗Za(G) is a commutative normed algebra, with the norm
coming from dimension. Its completion â(G) is a commutative Banach algebra which forms
our basic object of study. We look at various quotients of the form âX(G) = â(G)/â(G,X)
where X is an ideal of indecomposable kG-modules, and examine invariants of modules
coming from spectral radius in these quotients. The purpose of this is to obtain information
about the asymptotic behaviour of the tensor powers of a finitely generated kG-module.

With the aim of being applicable in a wider set of circumstances, we have formulated
the definitions and main theorems in terms of abstract representation rings. The axioms
are set up in Definition 1.1.1. In particular, a representation ring a comes equipped with a
free Z-basis {xi | i ∈ I} as an additive group, which is supposed to be thought of as the
basis of indecomposable modules in the case of a(G). One of the unexpected consequences
of studying the completion of a in this generality is the proof in Theorem 3.6.2 that the
Jacobson radical and the nilradical of the complexification aC coincide.

Theorem. If a is a representation ring then the Jacobson radical and the nil radical of
aC are equal.

If x is a positive element of a representation ring a, and X ⊂ I is a representation ideal,
let cXn(x) be the dimension of the X-core of xn (these concepts are defined in Definitions 1.2.1
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and 1.3.2). Then in Section 1.4 we define

γX(x) = lim sup
n→∞

n
√
cXn(x).

The following theorem, which to some extent parallels Theorem 1.2 of [13], summarises some
of the properties of this invariant.

Theorem. The invariant γX(x) has the following properties:

(i) We have γX(x) = lim
n→∞

n
√
cXn(x) = inf

n>1

n
√
cXn(x).

(ii) We have 0 6 γX(x) 6 dimx.
(iii) We have γX(x) = dim x if and only if coreX(xn) = xn for all n > 0.
(iv) We have γX(x) = 0 if and only if x ∈ 〈X〉, otherwise γX(x) > 1.
(v) If 1 6 γX(x) <

√
2 then x is X-endotrivial.

(vi) If x is not X-endotrivial and γX(x) =
√

2 then xx∗x ≡ 2x (mod 〈X〉).
(vii) We have γX(x∗) = γX(x).
(viii) We have max{γX(x), γX(y)} 6 γX(x+ y) 6 γX(x) + γX(y).
(ix) If a, b > 0 we have γX(a+ bx) = a+ bγX(x).
(x) We have γX(xy) 6 γX(x)γX(y).

(xi) We have γX(xm) = γX(x)m.
(xii) If Y ⊆ X we have γX(x) 6 γY(x).

The proofs of the various parts of this theorem may be found in the following places:
part (i) in Theorem 1.6.4, (ii) in Lemma 1.4.3, (iii) in Lemma 1.4.9, (iv) in Lemma 1.4.10,
(v) and (vi) in Theorem 1.8.1, (vii) in Lemma 1.4.5, (viii) in Theorem 1.6.6, (ix) in Theo-
rem 1.6.8, (x) in Lemma 1.4.7, (xi) in Lemma 1.4.8, and (xii) in Lemma 1.4.12.

In the case where a = a(G) and X = Xproj, which was the case studied in [13], we can
say more.

Theorem. Let G be a finite group and k a field of characteristic p. Let a = a(G) be the
representation ring of kG-modules, and X = Xproj be the representation ideal of projective
modules. Then the following properties hold in addition to those discussed above, where we
write γG for the invariant γXproj

applied to a = a(G).

(xiii) γG(M) = dim(M) if and only if there is an element of G of order p acting trivially
on M .

(xiv) We have γG(M) = maxE6G γE(M), where the maximum is taken over elementary
abelian subgroups E 6 G.

(xv) If M is endotrivial then γG(M) = 1. In particular, combining this with (v), there
are no modules M with 1 < γG(M) <

√
2.

(xvi) If M is a two dimensional faithful indecomposable module for an elementary abelian
group E ∼= (Z/p)r then γE(M) = 2 cos(π/pr). In particular, if p = 2 and r = 2 we
have γE(M) =

√
2, and if p = 5 and r = 1 we have γE(M) = τ , the golden ratio.

The main theme of these notes is that the invariant γX(x) described above may be inter-
preted as a spectral radius of the element x in a quotient of a completion of the complexified
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representation ring aC. This completion is a commutative Banach algebra, whose structure
we shall investigate.

We put a norm on aC = C⊗Z a by setting∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥ =
∑
i∈I

|ai| dimxi.

This makes aC a commutative normed algebra with identity element 1. Its completion â is
therefore a commutative Banach algebra.

If X is a representation ideal in a then the linear span 〈X〉C is an ideal in aC, and its

closure 〈̂X〉C is an ideal in â. The quotient norm on âX = â/〈̂X〉C ∼= â/〈X〉C is given by∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥
X

=
∑
i∈I

|ai| dim coreX(xi) =
∑
i∈I\X

|ai| dimxi.

After introducing the background material on commutative Banach algebras in Chapter 2,
we investigate these quotients âX of â in Chapter 3.

In terms of these quotients, if x ∈ a<0 then the invariant γX(x) is interpreted as the
spectral radius of the image of x in âX (Theorem 3.2.5). This enables us to relate γX(x)
to the species s : a → C of representation rings introduced by Benson and Parker [12] and
studied in [7, 38, 48, 49, 57, 58, 74, 93, 94, 95].

A species of a is a ring homomorphism s : a → C. Such a ring homomorphism extends
uniquely to a C-algebra homomorphism s : aC → C, which we also call a species. The species
which are continuous with respect to the norm on aC are the dimension bounded species,
namely the ones that satisfy |s(x)| 6 dimx for every x ∈ a<0. Such a species extends
uniquely to a species s : â → C. All species of â are of this form, and are automatically
continuous.

If X is a representation ideal in a then the species which vanish on X and extend to
species of âX are the X-core bounded ones, namely those that satisfy |s(x)| 6 dim coreX(x)
for every x ∈ a<0.

We may now apply a theorem of Gelfand relating the spectral radius to the species.

Theorem. Let x ∈ a<0 and X be a representation ideal in a. Then γX(x) is equal to the
supremum of |s(x)|, where s runs over the X-core bounded species s : a→ C.

The set of species of âX is topologised with the weak* topology, described in Section 2.5,
to form a compact Hausdorff topological space called the structure space ∆X(a). If Y ⊆ X
are represetation ideals then every X-core bounded species of a is Y-core bounded, and this
induces a homeomorphism identifying ∆X(a) with a closed subset of ∆Y(a).

Now in some ways the Banach algebra âX looks like the group algebra `1(Γ) of a discrete
abelian group Γ. This analogy is strongest when X = Xmax, the largest representation ideal
in a, consisting of those i for which [xixi∗ : 1] > 0. This is because in this quotient, x∗i acts
as a sort of partial inverse for xi. In particular, we construct a Hilbert space H(a) on which
âmax = âXmax acts, in such a way that the action of x∗ is the adjoint of the action of x. This
gives us an injective map of Banach ∗-algebras âmax → L (H(a)), the bounded operators on
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H(a). The crucial inequality giving boundedness is Theorem 3.7.5, which turns out to be
quite tricky to prove. This says that for x ∈ aC and y ∈ H(a) we have

|xy| 6 ‖x‖max|y|.
We let C∗max(a) denote the closure of the image of âmax → L (H(a)). This is a C∗-algebra,
and is the completion of amax with respect to the sup norm

‖x‖sup = sup
|y|=1

|xy|.

Some consequences of this construction include the statement that there are no non-zero
quasinilpotent elements in âmax, and a better understanding of idempotents.

In Chapter 4, we specialise to the situation where G is a finite group, k is a field of
characteristic p, and a(G) is the representation ring of kG-modules. In this case, we have
further structure coming from restriction and induction, elementary abelian subgroups, and
Adams psi operations. In particular, in the case X = Xproj, we show that the invariant γ(M)
is detected on elementary abelian subgroups. One consequence of this is that there cannot
exist a module M with 1 < γ(M) <

√
2.

In Chapter 5, we illustrate this situation with some groups and modules where we can
make explicit computations. In particular, in case G is a cyclic group of order p and M is
the indecomposable two-dimensional module, we have γ(M) = 2 cos(π/p). In Section 5.8 we
prove the following.

Theorem. If G = SL(2, q) with q a power of p, amd M is the two-dimensional natural
module, then γ(M) = 2 cos(π/q).

The proof uses tilting theory. We conjecture that for representations of finite groups, if
γ(M) < 2 then γ(M) = 2 cos(π/q) for q > 2 an integer.

We illustrate the structure of the space ∆(G) using the only cases where we can make
complete computations, namely G = V4, the Klein four group, and G = A4, the alternating
group of degree four, in characteristic two.

Notation. We shall often want to use i as an index, so we write i for the complex
number

√
−1.
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No. DMS-1440140. Part was also carried out while I was resident at the Isaac Newton
Institute for Mathematical Sciences in Cambridge, UK, during the Spring 2020 semester
programme “Groups, representations and applications: new perspectives,” supported by
EPSRC grant EP/R014604/1.
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CHAPTER 1

Abstract representation rings

1.1. Axioms for representation rings

In this section we formulate the properties of representation rings that we shall need. Our
fundamental model is the modular representation ring, or Green ring a(G) of a finite group
G over a field k of characteristic p, but there are many other examples. Motivation for the
properties (i)–(v) comes from this example, see Proposition 4.2.1. In case the field k is alge-
braically closed, the stronger property (ii′) below holds, and a(G) is a closed representation
ring.

Definition 1.1.1. A representation ring consists of a commutative ring a whose additive
group is a free abelian group with a specified basis consisting of symbols xi with i in an
indexing set I. The identity element x0 = 1 of a is one of the basis elements, corresponding
to 0 ∈ I. Multiplication is given by xixj =

∑
k∈I ci,j,kxk where the structure constants ci,j,k

are non-negative integers, and given i, j ∈ I, there are only finitely many k with ci,j,k 6= 0.
If x =

∑
i∈I aixi is an element of a then we write [x : xi] for ai, the multiplicity of xi in x.

Thus we have x =
∑

i∈I[x : xi]xi and xixj =
∑

k∈I[xixj : xk]xk.

(i) There is an involutive permutation i 7→ i∗ of the indexing set I, which induces an
involutive automorphism of a sending x =

∑
i∈I aixi to x∗ =

∑
i∈I aixi∗ .

(ii) If [xixj : 1] > 0 then j = i∗.

(iii) If i ∈ I satisfies ci,i∗,0 = 0 then∑
j∈I

ci,i∗,jcj,i,i > 2.

In other words, if [xixi∗ : 1] = 0 then [xixi∗xi : xi] > 2.

(iv) There is a dimension function

dim: a→ Z,

which is a ring homomorphism with the property that for each i ∈ I,

dim(xi) = dim(xi∗) > 0.

Thus dim(x) = dim(x∗) for all x ∈ a.
(v) There is a non-zero element ρ ∈ a which is a non-negative linear combination of

the basis elements, with the property that for all x ∈ a, xρ = (dimx)ρ.
[See also Remark 1.1.3.]

A closed representation ring is a representation ring satisfying a stronger version of (ii):

(ii′) If [xixj : 1] > 0 then j = i∗ and [xixj : 1] = 1.
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Examples 1.1.2. The modular representation ring of a finite group is the motivating
example, and this will be discussed at length in Chapters 4 and 5.

The smallest a representation ring can be is Z with just one basis element, x0 = 1. The
element ρ can be any positive integer, and the dimension function Z → Z is the identity
map. If ρ = 1, this is the representation ring of the trivial group.

Other natural examples include the representation rings of finite group schemes and finite
supergroup schemes.

The following examples of representation rings are somewhat artificial, but will be used
later to illustrate some ideas.

(i) Choose an integer d > 2, and let

a = Z[u, u−1]⊕ Z

as a sum of a subring and an ideal, where the ideal summand Z is spanned by ρ.
Multiplication is given by uρ = u−1ρ = ρ, ρ2 = dρ. The index set I is Z ∪ {∞}
where xn = un for n ∈ Z and x∞ = ρ. The involutive permutation on I sends n to
−n and fixes ∞. The dimension function is given by dimun = 1, dim ρ = d.

(ii) Choose an integer d > 2, and let

a = Z[u, v]/((uv − 1)(u− d), (uv − 1)(v − d)).

The index set I is again Z ∪ {∞}. The basis is given by x0 = 1, xn = un and
x−n = vn for n > 0, and x∞ = ρ = uv − 1. Again the involutive permutation on I
sends n to −n and fixes ∞. The dimension function is given by

dimun = dim vn = dn, dim ρ = d2 − 1.

This example will be used in Section 1.7 as an illustration of the difference between
the big Picard group and the small Picard group.

(iii) Let a = Z[v]/(v3 − 2v2) with basis x0 = 1, x1 = v, x2 = v2 − v, ρ = x1 + x2, and
x∗1 = x2, x∗2 = x1. Then x2

1 = x1x2 = x2
2 = ρ, and dimx1 = dimx2 = 2. Note that

in this ring we have (x2 − x1)2 = 0, so the nil radical of a is non-zero.

Remark 1.1.3. Examples which are not covered by our axioms include the representation
ring of a compact Lie group, as studied for example by Segal [85]. This example satisfies
all but axiom (v) of Definition 1.1.1. Anything we do in this work that does not mention
projectives does not depend on this axiom, and there are arguments for deleting it, but
we have chosen to retain it. The element ρ in that axiom plays the role of the regular
representation.

There is an elementary way of enhancing such a representation ring in such a way that
axiom (v) holds, but this method is not terribly satisfactory. Namely, given a satisfying
all but this axiom, and an integer n > 2, then we endow a ⊕ Z with the structure of a
representation ring with one more basis element ρ satisfying ρ∗ = ρ, xρ = (dimx)ρ for
x ∈ a, dim ρ = n, and ρ2 = nρ. Note that [ρρ∗ : 1] = 0 and [ρρ∗ρ : ρ] = n2 > 2, so that
axioms (ii) and (iii) are satisfied.

Our argument for retaining axiom (v), however, is that our focus will be on studying
representation ideals in representation rings, and examples such as the representation ring of
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a compact Lie group have no non-zero representation ideals. So most of we do here is vacuous
in that case. Axiom (v) does not ensure that there are non-zero representation ideals, but
if there are none, then the representation ring is finite dimensional and semisimple, and
looks very much like the ordinary character ring of a finite group. We shall call this case
an ordinary representation ring, and the contrary case a modular representation ring, see
Definition 1.2.6. In a modular representation ring, there is a unique maximal representation
ideal and a unique minimal representation ideal, see Proposition 1.3.9.

The following lemmas give some of the more elementary consequences of the definitions.
For this purpose, we introduce one more definition.

Definition 1.1.4. If R is a commutative ring, we write aR for the ring R⊗Z a obtained
by extending scalars to R. Elements of aC are finite sums

∑
i∈I aixi, with ai ∈ R. We shall

mostly be interested in the case R = C, the complex numbers, but other extensions of scalars
will occasionally be considered. In case R = C, if x =

∑
i∈I aixi we define x∗ =

∑
i∈I āix

∗
i .

Lemma 1.1.5. We have ρ = ρ∗.

Proof. By property (i), ρ∗ also satisfies property (v). So by properties (iv) and (v) we
have dim(ρ∗)ρ = ρ∗ρ = dim(ρ)ρ∗, and also dim(ρ∗) = dim(ρ) > 0. �

Lemma 1.1.6. For all i ∈ I we have [xixi∗xi : xi] > 0.

Proof. If [xixi∗ : 1] = 0 then this follows from property (iii). If [xixi∗ : 1] > 0 then
[xixi∗xi : xi] > [xixi∗ : 1] > 0. �

Lemma 1.1.7. The following are equivalent for a basis element xi:

(i) dimxi = 1.
(ii) xixi∗ = 1.

(iii) xi is invertible in a.

Proof. (i) ⇒ (ii): If dimxi = 1 then dimxixi∗ = 1 and dimxixi∗xi = 1. In particular,
[xixi∗ : 1] is either zero or one. If it were zero then by Definition 1.1.1 (iii) we would have
[xixi∗xi : xi] > 2, contradicting dim xixi∗xi = 1, and so we have [xixi∗ : 1] = 1. We have
dim(xixi∗ − 1) = 0, and hence xixi∗ = 1.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i): If xi is invertible in a then dimxi is invertible in Z, hence equal to one. �

The following is the analogue of Proposition 2.2 of [11].

Lemma 1.1.8. Let i, j, k ∈ I with [xixj : xk] > 0. If [xixi∗ : 1] = 0 then [xkx
∗
k : 1] = 0.

Proof. It follows from property (ii) that if [xixi∗ : 1] = 0 then for all x ∈ a we have
[xix : 1] = 0. In particular, [xixjxk∗ : 1] = 0, and since [xixj : xk] > 0 it follows that
[xkxk∗ : 1] = 0. �

Definition 1.1.9. If a is a representation ring, a species of a is a ring homomorphism
s : a→ C. A species extends uniquely to a C-algebra homomorphism s : aC → C, which we
also call a species.
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Lemma 1.1.10. Any set of species of a is linearly independent.

Proof. Let s1, . . . , sn : a→ C satisfy a non-trivial linear relation

λ1s1 + · · ·+ λnsn = 0

with n as small as possible. Choose x ∈ a such that s1(x) 6= s2(x). Then for all y ∈ a we
have

λ1s1(xy) + λ2s2(xy) + · · ·+ λnsn(xy) = 0,

and hence

λ1s1(x)s1(y) + λ2s2(x)s2(y) + · · ·+ λnsn(x)sn(y) = 0.

But also

λ1s1(x)s1(y) + λ2s1(x)s2(y) · · ·+ λns1(x)sn(y) = 0.

Subtracting gives a shorter non-trivial linear relation, contradicting the minimality of n. �

1.2. Ordinary representation theory

Definition 1.2.1. An element x ∈ a is non-negative if each [x : xi] > 0, and positive if,
in addition, x 6= 0. We write x < y or y 4 x if x− y is non-negative and x � y or y ≺ x if
x − y is positive. We write a<0 for the set of non-negative elements, and a�0 for the set of
positive elements.

Definition 1.2.2. A basis element xi of a representation ring a is said to be projective
indecomposable if [ρ : xi] > 0. The number of projective indecomposables is finite.

An element x =
∑

i∈I aixi is said to be virtually projective if ai 6= 0 implies that xi is
projective. If in addition x < 0 then we say that x is projective.

Lemma 1.2.3.

(i) If x ∈ a<0 and y is projective then xy is projective.
(ii) If x ∈ a and y is virtually projective then xy is virtually projective.

Proof. (i) It suffices to consider the case x = xi, y = xj with xj projective. We have
xiρ = (dimxi)ρ, so xiρ is a non-negative linear combination of projective basis elements,
and hence so is xixj.

(ii) follows from (i). �

The following theorem will have a generalisation involving commutative Banach alge-
bras in Theorem 3.9.1. The final statement of the theorem should also be contrasted with
Example 1.1.2 (iii).

Theorem 1.2.4 (Ordinary representation theory). Suppose that 1 is projective in a rep-
resentation ring a. Then every element of a is virtually projective, and the additive group of
a has finite rank. If x ∈ aC such that xx∗ = 0 then x = 0. There are no non-zero nilpotent
elements in aC.
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Proof. If 1 is projective then for every basis element xi we have

(dimxi)[ρ : xi] = [xiρ : xi] > [ρ : 1] > 0

and so every xi is a projective indecomposable. Thus every element of a is virtually projective,
and a has finite rank. Next, using Definition 1.1.1 (ii) and the fact that ρ =

∑
j[ρ : xj]xj, we

have

[ρ : xi∗ ][xixi∗ : 1] =
∑
j

[ρ : xj][xixj : 1] = [xiρ : 1] = (dim xi)[ρ : 1] > 0

and so [xixi∗ : 1] > 0. Set ni = [xixi∗ : 1]. Then

xx∗ =
∑
i

|ai|2xixi∗ +
∑
i 6=j

aiājxixj∗

and the coefficient of 1 in this is
∑
ni|ai|2. This is zero if and only if x = 0, so xx∗ = 0

implies x = 0. If x2 = 0 then (xx∗)(xx∗)∗ = x2x∗ 2 = 0, so xx∗ = 0 and hence x = 0. �

Corollary 1.2.5. Suppose that 1 is projective in a. Then as a C-algebra, aC is a direct
sum of a finite number of copies of C, and elements are separated by species s : aC → C.

Proof. It follows from Theorem 1.2.4 that aC is finite dimensional and semisimple.
Every finite dimensional semisimple commutative algebra over C has this property. �

Definition 1.2.6. Because of Theorem 1.2.4 and Corollary 1.2.5, we shall say that a is
an ordinary representation ring if 1 is projective in a, and that a is a modular representation
ring if 1 is not a projective indecomposable in a.

The character table of an ordinary representation ring a is the square table of complex
numbers whose rows are indexed by the index set I and whose columns are indexed by the
species s : a → C. The character of an element x =

∑
i∈I aixi ∈ a is the corresponding

linear combination of the rows of the character table. Elements of a are determined by
their characters, and ring operations on elements correspond to pointwise operations on the
corresponding characters.

The following property of ordinary representation rings is familiar from representation
theory of finite groups. The usual proof in that case is that the inverse of an eigenvalue of
a matrix of finite order is its complex conjugate.

Theorem 1.2.7. If s is a species of an ordinary representation ring a then for all x ∈ aC
we have s(x∗) = s(x).

Proof. Define a species s̄∗ : a→ C by s̄∗(x) = s(x∗). By Corollary 1.2.5, we may choose
a primitive idempotent element e ∈ aC such that s(e) = 1, and s′(e) = 0 for all other species
s′. If s̄∗ 6= s then s̄∗(e) = 0 and so s(e∗) = 0. So for all species s′ of aC we have s′(ee∗) = 0,
and hence ee∗ = 0. By Theorem 1.2.4, this implies that e = 0, which is a contradiction.
Hence s̄∗ = s, which then implies that for all x ∈ aC we have s(x∗) = s(x). �
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1.3. Representation ideals and cores

Lemma 1.3.1. If x ∈ a<0 then dimx > 0; if x ∈ a�0 then dimx > 0.

Proof. It follows from Definition 1.1.1 (iii) that if x =
∑

i∈I aixi then

dimx =
∑
i∈I

ai dimxi,

and that this is > 0 if all ai > 0, and > 0 if in addition some ai > 0. �

Definition 1.3.2. A representation ideal X of a representation ring a is a proper subset
X ⊂ I with the following properties:

(i) If i ∈ X, j ∈ I and k ∈ I \X then ci,j,k = 0. Equivalently, if i ∈ X and there exists
x ∈ a such that [xix : xk] 6= 0 then k ∈ X.

(ii) If i ∈ X then i∗ ∈ X.

The linear span 〈X〉 of a representation ideal X is an ideal in a. We write 〈X〉<0 for
〈X〉 ∩ a<0 and 〈X〉�0 for 〈X〉 ∩ a�0. We write aX for the quotient a/〈X〉, and aC,X for
C⊗Z aX ∼= aC/〈X〉C.

If X is a representation ideal in a and x ∈ a<0 then we can write x = x′ + x′′ where
x′ =

∑
i∈I\X aixi and x′′ =

∑
i∈X aixi. We define the X-core of x to be x′, and we denote it

by coreX(x). In the case X = Xproj, we omit the subscript and just write core(x).

Lemma 1.3.3. Let Y ⊆ X be representation ideals in a representation ring a and let
x, y, z ∈ a<0.

(i) The product xy < 0.
(ii) We have coreX(x) 4 coreY(x) 4 x, and in particular we have

dim coreX(x) 6 dim coreY(x) 6 dimx.

(iii) If x 4 y then dimx 6 dim y and coreX(x) 4 coreX(y). In particular, we have

dim coreX(x) 6 dim coreX(y).

(iv) We have coreX(xy) = coreX(coreX(x)coreX(y)) 4 coreX(x)coreX(y).
(v) If y 4 x and x ∈ 〈X〉 then y ∈ 〈X〉.

(vi) If y 4 x then zy 4 zx.
(vii) coreX(x∗) = coreX(x)∗.

Proof. Parts (i), (ii) and (iii) follow from the fact that the structure constants ci,j,k of
a are non-negative.

(iv) The equality follows from the definitions of core and representation ideal, and the
inequality follows from (ii).

(v) For each i ∈ I, [x : xi] > [y : xi]. If [y : xi] > 0 then [x : xi] > 0 and so i ∈ X.
(vi) xz − yz = (x− y)z is a product of elements of a<0, and is hence in a<0 by (i).
(vii) This follows from part (ii) of Definition 1.3.2. �

Lemma 1.3.4. If x ∈ a<0 then xx∗x < x. If also [xx∗ : 1] = 0 then xx∗x < 2x.
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Proof. It follows from Lemma 1.1.6 that for each i ∈ I we have [xx∗x : xi] > [x : xi].
If [xx∗ : 1] = 0 then by Definition 1.1.1 (iii) we have [xx∗x : xi] > 2[x : xi]. �

Proposition 1.3.5. Let X be a representation ideal in a representation ring a, and let
x ∈ a<0.

(i) If xx∗ ∈ 〈X〉 then x ∈ 〈X〉.
(ii) If xn ∈ 〈X〉 for some n > 0 then x ∈ 〈X〉.

Proof. (i) If xx∗ ∈ 〈X〉 then xx∗x ∈ 〈X〉. By Lemma 1.3.4 we have xx∗x < x, and so
by Lemma 1.3.3 (v) we have x ∈ 〈X〉.

(ii) We may suppose that n > 2. If xn ∈ 〈X〉 then xnx∗ = xn−2(xx∗x) ∈ 〈X〉. By
Lemma 1.3.4 we have xx∗x < x and so by Lemma 1.3.3 (vi) we have xnx∗ < xn−1. Applying
Lemma 1.3.3 (v), we have xn−1 ∈ 〈X〉. Now apply induction on n. �

Definition 1.3.6. Let X be a representation ideal in a representation ring a. We say
that x ∈ a<0 is indecomposable modulo X if x− xi ∈ 〈X〉 for some i ∈ I \ X.

Lemma 1.3.7. If x, y ∈ a<0 and xy = 0 then either x = 0 or y = 0.

Proof. If xy = 0 then dim(x) dim(y) = dim(xy) = 0 and so either dim(x) = 0 or
dim(y) = 0. Hence x = 0 or y = 0. �

An ordinary representation ring has no non-empty representation ideals, since any non-
empty representation ideal would have to contain ρ, and then it would have to contain all
projective indecomposables including 1, whereas representation ideals have to be proper
subsets of the basis. The following definition gives some examples of representation ideals
in modular representation rings.

Definition 1.3.8. Let a be a modular representation ring.

(i) We write Xmax for the subset {i ∈ I | [xixi∗ : 1] = 0} of I.
(ii) We write Xproj for the subset consisting of those i ∈ I for which xi is projective,

see Definition 1.2.2.

We write amax and aproj for the quotients a/〈Xmax〉 and a/〈Xproj〉.
Part (i) of the following proposition is the analogue of Lemma 2.5 of [11].

Proposition 1.3.9. Let a be a modular representation ring.

(i) The subset Xmax ⊆ I is the unique maximal proper subset of a that is a represen-
tation ideal.

(ii) The subset Xproj ⊆ I is the unique minimal non-empty subset of a that is a repre-
sentation ideal.

Proof. (i) It follows from Lemma 1.1.8 that Xmax is a representation ideal. It is a proper
subset of I since [1.1 : 1] = 1. To see that Xmax is the unique maximal proper representation
ideal, let X be a representation ideal containing an element i such that ci,i∗,0 > 0. Then
xixi∗ ∈ 〈X〉 and so 0 ∈ X and x0 = 1 ∈ 〈X〉. Thus X = I.

(ii) It follows from Lemma 1.2.3 that Xproj is a non-empty representation ideal. Con-
versely, if X is a non-empty representation ideal and i ∈ X then xiρ = (dimxi)ρ. If xj is
projective then [ρ : xj] > 0 and so [xiρ : xj] > 0. Thus Xproj ⊆ X. �
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Corollary 1.3.10. If x, y ∈ a<0 and xy ∈ 〈Xmax〉 then either x ∈ 〈Xmax〉 or y ∈ 〈Xmax〉.

Proof. If xy ∈ 〈Xmax〉 then by Proposition 1.3.9 (i), we have xyy∗ ∈ 〈Xmax〉. If y 6∈
〈Xmax〉 then by definition of Xmax we have [yy∗ : 1] > 0 and so xyy∗ < x, and hence
x ∈ 〈Xmax〉. �

The statement of Corollary 1.3.10 is not necessarily true of other representation ideals,
but at least we have the following.

Proposition 1.3.11. Let X be a representation ideal in a, and let x, y ∈ a<0. If xy is
not in 〈X〉 then nor is any product of terms of the form x, x∗, y and y∗.

Proof. If for example xy∗ or xyy∗ is in 〈X〉 then so is xyy∗y. But by Lemma 1.3.4 we
have xyy∗y < xy, and hence by Lemma 1.3.3 (v) we have xy ∈ 〈X〉. So an easy inductive
argument on the number of terms in the product proves the proposition. �

1.4. The gamma invariant

Let X be a representation ideal in a representation ring a, and x ∈ a<0. We define

cXn(x) = dim coreX(xn)

and we form the generating function

fX,x(t) =
∞∑
n=0

cXn(x)tn.

Since cXn(x) 6 dim(xn) = dim(x)n, this power series converges in a disc of radius at least
1/ dim(x) around the origin in the complex plane.

Lemma 1.4.1 (Cauchy, Hadamard). Let φ : Z>0 → C. Then the radius of convergence r
of the power series

f(t) =
∞∑
n=0

φ(n)tn

is given by

1/r = lim sup
n→∞

n
√
|φ(n)|.

Strictly inside the radius, the convergence is uniform and absolute.

Proof. See for example Conway [29], Theorem III.1.3. �

Definition 1.4.2. Let x ∈ a<0 and let X be a representation ideal of a. We define the
gamma invariant of x with respect to X to be

γX(x) = lim sup
n→∞

n
√
cXn(x).

By Lemma 1.4.1, this is equal to 1/r, where r is the radius of convergence of the power series
fX,x(t).

If X = ∅ then γX(x) = dim x. In the minimal non-zero case X = Xproj, we just write γ(x)
for γXproj

(x). In the maximal case X = Xmax, we write γmax(x) for γXmax(x).
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Lemma 1.4.3. We have 0 6 γX(x) 6 dim coreX(x) 6 dimx.

Proof. This follows from the inequalities

0 6 cXn(x) 6 (dim coreX(x))n 6 (dimx)n,

see Lemma 1.3.3 (ii) and (iv). �

Lemma 1.4.4. If x ∈ a<0 and m ∈ N then γX(mx) = mγX(x).

Proof. We have coreX((mx)n) = mncoreX(xn). So cXn(mx) = mncn(x), and hence

n
√

cXn(mx) = m n
√
cXn(x). �

Lemma 1.4.5. We have γX(x∗) = γX(x).

Proof. It follows from Lemma 1.3.3 (vii) that

coreX((x∗)n) = coreX((xn)∗) = coreX(xn)∗

and so dim coreX((x∗)n) = dim coreX(xn). Now take nth roots and apply lim sup
n→∞

. �

Lemma 1.4.6. If x, y ∈ a<0 and y ∈ 〈X〉 then γX(x+ y) = γX(x).

Proof. We have (x + y)n = xn + z with z ∈ 〈X〉, so coreX((x + y)n) = coreX(xn) and
cXn(x+ y) = cXn(x). �

Lemma 1.4.7. We have γX(xy) 6 γX(x)γX(y).

Proof. It follows from Lemma 1.3.3 (iv) that cXn(xy) 6 cXn(x)cXn(y), and so

n
√

cXn(xy) 6 n
√
cXn(x) n

√
cXn(y).

Now apply lim sup
n→∞

to both sides. �

Although equality does not generally hold in Lemma 1.4.7, we have the following.

Lemma 1.4.8. We have γX(xm) = γX(x)m.

Proof. By Lemma 1.4.7 we have γX(xm) 6 γX(x)m. Conversely, if n = ms + i with
0 6 i < m then xn = xi(xm)s and so

cXn(x) 6 (dimx)mcXs (xm).

Thus
n
√
cXn(x) 6 ms

√
cXn(x) 6

s
√

dimx
m

√
s
√

cXs (xm).

Applying lim sup
n→∞

, the factor s
√

dimx tends to 1. It follows that

γX(x) 6 m
√
γX(xm). �

Lemma 1.4.9. We have γX(x) = dim x if and only if coreX(xn) = xn for all n > 0.
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Proof. If coreX(xn) = xn then cXn(x) = (dim x)n and γX(x) = dim x. On the other hand,
if coreX(xn) 6= xn for some n > 0 then we have coreX(xn) ≺ xn, and hence dim coreX(xn) <
(dimx)n. So using Lemma 1.4.8 we have

γX(x)n = γX(xn) 6 dim coreX(xn) < (dimx)n.

Taking nth roots, we have γX(x) < dimx. �

Lemma 1.4.10. We have γX(x) = 0 if and only if x ∈ 〈X〉. Otherwise γX(x) > 1.

Proof. If x ∈ 〈X〉 then fX,x(t) is the zero power series and so γX(x) = 0. On the
other hand, if x 6∈ 〈X〉 then by Proposition 1.3.5, no positive power of x is in 〈X〉. So each
coefficient of fX,x(t) is at least 1, and hence γX(x) > 1. �

Theorem 1.4.11. (i) Let X be a representation ideal in a. If y1, . . . , ym ∈ a�0 with
product y1 . . . yn 6∈ 〈X〉 then γX(y1 + · · ·+ ym) > m.

(ii) If y1, . . . , ym ∈ a�0 are not in 〈Xmax〉 then γX(y1 + · · ·+ ym) > m.

Proof. (i) If y1 . . . yn 6∈ 〈X〉 then by Proposition 1.3.5, neither is any element of the
form yn1

1 . . . ynmm . The element (y1 + · · ·+ ym)n is therefore a sum of at least mn elements of
a�0 not in 〈X〉, and so

cXn(y1 + · · ·+ ym) > mn

and
n
√
cXn(y1 + · · ·+ ym) > m.

Now take lim sup
n→∞

.

(ii) If y1, . . . , yn are not in 〈Xmax〉 then by Corollary 1.3.10, nor is y1 . . . yn. So we are in
a position to apply (i). �

Lemma 1.4.12. If X ⊆ Y are representation ideals in a representation ring a and x ∈ a<0

then

γY(x) 6 γX(x).

Proof. By Lemma 1.3.3 (ii) we have cYn (x) 6 cXn(x) for all n > 0 and so

lim sup
n→∞

n

√
cYn (x) 6 lim sup

n→∞

n

√
cXn(x). �

1.5. Pringsheim’s Theorem

This section is not logically necessary for the development of the subject, but is closely
related to Theorem 3.3.2.

Definition 1.5.1. Given a function f(t) of a complex variable t, we say that it is analytic
at a point t = a if there is a power series in t− a with a positive radius of convergence, and
converging to the value of f(t) in an open neighbourhood of a. We say that a is a singular
point of f(t) if it not analytic at a.

The following theorem is not so well known. See also Statement (7.21) in Chapter VII
of Titchmarsh [91].
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Theorem 1.5.2 (Pringsheim). Suppose that φ : Z>0 → R>0, and that the power series

f(t) =
∞∑
n=0

φ(n)tn

has radius of convergence r. Then t = r is a singular point of f(t).

Proof. The geometric fact used in the proof of this theorem is that the union in C of a
disc of radius r centred at zero and a disc of positive radius centred at r contains a disc of
radius strictly greater than r/2 centred at r/2.

Expand f(t) as a Taylor series about t = r
2
:

f(t) =
∞∑
n=0

f (n)( r
2
)

n!
(t− r

2
)n

where f (n)(t)/n! =
∑

m>n φ(m)
(
m
n

)
tm−n. Thus

f(t) =
∞∑
n=0

(t− r
2
)n

∞∑
m=n

φ(m)
(
m
n

)
( r

2
)m−n.

If t = r is not a singular point of f(t) then for ε small enough this converges at t = r+ε. The
terms are all non-negative reals, so the sum is absolutely convergent, and we may rearrange
the terms to get

f(r + ε) =
∞∑
n=0

( r
2

+ ε)n
∞∑
m=n

φ(m)
(
m
n

)
( r

2
)m−n

=
∞∑
m=0

φ(m)
m∑
n=0

(
m
n

)
( r

2
+ ε)n( r

2
)m−n

=
∞∑
m=0

φ(m)(r + ε)m.

The convergence of this sum implies that the radius of convergence of f is larger than r,
contradicting the hypotheses of the theorem. �

Corollary 1.5.3. Let x be a positive element of a representation ring a, and let X be
a representation ideal of a. If x 6∈ 〈X〉, then the positive real number 1/γX(x) is a singular
point of fX,x(t). �

1.6. Submultiplicative sequences

Definition 1.6.1. We say that a sequence c0, c1, c2, . . . of non-negative real numbers is
submultiplicative if c0 = 1, and for all m,n > 0 we have cm+n 6 cm.cn.

Lemma 1.6.2. If X is a representation ideal in a representation ring a and x is a positive
element of a that is not in 〈X〉 then cXn(x) is a submultiplicative sequence.

Proof. This follows from Lemma 1.3.3 (iv). �
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Lemma 1.6.3 (Fekete [41]). If cn is a submultiplicative sequence then

lim sup
n→∞

n
√
cn = lim

n→∞
n
√
cn = inf

n>1

n
√
cn.

Proof. It suffices to show that lim supn→∞ n
√
cn 6 infn>1

n
√
cn. If some cn is equal to

zero, then so are all subsequent ones. So we assume that all cn > 0. Suppose that L is a
number such that

inf
n→∞

n
√
cn < L.

Then there is an m > 1 with m
√
cm < L. For n > m we use division with remainder to write

n = mqm + rm with 0 6 rm < m. By the definition of submultiplicativity, we have

cn = cmqm+rm 6 cmqmcrm 6 (cm)qmcrm .

Now qm 6 n/m, so qm/n 6 1/m. So we have

n
√
cn 6 m

√
cm n
√
crm < L. n

√
crm .

As n tends to infinity, the numbers n
√
c0, . . . , n

√
cm−1 all tend to one, and so

lim sup
n→∞

n
√
cn 6 L. �

Theorem 1.6.4. If x is a positive element of of a representation ring a and X is a
representation ideal of a then

γX(x) = lim
n→∞

n
√

cXn(x) = inf
n>1

n
√
cXn(x).

Proof. This follows from Lemmas 1.6.2 and 1.6.3. �

Lemma 1.6.5. Let an, bn and cn be sequences of non-negative real numbers, satisfying

cn 6
n∑
i=0

(
n

i

)
aibn−i.

Then
lim sup
n→∞

n
√
cn 6 lim sup

n→∞
n
√
an + lim sup

n→∞

n
√
bn.

Proof. The statement that lim sup
n→∞

n
√
an = α implies that for all ε > 0, there exists m

such that for all n > m we have an 6 (α + ε)n. Introducing a positive constant A, we can

assume that an 6 A(α + ε)n for all n > 0. Similarly, if lim sup
n→∞

n
√
bn = β then for all ε > 0

there exists a positive constant B such that for all n > 0 we have bn 6 B(β + ε)n. Thus for
all ε > 0 there is a positive constant C = AB such that for all n > 0 we have

cn 6
n∑
i=0

(
n

i

)
A(α + ε)iB(β + ε)n−i = C(α + β + 2ε)n,

and so lim sup
n→∞

n
√
cn 6 α + β. �

Theorem 1.6.6. Let x, y ∈ a<0 and let X be a representation ideal in a. Then

max{γX(x), γX(y)} 6 γX(x+ y) 6 γX(x) + γX(y).
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Proof. It follows from Lemma 1.3.3 (iv) that

max{cXn(x), cXn(y)} 6 cXn(x+ y) 6
n∑
i=0

(
n

i

)
cXi (x)cXn−i(y).

Applying Lemma 1.6.5, we deduce that

max{lim sup
n→∞

n
√

cXn(x), lim sup
n→∞

n
√

cXn(y)}

6 lim sup
n→∞

n
√

cXn(x+ y) 6 lim sup
n→∞

n
√

cXn(x) + lim sup
n→∞

n
√
cXn(y),

which are the inequalities in the statement of the theorem. �

Proposition 1.6.7. Suppose that an and bn are submultiplicative sequences. Define a
sequence cn by

cn =
n∑
i=0

(
n

i

)
aibn−i.

Then cn is also a submultiplicative sequence, and we have

lim
n→∞

n
√
cn = lim

n→∞
n
√
an + lim

n→∞
n
√
bn.

Proof. Using the fact that(
m+ n

`

)
=
∑
i+j=`

(
m

i

)(
n

j

)
and the submultiplicativity of the sequences an and bn, we have

m+n∑
`=0

(
m+ n

`

)
a`bm+n−` 6

(
m∑
i=0

(
m

i

)
aibm−i

)
.

(
n∑
j=0

(
n

j

)
ajbn−j

)
and so the sequence cn is submultiplicative.

By Lemma 1.6.5 we have

lim
n→∞

n
√
cn 6 lim

n→∞
n
√
an + lim

n→∞
n
√
bn.

The reverse inequality is proved similarly. If lim
n→∞

n
√
an = α and lim

n→∞
n
√
bn = β then given

ε > 0 there exist positive constants A and B such that for all n > 0 we have an > A(α− ε)n
and bn > B(β − ε)n. So for all ε > 0 there is a positive constant C = AB such that for all
n > 0 we have

cn >
n∑
i=0

(
n

i

)
A(α− ε)iB(β − ε)n−i = C(α + β − 2ε)n,

and so
lim
n→∞

n
√
cn > α + β − 2ε = lim

n→∞
n
√
an + lim

n→∞
n
√
bn − 2ε. �

Theorem 1.6.8. Let x ∈ a<0 and let X be a representation ideal in a. Then for non-
negative integers a and b we have

γX(a+ bx) = a+ bγX(x).
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Proof. We begin with the case a = 0. In this case we have coreX(bx)n = bncoreX(xn)
and so cXn(bx) = bncXn(x). Thus

fX,bx(t) =
∞∑
n=0

bncXn(x)tn = fX,x(bt)

and γX(bx) = bγX(x).
It now suffices to show that γX(1 + x) = 1 + γX(x). We have

cXn(1 + x) =
n∑
i=0

(
n

i

)
cXi (x).

So we can apply Proposition 1.6.7 with an = cXn(x), bn = 1 and cn = cXn(1 + x). �

1.7. The Picard group

Definition 1.7.1. Let X be a representation ideal in a representation ring a. We say
that an element x of a<0 is X-endotrivial if xx∗ − 1 ∈ 〈X〉. Note that this implies that
[xx∗ : 1] = 1, and hence xx∗ < 1. In case X = Xproj, we just say that x is endotrivial.

We begin by collecting some properties of X-endotrivial elements.

Lemma 1.7.2. (i) If x ∈ a<0 is X-endotrivial then x is indecomposable modulo X
and x 6∈ 〈Xmax〉.

(ii) If x ∈ a<0 and xx∗ is X-endotrivial then so is x.

Proof. (i) If x = y+ z with y, z ∈ a<0 and y, z 6∈ 〈X〉 then xx∗ = yy∗+ yz∗+ zy∗+ zz∗,
and by Proposition 1.3.5 (i), neither yy∗ nor zz∗ is in 〈X〉. But then xx∗ − 1 cannot be in
〈X〉, contradicting the definition of X-endotrivial. So x is indecomposable modulo X.

The fact that x is not in 〈Xmax〉 follows from [xx∗ : 1] > 0.
(ii) If xx∗ is X-endotrivial then xx∗ is indecomposable modulo X, and xx∗ is not in 〈Xmax〉,

by (i). By Proposition 1.3.9, Xmax is a representation ideal, and so x is not in 〈Xmax〉. Thus
by definition of Xmax, we have [xx∗ : 1] > 0. Since xx∗ is indecomposable modulo X, this
implies that xx∗ − 1 ∈ 〈X〉, and hence x is X-endotrivial. �

Theorem 1.7.3. Let X be a representation ideal in a representation ring a, and let x be
a non-negative element of a. If γX(x) = 1 then x is X-endotrivial.

Proof. Suppose that γX(x) = 1. Then γX(x∗) = 1, and by Lemma 1.4.7 we have
γX(xx∗) 6 1 and γX(xx∗x) 6 1. If γX(xx∗) = 0 then [xx∗ : 1] = 0 and so by Lemma 1.3.4
we have xx∗x < 2x. But then using Theorem 1.6.8 we have 1 > γX(xx∗x) > γX(2x) = 2, a
contradiction. It follows that γX(xx∗) = 1 and [xx∗ : 1] = 1. Thus xx∗ − 1 < 0, and again
using Theorem 1.6.8, we have γX(xx∗−1) = 0. By Lemma 1.4.10, we have xx∗−1 ∈ 〈X〉. �

Definition 1.7.4. The big Picard group modulo X of a representation ring a, denoted
PicX(a), is the set of X-endotrivial elements of a<0. The small Picard group modulo X, de-
noted PicX(a), is the set of elements of a<0 satisfying γX(x) = 1. These are both abelian
groups under multiplication modulo X, with the inverse of x being given by x∗. The two
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versions of the Picard group do not have to be equal, but in examples coming from repre-
sentation theory, they often are. In Example 1.1.2 (ii), the elements u and v are endotrivial,
but γ(u) = γ(v) = d > 2, so in this case the big and small Picard groups are not equal. We
write Picmax(a), Picmax(a) and Pic(a), Pic(a) for the cases X = Xmax and X = Xproj.

The following is a generalisation of Theorem 3.5 of Carlson [23], and shows that the only
positive idempotent modulo a representation ideal X is the identity element.

Theorem 1.7.5. Let X be a representation ideal in a representation ring a. If x ∈ a<0,
x 6∈ 〈X〉, but x2 − x ∈ 〈X〉<0, then x− 1 ∈ 〈X〉<0.

Proof. By Lemma 1.4.6, the hypotheses imply that γX(x2) = γX(x). Using Lem-
mas 1.4.8, this becomes γX(x)2 = γX(x). By Lemma 1.4.10 we have γX(x) 6= 0, and hence
γX(x) = 1. Using Theorem 1.7.3, we deduce that x is X-endotrivial. Since x2 − x ∈ 〈X〉 we
deduce that (x2 − x)x∗ ∈ 〈X〉 and so x− 1 ∈ 〈X〉. Thus [x : 1] > 1, and so x− 1 < 0. �

1.8. Elements with small gamma invariant

Let x ∈ a<0 and let X be a representation ideal in a. We saw in Lemma 1.4.10 that
if γX(x) = 0 then x ∈ 〈X〉, and that otherwise γX(x) > 1. Furthermore, we saw in The-
orem 1.7.3 that if γX(x) = 1 then x is X-endotrivial. We strengthen this in the following
theorem, to show that if 1 6 γX(x) <

√
2 then x is X-endotrivial.

Theorem 1.8.1. If x ∈ a�0 is not X-endotrivial then γX(xx∗) > 2, and γX(x) >
√

2. In
the case where γX(x) =

√
2, we have γX(xx∗) = 2, and xx∗x− 2x ∈ 〈X〉.

If, furthermore, x 6∈ 〈Xmax〉 then xx∗ = 1 + y with γX(y) = 1. In particular, y is
X-endotrivial.

Proof. We divide into two cases, according as [xx∗ : 1] = 0 or [xx∗ : 1] > 0.
If [xx∗ : 1] = 0 then x ∈ 〈Xmax〉, and by Lemma 1.3.4 we have xx∗x < 2x and so (xx∗)2 <

2xx∗. It follows using Lemma 1.3.3 (iii) that γX((xx∗)2) > 2γX(xx∗). Since γX(xx∗) > 0 it
follows that γX(xx∗) > 2. Using Lemma 1.4.7 we have

2 6 γX(xx∗) 6 γX(x)γX(x∗) = γX(x)2

and so γX(x) >
√

2. If γX(x) =
√

2 this shows that γX(xx∗) = 2. Set v = xx∗x− 2x. If v 6∈
〈X〉, then by Proposition 1.3.5 (i), vv∗ 6∈ 〈X〉. This implies that vx∗xx∗ = vv∗ + 2vx∗ 6∈ 〈X〉
and so vx 6∈ 〈X〉. By Theorem 1.4.11 (i), we then have 2

√
2 > γX(xx∗x) = γX(v + 2x) > 3, a

contradiction. Thus v ∈ 〈X〉.
On the other hand, if [xx∗ : 1] > 0 then x 6∈ 〈Xmax〉 and xx∗ = 1 + y with y < 0. Since

x is not X-endotrivial we have y 6∈ 〈X〉 and hence γX(y) > 1. Thus by Theorem 1.4.11,
γX(xx∗) > 2. Again this shows that γX(x) >

√
2, and if γX(x) =

√
2 then γX(xx∗) = 2 and

xx∗ = 1+y with γX(y) = 1. So y is X-endotrivial, and in particular indecomposable modulo
X. Furthermore, y = y∗, so y2−1 ∈ 〈X〉. Thus (xy)x∗ = y+y2, which is 1+y plus an element
of 〈X〉. Hence (xy−x)x∗ ∈ 〈X〉, and so (xy−x)(xy−x)∗ ∈ 〈X〉, and by Proposition 1.3.5 (i),
xy − x ∈ 〈X〉. Finally, we have xx∗x = (1 + y)x and so xx∗x− 2x ∈ 〈X〉. �
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Example 1.8.2. Let d > 2 be an integer, and let a be the representation ring with basis
x0 = 1, x1 = x, x2 = y and x3 = ρ with multiplication table

1 x y ρ
x 1 + y + ρ x dρ
y x 1 ρ
ρ dρ ρ (d2 − 2)ρ.

with x∗ = x, y∗ = y, ρ∗ = ρ, dimx = d, dim y = 1 and dim ρ = d2− 2. This is an example of
Theorem 1.8.1, with X = Xproj = Xmax and x 6∈ Xmax. We have γX(x) =

√
2, γX(y) = 1 and

γX(ρ) = 0.

The next proposition involves the algebraic integer α ≈ 2.839286755 . . . , which is the
real root of the polynomial X3− 4X2 + 4X − 2. The other two roots are complex conjugate.

Proposition 1.8.3. If x ∈ 〈Xmax〉�0 and xx∗x− 2x 6∈ 〈X〉 then γX(xx∗) > α.

Proof. Suppose that γX(xx∗) < α. Since x ∈ 〈Xmax〉 we have xx∗x − 2x < 0. If
xx∗x − 2x 6∈ 〈X〉 then we may write xx∗x = 2x + v with v ∈ 〈Xmax〉�0 and v 6∈ 〈X〉. By
Proposition 1.3.5 (i) we have vv∗ 6∈ 〈X〉, so vx∗xx∗ = vv∗ + 2vx∗ 6∈ X and hence vx 6∈ X. By
Proposition 1.3.11, the elements xx∗, vx∗, vv∗ and vv∗xx∗ are not in 〈X〉. Since v ∈ 〈Xmax〉,
we have vv∗v = 2v + w with w < 0. Thus we have

(xx∗)(xx∗) = 2xx∗ + vx∗

(xx∗)(vx∗) = 2vx∗ + vv∗

(xx∗)(vv∗) = xx∗vv∗

(xx∗)(xx∗vv∗) = 2vx∗ + 2xx∗vv∗ + wx∗.

Ignoring the term wx∗, multiplication by xx∗ on the linear span of the four elements xx∗,
vx∗, vv∗ and xx∗vv∗ is given by the following matrix:

A =


2 0 0 0
1 2 0 2
0 1 0 0
0 0 1 2


The element (xx∗)n is therefore a sum of at least

(
1 1 1 1

)
An−1


1
0
0
0


positive terms not in 〈X〉. Note that this argument does not depend on these four elements
being linearly independent. It follows from Perron–Frobenius theory that γX(xx∗) is at least
as large as the largest positive real eigenvalue of A. The characteristic equation of A is
t3−4t2 +4t−2 = 0, and so the largest positive real eigenvalue is the algebraic integer α. �

Theorem 1.8.4. If x ∈ a<0 with 2 6 γX(xx∗) < 1 +
√

2 then xx∗ = 1 + y and y is
X-endotrivial.
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Proof. If x 6∈ Xmax then xx∗ = 1 + y with 1 6 γX(y) <
√

2. By Theorem 1.8.1, y is
X-endotrivial.

If x ∈ Xmax then xx∗x < 2x. If xx∗x− 2x ∈ 〈X〉 then (xx∗)2− 2(xx∗) ∈ 〈X〉 and then by
Lemma 1.4.6, we have γX(xx∗) = 2. So we may suppose that xx∗x− 2x 6∈ 〈X〉. We are now
in the situation of Proposition 1.8.3, and since α > 1 +

√
2, we are done. �

1.9. Algebraic elements

Algebraic modules for finite groups were first studied by Alperin [4]; see also §II.5 of
Feit [40], as well as Berger [15, 16], Craven [31, 32], Feit [39], Gill [47]. The following
definition generalises this.

Definition 1.9.1. Let X be a representation ideal in a representation ring a. An element
x ∈ a<0 is said to be algebraic modulo X if x satisfies some monic equation with integer
coefficients:

xn + an−1x
n−1 + · · ·+ a01 = 0

with n > 1, in the quotient ring aX = a/〈X〉. If X = ∅, we just say that x is algebraic. The
minimal equation of x is the monic equation of least degree satisfied by x.

Lemma 1.9.2. If x and y are algebraic modulo X then so are x + y and xy. For a
non-negative element x ∈ a, the following are equivalent:

(i) x is algebraic modulo X.
(ii) The additive group of the subring of aX generated by x is free abelian of finite rank.

(iii) The additive group of the subring of aX generated by x and x∗ is free abelian of
finite rank.

(iv) There are only finitely many basis elements xi, i ∈ I\X such that for some m,n > 0
we have [xmx∗n : xi] > 0.

(v) x is contained in a representation subring a′ of a, containing 〈X〉, such that the
additive group of a′X = a′/〈X〉 is free abelian of finite rank, containing the xi,
i ∈ I \ X such that for some m,n > 0 we have [xmx∗n : xi] > 0.

Proof. (i) ⇔ (ii): If x is algebraic modulo X then the additive group of the subring
of aX generated by x is spanned by 1, x, x2, . . . , xn−1. Conversely, suppose that the additive
group of the subring generated by x has finite rank. Look at the ascending chain of additive
subgroups whose ith term is generated by 1, x, . . . , xi. This ascending chain has to terminate,
so for some value of n, the element xn is in the additive subgroup generated by 1, x, . . . , xn−1.
This gives us a degree n monic equation with integer coefficients satisfied by x.

If x and y are algebraic modulo X then the y is algebraic over the subring of aX generated
by x, and so as a module over that ring, the subring generated by x and y is finitely generated.
It follows that it is finitely generated as an abelian group, i.e., has finite rank, so every element
of the subring generated by x and y is algebraic. In particular, x+ y and xy are algebraic.

(ii) ⇔ (iii): If x is algebraic then so is x∗, with the same minimal equation. Therefore
the subring generated by x and x∗ has finite rank. Conversely, if the subring generated by x
and x∗ has finite rank, so does the subring generated by x.
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The equivalence of (iii) and (iv) is obvious. It is also obvious that (v) implies (ii). Finally,
to see that (iv) implies (v), we look at the subring a′ of a spanned by the xi such that i ∈ X,
or xi is projective, or for some m,n > 0 we have [xmx∗n : xi] > 0. This is a representation
subring a with the required properties. �

Lemma 1.9.3. An element x ∈ a<0 is algebraic if and only if it is algebraic modulo Xproj.

Proof. This follows from Lemma 1.9.2, since there are only finitely many projective
indecomposables. �

1.10. The maximal quotient

Let a be a representation ring. In this section we examine some properties of the quotient
amax = a/〈Xmax〉, which has a basis consisting of the xi with i ∈ I \ Xmax.

Definition 1.10.1. We define ni = [xixi∗ : 1]. Then ni > 0 if and only if i ∈ I \ Xmax.
If a is a closed representation ring, then ni = 1 for i ∈ I \ Xmax.

Lemma 1.10.2. For i, j, k ∈ I we have

[xixjxk : 1] = nk[xixj : xk∗ ].

In particular, [xixjxk : 1] = 0 unless i, j, k 6∈ Xmax.

Proof. This follows from

[xixjxk : 1] =
∑
`

[xixj : x`][x`xk : 1]

and property (ii) in Definition 1.1.1. �

The following is the analogue of Problem (4.12), at the end of Chapter 4 of Isaacs [59].

Lemma 1.10.3. For i, j, k ∈ I \ Xmax we have

[xixj : xk] 6 (max{ni, nj}/nk) dimxk.

In particular, if a is a closed representation ring then

[xixj : xk] 6 dimxk.

Proof. Swapping the roles of i and j if necessary, we may assume that

dimxi
ni

6
dimxj
nj

.

Then using Lemma 1.10.2 we have

[xixj : xk] = [xixjxk∗ : 1]/nk = nj[xixk∗ : xj]/nk.

Now

dimxi dimxk > [xixk∗ : xj] dimxj

and so

[xixj : xk] 6
nj
nk

dimxi dimxk
dimxj

=
ni(dimxi/ni)(dimxk/nk)

(dimxj/nj)
6 ni dimxk/nk. �
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The following result will be the model for the proof of the sharper Theorem 3.7.5.

Lemma 1.10.4. For i, j ∈ I \ Xmax we have∑
k∈I\Xmax

nk
nj

[xixj : xk]
2 = [xi∗xixj : xj] 6 (dimxi)

2.

Proof. Using Lemma 1.10.2, we have

[xi∗xixj : xj] =
∑
k

[xi∗xj : xk][xixk : xj] =
∑
k

nk
nj

[xixj : xk]
2.

We also have [xi∗xixj : xj] dimxj 6 (dimxi)
2 dimxj. Now divide by dimxj. �
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CHAPTER 2

Commutative Banach algebras

Most of the usual examples of Banach spaces and Banach algebras are not relevant to
our purpose. We therefore eschew their description in favour of brevity. The only examples
of interest to us in this work are completions of representation rings, and their quotients.
We examine the group ring of Z via the theory of Fourier series, because of the similarity to
our context.

2.1. Banach spaces

Throughout, we work over the complex numbers. Most of the background we need con-
cerning commutative Banach algebras was developed in the paper of Gelfand [45]. As refer-
ences, we use Berberian [14], Folland [42], Gelfand, Raikov and Shilov [46], Kaniuth [61],
Lax [66], and Rickart [81]. Beware that terminology varies among these sources. In par-
ticular, in [46] a normed vector space is assumed to be complete; we shall follow the other
references for our definition of normed vector space.

Definition 2.1.1. A normed vector space is a complex vector space V together with a
norm V → R, v 7→ ‖v‖, satisfying

(i) positivity: ‖x‖ > 0, with ‖x‖ = 0 if and only if x = 0,
(ii) subadditivity: ‖x+ y‖ 6 ‖x‖+ ‖y‖, and

(iii) homogeneity: ‖cx‖ = |c|‖x‖.
A norm gives rise to a metric on V via d(x, y) = ‖x− y‖, and we say that V is complete

with respect to the norm if this metric space is complete. A complete normed vector space
is called a Banach space.

Definition 2.1.2. If V and W are normed spaces, and f : V → W is a linear map, we
define the sup norm of f , ‖f‖sup to be the supremum of ‖f(v)‖ as v runs over elements of
V with ‖v‖ 6 1. If ‖f‖sup <∞, we say that f is bounded.

Lemma 2.1.3. For a linear map of normed spaces V → W the following are equivalent:

(i) f is bounded,
(ii) f is continuous,

(iii) f is continuous at some point v ∈ V .

Proof. We have ‖f(x− y)‖ 6 ‖f‖sup‖x− y‖, and so (i) implies (ii). Clearly (ii) implies
(iii). Finally, to prove (iii) implies (i), if f is continuous at v then given ε > 0 there exists
δ > 0 such that ‖x‖ < δ implies ‖f(v + x) − f(v)‖ < ε. By linearity, ‖f(x)‖ < ε, and so
‖f‖sup < ε/δ. Thus f is bounded. �
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Example 2.1.4. We write `1(Z) for the space of functions x : Z→ C with the property
that ‖x‖ =

∑
n∈Z |x(n)| < ∞. This norm makes `1(Z) into a Banach space. We can

identify this with the space of absolutely convergent Fourier series f : S1 → C, via f(eiθ) =∑
n∈Z x(n)einθ. Here, S1 is the unit circle in C, parametrized by angle θ. The coefficients

x(n) can be recovered from f by the Fourier inversion formula:

x(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθdθ.

We shall continue with this as a running example throughout this chapter, and we shall
make use of it in the context of representation rings in a later chapter.

Lemma 2.1.5. The metric completion V̂ of a normed vector space V is a Banach space
in which V is a dense subspace.

Proof. The termwise sum of two Cauchy sequences in V , and a scalar multiple of a
Cauchy sequence, are again Cauchy sequences. These operations are compatible with the
equivalence relation on Cauchy sequences. �

Definition 2.1.6. If W is a closed subspace of a normed vector space V then the quotient
norm on the space V/W is defined via

‖x+W‖ = inf
w∈W
‖x+ w‖.

Lemma 2.1.7. Let W be a closed subspace of a normed vector space V .

(i) Definition 2.1.6 defines a norm on the quotient space V/W .
(ii) If V is complete then so are W and V/W .

(iii) The natural map from the completion V̂/W of V/W to the quotient of the comple-

tions V̂ /Ŵ is an isometric isomorphism.

Proof. (i) To prove positivity of the quotient norm, let u be an element of V/W . Clearly
‖u‖ > 0. If ‖u‖ = 0 then there is a sequence of elements v1, v2, . . . of V lying in the coset
u ∈ V/W such that lim

n→∞
‖vn‖ = 0. Let yn = v1 − vn ∈ W . Then lim

n→∞
‖v1 − yn‖ = 0 and so

lim
n→∞

yn = v1. It follows that v1 is in the closure of W , and hence in W . Since it was chosen

to be in the coset u ∈ V/W , we have u = 0.
To prove subadditivity, let u1, u2 ∈ V/W . Then by definition of quotient norm, given

ε > 0 we may choose representatives v1, v2 ∈ V of u1, u2 such that ‖v1‖ < ‖u1‖ + ε and
‖v2‖ < ‖u2‖+ ε. Then

‖u1 + u2‖ 6 ‖v1 + v2‖ 6 ‖v1‖+ ‖v2‖ < ‖u1‖+ ‖u2‖+ 2ε.

Since this is true for all ε > 0, we have ‖u1 + u2‖ 6 ‖u1‖+ ‖u2‖.
Finally, homogeneity of the quotient norm is trivial to verify.
(ii) Completeness of W is clear since a closed subspace of a complete metric space is

complete. For the quotient V/W , we argue as follows. Given a Cauchy sequence xn + W
in V/W , we may replace with a subsequence satisfying d(xn + W,xn+1 + W ) < 2−(n+1), or
equivalently ‖(xn − xn+1) + W‖ < 2−(n+1). By definition of the norm on the quotient, we
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may inductively choose a sequence of elements wn ∈ W so that w1 = 0 and for n > 1 we
have

‖(xn + wn)− (xn+1 + wn+1)‖ = ‖(xn − xn+1) + (wn − wn+1)‖ < 2−n.

Then the sequence xn + wn is a Cauchy sequence in V . If x is its limit, then x + W is the
limit of the xn +W in V/W .

(iii) The canonical map V → V̂ → V̂ /Ŵ factors through V/W , and the induced map

V/W → V̂ /Ŵ is an isometric embedding. Since V is dense in V̂ , V/W is dense in V̂ /Ŵ . So

V̂/W is a complete, dense subspace of V̂ /Ŵ , and hence the embedding is an isomorphism. �

2.2. Banach algebras

We shall only be interested in Banach algebras with a multiplicative identity, so we make
this part of the definition. If we wish to talk of Banach algebras without a unit, then that is
what we shall call them.

Definition 2.2.1. A (unital) normed algebra is an associative algebra A over C with
identity 1, together with a norm A → R, x 7→ ‖x‖, satisfying the conditions (i)–(iii) for a
normed vector space given in Definition 2.1.1, together with

(iv) submultiplicativity: for all x, y ∈ A, we have ‖xy‖ 6 ‖x‖‖y‖.
(v) normalisation: ‖1‖ = 1.

A Banach algebra is a normed algebra that is complete with respect to the norm. A com-
mutative Banach algebra is a Banach algebra which is commutative as an abstract ring.

Lemma 2.2.2. The metric completion Â of a normed algebra A is a Banach algebra in
which A is a dense subalgebra.

Proof. By Lemma 2.1.5, Â is a Banach space. The termwise product of two Cauchy
sequences in A is again a Cauchy sequence in A, and this is compatible with the equivalence
relation on Cauchy sequences. �

Example 2.2.3. The Banach space `1(Z) discussed in Example 2.1.4 can be made into
a Banach algebra by putting on it the convolution product (x ∗ y)(n) =

∑
i+j=n x(i)y(j).

This corresponds to pointwise multiplication of Fourier series, fg(eiθ) = f(eiθ)g(eiθ) where
f(eiθ) =

∑
n∈Z x(n)einθ and g(eiθ) =

∑
n∈Z y(n)einθ.

The identity element of this Banach algebra is the function 1 given by 1(0) = 1, 1(n) = 0
if n 6= 0. Let u : Z→ C be the function u(1) = 1, u(n) = 0 if n 6= 1. It is easy to check that
for j ∈ Z, uj : Z→ C is the function uj(j) = 1, uj(n) = 0 if n 6= j. The algebra `1(Z) is the
completion of C[u, u−1] with respect to the norm, and has C[u, u−1] as a dense subalgebra.
The algebra `1(Z) is sometimes called the Wiener algebra.

Lemma 2.2.4. (i) If I is a closed ideal in a Banach algebra A, then A/I is a Banach
algebra with the quotient norm

‖x+ I‖ = inf
y∈I
‖x+ y‖.

The canonical map π : A→ A/I is continuous, with ‖π‖ = 1.
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(ii) If J 6 I 6 A are closed ideals then the natural map (A/J)/(I/J) → A/I is an
isometric isomorphism.

(iii) If A is a normed algebra and I is a closed ideal then the natural map of completions

Â/I → Â/Î is an isometric isomorphism.

Proof. (i) By Lemma 2.1.7 (ii), A/I is a Banach space.
To prove submultiplicativity of the norm, let x1, x2 be elements of A/I. Given ε > 0 we

may choose representatives y1, y2 ∈ A of x1, x2 such that ‖y1‖ < ‖x1‖+ε and ‖y2‖ < ‖x2‖+ε.
Then

‖x1x2‖ 6 ‖y1y2‖ 6 ‖y1‖‖y2‖ < ‖x1‖‖x2‖+ ε(‖x1‖+ ‖x2‖+ ε).

Since this is true for all ε > 0, we have ‖x1x2‖ 6 ‖x1‖‖x2‖.
The identity element of A/I is the coset of 1 ∈ A. To prove normalisation, the unit

element clearly has norm at most one, and by submultiplicativity it has norm at least one
or norm zero. Since I is a proper subspace of A, the norm is not zero, therefore it is one.

Part (ii) is an elementary verification using the definition of the norm, and part (iii)
follows from Lemma 2.1.7 (iii). �

2.3. Spectrum

If an element x of a Banach algebra has both a left inverse u and a right inverse v, then
u = uxv = v. We then say that x is invertible with inverse u = v.

Proposition 2.3.1. Invertible elements of a Banach algebra A form an open subset.
More precisely, if x is invertible and ‖x− y‖ < 1/‖x−1‖ then y is invertible, and the inverse
is given by an absolutely convergent power series.

Proof. Set z = x−1(x − y), so that y = x(1 − z) and ‖z‖ 6 ‖x−1‖‖x − y‖ < 1. Then
the series 1 + z + z2 + · · · converges to an inverse of 1− z, and hence x−1(1 + z + z−1 + · · · )
converges to an inverse of y. �

Example 2.3.2. Taking x = 1 in Proposition 2.3.1, we see that the open ball of radius
one centred at 1 consists of invertible elements.

Corollary 2.3.3. Every maximal ideal of a Banach algebra A is closed.

Proof. By Proposition 2.3.1, the closure of an ideal does not contain 1. A maximal
ideal is therefore equal to its closure. �

Definition 2.3.4. If x is an element of a Banach algebra A, we write Spec(x) for the
spectrum of x, namely the set of λ ∈ C such that x − λ1 is not invertible in A. If we wish
to emphasise the ambient Banach algebra A, we write SpecA(x).

Remark 2.3.5. From its definition, the spectrum of an element x of a Banach algebra A
only depends on the algebraic structure of A and not on the metric or topological structure.

Example 2.3.6. Continuing Example 2.2.3, let us determine the spectrum of u ∈ `1(Z).
We claim that u − λ1 is invertible if and only if |λ| 6= 1. To see this, we note that for
x ∈ `1(Z),

((u− λ1) ∗ x)(n) = x(n− 1)− λx(n).
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So for x to be inverse to u− λ1, we need

x(n− 1)− λx(n) =

{
1 n = 0

0 n 6= 0.

Solving these equations inductively, we get

x(n) =

{
λ−nx(0) n > 0

λn−1x(−1) n < 0,

and x(−1) − λx(0) = 1. For this to satisfy
∑

n∈Z |x(n)| < ∞, if |λ| > 1 there is a unique
solution, with x(−1) = 0 and x(0) = −λ−1. If |λ| < 1 there is also a unique solution, with
x(−1) = 1 and x(0) = 0. Finally, if |λ| = 1 there is no solution.

The conclusion is that Spec(u) = S1, the unit circle in C.

Theorem 2.3.7 (Spectral Theorem, Gelfand [45]). If x ∈ A then Spec(x) is a non-empty
closed bounded subset of C. Outside of Spec(x), the inverse (x−λ1)−1 is an analytic function
of λ.

Proof. By Proposition 2.3.1, C \ Spec(x) is open, and so Spec(x) is closed.
We have

(2.3.8) (x− λ1)−1 = −λ−1(1 + λ−1x+ λ−2x2 + . . . ),

and the right hand side converges if ‖λ−1x‖ < 1, namely |λ| > ‖x‖, so the spectrum is
contained in a closed circle of radius ‖x‖.

In a neighbourhood of any particular λ0 ∈ C\Spec(x), the inverse is given by an absolutely
convergent power series, which is hence an analytic function of λ.

Suppose that Spec(x) is empty. Then (x − λ1)−1 is defined and analytic for all λ ∈ C.
Then by Cauchy’s theorem, for any closed contour we have 1

2πi

∮
(x−λ1)−1dλ = 0. However,

taking the integral around a circular contour of radius bigger than ‖x‖, integrating the
power series (2.3.8) term by term, and using Cauchy’s integral formula, we get −1. This
contradiction shows that Spec(x) is non-empty. �

Corollary 2.3.9 (Gelfand–Mazur Theorem). If A is a Banach algebra in which every
non-zero element is invertible then A is isomorphic to C as a C-algebra.

Proof. If x ∈ A, then by Theorem 2.3.7 there exists λ ∈ C such that x − λ1 is not
invertible. Therefore x − λ1 = 0 and so x = λ1. So every element is a multiple of 1. It is
now easy to check that the map sending x to λ is a Banach algebra isomorphism A→ C. �

Corollary 2.3.10. Every maximal ideal of a commutative Banach algebra A is the
kernel of an algebra homomorphism A→ C.

Proof. By Corollary 2.3.3, every maximal ideal I is closed. By Lemma 2.2.4, the
quotient A/I is a Banach algebra in which every non-zero element is invertible. So by
Corollary 2.3.9 the quotient is isomorphic to C. �

Corollary 2.3.10 is closely related to the following.
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Proposition 2.3.11 (Automatic continuity). If A is a commutative Banach algebra and
φ : A → C is an algebra homomorphism then for all x ∈ A we have |φ(x)| 6 ‖x‖. In
particular, φ is continuous with respect to the norm.

Proof. Suppose that |φ(x)| > ‖x‖. Setting y = x/φ(x), we have ‖y‖ < 1 and φ(y) = 1.
So by Proposition 2.3.1, 1 − y is invertible with inverse the sum of the convergent power
series 1 + y + y2 + · · · . On the other hand, φ(1 − y) = φ(1) − φ(y) = 1 − 1 = 0. This
contradiction proves that |φ(x)| 6 ‖x‖. �

2.4. Spectral radius

Definition 2.4.1. Let A be a commutative Banach algebra. The spectral radius of x ∈ A
is defined to be ρ(x) = sup

λ∈Spec(x)

|λ|.

Proposition 2.4.2 (Spectral radius formula, Gelfand [45]). If A is a Banach algebra
and x ∈ A then the spectral radius ρ(x) is related to the norm by the formula

ρ(x) = lim sup
n→∞

n
√
‖xn‖ = lim

n→∞
n
√
‖xn‖ = inf

n→∞
n
√
‖xn‖.

Proof. By Theorem 2.3.7, (x − λ1)−1 is an analytic function of λ outside of Spec(x).
So to find the spectral radius of x, we must find the exact radius of convergence of the power
series (2.3.8). By the Cauchy–Hadamard formula (Lemma 1.4.1) the radius of convergence
in the variable λ−1 is given by

1/r = lim sup
n→∞

n
√
‖xn‖.

Now by axiom (iv) in Definition 2.2.1, the sequence ‖xn‖ is a submultiplicative sequence,
and so we can apply Fekete’s lemma 1.6.3 to deduce that

lim sup
n→∞

n
√
‖xn‖ = lim

n→∞
n
√
‖xn‖ = inf

n→∞
n
√
‖xn‖.

The series therefore converges for |λ−1| < r and diverges for |λ−1| > r. Inverting, it converges
for |λ| > 1/r and diverges for |λ| < 1/r. It follows that the spectral radius is equal to 1/r. �

Remark 2.4.3. If B is a closed subalgebra of a Banach algebra A and x ∈ B then
SpecA(x) ⊆ SpecB(x), since if x − λ1 is not invertible in A then it is not invertible in B.
Although it can happen that SpecA(x) 6= SpecB(x), Proposition 2.4.2 shows that the spectral
radius is the same in A as in B.

Lemma 2.4.4. If x and y are elements of A then

(i) ρ(xy) 6 ρ(x)ρ(y),
(ii) ρ(x+ y) 6 ρ(x) + ρ(y).

Proof. Part (i) is straightforward, so we prove part (ii). Using Lemma 1.6.5 and Propo-
sition 2.4.2, we have

ρ(x+ y) = lim sup
n→∞

n
√
‖(x+ y)n‖

= lim sup
n→∞

n

√
‖
∑n

i=0

(
n
i

)
xiyn−i‖
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6 lim sup
n→∞

n

√∑n
i=0

(
n
i

)
‖xi‖‖yn−i‖

6 lim sup
n→∞

n
√
‖xn‖+ lim sup

n→∞

n
√
‖yn‖. �

Theorem 2.4.5. An element x of a commutative Banach algebra A is invertible if and
only if φ(x) 6= 0 for all algebra homomorphisms φ : A→ C.

Proof. If x is invertible then for every algebra homomorphism φ : A → C we have
φ(x)φ(x−1) = φ(xx−1) = φ(1) = 1 and so φ(x) 6= 0. On the other hand, if x is not
invertible then x generates an ideal in A. By Zorn’s lemma, this ideal is contained in some
maximal ideal I of A. By Corollary 2.3.3, I is closed in A, and therefore using Lemma 2.2.4,
the quotient A/I is a Banach algebra in which every non-zero element is invertible. By
Corollary 2.3.9, we have A/I ∼= C. There is therefore an algebra homomorphism φ : A→ C
with kernel I, and then we have φ(x) = 0. �

Corollary 2.4.6. If x is an element of a commutative Banach algebra A then Spec(x)
is the set of values of φ(x) as φ runs over the algebra homomorphisms A→ C. The spectral
radius ρ(x) is equal to sup

φ : A→C
|φ(x)|.

Proof. It follows from Theorem 2.4.5 that x − λ1 is not invertible if and only if there
exists an algebra homomorphism φ : A→ C such that φ(x) = λ. �

Corollary 2.4.7. If x is an invertible element of a commutative Banach algebra A then
Spec(x−1) = {λ−1 | λ ∈ Spec(x)}.

Proof. This follows from Corollary 2.4.6, since if φ : A → C is an algebra homomor-
phism then φ(x−1) = φ(x)−1.

Alternatively, we have x−1−λ−11 = −x−1λ−1(x−λ1), so x−λ1 is invertible if and only
if x−1 − λ−11 is invertible. �

Example 2.4.8. Continuing Example 2.3.6, recall that `1(Z) is the completion of the
algebra C[u, u−1] with respect to the `1 norm. A C-algebra homomorphism φ : C[u, u−1]→ C
is determined by φ(u), and this may be any complex number except zero. The ones that
extend to `1(Z) are those with |φ(u)| = 1.

Proposition 2.4.9. Let x be an element of A with spectral radius r. Then r is an
element of Spec(x) if and only if 1 + x has spectral radius 1 + r.

Proof. The set Spec(1 + x) is the set of 1 + λ with λ ∈ Spec(x). This is contained in
a disc of radius r centred at 1 ∈ C. The only point in this disc at distance 1 + r from the
origin is the real number 1 + r. Using the fact that Spec(x) is closed (Theorem 2.3.7), we
see that the spectral radius of 1 + x is 1 + r if and only if r ∈ Spec(x). �

We end this section by noting that there are various interesting subsets of the spectrum
that are important in the subject.

Definition 2.4.10. The point spectrum of an element x of a Banach algebra A is the set
of λ ∈ C such that multiplication x− λ1 is not injective; in other words, x− λ1 is a divisor
of zero.
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The peripheral spectrum of x is the set of λ ∈ Spec(x) such that |λ| is equal to the
spectral radius of x. This is a non-empty closed subset of the circle whose radius is the
spectral radius.

2.5. The structure space

Definition 2.5.1. If A is a commutative Banach algebra, the structure space1 ∆(A)
is the set of algebra homomorphisms φ : A → C, endowed with the weak* topology. This
is the topology defined by the following basic open neighbourhoods of an element φ ∈
∆(A). For each finite list of elements x1, . . . , xn ∈ A and for each ε > 0, we have a basic
open neighbourhood [φ;x1, . . . , xn; ε] of φ in ∆(A) consisting of those φ′ : A → C such that
|φ(xi)− φ′(xi)| < ε for i = 1, . . . , n.

Lemma 2.5.2. If we put the product topology on Q =
∏

x∈AC then the natural map
∆(A)→ Q sending φ to

∏
x∈A φ(x) is injective. The weak* topology on ∆(A) is the subspace

topology for this embedding. It is the coarsest topology with the property that for all x ∈ A
the evaluation map

x̂ : ∆(A)→ C
sending φ to φ(x) is continuous.

Proof. The map ∆(A)→ Q is injective because a homomorphisms φ is determined by
its values at elements of A. The basic open neighbourhoods [φ;x1, . . . , xn; ε] defining the
weak* topology are the inverse images of the basic open neighbourhoods of the image of φ
in Q in the product topology. �

Proposition 2.5.3. With the weak* topology, ∆(A) is a compact Hausdorff topological
space.

Proof. Let Q be as in Lemma 2.5.2, and let Q′ be the subset of Q given by the product
over x ∈ A of the closed disc of radius ‖x‖ centred at the origin in C. Then by Proposi-
tion 2.3.11, the image of ∆(A) in Q lies in Q′. By Tychonoff’s theorem Q′ is compact, so it
remains to show that the image of ∆(A) is closed in Q′.

If φ =
∏

x∈A φ(x) is in the closure of the image of ∆(A) in Q′, we must show that the map
x 7→ φ(x) is an algebra homomorphism. Given ε > 0 and x, y ∈ A there exists φ′ ∈ ∆(A)
such that

|φ(1)− φ′(1)| = |φ(1)− 1| < ε,

|φ(x)− φ′(x)| < ε,

|φ(y)− φ′(y)| < ε,

|φ(xy)− φ′(xy)| = |φ(xy)− φ′(x)φ′(y)| < ε.

Then

|φ(xy)− φ(x)φ(y)| 6 |φ(xy)− φ′(x)φ′(y)|

1Other names for this in the literature are the carrier space, the spectrum, the Gelfand space, and the

maximal ideal space of A.

36



+ |φ′(x)φ′(y)− φ′(x)φ(y)|+ |φ′(x)φ(y)− φ(x)φ(y)|
< ε+ |φ′(x)|ε+ ε|φ(y)|
6 ε(1 + ‖x‖+ |φ(y)|).

This is true for all ε > 0, and so φ(xy) = φ(x)φ(y). Similar arguments show that φ(1) = 1,
φ(x+ y) = φ(x) + φ(y) and φ(λx) = λφ(x). �

Definition 2.5.4. Let C(∆(A),C) be the algebra of continuous maps from the compact
Hausdorff space ∆(A) to C. The Gelfand representation, also called the canonical represen-
tation, of a commutative Banach algebra A is the map ΓA : A → C(∆(A),C) sending x to
the continuous function x̂ : ∆(A)→ C given by

x̂ : φ 7→ φ(x).

The map x̂ is called the Gelfand transform of x.

Remark 2.5.5. By Corollary 2.4.6, for x ∈ A the image of x̂ is

x̂(∆(A)) = Spec(x) ⊆ C.

Example 2.5.6. Continuing Example 2.4.8, we have ∆(`1(Z)) = S1. The map

Γ`1(Z) : `1(Z)→ C(S1,C)

is given by x̂(eiθ) =
∑

n∈Z x(n)einθ.

As an application of our running example we can prove the following theorem about
Fourier series.

Theorem 2.5.7 (Wiener). If f(eiθ) =
∑

n∈Z x(n)einθ with
∑

n∈Z |x(n)| < ∞, and if
f(eiθ) 6= 0 for all eiθ ∈ S1, then 1/f(eiθ) =

∑
n∈Z y(n)einθ with

∑
n∈Z |y(n)| <∞.

Proof. By Example 2.5.6, we have f = x̂ with x ∈ `1(Z). If f(eiθ) 6= 0 for all eiθ ∈ S1

then by Theorem 2.4.5, x is invertible in `1(Z). Let y be its inverse. Then 1/f = ŷ. �

2.6. Closed ideals and the structure space

Let A be a commutative Banach algebra and let I be a closed ideal in A. Write i : I → A
for the inclusion and q : A→ A/I for the quotient homomorphism.

We define ∆(I) to be the set of non-zero homomorphisms from I to C, where I is regarded
as a Banach algebra without a unit.

Lemma 2.6.1. If φ : I → C is a non-zero homomorphism then φ extends uniquely to a
homomorphism A→ C.

Proof. Since φ is non-zero and C is a field, there exists an element y ∈ I such that
φ(y) = 1. If ψ : A→ C is an extension of φ to A then for x ∈ A we have xy ∈ I and

ψ(x) = ψ(x)φ(y) = ψ(x)ψ(y) = ψ(xy) = φ(xy).

So ψ is determined by φ. It remains to check that the ψ defined this way is an algebra
homomorphism. We have

ψ(λx) = φ(λxy) = λφ(xy) = λψ(x)
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ψ(x1 + x2) = φ((x1 + x2)y) = φ(x1y + x2y)

= φ(x1y) + φ(x2y) = ψ(x1) + ψ(x2)

ψ(x1x2) = φ(x1x2y) = φ(x1x2y)φ(y)

= φ(x1yx2y) = φ(x1y)φ(x2y) = ψ(x1)ψ(x2).

Thus ψ is indeed an algebra homomorphism. �

We can also look at the subalgebra I+ = C⊕I of A generated by 1 and I. Every non-zero
homomorphism I → C extends uniquely to an algebra homomorphism I+ → C, since 1 has
to go to 1 ∈ C. But there is one more algebra homomorphism denoted ? : I+ → C, which is
identically zero on I. Thus ∆(I+) = ∆(I) ∪ {?}.

There are obvious maps q∗ : ∆(A/I) → ∆(A) and i∗ : ∆(A) → ∆(I+). The follow-
ing lemma shows us that these maps allow us to identify ∆(I+) with the quotient space
∆(A)/∆(A/I) with basepoint ?.

Lemma 2.6.2. (i) The map q∗ is injective, open and continuous with image

q∗(∆(A/I)) = {φ ∈ ∆(A) | i∗(φ) = ?}.

(ii) ∆(I+) is the one point compactification of ∆(I) with basepoint ?. The map i∗ is
surjective, and identifies ∆(I+) with the quotient of ∆(A) by the image of q∗.

Proof. (i) Clearly q∗ is injective with image (i∗)−1(?) ⊆ ∆(A). To check that it is a
homeomorphic onto its image, we note that

q∗([φ;x1 + I, . . . , xn + I; ε]) = {q∗(φ′) | |φ′(xi + I)− φ(xi + I)| < ε for 1 6 i 6 n}
= {ψ | |ψ(xi)− φ(q(xi))| < ε for 1 6 i 6 n}
= [q∗(φ);x1, . . . , xn; ε].

(ii) Denote the basic open neighbourhoods of φ in ∆(I+) by [φ;x1, . . . , xn; ε]+. Then for
φ ∈ ∆(I) we have

[φ;x1, . . . , xn; ε]+ =

{
[φ;x1, . . . , xn; ε] |φ(xi)| < ε for 1 6 i 6 n

[φ;x1, . . . , xn; ε] ∪ {?} otherwise.

For ? we have

[?;x1, . . . , xn; ε]+ = {?} ∪ {φ ∈ ∆(I) | |φ(xi)| < ε for 1 6 i 6 n}

=
n⋂
i=1

[?;xi; ε]+.

For each xi, the complement of [?;xi; ε]+ is closed in ∆(I+) and hence compact by Proposi-
tion 2.5.3. So the complement of [?;x1, . . . , xn; ε] in ∆(I+) is a finite union of compact sets,
and hence compact. It follows that ∆(I+) is the one point compactification of ∆(I).

Lemma 2.6.1 shows that every homomorphism φ : I+ → C apart from ? extends uniquely

to an algebra homomorphism φ̂ : A→ C which is not in the image of q∗. On the other hand,
? : I+ → C is the image in ∆(I+) of every element of q∗(∆(A/I)).
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Putting these statements together with the description above of the topology on ∆(I+),
we see that ∆(I+) is homeomorphic with the quotient of ∆(A) by the image of q∗. �

2.7. Systems of generators

Definition 2.7.1. We say that a set K of elements of A is a system of generators if the
smallest closed subalgebra of A containing K (and the identity element) is the entire algebra
A. In other words, the subalgebra generated by K is dense in A.

Lemma 2.7.2. If K is a system of generators of A then the weak* topology on ∆(A) is
generated by the open sets [φ;x1, . . . , xn; ε] with x1, . . . , xn ∈ K.

Proof. We must show that every open neighbourhood [φ; y1, . . . , ym; ε] of φ contains one
of these open sets. Since polynomials in elements of K are dense in A, there is a finite list
x1, . . . , xn of elements of K and polynomials f1, . . . , fm in n variables such that for 1 6 i 6 m
we have ‖yi − fi(x1, . . . , xn)‖ < ε/3. Then by Proposition 2.3.11, for any φ′ we have

|φ′(yi)− fi(φ′(x1), . . . , φ′(xn))| < ε/3.

Choose δ > 0 such that

[φ;x1, . . . , xn; δ] ⊆ [φ; f1(x1, . . . , xn), . . . , fm(x1, . . . , xn); ε/3].

Then for all φ′ ∈ [φ;x1, . . . , xn; δ] and 1 6 i 6 m we have

|fi(φ′(x1), . . . , φ′(xn))− fi(φ(x1), . . . , φ(xn)| < ε/3

and hence

|φ′(yi)− φ(yi)| 6 |φ′(yi)− fi(φ′(x1), . . . , φ′(xn))|
+ |fi(φ′(x1), . . . , φ′(xn))− fi(φ(x1), . . . , φ(xn))|
+ |fi(φ(x1), . . . , φ(xn))− φ(yi)|

< ε/3 + ε/3 + ε/3 = ε.

It follows that [φ;x1, . . . , xn; δ] ⊆ [φ; y1, . . . , ym; ε]. �

Definition 2.7.3. If K is a system of generators for A and K = {y1, . . . , yn} is a finite
set, we say that A is finitely generated.

Remark 2.7.4. If A is finitely generated by K = {y1, . . . , yn}, then we have a map
∆(A)→ Cn given by ŷ1, . . . , ŷn. This is a homeomorphism from ∆(A) to a compact subset of
Cn. It turns out that the image can be characterised by the property of being “polynomially
convex,” a notion weaker than convexity, see Stout [89]. The complement of a polynomially
convex subset of Cn is always (n− 1)-connected, by a theorem of Forsternič [43].
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2.8. The Jacobson radical

Definition 2.8.1. An element x of a Banach algebra A is said to be quasi-nilpotent if
limn→∞

n
√
‖xn‖ = 0. In the literature, this is sometimes also called topologically nilpotent.

It follows from Lemma 1.6.5 that the sum of two quasi-nilpotent elements is quasi-nilpotent.
Since a linear multiple of a quasi-nilpotent element is also nilpotent, it follows that the
quasi-nilpotent elements form a linear subspace. In fact, we shall see that they form a closed
ideal.

Definition 2.8.2. The Jacobson radical of a ring A, denoted J(A), is the intersection
of its maximal right ideals, or equivalently the intersection of its maximal left ideals. The
ring A is said to be semisimple if J(A) = 0.

Proposition 2.8.3. In the case where A is a commutative Banach algebra, the maximal
ideals are closed, and are the kernels of (automatically continuous) algebra homomorphisms
A → C. The Jacobson radical J(A) is the intersection of the kernels of these algebra ho-
momorphisms. In particular, A is semisimple if and only if its elements are separated by
algebra homomorphisms A→ C.

Proof. This follows from Corollaries 2.3.3 and 2.3.10 and Proposition 2.3.11. �

Theorem 2.8.4. For an element x in a commutative Banach algebra A, the following
are equivalent:

(i) x is quasi-nilpotent.
(ii) The spectral radius of x is zero.

(iii) For every algebra homomorphism φ : A→ C we have φ(x) = 0.
(iv) The image of x̂ is {0}.
(v) x is in the Jacobson radical J(A).

Proof. The equivalence of (i) and (ii) follows from the spectral radius formula, Proposi-
tion 2.4.2. The equivalence of (ii), (iii) and (iv) follows from Corollary 2.4.6. The equivalence
of (iii) and (v) follows from Proposition 2.8.3. �

2.9. Banach ∗-algebras

Definition 2.9.1. A ∗-algebra A is an algebra with a star operation x 7→ x∗ satisfying

(i) involutory: for all x ∈ A we have x∗∗ = x.
(ii) antilinear: for all λ ∈ C and x, y ∈ A we have (x+ y)∗ = x∗ + y∗ and (λx)∗ = λ̄x∗.

(iii) multiplicative antiautomorphism: for all x, y ∈ A we have (xy)∗ = y∗x∗.

A normed ∗-algebra is a normed algebra which is simultaneously a ∗-algebra, in such a way
that the star operation is continuous with respect to the norm. A Banach ∗-algebra A is a
normed ∗-algebra that is complete with respect to the norm.

Lemma 2.9.2. The metric completion Â of a normed ∗-algebra A is a Banach ∗-algebra
in which A is a dense subalgebra.

Proof. By Lemma 2.2.2, Â is a Banach algebra. Applying the star operation to a
Cauchy sequence yields another Cauchy sequence. This preserves the equivalence relation,
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and hence defines a star operation on Â. The properties in Definition 2.9.1 for this star
operation on Â follow from those properties on A. �

Lemma 2.9.3. If x is an element of a Banach ∗-algebra A then Spec(x∗) = Spec(x).

Proof. This follows from the fact that x− λ1 is invertible if and only if

(x− λ1)∗ = x∗ − λ̄1
is invertible. �

Example 2.9.4. The Banach algebra `1(Z) of Example 2.2.3 is a Banach ∗-algebra with
star operation

x∗(n) = x(−n).

This star operation swaps u and u−1. In terms of Fourier series, this star operation is given
by f ∗(eiθ) = f(e−iθ). We shall see later in this section that this is an example of a symmetric
Banach ∗-algebra.

Definition 2.9.5. A ∗-ideal in a Banach ∗-algebra is an ideal I such that for all x ∈ I
we have x∗ ∈ I.

Lemma 2.9.6. (i) If I is a closed ∗-ideal in a Banach ∗-algebra A, then A/I is a
Banach ∗-algebra with the quotient norm, and with the star operation (x + I)∗ =
x∗ + I.

(ii) If J 6 I 6 A are closed ∗-ideals then then natural map (A/J)/(I/J)→ A/I is an
isometric isomorphism of Banach ∗-algebras.

(iii) If A is a normed ∗-algebra and I is a closed ideal then the natural map of comple-

tions Â/I → Â/Î is an isometric isomorphism of Banach ∗-algebras.

Proof. The proof is the same as the proof of Lemma 2.2.4, but keeping track of the
star operation. �

Definition 2.9.7. An element x is self-conjugate if x = x∗.

Remark 2.9.8. Given any element x, we can write x uniquely as y + iz where y and z
are self-conjugate elements. Namely, we have y = (x+ x∗)/2 and z = (x− x∗)/2i. Then we
have x∗ = y − iz.

Definition 2.9.9. If A is a commutative Banach ∗-algebra and φ : A→ C is an algebra
homomorphism, we define the conjugate of φ to be the algebra homomorphism φ∗ : A → C
defined by

φ∗(x) = φ(x∗).

This defines a continuous involutary automorphism on the structure space.

Proposition 2.9.10. The following conditions on a commutative Banach ∗-algebra A
are equivalent:

(i) Every algebra homomorphism φ : A→ C is self conjugate. In other words, for every
x ∈ A we have

φ(x∗) = φ(x).
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(ii) For every algebra homomorphism φ : A→ C, and every self-conjugate x ∈ A, φ(x)
is real.

(iii) Every element of the form x∗x+ 1 is invertible in A.
(iv) If x ∈ A is self-conjugate then x− i1 is invertible.
(v) For every x ∈ A, the spectral radius satisfies ρ(x∗x) = ρ(x)2.

Proof. Remark 2.9.8 shows that (i) and (ii) are equivalent.
If (i) holds, then for x ∈ A and φ : A→ C we have

φ(x∗x+ 1) = φ(x∗)φ(x) + 1 = φ(x)φ(x) + 1 = |φ(x)|2 + 1 > 0.

By Theorem 2.4.5 it follows that for every x ∈ A the element x∗x + 1 is invertible, and so
(iii) holds.

Next, we show that (iii) implies (iv). If x is self-conjugate then

(x− i1)∗(x− i1) = (x+ i1)(x− i1) = x2 + 1 = x∗x+ 1

is invertible, and hence so is x− i1.
Nest, we prove that (iv) implies (ii). If x is self-conjugate, φ : A → C, and a + ib ∈ C

with b 6= 0, we must show that φ(x) 6= a + ib. So it is enough to show that x− (a + ib)1 is
invertible. This follows from (iv) by writing x− (a+ ib)1 = b((x− a1)/b− i1).

To prove that (i) implies (v), if φ : A → C is an algebra homomorphism and (i) holds
then

φ(x∗x) = φ(x∗)φ(x) = φ(x)φ(x) = |φ(x)|2.
So by Corollary 2.4.6,

ρ(x∗x) = sup
φ : A→C

|φ(x∗x)| = sup
φ : A→C

|φ(x)|2 = ρ(x)2.

Finally, to prove that (v) implies (ii), we suppose that (v) holds but (ii) does not hold,
and deduce a contradiction. So there exists a self-conjugate element x such that φ(x) = α+βi
with α and β real and β non-zero. Replacing x by β−1(x−α1), we may assume that φ(x) = i.
If a is a positive real number then (a1− ix)∗ = a1+ ix. We have φ(a1− ix) = a+ 1, and so
by Corollary 2.4.6, it follows that a + 1 6 ρ(a1 − ix). If (v) holds then using Lemma 2.4.4
we have

(a+ 1)2 6 ρ(a1− ix)2 = ρ((a1 + ix)(a1− ix)) = ρ(a21 + x2) 6 a2 + ρ(x)2,

and hence 2a+ 1 6 ρ(x)2. This holds for all a > 0, which is the desired contradiction. �

Remark 2.9.11. Condition (ii) of Proposition 2.9.10 may be interpreted as saying that
the spectrum of a self-conjugate element of a Banach ∗-algebra satisfying these equivalent
conditions is real (cf. Corollary 2.4.6), whereas for a more general Banach ∗-algebra the
spectrum of a self-conjugate element is merely symmetric about the real axis (Lemma 2.9.3).

Definition 2.9.12. A Banach ∗-algebra is said to be symmetric if condition (iii) of
Proposition 2.9.10 is satisfied, and Hermitian if every self-conjugate element has a real spec-
trum. These conditions are equivalent for commutative Banach ∗-algebras by the Proposi-
tion, but are not equivalent without the commutativity assumption. Nonetheless, a theorem
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of Shirali [86, 87] shows that even for a non-commutative Banach ∗-algebra, Hermitian
implies symmetric.

Example 2.9.13. For an example of a symmetric Banach ∗-algebra, see the algebra
`1(Z) of Example 2.9.4. It is an easy exercise to check that this satisfies condition (i) of
Proposition 2.9.10.

For an example of a non-symmetric Banach ∗-algebra, consider the algebra of continuous
functions from the closed disc D = {z ∈ C | |z| 6 1} to C which are holomorphic on

the interior of D, with pointwise addition and multiplication, and with f ∗(z) = f(z̄). The
spectrum of f is its image, so for example the element f(z) = z is self-conjugate; its spectrum
is symmetric about the real axis, but not real.

Corollary 2.9.14. If A is a commutative symmetric Banach ∗-algebra an I is a closed
∗-ideal then A/I is a commutative symmetric Banach ∗-algebra.

Proof. Condition (iv) of Proposition 2.9.10 is inherited by A/I. �

Theorem 2.9.15. If e is an idempotent in a commutative symmetric Banach ∗-algebra
then e = e∗.

Proof. Let

z = 1 + (e∗ − e)∗(e∗ − e) = 1− e− e∗ + 2ee∗.

Then we have z = z∗ and

ez = e− e− ee∗ + 2ee∗ = ee∗.

Similarly, e∗z = ee∗, so ez = e∗z. But z is invertible by Proposition 2.9.10, and so e = e∗. �

2.10. C∗-algebras

Definition 2.10.1. A C∗-algebra is a Banach ∗-algebra A in which for all x ∈ A we have
‖x∗x‖ = ‖x‖2.

Theorem 2.10.2. If A is a commutative C∗-algebra then A is a symmetric Banach
∗-algebra.

Proof. We shall verify that condition (iv) of Proposition 2.9.10 holds. If x is self-adjoint
and x − i1 is not invertible then i is in the spectrum of x, and hence for every real a > 0,
a+ 1 = a− i2 is in the spectrum of a1− ix. So by Corollary 2.4.6 we have a+ 1 6 ‖a1− ix‖.
Hence

(a+ 1)2 6 ‖a1− ix‖2 = ‖(a1 + ix)(a1− ix)‖ = ‖a21 + x2‖ 6 a2 + ‖x‖2.

So we have ‖x‖2 > 2a+ 1 for every a > 0, which is absurd. Hence x− i1 is invertible. �

Example 2.10.3. The symmetric Banach ∗-algebra `1(Z) (see Example 2.9.4) is the
completion of C[u, u−1] with respect to the `1 norm, with star operation sending u to u−1.
To see that this is not a C∗-algebra, we let x = u2 + u− 1. Then ‖x2‖ = 7 while ‖xx∗‖ = 5.
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On the other hand, if Z is any compact Hausdorff topological space then the algebra
C(Z) of continuous functions on Z is a commutative C∗-algebra. For the norm we take

‖x‖ = sup
z∈Z
|x(z)|, and the ∗ operation is defined by x∗(z) = x(z). We have

‖x∗x‖ = sup
z∈Z

(x(z)x(z)) = sup
z∈Z
|x(z)|2 =

(
sup
z∈Z
|x(z)|

)2
= ‖x‖2.

Remark 2.10.4. The reader will notice that the proof of Theorem 2.10.2 is similar to the
proof of (v) implies (ii) in Proposition 2.9.10. Indeed, in the light of the following theorem,
we could have just invoked that proposition.

Theorem 2.10.5. If x is an element of a commutative C∗-algebra then its spectral radius
is equal to ‖x‖.

Proof. We use the spectral radius formula, Proposition 2.4.2. Let y = x∗x, so that
y∗ = y. Then the spectral radius of y is

ρ(y) = lim
n→∞

n
√
‖(x∗x)n‖ = lim

n→∞
n
√
‖(xn)∗(xn)‖ = lim

n→∞
n
√
‖xn‖2 =

(
lim
n→∞

n
√
‖xn‖

)2

= ρ(x)2.

So it suffices to prove that ρ(y) = ‖y‖ = ‖x‖2.

We have ‖y2‖ = ‖y∗y‖ = ‖y‖2, and by induction, for all k > 0 we have ‖y2k‖ = ‖y‖2k .
Thus

ρ(y) = lim
k→∞

2k
√
‖y2k‖ = lim

k→∞
2k
√
‖y‖2k = ‖y‖. �

Corollary 2.10.6. The Jacobson radical of a commutative C∗-algebra is zero. Thus the
only quasi-nilpotent element is zero.

Proof. By Theorems 2.8.4, if x is in the Jacobson radical then the spectral radius is
zero. By Theorem 2.10.5 the spectral radius of x is ‖x‖ so ‖x‖ = 0. This implies that x = 0.
By Theorem 2.8.4, quasi-nilpotent elements lie in the Jacobson radical, and therefore the
only quasi-nilpotent element is zero. �

2.11. Hilbert space

Definition 2.11.1. A Hilbert space is a complex vector space H with an inner product
〈−,−〉 : H ×H → C, satisfying

(i) Linearity in the first variable: 〈ax, y〉 = a〈x, y〉 and 〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉,
(ii) Conjugate symmetry: 〈y, x〉 = 〈x, y〉,

(iii) Positive definiteness: if x 6= 0 then 〈x, x〉 > 0,
(iv) Completeness: With respect to the norm coming from the inner product |x| =√

〈x, x〉, H is complete.

Thus a Hilbert space is a particularly rigid kind of Banach space.

Lemma 2.11.2. If x ∈ H then |x| = sup
|w|=1

|〈x,w〉| = sup
|w|=1

|〈w, x〉|.
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Proof. We prove the first equality, as the second follows from the fact that by conjugate
symmetry we have |〈w, x〉| = |〈x,w〉|.

If w = x/|x| then |w| = 1 and 〈x,w〉 = |x|. Conversely, for any w ∈ H with |w| = 1 we

set w′ = w − 〈x,w〉〈x,x〉x. Then

〈x,w′〉 = 〈x,w〉 − 〈x,w〉
〈x, x〉

〈x, x〉 = 0.

So

1 = |w|2 = |w′|2 +

∣∣∣∣〈x,w〉〈x, x〉
x

∣∣∣∣2 ,
and hence

∣∣∣ 〈x,w〉〈x,x〉x
∣∣∣ 6 1. This implies that |〈x,w〉| 6 |〈x,x〉|

|x| = |x|. �

Lemma 2.11.3 (Parallelogram identity). If u and v are elements of a Hilbert space H
then

|u+ v|2 + |u− v|2 = 2|u|2 + 2|v|2.

Proof. Expand 〈u+ v, u+ v〉 and 〈u− v, u− v〉 using bilinearity. �

Lemma 2.11.4. If V is a closed subspace of a Hilbert space H then every coset of V in
H contains a unique element orthogonal to V .

Proof. Let w be an element of the coset. We let d be the infimum of the values of |w|
as w runs over elements the coset. Then there is a sequence of elements w1, w2, . . . of such
elements with limi→∞ |wi| = d. We claim that w1, w2, . . . is a Cauchy sequence in H. To see
this, we apply the parallelogram identity to wi and wj:

|wi + wj|2 + |wi − wj|2 = 2|wi|2 + 2|wj|2,
which gives

|wi − wj|2 = 2|wi|2 + 2|wj|2 − 4|1
2
(wi + wj)|2.

Since 1
2
(wi + wj) is an element of the same coset, we have |1

2
(wi + wj)| > d. If |wi| < d + ε

and |wj| < d+ ε, we obtain

|wi − wj|2 < 2(d+ ε)2 + 2(d+ ε)2 − 4d2 = 4ε(2d+ ε).

So as ε→ 0 we have |wi−wj| → 0, and w1, w2, . . . is a Cauchy sequence. Now H is complete
and V is closed, so V is complete and hence the coset is complete. So this Cauchy sequence
has a limit w, and we have |w| = d.

If 0 6= v ∈ V let w′ = w − 〈v,w〉〈v,v〉 v. Then 〈v, w′〉 = 0 and so

|w|2 = |w′|2 +

∣∣∣∣〈v, w〉〈v, v〉
v

∣∣∣∣2 .
Since |w′|2 > |w|2 it follows that 〈v, w〉 = 0. Thus w is orthogonal to V . If w0 is another
element of the coset orthogonal to V then w − w0 is in V and orthogonal to V , and hence
equal to zero. �

Theorem 2.11.5 (Fréchet–Riesz). Given a continuous C-algebra homomorphism φ : H →
C there exists a unique element y ∈ H such that for all x ∈ H φ(x) = 〈x, y〉.
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Proof. Let V be the kernel of φ. Since φ is continuous, V is a closed subspace of H
of codimension one. The set of elements x ∈ H such that φ(x) = 1 is a coset of V . Using
Lemma 2.11.4 there is an element y in this coset which is orthogonal to all v ∈ V . Every
element of H can be written as v + λy with v ∈ V and λ ∈ C, and we have

φ(v + λy) = φ(v) + λφ(y) = λ = 〈v + λy, y〉.

Finally, for uniqueness, if y′ is another then y − y′ is both in V and orthogonal to V , and
hence equal to zero. �

Definition 2.11.6. If f : H → H is a linear transformation, we set

‖f‖sup = sup
|x|=1

|f(x)|.

If ‖f‖sup < ∞, we say that f is a bounded operator on H. By Lemma 2.1.3, bounded
operators are continuous. We write L (H) for the set of bounded operators on H. We shall
see in Theorem 2.11.8 that L (H) has the structure of a C∗-algebra.

Theorem 2.11.7 (Adjoints). Let f : H → H be a bounded operator. Then there is a
unique bounded operator f ∗, called the adjoint of f , such that for all x and y in H we have

〈f(x), y〉 = 〈x, f ∗(y)〉.

We have f ∗∗ = f , (λf + µf ′)∗ = λ̄f ∗ + µ̄f ′ ∗, (f ◦ f ′)∗ = f ′ ∗ ◦ f ∗, ‖f ∗ ◦ f‖sup = ‖f‖2
sup, and

‖f ∗‖sup = ‖f‖sup.

Proof. For x ∈ H, the map φ : H → C given by φ(y) = 〈f(x), y〉 is a continuous C-
algebra homomorphism. By Theorem 2.11.5, there exists a unique element z ∈ H such that
for all x ∈ H we have 〈f(x), y〉 = 〈x, z〉. We define f ∗(x) = z. To see that f ∗ is linear, we
have

〈x, f ∗(λy + µz)〉 = 〈f(x), λy + µz〉
= λ̄〈f(x), y〉+ µ̄〈f(x), z〉
= 〈x, λf ∗(y) + µf ∗(z)〉,

so that by uniqueness, f ∗(λy + µz) = λf ∗(y) + µf ∗(z). It is now easy to check that f ∗∗ = f
and (λf + µf ′)∗ = λ̄f ∗ + µ̄f ′ ∗.

For all x and y in H we have

〈(f ◦ f ′)(x), y〉 = 〈f(f ′(x), y〉 = 〈f ′(x), f ∗(y)〉 = 〈x, f ′ ∗(f ∗(y))〉 = 〈x, (f ′ ∗ ◦ f ∗)(y)〉,

and so (f ◦ f ′)∗ = f ′ ∗ ◦ f ∗.
Using Lemma 2.11.2, we have

‖f ∗ ◦ f‖sup = sup
|y|=1

|f ∗ ◦ f(y)|

= sup
|x|=1,|y|=1

〈x, f ∗(f(y))〉

= sup
|x|=1,|y|=1

〈f(x), f(y)〉
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= sup
|x|=1

|f(x)|2 = ‖f‖2
sup.

Thus ‖f ∗ ◦ f‖sup = ‖f‖2
sup. Similarly, using Lemma 2.11.2 we have

‖f ∗‖sup = sup
|y|=1

|f ∗(y)|

= sup
|x|=1,|y|=1

|〈x, f ∗(y)〉|

= sup
|x|=1,|y|=1

|〈f(x), y〉|

= sup
|x|=1

|f(x)| = ‖f‖sup.

Thus ‖f ∗‖sup = ‖f‖sup. It follows that f ∗ is bounded. �

Theorem 2.11.8. With the operation of composition, the sup norm, and the star opera-
tion of taking adjoints, L (H) is a C∗-algebra.

Proof. The sum of two bounded operators is a bounded operator, with

‖f + f ′‖sup = sup
|x|=1

|f(x) + f ′(x)| 6 sup
|x|=1

|f(x)|+ sup
|x|=1

|f ′(x)| = ‖f‖sup + ‖f ′‖sup.

Positivity and homogeneity is easily checked, so L (H) is a normed space. The limit of a
Cauchy sequence of bounded operators is a bounded operator, so L (H) is a Banach space.

The composite of two bounded operators is a bounded operator, with

‖f ◦ f ′‖sup = sup
|x|=1

|f(f ′(x))| 6 sup
|y|=‖f ′‖sup

|f(y)| = ‖f‖sup‖f ′‖sup.

The identity linear transformation is bounded with sup norm one. So L (H) is a Banach
algebra. Using Theorem 2.11.7, the star operation is involutory, antilinear, and an anti-
automorphism, so it is a Banach ∗-algebra. Finally, by the same theorem it also satisfies
‖f ∗ ◦ f‖sup = ‖f‖2

sup, so it is a C∗-algebra. �

Definition 2.11.9. An action of a Banach ∗-algebra A on a Hilbert space H is a con-
tinuous ∗-algebra homomorphism A→ L (H). The action is faithful if this map is injective.

Theorem 2.11.10. If A is a Banach ∗-algebra and A→ L (H) is an action on a Hilbert
space H then the closure of the image of A in L (H) is a C∗-algebra. If A is commutative
then every quasi-nilpotent element of A is in the kernel of the action on H.
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CHAPTER 3

Completions of representation rings

3.1. The norm on a representation ring

Definition 3.1.1. Let a be a representation ring (see Definition 1.1.1), and let aC =
C⊗Z a (see Definition 1.1.4). If x =

∑
i∈I aixi ∈ aC then we define the weighted `1 norm of

x to be

‖x‖ =
∑
i∈I

|ai| dimxi.

Lemma 3.1.2. The map aC → R given by x 7→ ‖x‖ satisfies Definition 2.2.1 (i)–(v), and
hence makes aC a normed algebra. Furthermore, the star operation taking x =

∑
i∈I aixi to

x∗ =
∑

i∈I āixi∗ makes aC into a commutative normed ∗-algebra, see Definition 2.9.1.

Proof. To verify that submultiplicativity holds, let x =
∑

i∈I aixi and y =
∑

j∈I bjxj.

We have xixj =
∑

k∈I ci,j,kxk with ci,j,k non-negative integers. So

xy =
∑
k∈I

(∑
i,j∈I

ci,j,kaibj
)
xk

and hence

‖xy‖ =
∑
k∈I

∣∣(∑
i,j∈I

ci,j,kaibj
)∣∣ dimxk

6
∑
k∈I

(∑
i,j∈I

ci,j,k|aibj|
)

dimxk

=
∑
i,j∈I

|aibj| dimxixj

=
∑
i∈I

|ai| dimxi
∑
j∈I

|bj| dimxj

= ‖x‖‖y‖.

The remaining axioms for the norm and star operation are easy to verify. �

Definition 3.1.3. We define â to be the completion of aC with respect to the norm
defined above. By Lemmas 2.9.2 and 3.1.2, â is a commutative Banach ∗-algebra associated
to the representation ring a, and aC is a dense subalgebra of â.

We can think of elements of â concretely as possibly infinite linear combinations
∑

i∈I aixi
where

∑
i∈I |ai| dimxi < ∞. Note that any such sum automatically has countable support,

by the following lemma.
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Lemma 3.1.4. Let {rα}α∈J be a collection of positive real numbers indexed by a set J . If
the sums

∑
α∈I rα over finite subsets I ⊆ J are bounded above then J is countable.

Proof. For n > 0, the subset Jn ⊆ J consisting of those α ∈ J for which rα > 1/n is
finite, and J =

⋃
n>0 Jn is a countable union of finite sets. �

However, â is usually not separable:

Definition 3.1.5. A Banach algebra A is separable if there is a countable subset K of
A such that the closure of the subalgebra generated by K is the whole of A.

Proposition 3.1.6. The Banach algebra â is separable if and only if the index set I is
countable. �

Remark 3.1.7. Another basis for aC consists of the elements xj for j = j∗ ∈ I, together
with the elements (xj + x∗j)/2 and (xj − x∗j)/2i for j 6= j∗ ∈ I. The elements in this basis
are self-conjugate. Their linear span aR is a real normed algebra, whose completion âR is a
real Banach algebra with the property that C ⊗R âR ∼= â, with star operation coming from
complex conjugation on the first tensor factor.

3.2. Norms and cores

Definition 3.2.1. Let X ⊂ I be a representation ideal in a representation ring a. Then

〈X〉C = C⊗Z〈X〉 is an ideal in aC = C⊗Za, and its closure 〈̂X〉C in â is a closed ideal. We write

âX for the quotient â/〈̂X〉C. We write âmax for âXmax and âproj for âXproj
(see Definition 1.3.8).

By Lemma 2.2.4 (iii), âX is isometrically isomorphic to the completion âC,X of aC,X with
respect to the quotient norm. It is easy to check that the quotient norm on âX is given by

(3.2.2)

∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥
X

=
∑
i∈I

|ai| dim coreX(xi) =
∑
i∈I\X

|ai| dimxi.

We can think of elements of âX concretely as possibly infinite (but necessarily countably
supported, see Lemma 3.1.4) linear combinations

∑
i∈I\X aixi where∑

i∈I\X

|ai| dimxi <∞.

Lemma 3.2.3. If x, y ∈ a<0 then ‖x+ y‖X = ‖x‖X + ‖y‖X.

Proof. This is clear from the definition. �

Lemma 3.2.4. If x ∈ a<0 then the quotient norm on the image of x in âX is equal to

dim coreX(x). Thus γX(x) = lim
n→∞

n
√
‖xn‖X.

Proof. This follows from (3.2.2). �

Theorem 3.2.5. If x ∈ a<0 then γX(x) is equal to the spectral radius of the image of x
in âX.

Proof. This follows from Lemma 3.2.4 and Proposition 2.4.2. �
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Lemma 3.2.6. If Y 6 X are representation ideals in a then the closure I of 〈X〉C/〈Y〉C
in âY is a closed ideal, and the quotient (âY)/I, with the quotient norm, is a commutative
Banach algebra isometrically isomorphic to âX.

Proof. This follows from Lemma 2.2.4. �

3.3. Spectrum, species, structure space

Definition 3.3.1. Let X ⊂ I be a representation ideal in a representation ring a. If
x ∈ âX, we write SpecX(x) for it spectrum as in Definition 2.3.4. This is a closed, bounded
subset of C by Theorem 2.3.7. For x ∈ a, we write SpecX(x) for the spectrum of the image
of x in âX.

Theorem 3.3.2. If x ∈ a<0 then the spectral radius γX(x) is an element of SpecX(x).

Proof. By Theorem 1.6.8, the spectral radius γX(1 + x) is equal to 1 + γX(x). The
theorem now follows from Proposition 2.4.9. �

Remark 3.3.3. This theorem is a special case of a theorem about the spectrum of a
positive operator on a Banach lattice. For a more direct proof in that context, see for
example Theorem 7.9 of Abramovich and Aliprantis [1]; but in fact our approach through
Proposition 2.4.9 also works in this generality.

Recall the definition of species from Definition 1.1.9.

Definition 3.3.4. Let a be a representation ring and aC = C ⊗Z a. A species of a
is a ring homomorphism s : a → C. A species of a extends uniquely to give a C-algebra
homomorphism s : aC → C, which we call a species of aC.

Let X be a representation ideal in a. We say that a species s of a is X-core bounded if
for all x ∈ a<0 we have

|s(x)| 6 dim coreX(x).

Of course, this only needs checking on the basis elements xi, i ∈ I.
If X = ∅ is the empty representation ideal, we have core∅(x) = x, and we call a ∅-core

bounded species a dimension bounded species. Thus a species s is dimension bounded if and
only if for all i ∈ I we have

|s(xi)| 6 dim(xi).

So s is X-core bounded if and only if it is dimension bounded and vanishes on xi for i ∈ X.
If X = Xproj, we call an Xproj-core bounded species a core bounded species.

Theorem 3.3.5. For a species s : aC → C, the following are equivalent:

(i) s is X-core bounded.
(ii) For all x ∈ aC we have |s(x)| 6 ‖x‖X.
(iii) s vanishes on every xi with i ∈ X and is continuous with respect to the norm on

aC/〈X〉C.
(iv) s vanishes on 〈X〉C and extends to an algebra homomorphism âX → C.
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Proof. The implications (ii) ⇒ (iii) ⇒ (iv) are clear, and the implication (iv) ⇒ (i)
follows from Proposition 2.3.11. So it remains to prove that (i) ⇒ (ii). Suppose that s is
core-bounded, and write x =

∑
i∈I aixi. Then s(x) =

∑
i∈I ais(xi) and so

|s(x)| 6
∑
i∈I

|ai||s(xi)| 6
∑
i

|ai| dim coreX(xi) = ‖x‖X. �

Corollary 3.3.6. A species s : aC → C is dimension bounded if and only if it is con-
tinuous with respect to the norm on aC. �

Theorem 3.3.7. For x ∈ a, the spectrum SpecX(x) is the set of values of s(x) as x runs
over the X-core bounded species of a. The spectral radius is

γX(x) = max
s : a→C

X-core bounded

|s(x)|.

There is an X-core bounded species s with γX(x) = s(x).

Proof. This follows from Corollary 2.4.6 and Theorems 3.2.5, 3.3.2 and 3.3.5. �

Definition 3.3.8. A species s of a is said to be a Brauer species if s(xi) 6= 0 for some
projective basis element xi (see Definition 1.2.2).

Example 3.3.9. The dimension function is always a Brauer species. This is because it is
a ring homomorphism, and is non-zero on ρ and therefore on some projective basis element.

Proposition 3.3.10. A Brauer species is determined by its value on the projective basis
elements. The Brauer species form a finite set, whose cardinality is at most the number of
projective basis elements. Every dimension bounded species is either a Brauer species or a
core bounded species, but not both.

Proof. By Lemma 2.6.1, a Brauer species is determined by its value on the projective
basis elements. It therefore cannot be core bounded, because such species vanish on pro-
jective basis elements. Since distinct species are linearly independent, it follows that the
number of Brauer species is at most the number of projective basis elements.

On the other hand, if s is not a Brauer species then it vanishes on the ideal 〈Xproj〉 of
projectives, and is therefore core bounded by Theorem 3.3.5. �

Remark 3.3.11. Example 1.1.2 (iii) shows that the number of Brauer species can be
strictly less than the number of projective basis elements. In this example, there are two
projective basis elements but only one Brauer species, namely the dimension function.

Similarly, we have the following.

Proposition 3.3.12. Let X be a representation ideal in a. Then the dimension bounded
species of a fall into two disjoint subsets, the X-core bounded species, and the species which
take non-zero value on some xi with i ∈ X. The latter are determined by their values on the
elements xi, i ∈ X.

Proof. The proof is essentially the same as the proof of Proposition 3.3.10. �
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Definition 3.3.13. We write ∆X(a) for the structure space ∆(âX) of the commutative
Banach ∗-algebra âX. In the case X = Xmax, we write ∆max(a), and in the case X = Xproj we
write ∆proj(a).

Theorem 3.3.14. Let x ∈ a<0 and X be a representation ideal in a. The structure space
∆X(a) may be identified with the set of X-core bounded species of a, or equivalently of aC,
with the weak* topology. It is a compact Hausdorff space.

Proof. Using Theorem 3.3.5, we identify the species of âX with the X-core bounded
species of a, or equivalently of aC. Then the theorem follows from Proposition 2.5.3. �

3.4. Symmetric representation rings

Definition 3.4.1. We say that a representation ring a is symmetric if the completion â
of aC is a symmetric Banach ∗-algebra, see Definition 2.9.12.

Proposition 3.4.2. For a representation ring a, the following are equivalent.

(i) a is symmetric.
(ii) Every dimension bounded species of a is self conjugate. In other words, for every

dimension bounded species s : a → C and every basis element xi, we have s(x∗i ) =

s(xi).
(iii) For every x ∈ â, the spectral radius ρ satisfies ρ(x∗x) = ρ(x)2.

If these hold then for every x ∈ a<0 and every representation ideal X of a we have

γX(xx∗) = γX(x)2.

Proof. The equivalence of (i), (ii) and (iii) follows from the equivalence of (i), (iii) and
(v) in Proposition 2.9.10. By Theorem 3.2.5, γX(x) is the spectral radius of the image of x
in âX, so using Corollary 2.9.14, condition (iii) implies the last statement. �

It would be advantageous to have a condition for symmetry that is easier to check.
For example, we do not know whether the modular representation ring of a finite group is
symmetric. At least we have the following.

Example 3.4.3. Theorem 1.2.7 implies that an ordinary representation ring is symmetric.

3.5. Algebraic elements revisited

Theorem 3.5.1. Let a be a representation ring, let x ∈ a<0 be algebraic modulo Xmax,
and let a′ be the representation subring of a described in Lemma 1.9.2 (v). Then there is a
unique species

s : a′max = a′/〈Xmax〉 → C
such that for x ∈ a′max,<0, we have γmax(x) = s(x).

Proof. Let J ⊆ I \ Xmax be the set of basis elements of a′ not in Xmax, and set y =∑
j∈J xj. Let B be the matrix (bi,j) where yxi ≡

∑
j∈J bi,jxj (mod 〈Xmax〉) for i ∈ J. We

claim that the entries of B are strictly positive. To see this, for i, j ∈ J we have

[xi∗xjxi : xj] > [xi∗xi : 1] > 0.
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So there exists k ∈ J with [xi∗xj : xk] > 0 and [xkxi : xj] > 0, and hence bi,j = [yxi : xj] > 0.
It follows from the fact that the entries of B are strictly positive, that we may apply the

Perron–Frobenius theorem. This says that there is an eigenvalue λ of B which is positive
real, and larger in absolute value than all the other eigenvalues, and that the eigenspace is
one dimensional, spanned by a vector u =

∑
i∈J aixi with all the ai positive real. We thus

have yu = λu.
Given x ∈ a′max, we have yxu = xyu = λxu, and so xu is another non-zero eigenvector of

multiplication by y. Since the eigenspace is one dimensional, we have xu = s(x)u for some
s(x) ∈ C. It is now easy to check that s is a ring homomorphism from a′max to C.

For x ∈ a′max,<0, s(x) is the spectral radius of x as an element of a′max. By the spectral
radius formula, Proposition 2.4.2, the spectral radius of x regarded as an element of amax

is the same as its spectral radius regarded as an element of a′max. It now follows from
Theorem 3.2.5 that s(x) = γmax(x). �

3.6. Quasi-nilpotent elements

We suppose, for the purposes of the next theorem, that we are in the following situation.
We are given a commutative, associative C-algebra A with a vector space basis {xi, i ∈ J}
satisfying xixj =

∑
k ci,j,kxk where the structure constants ci,j,k are non-negative integers.

We are also given an algebra homomorphism d : A → C such that each d(xi) is a positive
integer. We put a norm on A by setting

‖
∑
i

aixi‖ =
∑
i

|ai|d(xi).

As in Lemma 3.1.2, this does indeed define a norm. Under these circumstances, the following
theorem shows that quasi-nilpotent elements are nilpotent. I would like to thank Pavel
Etingof for suggesting this method of proof.

Theorem 3.6.1. If a =
∑

i aixi ∈ A satisfies n
√
‖an‖ → 0 as n→∞ then a is nilpotent.

Proof. We suppose that a is not nilpotent, and obtain a contradiction. Write a = a′+ia′′

in such a way that the coefficients of xi in a′, a′′ are real. Then the element ā = a′− ia′′ also
satisfies the hypothesis. By Lemma 1.6.5, elements satisfying the hypothesis form a linear
subspace of A. It follows that a′ and a′′ also satisfy the hypothesis. Furthermore, if a′ and
a′′ are both nilpotent, then so is a. Therefore we may assume without loss of generality that
the coefficients ai of a are real.

Since a =
∑

i aixi is a finite sum, we let V be the real linear span in A of those xi with
ai 6= 0. Then V is a finite dimensional R-vector subspace of A. Consider the elements of V
of the form b =

∑
i bixi with bi ∈ Z. These form a lattice Λ in V . It follows that there is a

constant C such that given any element v of V there is an element of Λ at distance at most
C from v. In particular, given q ∈ Z there is an element b of Λ within distance at most C
from qa. So looking at the elements of the form b − qa with q ∈ Z, b ∈ Λ, there have to
be two such, at an arbitrarily small distance from each other. Taking the difference, we see
that given ε > 0 we can choose q > 0 and b with ‖b− qa‖ < ε, and hence ‖ b

q
− a‖ < ε

q
.
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The nilpotent elements of V form a linear subspace, which is therefore a closed subset in
the norm topology. Since a is not nilpotent, we may choose b as above such that b

q
is also

not nilpotent. So for all n > 0 we have ‖bn‖ > 1 (because b has integer coefficients) and
hence ‖( b

q
)n‖ > 1

qn
.

Now we have

1
qn
6 ‖

(
b
q

)n
‖ = ‖(a+ ( b

q
− a))n‖ =

∥∥∥∑n
i=0

(
n
i

)
ai( b

q
− a)n−i

∥∥∥
6
∑n

i=0

(
n
i

)
‖ai‖ ‖( b

q
− a)n−i‖.

Applying Lemma 1.6.5, we deduce that

1
q

= lim sup
n→∞

n

√
1
qn
6 lim sup

n→∞

n
√
‖an‖+ lim sup

n→∞

n

√
‖( b

q
− a)n‖ < 0 + ε

q
= ε

q
.

So choosing ε 6 1, we obtain a contradiction. Hence a is nilpotent. �

We apply this theorem to characterise the nilpotent elements in a representation ring in
terms of species. Recall that the nil radical of a commutative ring is the ideal of nilpotent
elements.

Theorem 3.6.2. Let a be a representation ring. An element x ∈ aC = C⊗Z a is nilpotent
if and only if for every dimension bounded species s : aC → C we have s(x) = 0. Thus the
Jacobson radical of aC is equal to the nil radical.

Proof. We embed aC in â. The species of â are the dimension bounded species, so by
Theorem 2.8.4 the intersection of the kernels of the dimension bounded species is the set of
quasi-nilpotent elements of â. It follows from Theorem 3.6.1 that a quasi-nilpotent element
x ∈ aC is nilpotent. �

Remark 3.6.3. Since aC is not necessarily Noetherian, we cannot conclude from the
theorem that if m is a maximal ideal of aC then aC/m ∼= C. For example, letting R be
the polynomial algebra C[v, {uλ}λ∈C], given any non-zero element x ∈ R, there is an algebra
homomorphism s : R→ C such that s(x) 6= 0. On the other hand, there is a surjective algebra
homomorphism φ : R→ C(t) sending v to t and uλ to (t− λ)−1, and R/Ker(φ) ∼= C(t).

The following generalises Theorem 2.7 of [11], with essentially the same proof.

Theorem 3.6.4. There are no non-zero nilpotent elements in âmax.

Proof. Suppose that x ∈ âmax is nilpotent, and write x =
∑

i∈X\Xmax
aixi. Let ni =

[xixi∗ : 1] > 0. Then x∗ =
∑

i āix
∗
i . We have

xx∗ =
∑
i

|ai|2xix∗i +
∑
i 6=j

aiājxix
∗
j ,

and the coefficient of 1 in this is
∑

i ni|ai|2. This is zero if and only if x = 0, so xx∗ = 0
implies x = 0. If x2 = 0 then (xx∗)(xx∗)∗ = x2x∗ 2 = 0, so xx∗ = 0 and hence x = 0. �

Remark 3.6.5. We shall use the proof of Theorem 3.6.4 as motivation for the introduc-
tion of the trace map. This will eventually enable us to prove that there are no quasi-nilpotent
elements in âmax, see Theorem 3.9.1.
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3.7. Action on Hilbert space

Recall that for a representation ring a, we have the completion âmax with respect to the
norm ‖ ‖max. In this section we investigate an action of âmax on a Hilbert space H(a). The
crucial inequality allowing us to do this is given in Theorem 3.7.5, which turns out to be
quite tricky to prove. We begin with the following definitions, which are suggested by the
proof of Theorem 3.6.4.

Definition 3.7.1. The trace map Tr : a→ Z is defined by

Tr

(∑
i∈I

aixi

)
= a0

(recall that x0 is the basis element 1 of a). This extends to a trace map Tr : aC → C given
by the same formula.

Recall that ni is defined to be [xixi∗ : 1], and that ni = 0 if and only if i ∈ Xmax.

Lemma 3.7.2. We have Tr(xixi∗) = ni, and Tr(xixj∗) = 0 for i 6= j.

Proof. This follows from Definition 1.1.1 (ii). �

Definition 3.7.3. We define the weighted `2 norm on aC,max = aC/〈Xmax〉C to be∣∣∣∣∣∑
i∈I

aixi

∣∣∣∣∣ =

√∑
i∈I

ni|ai|2 =

√ ∑
i∈I\Xmax

ni|ai|2.

This is associated to the inner product〈∑
i∈I

aixi,
∑
i∈I

bixi

〉
=
∑
i∈I

niaib̄i =
∑

i∈I\Xmax

niaib̄i.

The completion of aC,max with respect to the weighted `2 norm is a Hilbert space which
is denoted H(a). We can think of elements of H(a) as countably supported infinite sums∑

i∈I\Xmax
aixi, with

∑
i∈I\Xmax

ni|ai|2 < ∞, and with trace and inner product given by the
same formulas as above.

Lemma 3.7.4. For x, y ∈ H(a) we have

(i) 〈x, y〉 = Tr(xy∗)
(ii) 〈xy, z〉 = 〈y, x∗z〉

Proof. (i) If x =
∑

i∈I\Xmax
aixi and y =

∑
i∈I\Xmax

bixi then

xy∗ =
∑

i∈I\Xmax

aib̄ixixi∗ +
∑

i 6=j∈I\Xmax

aib̄jxixj∗ .

By Lemma 3.7.2, the trace of this is equal to
∑

i∈I\Xmax
niaib̄i, which is 〈x, y〉.

(ii) Using (i) we have

〈xy, z〉 = Tr(xyz∗) = Tr(y(x∗z)∗) = 〈y, x∗z〉. �
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Theorem 3.7.5. For x ∈ aC, y ∈ H(a) we have |xy| 6 ‖x‖max|y|.

Proof. The model for this proof is the inequality in Lemma 1.10.4, but the details are
much more complicated.

First we treat the case x = xi and y =
∑

j∈I bjxj. We have

|xiy|2 = 〈xiy, xiy〉
= 〈xi∗xiy, y〉

=
∑

j,k∈I\Xmax

bj b̄k〈xi∗xixj, xk〉

6
∑

j,k∈I\Xmax

|bj||bk|〈xi∗xixj, xk〉

=
∑

j,k∈I\Xmax

|bj|nj
dimxj

|bk|nk
dimxk

〈xi∗xixj, xk〉
dimxj
nj

dimxk
nk

For j 6= k, the (j, k) term and the (k, j) term in this sum are equal. So using the inequality

2
|bj|nj
dimxj

|bk|nk
dimxk

6

(
|bj|nj
dimxj

)2

+

(
|bk|nk
dimxk

)2

we have

|xiy|2 6
∑

j,k∈I\Xmax

(
|bj|nj
dimxj

)2

〈xi∗xixj, xk〉
dimxj
nj

dimxk
nk

=
∑

j,k∈I\Xmax

|bj|2nj
dimxj

〈xi∗xixj, xk〉
dimxk
nk

.

Now we also have∑
k∈I\Xmax

〈xi∗xixj, xk〉
dimxk
nk

=
∑

k∈I\Xmax

[xi∗xixj : xk]nk
dimxk
nk

=
∑

k∈I\Xmax

[xi∗xixj : xk] dimxk

= dim coremax(xi∗xixj)

6 (dim coremax(xi))
2 dimxj

and so we get

|xiy|2 6
∑

j∈I\Xmax

|bj|2nj
dimxj

(dim coremax(xi))
2 dimxj

=
∑

j∈I\Xmax

|bj|2nj(dim coremax(xi))
2

= (dim coremax(xi))
2〈y, y〉

= ‖xi‖2
max|y|2.
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Taking square roots of both sides, we obtain |xiy| 6 ‖xi‖max|y|.
Finally, in general if x =

∑
i∈I aixi then using the case proved above, we have

|xy| =

∣∣∣∣∣∑
i∈I

aixiy

∣∣∣∣∣ 6∑
i∈I

|ai||xiy| 6
∑
i∈I

|ai|‖xi‖max|y|

=

∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥
max

|y| = ‖x‖max|y|. �

Remark 3.7.6. Setting y = 1 in the theorem, we have |x| 6 ‖x‖max. In particular, every
infinite sum

∑
i∈I\Xmax

aixi in âmax is in H(a). So we have a norm decreasing (continuous)

injective map of Banach ∗-algebras âmax ↪→ H(a), with dense image.

Proposition 3.7.7. For x ∈ aC the map y 7→ xy of H(a) is bounded. Elements of 〈Xmax〉
act as zero, and so we have a map aC,max → L (H(a)).

Proof. This follows from the inequality in Theorem 3.7.5. �

Definition 3.7.8. We write ‖x‖sup for the sup norm of x under the map

aC,max → L (H(a))

sending x ∈ aC to the map y 7→ xy of H(a). This is given by

‖x‖sup = sup
|y|=1

|xy|.

Theorem 3.7.9. For x ∈ aC,max we have |x| 6 ‖x‖sup 6 ‖x‖max. The map aC,max →
L (H(a)) is a continuous ∗-homomorphism of normed ∗-algebras, and extends to an injective
continuous ∗-homomorphism of Banach ∗-algebras âmax → L (H(a)).

Proof. Theorem 3.7.5 shows that ‖x‖sup 6 ‖x‖max, so by Lemma 2.1.3 this map is
continuous, and hence extends to a map âmax → L (H(a)). By Lemma 3.7.4 (ii), this map
preserves the star operation. The action of x on 1 ∈ H(a) shows that |x| 6 ‖x‖sup, and that
this map is injective, see Remark 3.7.6. �

3.8. The C∗-algebra C∗max(a)

Definition 3.8.1. We saw in Theorem 3.7.9 that the map aC,max → L (H(a)) sending
an element x to left multiplication by x is a continuous map of normed ∗-algebras, and
extends to an injective map of Banach ∗-algebras âmax → L (H(a)). We let C∗max(a) denote
the closure of the image of this map. This is a commutative C∗-algebra.

Definition 3.8.2. A species s : a→ C is sup bounded if for all x ∈ a<0 we have

|s(x)| 6 ‖x‖sup = sup
|y|=1

|xy|.

Proposition 3.8.3. For an Xmax-core bounded species of a, the following are equivalent:

(i) s is sup bounded,
(ii) s is continuous with respect to the sup norm,
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(iii) s extends to a C-algebra homomorphism C∗max(a)→ C.

This leads us to another invariant of an element x ∈ a<0, namely the spectral radius in
the sup norm. By Theorem 2.10.5, this is equal to ‖x‖sup:

γsup(x) = ‖x‖sup = sup
|y|=1

|xy|.

This is really an invariant of the image of x in amax, and we have

γsup(x) 6 γmax(x).

This invariant has one advantage over the others we have been examining. Namely,

Theorem 3.8.4. For x ∈ a<0 we have

γsup(xx∗) = γsup(x)2.

Proof. By Theorem 2.11.8, L (H(a)) is a C∗-algebra with respect to the sup norm. In
particular, in accordance with Definition 2.10.1, we have ‖xx∗‖sup = ‖x‖2

sup. �

Remark 3.8.5. The C∗-algebra C∗max(a) is analogous to the C∗-algebra C∗(Γ) of a dis-
crete abelian group Γ.

Recall that in general, if Γ is a discrete group and x ∈ `1(Γ) then we look at all actions
of `1(Γ) on a Hilbert space, and take the C∗-norm ‖x‖C∗ to be the supremum of the sup
norms in these actions. We have ‖x‖C∗ 6 ‖x‖`1 , and we define the C∗-algebra C∗(Γ) of Γ to
be the completion of `1(Γ) with respect to this norm.

If we restrict our attention to the action of `1(Γ) on the Hilbert space `2(Γ) by convolution,
rather than using all actions on Hilbert spaces, then we obtain a possibly smaller norm called
the reduced C∗-norm,

‖x‖C∗r = sup
|y|=1

|x ∗ y|,

and the reduced C∗-algebra C∗r (Γ) is the completion of `1(Γ) with respect to this norm.
The group Γ is said to be amenable if there exists a finitely additive measure on Γ which is

invariant under left multiplications. If Γ is amenable then the C∗-norm and the reduced C∗-
norm are equal, and we have C∗(Γ) = C∗r (Γ). In particular, all abelian groups are amenable,
and so if Γ is abelian then C∗(Γ) is the closure of the image of the action of `1(Γ) on `2(Γ).

3.9. Quasi-nilpotent elements revisited

Theorem 3.9.1. There are no non-zero quasi-nilpotent elements in âmax.

Proof. By Theorem 3.7.9 and Definition 3.8.1, we have a continuous injective map from
âmax to L (H(a)), and the closure of its image is the commutative C∗-algebra C∗max(a). If
x is a quasi-nilpotent element of âmax then its image in C∗max(a) is also quasi-nilpotent and
hence, by Corollary 2.10.6, equal to zero. �

Corollary 3.9.2. If x is a non-zero element of âmax then there is a sup bounded (and
hence Xmax-core bounded) species s with s(x) 6= 0.

Proof. This follows from Theorem 2.8.4, Proposition 3.8.3, and Theorem 3.9.1. �
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Corollary 3.9.3. (i) The Jacobson radical of âmax is zero.
(ii) The Jacobson radical of aC/〈Xmax〉 is zero.

Proof. (i) By the previous corollary, every non-zero element x lies outside some maximal
ideal I of âmax with âmax/I isomorphic to C via an Xmax-core bounded species s.

(ii) If x is a non-zero element of aC/〈Xmax〉 ⊆ âmax then the species s : aC/〈Xmax〉 → C of
part (i) is surjective, and x is not in its kernel. So x 6∈ J(aC/〈Xmax〉). �

3.10. Idempotents

In this section we examine idempotents in âmax and in aK,max = K⊗Zamax with K a field.
We show that if e ∈ âmax is idempotent and not equal to zero or one then 0 < Tr(e) < 1;
and if e ∈ aK,max then Tr(e) is in the ground field of K.

The following is the analogue for representation rings of a theorem of Kaplansky on group
rings (unpublished, but see the end of §II.3 of Kaplansky [62], Lemma 2 of Montgomery [69],
or §2.1 of Passman [75]).

Theorem 3.10.1. If e ∈ âmax is idempotent, e 6= 0, 1 then 0 < Tr(e) < 1.

Proof. We have e ∈ âmax ⊆ C∗max(a). Now C∗max(a) is a C∗-algebra, and hence a
symmetric Banach ∗-algebra. By Theorem 2.9.15 we have e = e∗ and so e = e∗e. Now using
Lemma 3.7.4, we have

Tr(e) = Tr(e∗e) = 〈e, e〉 > 0.

Since 1− e is also an idempotent, we have 0 < Tr(e) < 1. �

Corollary 3.10.2. There are no non-trivial idempotents in amax.

Proof. If e ∈ amax then Tr(e) is a rational integer. By Theorem 3.10.1 it follows that if
e is idempotent then e is equal to zero or one. �

Corollary 3.10.3. Let K be a field of characteristic zero. If e is an idempotent in
aK,max then Tr(e) is a totally real algebraic element of K. Every element of C satisfying its
minimal equation is a real number between 0 and 1.

Proof. Let e =
∑n

i=1 aixi with i ∈ I \ X, and let K0 = Q(a1, . . . , an). As an abstract
field, C is an algebraic closure of an infinite transcendental extension of Q. For every field
embedding K0 → C, Theorem 3.10.1 shows that the image of Tr(e) is a real number lying
between 0 and 1. If Tr(e) were transcendental, there would exist an embedding K0 → C
taking Tr(e) to a non-real number, and therefore Tr(e) is algebraic. Moreover, given any
complex number satisfying its minimal equation, again there exists a field embeddingK0 → C
taking Tr(e) there. �

In the case of group rings, Zalesskii [97] has shown that Tr(e) has to be rational. The
proof does not appear to extend to our situation.

Corollary 3.10.4. Let K be a field of characteristic zero whose only totally real subfield
is Q, and let OK be its ring of integers. Then there are no idempotents in aOK ,max other
than 0 and 1.
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Proof. Let e be an idempotent in aOK ,max. Then by Corollary 3.10.3, Tr(e) is a totally
real element of OK . By the hypothesis on K, it follows that Tr(e) is in Q ∩ OK = Z. By
Theorem 3.10.1 it follows that e = 0 or e = 1. �
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CHAPTER 4

Representation rings of finite groups

4.1. Preliminaries on kG-modules

Let G be a finite group and k a field of characteristic p. Throughout this text, we only
consider finitely generated kG-modules. When we write the tensor product M ⊗ N of two
kG-modules M and N we mean the tensor product over the field k, M ⊗k N , with diagonal
G-action. Thus g(m ⊗ n) = gm ⊗ gn for g ∈ G, m ∈ M and n ∈ N . We write M∗ for the
linear dual of M , with G-action given by (g(f))(m) = f(g−1(m)). We write k for the trivial
kG-module, namely a copy of the field k on which all elements of G act as the identity.

The various parts of the following proposition are due to Benson and Carlson [11] and
Auslander and Carlson [6].

Proposition 4.1.1. Let M be a kG-module.

(i) M is isomorphic to a direct summand of M ⊗M∗ ⊗M .
(ii) If p divides the dimension of M then M⊗M∗⊗M has a direct summand isomorphic

to M ⊕M .
(iii) If p does not divide the dimension of M then M ⊗ M∗ has a direct summand

isomorphic to k.
(iv) If M and N are indecomposable and M ⊗N has a direct summand isomorphic to

k then N ∼= M∗.

Proof. Let {m1, . . . ,mn} be a basis for M and {f1, . . . , fn} the dual basis of M∗. Thus∑
i fi(mi) = n = dim(M), and for m ∈M we have m =

∑
i fi(m)mi.

For (i) we have maps M →M⊗M∗⊗M given by m 7→
∑

im⊗fi⊗mi and M⊗M∗⊗M →
M given by m⊗ f ⊗m′ 7→ f(m)m′, with composite the identity on M .

For (ii) (cf. Proposition 4.9 in Auslander and Carlson [6], where this is proved with the
further hypothesis that M is indecomposable, but this hypothesis is not used in the proof),
we have maps M ⊕M →M ⊗M∗ ⊗M given by

(m,m′) 7→
∑
i

(m⊗ fi ⊗mi +mi ⊗ fi ⊗m′)

and M⊗M∗⊗M →M⊕M given by m⊗f⊗m′ 7→ (f(m)m′, f(m′)m). If M has dimension
divisible by p then the composite is the identity on M ⊕M .

For (iii), we have maps k → M ⊗M∗ given by 1 7→
∑

imi ⊗ fi and M ⊗M∗ → k given
by m ⊗ f 7→ f(m). If p does not divide the dimension of M then the composite of these
maps is non-zero.
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For (iv), we have maps k → M ⊗ N → k whose composite is non-zero. Associated to
these is the map

HomkG(M ⊗N, k)× HomkG(k,M ⊗N)→ k

given by composition. Adjointly,

HomkG(N,M∗)× HomkG(M∗, N)→ k

is given by composition followed by trace. Thus there are maps M∗ → N → M∗ whose
composite has non-zero trace. Since M∗ is indecomposable, endomorphisms which are not
isomorphisms have zero trace, so the composite is an isomorphism. Finally, since N is
indecomposable, both maps must be isomorphisms. �

4.2. The representation ring a(G)

Let G be a finite group and k a field of characteristic p. Let a(G) be the representation
ring, or Green ring of kG. This has as a basis the symbols [Mi], where Mi is a indecomposable
kG-module, and i is in a suitable indexing set I. The symbol [Mi] only depends on the
isomorphism class of Mi. If M =

⊕
i niMi then we write [M ] for

∑
i ni[Mi] ∈ a(G). By

the Krull–Schmidt theorem, this is well defined, and identifies the non-negative elements of
a(G) with the isomorphism classes [M ] of kG-modules. The multiplication in a(G) is then
given on non-negative elements by the tensor product, [M ][N ] = [M ⊗k N ], and extended
bilinearly to all elements.

We shall also be interested in the complexification of the representation ring, aC(G) =
C⊗Z a(G).

Proposition 4.2.1. The representation ring a(G) of a finite group over a field k is
an example of a representation ring in the sense of Definition 1.1.1. It is an ordinary
representation ring in the sense of Definition 1.2.6 if k has characteristic zero, or prime
characteristic p not dividing |G|, and a modular representation ring if k has characteristic p
dividing |G|.

Proof. For property (i), we set xi = [Mi], and define the star operation by letting Mi∗

be the dual module M∗
i of Mi. Property (ii) follows from Proposition 4.1.1 (iv). Proposi-

tion 4.1.1 (iii) shows that if Mi⊗Mi∗ does not have a direct summand isomorphic to k then
the dimMi is not divisible by p, and then Proposition 4.1.1 (ii) shows that Mi ⊗Mi∗ ⊗Mi

has a direct summand isomorphic to Mi ⊕Mi; this proves that property (iii) holds. The
dimension fuction for property (iv) is defined so that the dimension of [Mi] is its dimension
as a k-vector space. For Property (v), the role of the element ρ is played by the regular
representation [kG]. For any kG-module M , the tensor product M ⊗ kG is isomorphic to a
direct sum of dimM copies of kG, so we have [M ][kG] = (dim[M ]).[kG] in a(G).

If k has characteristic zero, or prime characteristic p dividing |G|, then the surjective
augmentation map kG → k is split by the map k → kG sending 1 to 1

|G|
∑

g∈G g. So the

trivial module k is projective, and hence 1 is a projective basis element of a(G). On the
other hand, if k has characteristic dividing |G| then the augmentation map kG → k does
not split, so the trivial module is not projective, and therefore 1 is not a projective basis
element of a(G). �
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Remark 4.2.2. Proposition 4.2.1 generalises in an obvious way to finite group schemes.
For finite supergroup schemes, it is usual to take the super dimension function to be the
dimension of the even part minus the dimension of the odd part. However, this fails ax-
iom (iv), as the dimension function is not positive. Instead, one needs to take the näıve
dimension, namely the dimension of the even part plus the dimension of the odd part. With
this definition, the representation ring of a finite supergroup scheme satisfies the axioms
of Definition 1.1.1. However, for the analogue of Proposition 4.1.1, the super dimension
function is the relevant notion.

The proposition also generalises to any coefficients where the Krull–Schmidt theorem
holds for finitely generated modules, such as the p-localisation O(p) or the p-adic comple-
tion Op of an algebraic number ring O. The integral representation ring of a finite group
in the presence of the Krull–Schmidt theorem has been studied by Reiner [77, 79, 78],
Hannula [50]; see also Jensen [60].

The representation ring of a finite dimensional quasitriangular Hopf algebra (with mild
extra conditions) is a further generalisation which fits into our framework of representation
rings given by Definition 1.1.1. The quasitriangular condition ensures that for any modules
M and N , the tensor products M ⊗ N and N ⊗ M are isomorphic. In this case, there
are two natural isomorphisms between these modules, which may be thought of as moving
M over or under N . These isomorphisms satisfy braid relations given by the Yang–Baxter
equations. Finite quantum groups are examples of suitable quasitriangular Hopf algebras.
Witherspoon [95] has investigated species of the representation ring in the particular case
of the quantum double of a finite group.

It would be interesting to see how much goes through in the case of Hopf algebras with
non-commutative tensor products, but that is a task for another day. The spectral theory of
non-commutative Banach *-algebras is not as clean as the Gelfand theory for commutative
ones.

Definition 4.2.3. Let X be a collection of indecomposable kG-modules, closed under
isomorphism, with the property that if M is in X and N is any kG-module then M ⊗ N
is a direct sum of modules in X. We also suppose that not every kG-module is in X. We
say that X is an ideal of indecomposables. In this situation, by abuse of notation we also
write X for the representation ideal of the representation ring a(G) consisting of the i ∈ I
such that Mi in X. We write a(G,X) for the ideal 〈X〉, namely the linear combinations in
a(G) of the elements [Mi] with Mi ∈ X, and aX(G) for the quotient a(G)/a(G,X). We write
aC(G,X) for the ideal C⊗Z a(G,X) of aC(G), and aC,X(G) for the quotient aC(G)/aC(G,X).

Example 4.2.4. (i) There is, of course, the empty example X = ∅. In this case,
we have a(G,X) = {0}, aC(G,X) = {0}, aX(G) = a(G), aC,X(G) = aC(G).

(ii) Let Xproj be the set of projective indecomposable modules. In this case we write
a(G, 1) for a(G,Xproj) and aC(G, 1) for aC(G,Xproj). This is the minimal example,
in the sense that every non-empty ideal X of indecomposables contains this one.
This follows from Proposition 1.3.9.

(iii) More generally, if H is a subgroup of G then the collection XH of indecomposable
modules that are projective relative to H is ideal. We write a(G,H) and aC(G,H)
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for a(G,XH) and aC(G,XH). The case where H is the trivial subgroup gives the
previous example.

We can do the same with any collection H of subgroups H 6 G with the
property that if H is contained in a conjugate of H ′ and H ′ ∈ H then H ∈ H.
The collection of indecomposable modules that are projective relative to such a
collection of subgroups H is ideal. This example is discussed in further detail in
Section 4.6.

(iv) If V is a specialisation closed subset of ProjH∗(G, k) then the indecomposable
modules supported in V form an ideal XV . We write a(G,V) and aC(G,V) for
a(G,XV) and aC(G,XV). For example, if V is the collection of all closed points,
then XV is the collection of indecomposable projective or periodic modules.

(v) It is proved in Benson and Carlson [11] that if k is algebraically closed, then
the collection Xp of indecomposable modules of dimension divisible by p is ideal.
We write a(G; p) and aC(G; p) for a(G,Xp) and aC(G,Xp). This is the maximal
example Xmax, in the sense that every ideal X of indecomposable modules that
does not consist of them all is contained in this one, see Proposition 1.3.9 (i).

Over a field which is not algebraically closed, Xmax consists of the indecom-
posable modules M such that M ⊗M∗ has no summand isomorphic to the trivial
module k. Every indecomposable module in Xmax has dimension divisible by p,
but there may be indecomposables of dimension divisible by p not in Xmax. In this
case, we write a(G; max) for the ideal 〈Xmax〉 of a(G), amax(G) for the quotient
a(G)/〈Xmax〉, and aC(G; max), aC,max(G) for their complexifications.

Definition 4.2.5. If X is an ideal of indecomposable kG-modules, and M is any kG-
module, we may write M = M ′ ⊕M ′′, where M ′′ is a direct sum of elements of X and no
summand of M ′ is in X. We define the X-core, coreG,X(M) to be M ′. This is well defined up
to isomorphism. If X is the ideal of projective indecomposables, we just call this the core,
denoted coreG(M).

4.3. The gamma invariant

By Proposition 4.2.1, we may regard a(G) as a representation ring in the sense of Defi-
nition 1.1.1. In this context, we now investigate the gamma invariant defined in Section 1.4.
Let X be an ideal of indecomposable kG-modules. We consider the X-cores of tensor powers
of a module. We write cG,Xn (M) for dim coreG,X(M⊗n). If X = Xproj we write cGn (M). Since
cG,Xn (M) 6 dim(M)n, the generating function

f(t) =
∞∑
n=0

cG,Xn (M)tn

converges in a disc of radius at least 1/ dim(M) around the origin. The radius of convergence
r is given by the formula

1/r = lim sup
n→∞

n

√
cG,Xn (M).
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We write γG,X(M) for the value of 1/r given by this formula. In the case where X = Xproj,
we just write γG(M). This is the invariant that was investigated in [13].

The following properties are consequences of our investigations in Chapter 1.

Theorem 4.3.1. The invariant γG,X(M) has the following properties:

(i) We have γG,X(M) = lim
n→∞

n

√
cG,Xn (M) = inf

n>1

n

√
cG,Xn (M).

(ii) We have 0 6 γG,X(M) 6 dimM .
(iii) Some tensor power of a kG-module M has an indecomposable summand in X if

and only if γG,X(M) < dimM .
(iv) A kG-module M is a direct sum of modules in X if and only if γG,X(M) = 0;

otherwise we have γG,X(M) > 1.
(v) If m ∈ N then γG,X(mM) = mγG,X(M), where mM denotes a direct sum of m

copies of M .
(vi) More generally, if a and b are non-negative integers then

γG,X(ak ⊕ bM) = a+ bγG,X(M),

where k denotes the trivial kG-module.
(vii) If X ⊆ Y are ideals of indecomposable kG-modules then γG,Y(M) 6 γG,X(M).

(viii) If 1 6 γG,X(M) <
√

2 then M is X-endotrivial.
(ix) We have γG,X(M ⊗N) 6 γG,X(M)γG,X(N),
(x) If m ∈ N then we have γG,X(M⊗m) = γG,X(M)m,

(xi) We have γG,X(M∗) = γG,X(M).

Proof. By Proposition 4.2.1, a(G) is a representation ring in the sense of Defini-
tion 1.1.1. So (i) follows from Theorem 1.6.4, (ii) follows from Lemma 1.4.3, (iii) follows from
Lemma 1.4.9, (iv) follows from Lemma 1.4.4, (v) follows from Theorem 1.6.8, (vi) follows from
Lemma 1.4.10, (vii) follows from Lemma 1.4.12, (viii) follows from Theorem 1.8.1, (ix) follows
from Lemma 1.4.7, (x) follows from Lemma 1.4.8, and (xi) follows from Lemma 1.4.5. �

Definition 4.3.2. If X is an ideal of indecomposable kG-modules, and H is a subgroup
of G, we write X↓H for the ideal of indecomposable summands of modules of the form M↓H
with M in X.

Theorem 4.3.3. If H 6 G and M is a kG-module then γH,X↓H (M) 6 γG,X(M).

Proof. We have cH,X↓Hn (M) 6 cG,Xn (M) for all n. �

Corollary 4.3.4. If H 6 G and M is a kG-module then γH(M) 6 γG(M).

Proof. If X = Xproj for kG then X↓H = Xproj for kH. �

The following definition and theorem generalise Lemma 2.11 of [13] (which is Corol-
lary 4.3.8 below).

Definition 4.3.5. If K is an extension field of k, and X is an ideal of indecomposable
kG-modules, we write KX for the ideal of indecomposable KG-modules that are summands
of modules of the form K ⊗k M with M in X.
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Lemma 4.3.6. Let K be an extension field of k, let X be an ideal of indecomposable
kG-modules, and let M be a kG-module. Then K ⊗k coreG,X(M) ∼= coreG,X(K ⊗k M).

Proof. We first note that (K ⊗k M)↓kG is a direct sum of (possibly infinitely many)
copies of M .

We need to show that if K⊗kM has an indecomposable summand N in KX then M has
an indecomposable summand in X. Consider the restrictions of K ⊗kM and N from KG to
kG. The restriction N↓kG is a direct sum of finite dimensional indecomposable kG-modules
in X; let N ′ be one of them. It is a summand of (K⊗kM)↓kG, which is a direct sum of copies
of M . Because it is finite dimensional, N ′ is a summand of a finite direct sum of copies of
M , hence is a summand of M , by the Krull–Schmidt Theorem. �

Theorem 4.3.7. If K is an extension field of k and X is an ideal of indecomposable
kG-modules then γG,KX(K ⊗k M) = γG,X(M).

Proof. This follows immediately from Lemma 4.3.6. �

Corollary 4.3.8. If K is an extension field of k then γG(K ⊗k M) = γG(M).

Proof. If P is a projective kG-module then every summand of K ⊗k P is a projective
KG-module. The corollary now follows from Theorem 4.3.7. �

4.4. Elementary abelian subgroups

In the case where X = Xproj, the elementary abelian subgroups of G play a crucial role,
because of theorems of Chouinard and Carlson. Most of the material in this section is taken
from Section 7 of [13].

Theorem 4.4.1 (Chouinard [25]). A kG-module M is projective if and only if its re-
striction to every elementary abelian p-subgroup of G is projective. �

A strengthening of Chouinard’s theorem is the following theorem of Carlson.

Theorem 4.4.2 (Carlson [22], Theorem 3.7). There exists a constant B, which depends
only on p and G, such that if M is a kG-module then

dim coreG(M) 6 B ·max
E6G

dim coreE(M)

where the maximum is taken over the set of elementary abelian p-subgroups E of G. �

Lemma 4.4.3. If H is a subgroup of G and M is a kG-module then γH(M) 6 γG(M).

Proof. We have cHn (M) 6 cGn (M) for all n. �

Theorem 4.4.4. Let M be a kG-module. Then γG(M) = max
E6G

γE(M), where the maxi-

mum is taken over the set of elementary abelian p-subgroups E of G.

Proof. By Theorem 4.4.2 and Lemma 4.4.3 we have

max
E6G

n
√

cEn (M) 6 n
√
cGn (M) 6 n

√
B.max

E6G

n
√

cEn (M).

Taking lim sup
n→∞

, the factor of n
√
B tends to 1. �
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Example 4.4.5. Let G be a generalised quaternion group and let k be a field of charac-
teristic two. Then G has only one elementary abelian 2-subgroup E = 〈z〉, where z is the
central element of order two. Let X = 1 + z, an element of kG satisfying X2 = 0. If M is a
kG-module then the restriction to kE is a direct sum of dim(Ker(X,M)/Im(X,M)) copies
of the trivial module plus a free module. It follows that

γG(M) = dim(Ker(X,M)/Im(X,M)).

In particular, this is an integer.

Proposition 4.4.6 (Dade [34, 35]). If E is an elementary abelian p-group, then the
only endotrivial kE-modules are the syzygies Ωn(k) (n ∈ Z) of the trivial module. �

Lemma 4.4.7. We have γG(Ωnk) = 1 for n ∈ Z, provided that p divides |G|.

Proof. First suppose that n > 0. We have coreG((Ωk)⊗n) ∼= Ωnk, and dim Ωnk grows
polynomially in n (see for example [9] §5.3). Therefore γG(Ωnk) = 1. Since (Ωnk)∗ ∼= Ω−nk,
the lemma is also true for n < 0. �

For a general representation ideal X in a representation ring a, we saw that it was possible
for an X-endotrivial element x ∈ a<0 to have γX(x) > 1, and so we needed to introduce two
different versions of the Picard group, see Section 1.7. For a = a(G) and X = Xproj, this
cannot happen, as shown by the following theorem.

Theorem 4.4.8. A kG-module M is endotrivial if and only if γG(M) = 1.

Proof. If M is neither projective nor endotrivial then it follows from Theorem 1.8.1 that
γG(M) >

√
2. If M is projective then γG(M) = 0. If M is endotrivial then its restriction

to every elementary abelian p-subgroup of G is endotrivial. So by Theorem 4.4.4, we may
assume that G = E is an elementary abelian p-group. By Proposition 4.4.6, M is a syzygy
of the trivial module, so by Lemma 4.4.7 we have γE(M) = 1. �

Question 4.4.9. For choices of representation ideals X in a(G) other than X = Xproj, is
it true that an X-endotrivial module M necessarily satisfies γG,X(M) = 1?

4.5. Induced modules

In view of Theorem 4.4.4, the following proposition is important in finding the gamma
invariants of induced modules. For calculational purposes, this proposition should be com-
bined with the Mackey decomposition formula for restricting induced modules to elementary
abelian subgroups.

Proposition 4.5.1. If E ′ is a subgroup of an elementary abelian p-group E and M is a
kE ′-module then

(i) coreE(M↑E) ∼= (coreE′(M))↑E
(ii) γE(M↑E) = |E : E ′|γE′(M).
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Proof. We have M↑E↓E′ ∼= |E : E ′|M , a direct sum of |E : E ′| copies of M . So M
has a projective summand if and only if M↑E has a projective summand. This proves (i).
Applying this to M⊗n, we have

(4.5.2) dim coreE(M⊗n↑E) = dim coreE(M⊗n)↑E = |E : E ′| dim coreE′(M
⊗n).

We have
M↑E ⊗M↑E ∼= (M ⊗M↑E↓E′)↑E ∼= |E : E ′|(M ⊗M)↑E.

Applying induction, we then obtain

(M↑E)⊗n ∼= |E : E ′|n−1(M⊗n)↑E

and so using (4.5.2) we have

cEn (M↑E) = dim coreE((M↑E)⊗n)

= |E : E ′|n−1 dim coreE(M⊗n↑E)

= |E : E ′|n dim coreE′(M
⊗n) = |E : E ′|ncE′n (M).

Thus we have
n
√
cEn (M↑E) = |E : E ′| n

√
cE′n (M),

and taking limits as n tends to infinity, it follows that γE(M↑E) = |E : E ′|γE′(M), and (ii)
is proved. �

4.6. Relatively projective modules and relative syzygies

In this section, we consider a generalisation of Example 4.2.4 (iii).

Definition 4.6.1. Let N be a kG-module. We say that a kG-module M is projective
relative to N or relatively N-projective if M is isomorphic to a direct summand of N ⊗U for
some kG-module U .

Lemma 4.6.2. For kG-modules M and N , the following are equivalent:

(i) M is relatively N-projective,
(ii) the natural map N ⊗N∗ ⊗M →M given by n⊗ f ⊗m 7→ f(n)m splits,

(iii) the natural map M → N∗ ⊗N ⊗M given by m 7→
∑

i fi ⊗ ni splits.

Proof. (i)⇒ (ii): It suffices to prove this for M = N⊗U . Let ni and fi be dual bases of
N and N∗. Then for n ∈ N we have

∑
i fi(n)ni = n. Then the map N⊗N∗⊗N⊗U → N⊗U

is split by the map sending n⊗ u to
∑

i n⊗ fi ⊗ ni ⊗ u.
(ii) ⇒ (i): If the natural map N ⊗N∗⊗M →M splits then M is isomorphic to a direct

summand of N ⊗ U where U = N∗ ⊗M .
The implications (i) ⇒ (iii) and (iii) ⇒ (i) are proved similarly. �

Remark 4.6.3. If N = kG, this is the definition of a projective kG-module. If N is
the permutation module on the cosets of a subgroup H 6 G, this is the definition of a
relatively H-projective module. More generally, let H be a collection of subgroups of G with
the property that if H is contained in a conjugate of H ′ and H ′ ∈ H then H ∈ H. Let N be
the direct sum over H ∈ H of the permutation modules on the cosets of H. Then a module
is relatively H-projective if and only if it is relatively N -projective.
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The condition that M is injective relative to N is equivalent to the condition that it is
projective relative to N , so we shall not need to use this terminology.

Definition 4.6.4. A short exact sequence

0→M3 →M2 →M1 → 0

is relatively N-split if the sequence

0→ N ⊗M3 → N ⊗M2 → N ⊗M1 → 0

splits.

Proposition 4.6.5. For a short exact sequence 0→M3 →M2 →M1 → 0 the following
are equivalent:

(i) The sequence 0→ N ⊗M3 → N ⊗M2 → N ⊗M1 → 0 splits.
(ii) The sequence 0→ N∗ ⊗M3 → N∗ ⊗M2 → N∗ ⊗M1 → 0 splits.

(iii) The sequence 0→ N ⊗N∗ ⊗M3 → N ⊗N∗ ⊗M2 → N ⊗N∗ ⊗M1 → 0 splits.

Proof. This follows from the fact that N is isomorphic to a direct summand of N ⊗
N∗ ⊗N , and N∗ is a direct summand of N∗ ⊗N ⊗N∗, see Proposition 4.1.1 (i). �

Corollary 4.6.6. A short exact sequence

0→M3 →M2 →M1 → 0

is relatively N-split if and only if the dual sequence

0→M∗
1 →M∗

2 →M∗
3 → 0

is relatively N-split. �

Lemma 4.6.7. If 0→ M3 → M2 → M1 → 0 is a relatively N-split short exact sequence,
and either M1 or M3 is relatively N-projective, then the sequence splits.

Proof. Suppose that M1 is relatively N -projective. We have a diagram

0 // N ⊗N∗ ⊗M3
//

��

N ⊗N∗ ⊗M2
//

��

N ⊗N∗ ⊗M1
//

uu

��

0

0 // M3
// M2

// M1
//

YY

0

Composing the two splittings and the map N ⊗N∗⊗M2 →M2 gives a splitting for the map
M2 →M1.

The proof with M3 relatively projective is dual (cf. Remark 4.6.3). �

Definition 4.6.8. A relative N-syzygy of M , or syzygy of M relative to N is the module
M3 in a relatively N -split sequence with M2 relatively N -projective and M1 = M . This
exists, because the natural epimorphism N∗ ⊗ N ⊗M → M is relatively split. We write
ΩN(M) for the relative N -syzygy of M .

Dually, we write Ω−1
N (M) for the module M1 in a relatively N -split sequence with M2

relatively N -projective and M3 = M . This exists because the natural map M → N∗⊗N⊗M
is relatively split.
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The following is a relative version of Schanuel’s lemma. It shows that relative N -syzygies
are well defined up to adding and removing relatively N -projective summands.

Lemma 4.6.9. Let M and N be kG-modules. If

0→ A→ B →M → 0

0→ A′ → B′ →M → 0

are two relatively N-split sequences with B and B′ relatively N-projective then A ⊕ B′ ∼=
A′ ⊕B.

Proof. We form the pullback X of B →M and B′ →M . Then we have a commutative
diagram

0

��

0

��

A′

��

A′

��

0 // A // X //

��

B′ //

��

0

0 // A // B //

��

M //

��

0

0 0

We claim that the sequence ending in B′ given by the middle row of this diagram is relatively
N -split. To see this, we use the fact that the bottom row is relatively N -split. Then we
compose

N ⊗B′ → N ⊗M → N ⊗B.
Since N⊗X is a pullback of N⊗B → N⊗M and N⊗B′ → N⊗M , we can use this composite
together with the identity map on N ⊗ B′ to obtain the required map N ⊗ B′ → N ⊗ X.
Similarly, the sequence ending in B given by the middle column is relatively N -split.

Since B and B′ are relatively N -projective, using Lemma 4.6.7 we see that the sequences
ending in B and B′ split. So we have A⊕B′ ∼= X ∼= A′ ⊕B. �

Definition 4.6.10. If N is a kG-module, let XN be the collection of indecomposable
modules that are projective relative to N . Then XN is an ideal of kG-modules.

Proposition 4.6.11. (i) The module coreG,XN (ΩN(M)) is well defined, and iso-
morphic to coreG,XN (ΩN(k)⊗M).

(ii) coreG,XN (Ω−1
N ΩN(M)) ∼= coreG,XN (M).

(iii) The module coreG,XN (Ω−1
N (M)) is well defined, and is isomorphic to

coreG,XN (Ω−1(k)⊗M).

(iv) coreG,XN (ΩNΩ−1
N (M)) ∼= coreG,XN (M).
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Proof. The fact that coreG,XN (ΩN(M)) is well defined follows from Lemma 4.6.9. Ex-
amining the short exact sequence

0→ ΩN(k)⊗M → N ⊗N∗ ⊗M →M → 0,

we see that ΩN(k) ⊗ M is one candidate for ΩN(M). It follows by examining the same
sequence, that M is one candidate for Ω−1

N ΩN(M). This proves parts (i) and (ii), and (iii)
and (iv) are dual. �

Lemma 4.6.12. We have Ω−1
N (k) ∼= ΩN(k)∗. Thus γG,XN (Ω−1

N (k)) = γG,XN (ΩN(k)).

Proof. The first statement follows by applying Corollary 4.6.6 to the sequence

0→ ΩN(k)→ N ⊗N∗ → k → 0. �

Remark 4.6.13. It often happens that γG,XN (ΩN(k)) = 1. For example, the finite gen-
eration of finite group cohomology implies that in the case N = kG, we obtain γG(Ω(k)) =
1. More generally, a theorem of Brown [18] shows that if N is a permutation module
then γG,XN (ΩN(k)) = 1. We do not know of an example of a kG-module N for which
γG,XN (ΩN(k)) > 1.

Theorem 4.6.14. We have
γG,XN (M)

γG,XN (ΩN(k))
6 γG,XN (ΩN(M)) 6 γG,XN (ΩN(k))γG,XN (M).

Proof. By Proposition 4.6.11 and Theorem 4.3.1 (ix) we have

γG,XN (ΩN(M)) = γG,XN (ΩN(k)⊗M) 6 γG,XN (ΩN(k))γG,XN (M)

Similarly, γG,XN (M) = γG,XN (Ω−1
N (k)⊗ ΩN(M)) 6 γG,XN (Ω−1

N (k))γG,XN (ΩN(M)). �

Corollary 4.6.15. If N is a permutation module then γG,XN (ΩN(M)) = γG,XN (M).

Proof. This follows from the theorem and the preceding remark. �

Corollary 4.6.16. We have γG(Ω(M)) = γG(M).

Proof. This is the case N = kG. �

4.7. Trivial source modules

In this section, we compute γG(M) for trivial source modules M .

Definition 4.7.1. Let G be a finite group and k a field of characteristic p. A kG-
module M is said to be a trivial source module if its restriction to a Sylow p-subgroup is a
permutation module. This is equivalent to the condition that M is isomorphic to a direct
summand of a permutation kG-module.

Lemma 4.7.2. If Q is a subgroup of a finite p-group P then the permutation module P/Q
is indecomposable. If M is a permutation kP -module then either M is projective or the
action of P on M has a kernel.

Lemma 4.7.3. Let E be an elementary abelian p-group, and let M1, . . . ,Mn be indecom-
posable permutation kE-modules. Then M1 ⊗ · · · ⊗Mn is either projective or the action of
E has a kernel.
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Proof. If E1 and E2 are subgroups of E then by the Mackey decomposition theorem
the tensor product of permutation modules k(E/E1) ⊗ k(E/E2) is a direct sum of copies
of kE/(E1 ∩ E2). By induction, it follows that k(E/E1) ⊗ · · · ⊗ k(E/En) is a direct sum
of copies of kE/(E1 ∩ · · · ∩ En). This is projective if and only if the kernel of the action,
E1 ∩ · · · ∩ En is trivial. �

Proposition 4.7.4. Let E be an elementary abelian p-group and M a permutation kE-
module. Then there is a direct summand N of M such that the action of E on N is not
faithful and γE(M) = γE(N) = dim(N).

Proof. If the action of E on M is not faithful then γE(M) = dim(M) and we are done.
On the other hand, if the action is faithful then M ∼= M ′⊕M1⊕· · ·⊕Mn with Mi

∼= k(E/Ei)
and E1 ∩ · · · ∩ En = 1. Then by Lemma 4.7.3, M1 ⊗ · · · ⊗Mn is projective. So for m > n
the module M⊗m is isomorphic to a summand of

n⊕
i=1

(M ′ ⊕M1 ⊕ · · ·
i

↑ · · · ⊕Mn)⊗m ⊕ (proj)

where the upward arrow indicates omission of the term indexed by i. It follows that

γE(M⊗m) 6 n max
16i6n

γE(M ′ ⊕M1 ⊕ · · ·
i

↑ · · · ⊕Mn)⊗m.

Taking mth roots, we have

γE(M) 6 m
√
n max

16i6n
γE(M ′ ⊕M1 ⊕ · · ·

i

↑ · · · ⊕Mn).

Letting m tend to infinity, we can ignore the term m
√
n. Then since each of the terms on the

right hand side is less than or equal to the left hand side, we have equality:

γE(M) = max
16i6n

γE(M ′ ⊕M1 ⊕ · · ·
i

↑ · · · ⊕Mn).

Thus there is a non-zero summand Mi of M which may be removed from M without altering
the value of γE(M). Arguing by induction, there is a summand N of M which is not faithful,
with γE(M) = γE(N) = dim(N). �

Theorem 4.7.5. Let M be a trivial source kG-module. Then γG(M) is equal to the max-
imum over pairs (E,N) of dim(N), where E runs over the elementary abelian p-subgroups
of G and N runs over the summands of M as kE-modules which are not faithful.

Proof. This follows from Theorem 4.4.4 and Proposition 4.7.4. �

4.8. The norms on a(G)

Definition 3.1.1 gives us the following.

Definition 4.8.1. The weighted `1 norm on aC(G) is given by∥∥∥∥∥∑
i∈I

ai[Mi]

∥∥∥∥∥ =
∑
i∈I

|ai| dimMi.

We define â(G) to be the completion of aC(G) with respect to this norm.
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If X is a representation ideal in a(G) then by Lemma 2.2.4 (iii), the quotient âX(G) of
â(G) by 〈X〉C is isometrically isomorphic to the completion of aC,X(G) = aC(G)/aC(G,X)
with respect to the quotient norm. By (3.2.2), the quotient norm on aC,X(G) is given by∥∥∥∥∥∑

i∈I

ai[Mi]

∥∥∥∥∥
X

=
∑
i∈I

|ai| dim coreX(Mi) =
∑
i∈I\X

dimMi.

Elements of the completion âX(G) ∼= ̂aC,X(G) may be regarded as infinite, but countably
supported, linear combinations

∑
i∈I\X ai[Mi] where

∑
i∈I\X |ai| dimMi <∞.

Recall that if k is algebraically closed then the modules Mi with i ∈ Xmax are the
indecomposables of dimension divisible by p, so that a(G,max) = a(G; p) and amax(G) =
a(G)/a(G; p).

In general, we have the weighted `2 norm on aC,max(G) = aC(G)/〈Xmax〉C described in
Definition 3.7.3. ∣∣∣∣∣∑

i∈I

ai[Mi]

∣∣∣∣∣ =

√∑
i∈I

ni|ai|2.

The completion of aC,max(G) with respect to this norm is a Hilbert space H(G). By Theo-
rem 3.7.9, left multiplication induces a continuous map of normed ∗-algebras aC,max(G) →
L (H(G)), and extends to an injective map âmax(G)→ L (H(G)). The C∗-algebra C∗max(G)
is defined to be the closure of the image of this map. This is a commutative C∗-algebra, and
is the completion of amax(G) with respect to the sup norm

‖x‖sup = sup
|y|=1

|xy|.

4.9. Species of a(G)

We say that a species s of a(G) is X-core bounded if for all kG-modules M we have

|s([M ])| 6 dim coreG,X(M).

In particular, the extension of of an X-core bounded species to aC(G) vanishes on aC(G,X),
and so defines an algebra homomorphism aC,X(G)→ C. If X = ∅, we say that s is dimension
bounded, and if X is the ideal of projective indecomposable modules, we just say that s is
core bounded.

Theorem 4.9.1. For a species s : aC(G)→ C, the following are equivalent:

(i) s is X-core bounded.
(ii) For all x ∈ aC(G) we have |s(x)| 6 ‖x‖X.

(iii) s is continuous with respect to the norm on aC,X(G).
(iv) s vanishes on 〈X〉C and extends to an algebra homomorphism âX(G).

Proof. This is Theorem 3.3.5 in this context. �
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Theorem 4.9.2. For x ∈ a(G), the spectrum SpecX(x) is the set of values of s(x) as x
runs over the X-core bounded species of a(G). The spectral radius is

γX(x) = max
s : a(G)→C

X−core bounded

|s(x)|.

There is an X-core bounded species s with γX(x) = s(x).

Proof. This is Theorem 3.3.7 in this context. �

Proposition 4.9.3. If s is a dimension bounded species of a(G) then either s is a Brauer
species or s is core bounded.

Proof. This follows from Theorem 4.9.1. �

Definition 4.9.4. If X is an ideal of indecomposable kG-modules, and A = âX(G), we
write ∆X(G) for ∆(âX(G)). Thus ∆X(G) may be identified with the set of X-core bounded
species of a(G), with the weak* topology. It is a compact Hausdorff topological space.

Proposition 4.9.5. If Y ⊆ X are ideals of indecomposable kG-modules, then ∆X(G) is
homeomorphic to the subset of ∆Y(G) consisting of the X-core bounded species.

Proof. Every X-core bounded species is Y-core bounded, so ∆X(G) ⊆ ∆Y(G). Now
apply Lemma 2.6.2. �

The corresponding notion for the weighted `2 norm is as follows.

Definition 4.9.6. A species s : a(G) → C is sup bounded if for all x ∈ a(G)<0 we have
|s(x)| 6 ‖x‖sup.

The results of Sections 3.10 and 3.9 give the following.

Theorem 4.9.7. There are no non-zero quasi-nilpotent elements in âmax(G). �

Corollary 4.9.8. (i) The Jacobson radical of âmax(G) is zero.
(ii) The Jacobson radical of aC,max(G) is zero. �

Theorem 4.9.9. If e ∈ âmax(G) then 0 < Tr(e) < 1. �

Corollary 4.9.10. Let K be a field of characteristic zero whose only totally real subfield
is Q, and let OK be its ring of integers. Then there are no idempotents in aOK ,max(G) other
than 0 and 1. �

4.10. Restriction and induction on â(G)

IfH is a subgroup of a finite groupG then we have a restriction map resG,H : a(G)→ a(H)
and an induction map indH,G : a(H)→ a(G). The map resG,H is a ring homomorphism, while
indH,G is an a(G)-module homomorphism via restriction. These extend in an obvious way
to maps resG,H : aC(G)→ aC(H) and indH,G : aC(H)→ aC(G) with the same properties.
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Proposition 4.10.1. Let H be a subgroup of a finite group G. Then restriction

resG,H : aC(G)→ aC(H)

is continuous with respect to the weighted `1 norm, and therefore extends to give a homo-
morphism of commutative Banach algebras resG,H : â(G)→ â(H).

Proof. By Lemma 2.1.3, we must show that this map is bounded. If x =
∑

i∈I ai[Mi]
with the Mi indecomposable kG-modules, then

‖resG,H(x)‖ =

∥∥∥∥∥∑
i∈I

airesG,H([Mi])

∥∥∥∥∥
6
∑
i∈I

|ai|‖resG,H([Mi])‖

=
∑
i∈I

|ai| dim(Mi)

= ‖x‖

and so resG,H is bounded, and hence continuous. Since resG,H is an algebra homomorphism
from aC(G) to aC(H), by continuity it is an algebra homomorphism from â(G) to â(H). �

Proposition 4.10.2. Let H be a subgroup of a finite group G. Then induction

indH,G : a(H)→ a(G)

is continuous with respect to the weighted `1 norm, and therefore extends to a continuous
map

indH,G : â(H)→ â(G).

For x ∈ â(G) and y ∈ â(H), we have

(4.10.3) indH,G(resG,H(x)y) = x indH,G(y),

so regarding â(H) as an â(G)-module via resG,H , indH,G is a map of Banach â(G)-modules.

Proof. Again by Lemma 2.1.3, we must show that the map is bounded. If x =∑
i∈I ai[Mi] with the Mi indecomposable kH-modules then

‖indH,G(x)‖ =

∥∥∥∥∥∑
i∈I

aiindH,G([Mi])

∥∥∥∥∥
6
∑
i∈I

|ai|‖indH,G([Mi])‖

=
∑
i∈I

|ai||G : H| dim(Mi)

= |G : H|‖x‖,

so indH,G is bounded, and hence continuous. Frobenius reciprocity implies that (4.10.3)
holds for elements x ∈ aC(G) and y ∈ aC(H). By the continuity of indH,G and resG,H (see
Proposition 4.10.1) it holds for x ∈ â(G) and y ∈ â(H). �
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Theorem 4.10.4. If H and K are subgroups of G then the Mackey decomposition formula
holds for the maps indK,G : â(K)→ â(G) and resG,H : â(G)→ â(H). Namely, for x ∈ â(K)
we have

resG,H indK,G(x) =
∑

g∈H\G/K

indH∩gK,Hres gK,H∩gK(gx).

Here, gK is the conjugate gKg−1 and gx is the image of x under the natural isomorphism
â(K)→ â(gK) given by conjugation by g. The sum is over a set of double coset representa-
tives for H and K in G.

Proof. For x ∈ a(K) this is the usual Mackey decomposition theorem. The proposition
therefore follows from the continuity of restriction and induction, which hold by Proposi-
tions 4.10.1 and 4.10.2. �

Theorem 4.10.5. If H is a subgroup of G then â(H) is integral over the image of
resG,H : â(G)→ â(H).

Proof. Proposition 5.3 of [12] proves this for a(G)C → a(H)C, and the same proof
works in this context. For convenience, we repeat the proof here.

Let â(H)NG(H) be the fixed points in â(H) under the natural conjugation action ofNG(H).
If α ∈ â(H) let α1, . . . , αn be the images of α under NG(H). Then coefficients of the monic
polynomial (x − α1) . . . (x − αn) are the symmetric functions of α1, . . . , αn, which are in
â(H)NG(H). Since α is a root of this polynomial, it is integral over â(H)NG(H). So â(H) is
integral over â(H)NG(H), and it remains to prove that â(H)NG(H) is integral over the image
of resG,H .

Let α ∈ â(H)NG(H). If K is a proper subgroup of H, we let UK denote the subalgebra
of â(H) generated by the image of resG,K together with the elements res gH,K(gα) with K 6
gH. By induction on |H|, we may assume that UK is finitely generated as a module over
Im(resG,K). We claim that

(4.10.6) Im(resG,H) +
∑
K<H

indK,H(UK)

is a subalgebra of â(H), finitely generated as a module for the image of resG,H , containing
α.

First we show that (4.10.6) is a subalgebra. By (4.10.3) and the transitivity of restriction,
for x, y ∈ â(G) we have

resG,H(x)indK,H(resG,K(y)) = indK,H(resG,K(xy)),

resG,H(x)indK,H(res gH,K(gα)) = indK,H(resG,K(x)res gH,K(gα))

and so Im(resG,H)UK ⊆ UK . If K < H and L < H then using the Mackey Decomposition
Theorem 4.10.4, we have

indK,H(UK)indL,H(UL) ⊆
∑
g∈H

indK∩gL,H(resK,K∩gL(UK).res gL,K∩gL(UgL))

⊆
∑
g∈H

indK∩gL,H(UK∩gL).
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Next we show that (4.10.6) is finitely generated as a module for Im(resG,H). By induction
on |H|, we may assume that for every K 6 H, UK is finitely generated as a module for
Im(resG,K), say by elements bi. Then using (4.10.3), indK,H(UK) is finitely generated as a
module for Im(resG,H) by the elements indK,H(bi).

Finally, we show that (4.10.6) contains α. Since α is NG(H)-invariant, the Mackey
Decomposition Theorem 4.10.4 gives

resG,H(indH,G(α)) = |NG(H) : H|α +
∑

g∈H\G/H
H∩gH<H

indH∩gH,H(res gH,H∩gH(αg)). �

Corollary 4.10.7. If s is a species of â(G) which vanishes on the kernel of resG,H then
there exists a species s′ of â(H) such that s is the composite

â(G)
resG,H−−−−→ â(H)

s′−→ C.

Proof. This follows from Theorem 4.10.5 and the going-up theorem. �

4.11. Adams psi operations

The Adams psi operations ψn on a(G) were defined in [7] and further studied in [19, 20,
21]. In this section, we show that for any ideal of indecomposables X, ψn acts on aX(G) via
ring endomorphisms. This gives rise to an action on ∆X(G). For the purpose of this section,
we assume that k is algebraically closed, although this could be avoided.

Let M be a kG-module. Then there is an action of Z/n on M⊗n permuting the tensor
factors, and this commutes with the action of G. If n is coprime to p then M⊗n decomposes
as a sum of eigenspaces of Z/n. Let ε : Z/n → k be a generator for the character group of
Z/n over k, and write [M⊗n]εi for the eigenspace corresponding to εi. Let ζn = e2πi/n be a
primitive nth root of unity in C, and set

ψn[M ] =
n∑
i=1

ζ in[M⊗n]εi ∈ aC(G).

Proposition 4.11.1. If M1 and M2 are kG-modules then

(i) ψn([M1] + [M2]) = ψn[M1] + ψn[M2], and
(ii) ψn([M1 ⊗M2] = ψn[M1]ψn[M2].

Proof. This is proved in Proposition 1 of [7]. �

It follows from the proposition that ψn can be extended to a C-algebra homomorphism
aC(G)→ aC(G).

Proposition 4.11.2. Let n be coprime to p. For d|n, let εd = εn/d, a character of order
d of Z/n. Then

ψn[M ] =
∑
d|n

µ(d)[M⊗n]εd .

Here, µ is the Möbius function.

Proof. This is proved in Proposition 2 of [7]. �
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Corollary 4.11.3. For n coprime to p, the homomorphism ψn takes elements of a(G)
to elements of a(G), and therefore induces a ring homomorphism ψn : a(G)→ a(G).

Proof. The formula given in the proposition has integer coefficients. �

Theorem 4.11.4. If m and n are coprime to p then ψm ◦ ψn = ψmn = ψn ◦ ψm.

Proof. This is proved in Theorem 1 of [7]. �

Definition 4.11.5 (Frobenius twist). For r > 0 we let k(pr) be a k-k-bimodule, where
the left action of λ ∈ k is multiplication by λ, and the right action is multiplication by λp

r
.

If M is a kG-module, we define the rth Frobenius twist of M to be

M (pr) = k(pr) ⊗k M.

Thus λp
r
(1⊗m) = λp

r ⊗m = 1⊗ λm, so λp
r

acts on M (pr) in the way that λ acts on M . If
k is perfect, then λ acts on M (pr) is the way that λp

−r
acts on M .

Definition 4.11.6. We define ψp[M ] = [M (p)], the Frobenius twist of M . This gives us
ring homomorphisms ψp : a(G) → a(G) and ψp : aC(G) → aC(G). In general, if n = pam
with p - m, we define ψn = ψm ◦ (ψp)a = (ψp)a ◦ ψm. Thus Theorem 4.11.4 remains true for
all m and n.

If X is an ideal of indecomposable kG-modules, we say that X is Frobenius stable if
M ∈ X ⇒ M (p) ∈ X. In Example 4.2.4, everything is Frobenius stable except for XV , and
in this case it is Frobenius stable precisely when the subset V is stable under the Frobenius
map, namely the map induced by the pth power map on H∗(G, k).

If s is a species of a(G), we define ψn(s) by the formula ψn(s)(x) = s(ψn(x)).

Proposition 4.11.7. Regarding dim: a(G)→ C as a species, we have ψn(dim) = dim.

Proof. The species dim: a(G) → C factors through restriction to the trivial subgroup
1, a(G)→ a(1). We have a(1) = Z, with generator [k]. We have [k⊗n]1 = [k] and [k⊗n]εi = 0
if εi 6= 1, and so we have ψn[k] = [k]. So ψn is the identity map on a(1). �

Theorem 4.11.8. For x ∈ aC(G) we have ‖ψn(x)‖ 6 ‖x‖n.

Proof. We first verify this with x = [M ] and n a prime. If n = p we have ‖ψp[M ]‖ =
dim(M (p)) = dim(M) = ‖[M ]‖ 6 ‖[M ]‖p. If n is a prime q not equal to p then

ψq[M ] = [M⊗q]1 − [M⊗q]ε

where ε is a faithful character of Z/q. On the other hand,

[M ]q = [M⊗q]1 + (q − 1)[M⊗q]ε.

Thus ‖ψq[M ]‖ 6 (dimM)q = ‖[M ]‖q.
If x =

∑
i ai[Mi] and n is prime then ψn(x) =

∑
i aiψ

n[Mi] and

‖ψn(x)‖ 6
∑
i

|ai|‖ψn[Mi]‖ 6
∑
i

|ai|‖[Mi]‖n 6 ‖x‖n.

Finally, if n is composite, we use Theorem 4.11.4 and induction. �

Corollary 4.11.9. ψn is continuous on aC(G) with respect to the weighted `1 norm.
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Proof. By Theorem 4.11.8, if ‖x‖ 6 1 then ‖ψn(x)‖ 6 1. So ψn is bounded, and hence
continuous by Lemma 2.1.3. �

Corollary 4.11.10. If s is a dimension bounded species, then so is ψn(s).

Proof. We use Theorem 3.3.5 with X = ∅. This says that s is dimension bounded if
and only if it is continuous with respect to the weighted `1 norm on aC(G). If s is dimension

bounded then it is continuous, so using Corollary 4.11.9, the composite aC(G)
ψn−→ aC(G)

s−→ C
is continuous, and hence dimension bounded. �

Theorem 4.11.11. Let X be a Frobenius stable ideal of indecomposable kG-modules. If
s is an X-core bounded species of a(G) then ψn(s) is also X-core bounded.

Proof. It follows from the definition of ψn that ψn〈X〉C 6 〈X〉C. So the composite

aC(G)
ψn−→ aC(G)

s−→ C
has 〈X〉C in its kernel. This composite is continuous, by Corollary 4.11.9, and so it induces
a continuous map aC,X(G)→ C. By Theorem 3.3.5, it follows that s is X-core bounded. �

It follows from the theorem that we have an action of ψn on ∆X(G).

4.12. The Burnside ring

In this final section, we take a brief look at an example of a representation ring where our
theory does not say much. If G is a finite group, the Burnside ring b(G) is the Grothendieck
ring of finite G-sets. It is a free abelian group whose basis elements [G/H] correspond to the
transitive G-sets G/H up to isomorphism. Here, G/H and G/H ′ are isomorphic as G-sets if
and only if H and H ′ are conjugate subgroups. Non-negative elements of b(G) are interpreted
as isomorphism classes of finite G-sets, and multiplication is given by direct product of G-
sets. The element ρ is the regular representation [G/1], and is the only projective basis
element.

It is well known that b(G) is semisimple. Its species are as follows. If H is a subgroup
of G then sH : b(G) → C sends a G-set X to |XH |, the number of fixed points of H on X.
This is obviously a ring homomorphism, and two subgroups give rise to the same species if
and only if they are conjugate.

A collection X of basis elements [G/H] is a representation ideal if and only if it corre-
sponds to a collection H of subgroups H 6 G, closed under conjugacy, closed under taking
subgroups, and not containing G. Thus Xmax corresponds to the collection of all proper
subgroups, while Xproj corresponds to the collection just consisting of the trivial subgroup.
Since there are as many species as there are basis elements, bC(G) = C⊗Z b(G) is semisimple.

Dress [37] investigated idempotents in b(G), and discovered that there is a one to one cor-
respondence between the primitive idempotents and conjugacy classes of perfect subgroups
of G. So the statement that the only idempotents in b(G) are 0 and 1 is equivalent to the
statement that G is soluble.
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CHAPTER 5

Examples and Problems

5.1. The two dimensional module for Z/5

We begin with the example in the introduction to [13]. Consider the two dimensional
module J2 for G = Z/5 = 〈g | g5 = 1〉 over a field k of characteristic five given by

g 7→
(

1 1
0 1

)
.

There are five indecomposable kG-modules J1, . . . , J5 corresponding to Jordan blocks of
lengths between 1 and 5 and eigenvalue 1, representing the element g; the Jordan block of
length two is illustrated above, and the one of length five is the projective indecomposable
module. The table of tensor products is as follows.

J1 J2 J3 J4 J5

J1 J1 J2 J3 J4 J5

J2 J2 J1 ⊕ J3 J2 ⊕ J4 J3 ⊕ J5 2J5

J3 J3 J2 ⊕ J4 J1 ⊕ J3 ⊕ J5 J2 ⊕ 2J5 3J5

J4 J4 J3 ⊕ J5 J2 ⊕ 2J5 J1 ⊕ 3J5 4J5

J5 J5 2J5 3J5 4J5 5J5

It is clearly visible from this table that the only non-trivial representation ideal is the pro-
jective ideal {J5}. The tensor powers J⊗n2 are given by the columns of the following table.

n→ 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

J1 1 0 1 0 2 0 5 0 13 0 34 0 89
J2 0 1 0 2 0 5 0 13 0 34 0 89 0
J3 0 0 1 0 3 0 8 0 21 0 55 0 144
J4 0 0 0 1 0 3 0 8 0 21 0 55 0

J5 0 0 0 0 1 2 7 14 36 72 165 330 715 . . .

The Fibonacci pattern in the non-projective summands is clear. It should come as no
surprise that the dimension of the non-projective part of J⊗n2 is given by cG2n(J2) ∼ τ 2n+1

and cG2n+1(J2) ∼ 2τ 2n+1 where

τ = (1 +
√

5)/2 = 2 cos(π/5) ∼ 1.618034

is the golden ratio. More precisely, we have

cG2n(J2) = F2n−1 + 3F2n = F2n + F2n+2 = τ 2n+1 + τ̄ 2n+1, cG2n+1(J2) = 2cG2n(J2),

where Fn is the nth Fibonacci number and

τ̄ = −1/τ = 1− τ = (1−
√

5)/2 = 2 cos(3π/5) ∼ −0.618034.
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Thus we have γG(J2) = τ . In the next section, we put this in a broader context.

5.2. The cyclic group of order p

The classification of modules for the cyclic group of order p in characteristic p is well
known. Let G = 〈g | gp = 1 and k be a field of characteristic p. We have (g−1)p = gp−1 = 0
in kG, and so if M is a kG-module then g−1 acts nilpotently. It follows that the eigenvalues
of g on M are all equal to one, and the action of g on M may be put into Jordan canonical
form without extending the field. So the indecomposable kG-modules correspond to Jordan
blocks with eigenvalue one and dimension between one and p:

g 7→


1 1 0 · · · 0 0
0 1 1 0 0
...

. . .
...

0 0 1 1
0 0 · · · 0 1


We write Jj for the indecomposable kG-module of dimension j for 1 6 j 6 p. The projective
modules are the direct sums of copies of Jp. Tensor products are determined by

J2 ⊗ Jj ∼=


J2 j = 1

Jj+1 ⊕ Jj−1 2 6 j 6 p− 1

Jp ⊕ Jp j = p.

It follows from these relations that every element of a(G) is a polynomial in [J2]. If p = 2,
this shows that a(G) ∼= Z[X]/(X2 − 2X), where X corresponds to [J2]. So we shall assume
for the rest of this section that p > 3, in which case we have, for example, [J3] = [J2]2 − 1.

Next, we discuss the species of a(G). This discussion is based on the work of Green [48],
Srinivasan [88], and involves the Chebyshev polynomials of the second kind Uj(X). Back-
ground material on these polynomials can be found in Rivlin [83].

Definition 5.2.1. The Chebyshev polynomials of the second kind Uj(X) are defined
inductively for j > 0 by U0(X) = 1, U1(X) = 2X, and for j > 2,

Uj(X) = 2XUj−1(X)− Uj−2(X).

The first few are as follows:

U0(X) = 1 U4(X) = 16X4 − 12X2 + 1

U1(X) = 2X U5(X) = 32X5 − 32X3 + 6X

U2(X) = 4X2 − 1 U6(X) = 64X6 − 80X4 + 24X2 − 1

U3(X) = 8X3 − 4X U7(X) = 128X7 − 192X5 + 80X3 − 8X.

and in general

Uj(X) =

b j
2
c∑

i=0

(−1)i
(
j − i
i

)
(2X)j−2i.
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Lemma 5.2.2. We have

Uj(cos θ) =
sin(j + 1)θ

sin θ
.

The roots of Uj(X) are real and distinct, symmetric about X = 0, and given by

X = cos(kπ/(j + 1)), 1 6 k 6 j.

Proof. The verification of the formula for Uj(cos θ) is an easy inductive argument using
standard trigonometric identities. The vanishing for these values of X then follows from the
fact that sin(kπ) = 0 while sin(kπ/(j + 1)) 6= 0. Since the number of such roots is j, which
is the degree of Uj(X), these are the only roots. �

−1 1

−5

5

U4(X)

−1 1

−5

5

U5(X)

Definition 5.2.3. We define fj(X) = Uj−1(X/2). So we have f1(X) = 1, f2(X) = X
and for j > 2,

(5.2.4) Xfj(X) = fj+1(X) + fj−1(X).

The first few are as follows:

f1(X) = 1 f6(X) = X5 − 4X3 + 3X

f2(X) = X f7(X) = X6 − 5X4 + 6X2 − 1

f3(X) = X2 − 1 f8(X) = X7 − 6X5 + 10X3 − 4X

f4(X) = X3 − 2X f9(X) = X8 − 7X6 + 15X4 − 10X2 + 1

f5(X) = X4 − 3X2 + 1 f10(X) = X9 − 8X7 + 21X5 − 20X3 + 5X.

By Lemma 5.2.2 we have

(5.2.5) fj

(
sin 2θ

sin θ

)
=

sin jθ

sin θ

(note that sin 2θ/ sin θ = 2 cos θ).

We write ζn for e2πi/n, a primitive nth root of unity in C. For the purposes of this section,
we do not need part (vii) of the following lemma, only part (vi). But part (vii) will be used
in Section 5.8.

Lemma 5.2.6.

(i) fj(X) is a polynomial of degree j − 1 in X with integer coefficients.
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(ii) If j is odd then fj(X) is a polynomial in X2 of degree (j − 1)/2.
(iii) If j is even then fj(X) is X times a polynomial in X2 of degree (j − 2)/2.
(iv) The roots of fj(X) are ζk2j + ζ−k2j = 2 cos(kπ/j) with 1 6 k 6 j − 1, each with

multiplicity one.
(v) If j1 divides j2 then fj1(X) divides fj2(X).

(vi) If p > 2 is a prime then fp(X) is an irreducible polynomial in X2 of degree (p−1)/2,
whose roots are ζk2p + ζ−k2p with 1 6 k 6 p − 1. The splitting field of fp(X) is the
real subfield of the cyclotomic field of pth roots of unity.

(vii) More generally, if pm > 2 is a prime power then fpm(X)/fpm−1(X) is an irreducible

polynomial in X2 of degree pm−1(p − 1)/2, whose roots are ζk2pm + ζ−k2pm with 1 6
k 6 pm − 1 not divisible by p. The splitting field of fpm(X)/fpm−1(X) is the real
subfield of the cyclotomic field of 2pmth roots of unity.

Proof. Parts (i)–(iii) follow from the definition and induction on j. Part (iv) follows
from Lemma 5.2.2. It follows from (iv) that if j1 divides j2 then the roots of fj1 are among
the roots of fj2 , which proves (v). Since (vi) is a special case of (vii), it remains to prove
(vii). This follows from the fact that the real subfield of the cyclotomic field of 2pmth roots
of unity is generated by the element ζ2pm + ζ−1

2pm , whose conjugates are the ζk2pm + ζ−k2pm with

1 6 k 6 pm − 1 not divisible by p, and the degree of this real subfield is pm−1(p − 1)/2
provided pm > 2. Note that if p is odd then the cyclotomic field of 2pmth roots of unity is
the same as that of pmth roots of unity. �

Theorem 5.2.7. For 1 6 j 6 p we have fj([J2]) = [Jj] in a(G). We have

a(G)/a(G, 1) ∼= Z[X]/(fp(X)),

where X corresponds to the element [J2].

Proof. We have [J2][Jj] = [Jj−1] + [Jj+1] for 1 6 j 6 p − 1, and we also have
f2(X)fj(X) = fj−1(X) + fj+1(X). So by induction on j we deduce that fj([J2]) = [Jj]
for 1 6 j 6 p. The ideal a(G, 1) is generated by [Jp], so we have a surjective map
Z[X] → a(G)/a(G, 1) sending X to [J2] and fj(X) to [Jj] for 1 6 j 6 p − 1, and whose
kernel contains fp(X). Comparing ranks, we see that this map induces an isomorphism
Z[X]/(fp(X))→ a(G)/a(G, 1). �

Theorem 5.2.8. The species of aproj(G) = a(G)/a(G, 1) are given by

sk[J2] = 2 cos(kπ/p)

for 1 6 k 6 p− 1. We have

sk[Jj] =
sin(jkπ/p)

sin(kπ/p)
= fj(2 cos(kπ/p)).

Proof. By Theorem 5.2.7 we have a(G)/a(G, 1) ∼= Z[X]/(fp(X)) with X corresponding
to J2. By Lemma 5.2.6 with m = 1, fp(X) is irreducible, and its roots are X = 2 cos(kπ/p)
with 1 6 k 6 p − 1. So the ring homomorphisms a(G)/a(G, 1) → C are given by sk[J2] =
2 cos(kπ/p). Still referring to Theorem 5.2.7, we have [Jj] = fj[J2], and so

sk[Jj] = fj(sk[J2]) = fj(2 cos(kπ/p)),
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which by (5.2.5) is equal to sin(jkπ/p)/ sin(kπ/p). �

Corollary 5.2.9. The species of a(G) are the core bounded ones, which are given in
Theorem 5.2.8, together with s0 = dim: a(G)→ C. �

Remark 5.2.10. Since [J2][Jp] = 2[Jp], the proof of Theorem 5.2.7 shows that

a(G) ∼= Z[X]/((X − 2)fp(X)),

with X corresponding to [J2].

Example 5.2.11. For p = 3 and p = 5 the species table of Z/p is as follows:

p = 3 s0 s1 s2

[J1] 1 1 1
[J2] 2 1 −1
[J3] 3 0 0

p = 5 s0 s1 s2 s3 s4

[J1] 1 1 1 1 1
[J2] 2 τ −τ̄ τ̄ −τ
[J3] 3 τ τ̄ τ̄ τ
[J4] 4 1 −1 1 −1
[J5] 5 0 0 0 0

Theorem 5.2.12. We have γG(J2) = 2 cos(π/p), and more generally

γG(Jj) = sin(jπ/p)/ sin(π/p).

Proof. It follows from Theorem 4.9.2 that γG(J2) is the largest value of a core bounded
species on [J2]. The core bounded species are described in Theorem 5.2.8 and its corollary.
The largest of the numbers sk[J2] = 2 cos(kπ/p) for 1 6 k 6 p− 1 is s1[J2] = 2 cos(π/p), and
so γG(J2) = 2 cos(π/p). By Theorem 3.5.1, for all kG-modules M we have γG(M) = s1[M ].
In particular, γG(Jj) = s1[Jj] = sin(jπ/p)/ sin(π/p). �

Approximate values of γG(Jj)

p 3 5 7 11 13 17 19 23

J1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

J2 1.00000 1.61803 1.80194 1.91899 1.94188 1.96595 1.97272 1.98137

J3 0.00000 1.61803 2.24698 2.68251 2.77091 2.86494 2.89163 2.92583

J4 1.00000 2.24698 3.22871 3.43891 3.66638 3.73167 3.81579

J5 0.00000 1.80194 3.51334 3.90704 4.34296 4.46992 4.63467

J6 1.00000 3.51334 4.14811 4.87165 5.08623 5.36722

J7 0.00000 3.22871 4.14811 5.23444 5.56381 5.99978

J8 2.68251 3.90704 5.41898 5.88962 6.52058

The Adams operations ψn on the representation rings of cyclic groups were investigated
by Almkvist [2], Kouwenhoven [63], Bryant and Johnson [20, 21], Nam and Oh [71, 72].

Theorem 5.2.13. Suppose that p does not divide n. Then we have the following.

(i) For 1 6 n 6 p− 1, ψn[J2] = [Jn+1]− [Jn−1].
(ii) ψ2p−n = ψ2p+n = ψn = ψp

mn on a(G) for all m > 0.
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(iii) ψn(sk)[J2] = 2 cosnkπ/p.
(iv) If nk ≡ ±j (mod 2p) with 1 6 j 6 p− 1 then ψn(sk) = sj.

Proof. (i) This is proved in Section 5 of [2], see also Theorem 5.1 of [20].
(ii) The first two equalities are proved in Theorem 3.3 of [20]. The third follows from the

fact that the modules Ji are defined over Fp, so the Frobenius map ψp
m

acts as the identity
map on a(G) for all m > 0.

(iii) Using (i), we have

ψn(sk)[J2] = sk(ψ
n[J2])

= sk[Jn+1]− sk[Jn−1]

= (sin((n+ 1)kπ/p)− sin((n− 1)kπ/p))/ sin(kπ/p)

= (2 cosnkπ/p sin kπ/p)/ sin kπ/p

= 2 cosnkπ/p.

(iv) A species sj is determined by its value on [J2]. So this follows from (ii), together
with the fact that if m ≡ ±j (mod 2p) then cosmπ/p = cos jπ/p. �

5.3. Some Frobenius groups

Let G be a Frobenius group with cyclic normal Sylow p-subgroup and cyclic quotient.
The structure of a(G) was investigated by O’Reilly [73, 74], Lam [64], Lam and Reiner [65],
Benson and Carlson [11]. In this section we shall concentrate on the case Z/poZ/m where
the Sylow p-subgroup has order p. We allow the action to have a kernel, so we do not assume
that m divides p − 1. In a later section we shall examine Z/pn o Z/m, so we set up the
notation in that generality, and then impose the assumption that n = 1.

Let pn be a prime power, let m be a positive integer not divisible by p, and let q be a
positive integer satisfying qm ≡ 1 (mod pn). Let

G = 〈g, h | gpn = 1, h2m = 1, hgh−1 = gq〉 ∼= Z/po Z/2m,

a Frobenius group of order 2pnm, and let P = 〈g〉, H = 〈h〉 as subgroups of G. We remark
that the representation ring of G/〈hm〉 ∼= Z/pn o Z/m is contained in a(G), and we shall
identify the image. But it turns out to be convenient to have this extra central involution.
This only really matters when m is even, but we do it in all cases for uniformity. Let k be a
field of characteristic p containing a primitive 2mth root of unity η. Let d be chosen so that
η2d ≡ q (mod p).

The element

x =
∑

16j6pn−1
(p,j)=1

gj/j

spans an H-invariant complement to J2(kP ) in J(kP ), and hxh−1 = qx. We have the
presentation

kG = k〈h, x | xpn = 0, h2m = 1, hx = qxh〉.
There are 2m isomorphism classes of simple modules Si, i ∈ Z/2m, all one dimensional,
corresponding to the characters of H. Letting vi be a basis vector for Si, we have hvi = ηivi
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and xvi = 0. The space Ext1kG(Si, Sj) is one dimensional if j = i + 2d and zero dimensional
otherwise. The projective indecomposable modules are uniserial of length pn, with composi-
tion factors (from the top) of Pi being Si, Si+2d, Si+4d, . . . , Si. Every indecomposable module
is a quotient of a projective indecomposable module. We write Jj (1 6 j 6 pn) for the inde-
composable module of length j with composition factors S−d(j−1), S−d(j−3), . . . , Sd(j−1). Note
that it is only because of the extra involution that we are able to do this symmetrically about
the middle. A complete list of the 2mp isomorphism classes of indecomposable kG-modules
is given by the modules Jj ⊗ Si with 1 6 j 6 pn, 0 6 i < 2m.

Now assume that n = 1. We have

J2 ⊗ Jj ∼=


J2 j = 1,

Jj+1 ⊕ Jj−1 2 6 j 6 p− 1

(Jp ⊗ Sd)⊕ (Jp ⊗ S−d) j = p.

This should be compared with the relations given in Section 5.2, where the modules Jj are
the restrictions to P of the ones here.

Theorem 5.3.1. Let G = Z/po Z/2m as above. We have

a(G) ∼= Z[X, Y ]/(Y 2m − 1, (X − Y d − Y −d)fp(X)),

where X corresponds to J2 and Y corresponds to S1, and the polynomials fi are described in
Definition 5.2.3.

Proof. This is proved in essentially the same way as Theorem 5.2.7 and Remark 5.2.10,
with fj(X) corresponding to [Jj] for 1 6 j 6 p. �

Corollary 5.3.2. The ring a(G) is semisimple. Its 2pm species si,j (0 6 i < p, 0 6
j < 2m) are given by

X 7→

{
ζdj2m + ζ−dj2m = 2 cos(djπ/m) i = 0,

ζ i2p + ζ−i2p = 2 cos(iπ/p) 0 < i < p.

Y 7→ ζj2m.

The Brauer species are the ones with i = 0.

Proof. The assignment Y 7→ ζj2m satisfies the relation Y 2m − 1 = 0. If i = 0 then

X 7→ ζdj2m+ζ−dj2m makes the factor (X−Y d−Y −d) vanish. If 0 < i < p−1 then X 7→ ζ i2p+ζ−i2p

makes the factor fp(X) vanish by Lemma 5.2.6.
There are 2mp species si,j, and the Z-rank of a(G) is 2mp, so there can be no more

species, and aC(G) is semisimple. �

To identify the subring a(G)/〈hm〉, we define some polynomials φi of two variables as
follows.

Definition 5.3.3. Define polynomials φi(y, z) inductively as follows: φ1(y, z) = 1,
φ2(y, z) = z, and

φi(y, z) = zφi−1(y, z)− yφi−2(y, z) (i > 3),
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an inhomogeneous polynomial of degree i−1. These are related to the Chebyshev polynomials
of the second kind Uj(X) introduced in Section 5.2 via

φi(y, z) = y
i−1
2 fi
(

z
y1/2

)
= y

i−1
2 Ui−1

(
z

2y1/2

)
.

There is an illusory choice of square root of y here: as long as we take y
i−1
2 to be the (i−1)st

power of y1/2, there is no ambiguity in the answer.

Theorem 5.3.4. a(Z/p o Z/m) = a(G/〈hm〉) ∼= Z[y, z]/(ym − 1, (z − yd − 1)φp(y
d, z))

with y = Y 2 and z = XY d. This is a complete intersection of Z-rank pm, with a Z-basis
consisting of the monomials yizj with 0 6 i < m, 0 6 j < p.

Proof. The modules S2 and J2 ⊗ Sd generate the representation ring of G/〈hm〉, and
correspond to the elements Y 2 and XY d. We have φp(y

d, z) = φp(Y
2d, XY d) = Y (p−1)dfp(X),

and so (z−yd−1)φp(y, z) = (X−Y d−Y −d)Y pdfp(X). Since Y pd is invertible, this is equivalent
to the relation given in a(G). �

Corollary 5.3.5. The ring aC(Z/po Z/m) is semisimple. Its pm species si,j (0 6 i <
p, 0 6 j < m) are given by

y 7→ ζ2j
2m

z 7→

{
ζ2dj

2m + 1 i = 0,

(ζ i2p + ζ−i2p )ζdj2m 0 < i < p.

The Brauer species are the ones with i = 0. �

Example 5.3.6. The smallest example is the symmetric group of degree three, which is
a semidirect product Z/3 o Z/2, in characteristic three. The species table is as follows.

s0,0 s0,1 s1,0 s1,1 s2,0 s2,1

[S0] 1 1 1 1 1 1

y = [S2] 1 −1 1 −1 1 −1

z = [J2 ⊗ S1] 2 0 1 i −1 −i
yz = [J2 ⊗ S3] 2 0 1 −i −1 i

[J3] 3 1 0 0 0 0

[J3 ⊗ S2] 3 −1 0 0 0 0
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Example 5.3.7. The species table for Z/5oZ/4 in characteristic five is as follows, with
τ = (1 +

√
5)/2 and ζ = ζ8 = eπi/4 = (1 + i)/

√
2.

s0,0 s0,1 s0,2 s0,3 s1,0 s1,1 s1,2 s1,3 s2,0 s2,1 s2,2 s2,3 s3,0 s3,1 s3,2 s3,2 s4.0 s4,1 s4,2 s4,3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

y 1 i −1 −i 1 i −1 −i 1 i −1 −i 1 i −1 −i 1 i −1 −i
y2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

y3 1 −i −1 i 1 −i −1 i 1 −i −1 i 1 −i −1 i 1 −i −1 i

z 2 1 + i 0 1− i τ ζτ iτ −ζ̄τ −τ̄ −ζτ̄ −iτ̄ ζ̄τ̄ τ̄ ζτ̄ iτ̄ −ζ̄τ̄ −τ −ζτ −iτ ζ̄τ

2 −1 + i 0 −1− i τ −ζ̄τ −iτ ζτ −τ̄ ζ̄τ̄ iτ̄ −ζτ̄ τ̄ −ζ̄τ̄ −iτ̄ ζτ̄ −τ ζ̄τ iτ −ζτ
2 −1− i 0 −1 + i τ −ζτ iτ ζ̄τ −τ̄ ζτ̄ −iτ̄ −ζ̄τ̄ τ̄ −ζτ̄ iτ̄ ζ̄τ̄ −τ ζτ −iτ −ζ̄τ
2 1− i 0 1 + i τ ζ̄τ −iτ −ζτ −τ̄ −ζ̄τ̄ iτ̄ ζτ̄ τ̄ ζ̄τ̄ −iτ̄ −ζτ̄ −τ −ζ̄τ iτ ζτ

3 i 1 −i τ iτ −τ −iτ τ̄ iτ̄ −τ̄ −iτ̄ τ̄ iτ̄ −τ̄ −iτ̄ τ iτ −τ −iτ
3 −1 −1 −1 τ −τ τ −τ τ̄ −τ̄ τ̄ −τ̄ τ̄ −τ̄ τ̄ −τ̄ τ −τ τ −τ
3 −i 1 i τ −iτ −τ iτ τ̄ −iτ̄ −τ̄ iτ̄ τ̄ −iτ̄ −τ̄ iτ̄ τ −iτ −τ iτ

3 1 −1 1 τ τ τ τ τ̄ τ̄ τ̄ τ̄ τ̄ τ̄ τ̄ τ̄ τ τ τ τ

4 0 0 0 1 −ζ̄ −i ζ −1 ζ̄ i −ζ 1 −ζ̄ −i ζ −1 ζ̄ i −ζ
4 0 0 0 1 −ζ i ζ̄ −1 ζ −i −ζ̄ 1 −ζ i ζ̄ −1 ζ −i −ζ̄
4 0 0 0 1 ζ̄ −i −ζ −1 −ζ̄ i ζ 1 ζ̄ −i −ζ −1 −ζ̄ i ζ

4 0 0 0 1 ζ i −ζ̄ −1 −ζ −i ζ̄ 1 ζ i −ζ̄ −1 −ζ −i ζ̄

5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 i −1 −i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 −i −1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.4. Cyclic central subgroups

Let g be a central element of a group G of order p, and Z = 〈g〉 6 G with Z ∼= Z/p. In
this section we describe p−1 algebra homomorphisms ŝ` : aC(G)→ aC(G/Z) (1 6 ` 6 p−1).
We show that these extend to Banach algebra homomorphisms ŝ` : â(G)→ â(G/Z). In the
next section we use this construction to examine the species of a(Z/pn).

We write X for g − 1 ∈ kG, so Xp = 0. If M is a kG-module, and 1 6 i 6 p, we let

Fi(M) =
Ker(X) ∩ Im(X i−1)

Ker(X) ∩ Im(X i)
.

This is annihilated by X, so g acts as the identity, and Fi(M) therefore has the structure of
a kG/Z-module.

As in Section 5.2, we write [Ji], 1 6 i 6 p, for the indecomposable kZ-modules, and we
write sj : a(Z)→ C for the species, with 0 6 j 6 p− 1, described in Theorem 5.2.8 and its
Corollary. The interpretation of Fi is that it picks out the socles of the Jordan blocks of X
on M of length exactly i.

Lemma 5.4.1. The dimension of Fi(M) is equal to [resG,Z(M) : Ji].

Proof. Applying Ker(X)∩ Im(X i−1) to Jj, we get zero if j < i and Soc(Jj) if j > i. So
the quotient (Ker(X) ∩ Im(X i−1))/(Ker(X) ∩ Im(X i)) is isomorphic to Soc(Ji) if j = i and
zero otherwise. �
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Proposition 5.4.2. If Ji ⊗ Jj =
⊕

k ci,j,kJk then for 1 6 k 6 p− 1 we have

Fk(M ⊗N) ∼=
⊕
i,j

ci,j,kFi(M)⊗ Fj(N).

Proof. This amounts to the semisimplicity of the coproduct on the simple functors
Fk : mod(kZ/p)→ vect(k) for 1 6 k 6 p− 1:

∆Fk ∼=
⊕
i,j

ci,j,kFi ⊗ Fj : mod(kZ/p)×mod(kZ/p)→ vect(k).

The easiest proof of semisimplicity is to notice that this functor is isomorphic to the contra-
gredient dual functor sending the pair (M,N) to (Fk(M

∗ ⊗N∗))∗, and all the multiplicities
ci,j,k with 1 6 k 6 p−1 are zero or one. More precisely, if i 6 j and i+j 6 p then (Feit [40],

Theorem VIII.2.7) Ji ⊗ Jj ∼=
⊕i

s=1 Jj−i+2s−1 and Jp−i ⊗ Jp−j ∼= (p − i − j)Jp ⊕ (Ji ⊗ Jj).
Using the commutativity of tensor product, all cases are covered in these two statements,
since either i+ j 6 p or (p− i) + (p− j) 6 p. Note that some of the multiplicities ci,j,p are
greater than one, and ∆Fp is not semisimple. �

Theorem 5.4.3. For 1 6 ` 6 p− 1 the map

ŝ` : [M ] 7→
p−1∑
k=1

s`([Jk])[Fk(M)]

defines an algebra homomorphism ŝ` : aC(G) → aC(G/Z), which is the identity on the sub-
algebra aC(G/Z) ⊆ aC(G). This is continuous with respect to the norm, and so it extends to
give a map of Banach algebras ŝj : â(G)→ â(G/Z).

Proof. To see that ŝj is a ring homomorphism, we just have to check multiplicativity.
Using Proposition 5.4.2 we have

ŝ`([M ])ŝ`([N ]) =

p−1∑
i=1

s`([Ji])[Fi(M)]

p−1∑
j=1

s`([Jj])[Fj(N)]

=

p−1∑
i,j=1

s`([Ji ⊗ Jj])[Fi(M)][Fj(N)]

=

p−1∑
k=1

∑
i,j

ci,j,ks`([Jk])[Fi(M)⊗ Fj(N)]

=

p−1∑
k=1

s`([Jk])[Fk(M ⊗N)]

= ŝ`([M ⊗N ]).

To see that ŝ` is the identity on aC(G/Z), we note that if M is a k(G/Z)-module, regarded
as a kG-module via inflation, then F1(M) = M and Fk(M) = 0 for 2 6 k 6 p. Thus
ŝ`([M ]) = s`([J1])[M ] = [M ].
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To prove continuity, we prove boundedness and use Lemma 2.1.3. If x =
∑

i∈I ai[Mi]
then

‖ŝ`(x)‖ 6
p−1∑
k=1

∑
i∈I

|ai||s`(Jk)| dimFk(Mi)

6
∑
i∈I

|ai|
p−1∑
k=1

k dimFk(Mi)

=
∑
i∈I

|ai| dimMi = ‖x‖. �

Remark 5.4.4. When p = 2, there is only one relevant value of ` in Proposition 5.4.2
and Theorem 5.4.3. In this case, they both amount to the statement that F1(M ⊗ N) ∼=
F1(M)⊗ F1(N). This is known as the Künneth theorem.

If s : aC(G/Z) → C is a species, then we compose to give p − 1 species sŝ` : aC(G) → C
(1 6 ` 6 p− 1).

5.5. Cyclic p-groups

The structure of a(G) with G a cyclic group of order a power of a prime was investigated
by Almkvist and Fossum [3], Green [48], Renaud [80], Srinivasan [88]. An abstract proof
of semisimplicity of a(G) avoiding computations was given in Benson and Carlson [11]. In
this section we provide a new computational approach to the description of the species of
aC(Z/pn), and prove that it is semisimple.

It turns out that there is one more ring homomorphism ŝ0 : a(Z/pn+1) → a(Z/pn) that
we need to use. It would be nice to have a more “functorial” way to describe this, but that
does not seem so easy.

Lemma 5.5.1. The linear map defined by

ŝ0 : [J2bpn±r] 7→ 2b[Jpn ]± [Jr]

is a ring homomorphism a(Z/pn+1)→ a(Z/pn), which is the identity on the subring a(Z/pn) ⊆
a(Z/pn+1). Here, 0 6 b 6 p/2 and 0 6 r 6 pn.

This formula covers all possible lengths of Jordan blocks, and if r = pn the two different
values of b describing the same module give the same answer.

Proof. The ring a(Z/pn+1) is generated by the subring a(Z/pn) together with one more
element [Jpn+1]. The effect of multiplying [Jpn+1] with a basis element [Jj] (copied from
(2.8c)–(2.8e) of Green [48], see also Section I.1 of [3]) is as follows. We write j = j0p

n + j1

with 0 6 j1 6 pn − 1. Then

[Jpn+1][Jj] =


[Jpn+j1 ] + (j1 − 1)[Jpn ] j 6 pn

[J(j0+1)pn+j1 ] + (j1 − 1)[J(j0+1)pn ] + [J(j0+1)pn−j1 ]

+(pn − j1 − 1)[Jj0pn ] + [J(j0−1)pn+j1 ] pn < j 6 (p− 1)pn

(j1 + 1)[Jpn+1 ] + (pn − j1 − 1)[J(p−1)pn ] + [J(p−2)pn+j1 ] (p− 1)pn < j 6 pn+1
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Now the map ŝ0 preserves dimension, and takes [Jj0pn ] to j0[Jpn ] for 1 6 j0 6 p, so it suffices
to work modulo the basis elements of the form [Jj0pn ]. This makes the above relations easier
to read:

[Jpn+1][Jj] ≡


[Jpn+j1 ] j 6 pn

[J(j0+1)pn+j1 ] + [J(j0+1)pn−j1 ] + [J(j0−1)pn+j1 ] pn < j 6 (p− 1)pn

[J(p−2)pn+j1 ] (p− 1)pn < j 6 pn+1

(5.5.2)

Under the map ŝ0, we must divide into two cases according to the parity of j0. If j0 is even,
both sides go to −[Jpn−j1 ], whereas if j0 is odd, both sides go to [Jj1 ]. �

Theorem 5.5.3. The species s`0 ŝ`1 . . . ŝ`n−1 : aC(Z/pn) → C with 0 6 `i 6 p − 1 for
0 6 i 6 n− 1 are all distinct.

Proof. Consider the elements χ0, . . . , χn−1 of aC(Z/pn) given by

χi =

{
[J2] i = 0,

[Jpi+1]− [Jpi−1] 1 6 i 6 n− 1.

These generate aC(Z/pn) as an algebra. The element χi is in aC(Z/pi+1) ⊆ aC(Z/pn), and
the map ŝ` : aC(Z/pi+1)→ aC(Z/pi) evaluated at χi gives

ŝ`(χi) =

{
2([Jpi ]− [Jpi−1]) ` = 0

2 cos `π/p [J1] 1 6 ` 6 p− 1.

Furthermore, we have

ŝ`([Jpi+1 ]− [Jpi+1−1]) =

{
[Jpi ]− [Jpi−1] ` = 0

(−1)`[J1] 1 6 ` 6 p− 1.

Applying these formulas inductively, we have

s`0 ŝ`1 . . . ŝ`n−1(χi) =

{
±2 `i = 0

2 cos `iπ/p 1 6 `i 6 p− 1.

If 1 6 `i 6 p − 1 then |2 cos `iπ/p| < 2, and since cos : [0, π] → R is injective, 2 cos `iπ/p
determines `i. Thus `i is determined by the value of s`0 ŝ`1 . . . ŝ`n−1 on χi. �

Corollary 5.5.4. The algebra aC(Z/pn) is semisimple.

Proof. By Lemma 1.1.10, the pn distinct species of the algebra aC(Z/pn) described
in Theorem 5.5.3 are linearly independent. This algebra has dimension pn. These species
therefore give us an isomorphism between aC(Z/pn) and a product of pn copies of C. �

Example 5.5.5. Let G = Z/4. The tensor product table is as follows, with the obvious
abbreviated notation.

1 2 3 4

2 22 42 42

3 42 421 43

4 42 43 44

Then Fj : a(G)→ a(Z/2), the ŝj : aC(G)→ aC(Z/2) and the siŝj are as follows.
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F1 F2 ŝ0 ŝ1 s0ŝ0 s1ŝ0 s0ŝ1 s1ŝ1

[J1] [J1] 0 [J1] [J1] 1 1 1 1

[J2] [J2] 0 [J2] [J2] 2 0 2 0

[J3] [J1] [J1] 2[J2]− [J1] [J1] 3 −1 1 1

[J4] 0 [J2] 2[J2] 0 4 0 0 0

The last four columns of this table give the species table for a(Z/4).

Example 5.5.6. Let G = Z/8. The tensor product table is as follows.

1 2 3 4 5 6 7 8

2 22 42 42 64 62 86 82

3 42 421 43 742 864 825 83

4 42 43 44 843 8242 834 84

5 64 742 843 82421 8342 843 85

6 62 864 8242 8342 8422 852 86

7 86 825 834 843 852 861 87

8 82 83 84 85 86 87 88

Then the Fj : a(G)→ a(Z/4), the ŝj : aC(G)→ aC(Z/4) and the siŝj ŝk are as follows.

F1 F2 ŝ0 ŝ1 s0ŝ0ŝ0 s1ŝ0ŝ0 s0ŝ1ŝ0 s1ŝ1ŝ0 s0ŝ0ŝ1 s1ŝ0ŝ1 s0ŝ1ŝ1 s1ŝ1ŝ1

[J1] [J1] 0 [J1] [J1] 1 1 1 1 1 1 1 1

[J2] [J2] 0 [J2] [J2] 2 0 2 0 2 0 2 0

[J3] [J3] 0 [J3] [J3] 3 −1 1 1 3 −1 1 1

[J4] [J4] 0 [J4] [J4] 4 0 0 0 4 0 0 0

[J5] [J3] [J1] 2[J4]− [J3] [J3] 5 1 −1 −1 3 −1 1 1

[J6] [J2] [J2] 2[J4]− [J2] [J2] 6 0 −2 0 2 0 2 0

[J7] [J1] [J3] 2[J4]− [J1] [J1] 7 −1 −1 −1 1 1 1 1

[J8] 0 [J4] [2J4] 0 8 0 0 0 0 0 0 0

The last eight columns of this table give the species table for a(Z/8).

Example 5.5.7. Let G = Z/9. The tensor product table is as follows.

1 2 3 4 5 6 7 8 9

2 31 32 53 64 62 86 97 92

3 32 33 632 623 63 962 926 93

4 53 632 7531 8642 9623 9264 935 94

5 64 623 8642 97531 92632 9353 944 95

6 62 63 9623 92632 9333 9432 953 96

7 86 962 9264 9353 9432 9531 962 97

8 97 926 935 944 953 962 971 98

9 92 93 94 95 96 97 98 99

Then the Fj : a(G)→ a(Z/3), the ŝj : aC(G)→ aC(Z/3) and the siŝj are as follows.

95



F1 F2 F3 ŝ0 ŝ1 ŝ2 s0ŝ0 s1ŝ0 s2ŝ0 s0ŝ1 s1ŝ1 s2ŝ1 s0ŝ2 s1ŝ2 s2ŝ2

[J1] [J1] 0 0 [J1] [J1] [J1] 1 1 1 1 1 1 1 1 1

[J2] [J2] 0 0 [J2] [J2] [J2] 2 1 −1 2 1 −1 2 1 −1

[J3] [J3] 0 0 [J3] [J3] [J3] 3 0 0 3 0 0 3 0 0

[J4] [J2] [J1] 0 2[J3]− [J2] [J2] + [J1] [J2]− [J1] 4 −1 1 3 2 0 1 0 −2

[J5] [J1] [J2] 0 2[J3]− [J1] [J1] + [J2] [J1]− [J2] 5 −1 −1 3 2 0 −1 0 2

[J6] 0 [J3] 0 2[J3] [J3] −[J3] 6 0 0 3 0 0 −3 0 0

[J7] 0 [J2] [J1] 2[J3] + [J1] [J2] −[J2] 7 1 1 2 1 −1 −2 −1 1

[J8] 0 [J1] [J2] 2[J3] + [J2] [J1] −[J1] 8 1 −1 1 1 1 −1 −1 −1

[J9] 0 0 [J3] 3[J3] 0 0 9 0 0 0 0 0 0 0 0

The last nine columns of this table give the species table for a(Z/9).
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Example 5.5.8. Let G = Z/25. A quarter of the tensor product table is as follows; the
rest may be deduced using Ω(M)⊗N ∼= Ω(M ⊗N)⊕ (projective) (Schanuel’s lemma), and
so on.

1 2 3 4 5 6 7 8

2 3 1 4 2 5 3 52 7 5 8 6 9 7

3 4 2 5 3 1 522 53 8 52 9 7 5 10 8 6

4 5 3 52 2 531 54 9 53 10 8 52 1027 5

5 52 53 54 55 10 54 10253 10352

6 7 5 8 52 9 53 10 54 11 9 53 1 12 10 8 52 2 13 1027 5 3

7 8 6 9 7 5 10 8 52 10253 12 10 8 522 13 11 9 7 5 3 1 14 12 10 8 6 4 2

8 9 7 10 8 6 1027 5 10352 13 1027 5 3 14 12 10 8 6 4 2 15 13 11 9 7 5 3 1

9 10 8 102 7 1036 1045 14 1036 4 15 13 1027 5 3 15212 10 8 522

10 102 103 104 105 15 1045 15210352 15310253

11 12 10 13 102 14 103 15 104 16 14 103 6 17 15 13 1027 5 18 15212 10 8 52

12 13 11 14 12 10 15 13 102 152 103 17 15 13 1027 5 18 16 14 12 10 8 6 4 19 17 15 13 11 9 7 5

1 9 10 11 12

2 10 8 102 12 10 13 11

3 1027 103 13 102 14 12 10

4 1036 104 14 103 15 13 102

5 1045 105 15 104 152103

6 14 1036 4 15 1045 16 14 1036 17 15 13 1027

7 15 13 1027 5 3 15210352 17 15 13 1027 5 18 16 14 12 10 8 6

8 15212 10 8 522 15310253 18 15212 10 8 52 19 17 15 13 11 9 7 5

9 15311 9 531 15410 54 19 15311 9 53 20 18 15212 10 8 52

10 15410 54 15555 20 15410 54 20215310253

11 19 15311 9 53 20 15410 54 21 19 15311 9 531 22 20 18 15212 10 8 522

12 20 18 15212 10 8 52 20215310253 22 20 18 15212 10 8 522 23 21 19 17 15 13 11 9 7 5 3 1
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Then the Fj : a(G)→ a(Z/5), the ŝj : aC(G)→ aC(Z/5) and the siŝj are as follows.

F1 F2 F3 F4 F5 ŝ0 ŝ1 ŝ2 ŝ3 ŝ4 s0ŝ0 s1ŝ0 s2ŝ0 s3ŝ0 s4ŝ0

[J1] [J1] 0 0 0 0 [J1] [J1] [J1] [J1] [J1] 1 1 1 1 1

[J2] [J2] 0 0 0 0 [J2] [J2] [J2] [J2] [J2] 2 τ −τ̄ τ̄ −τ
[J3] [J3] 0 0 0 0 [J3] [J3] [J3] [J3] [J3] 3 τ τ̄ τ̄ τ

[J4] [J4] 0 0 0 0 [J4] [J4] [J4] [J4] [J4] 4 1 −1 1 −1

[J5] [J5] 0 0 0 0 [J5] [J5] [J5] [J5] [J5] 5 0 0 0 0

[J6] [J4] [J1] 0 0 0 2[J5]− [J4] [J4] + τ [J1] [J4]− τ̄ [J1] [J4] + τ̄ [J1] [J4]− τ [J1] 6 −1 1 −1 1

[J7] [J3] [J2] 0 0 0 2[J5]− [J3] [J3] + τ [J2] [J3]− τ̄ [J2] [J3] + τ̄ [J2] [J3]− τ [J2] 7 −τ −τ̄ −τ̄ −τ
[J8] [J2] [J3] 0 0 0 2[J5]− [J2] [J2] + τ [J3] [J2]− τ̄ [J3] [J2] + τ̄ [J3] [J2]− τ [J3] 8 −τ τ̄ −τ̄ τ

[J9] [J1] [J4] 0 0 0 2[J5]− [J1] [J1] + τ [J4] [J1]− τ̄ [J4] [J1] + τ̄ [J4] [J1]− τ [J4] 9 −1 −1 −1 −1

[J10] 0 [J5] 0 0 0 2[J5] τ [J5] −τ̄ [J5] τ̄ [J5] −τ [J5] 10 0 0 0 0

[J11] 0 [J4] [J1] 0 0 2[J5] + [J1] τ([J4] + [J1]) τ̄([J1]− [J4]) τ̄([J4] + [J1]) τ([J1]− [J4]) 11 1 1 1 1

[J12] 0 [J3] [J2] 0 0 2[J5] + [J2] τ [J3] + τ [J2] τ̄([J2]− [J3]) τ̄([J3] + [J2]) τ([J2]− [J3]) 12 τ −τ̄ τ̄ −τ
[J13] 0 [J2] [J3] 0 0 2[J5] + [J3] τ [J2] + τ [J3] τ̄([J3]− [J2]) τ̄([J2] + [J3]) τ([J3]− [J2]) 13 τ τ̄ τ̄ τ

[J14] 0 [J1] [J4] 0 0 2[J5] + [J4] τ [J1] + τ [J4] τ̄([J4]− [J1]) τ̄([J1] + [J4]) τ([J4]− [J1]) 14 1 −1 1 −1

[J15] 0 0 [J5] 0 0 3[J5] τ [J5] τ̄ [J5] τ̄ [J5] τ [J5] 15 0 0 0 0

[J16] 0 0 [J4] [J1] 0 4[J5]− [J4] τ [J4] + [J1] τ̄ [J4]− [J1] τ̄ [J4] + [J1] τ [J4]− [J1] 16 −1 1 −1 1

[J17] 0 0 [J3] [J2] 0 4[J5]− [J3] τ [J3] + [J2] τ̄ [J3]− [J2] τ̄ [J3] + [J2] τ [J3]− [J2] 17 −τ −τ̄ −τ̄ −τ
[J18] 0 0 [J2] [J3] 0 4[J5]− [J2] τ [J2] + [J3] τ̄ [J2]− [J3] τ̄ [J2] + [J3] τ [J2]− [J3] 18 −τ τ̄ −τ̄ τ

[J19] 0 0 [J1] [J4] 0 4[J5]− [J1] τ [J1] + [J4] τ̄ [J1]− [J4] τ̄ [J1] + [J4] τ [J1]− [J4] 19 −1 −1 −1 −1

[J20] 0 0 0 [J5] 0 4[J5] [J5] −[J5] [J5] −[J5] 20 0 0 0 0

[J21] 0 0 0 [J4] [J1] 4[J5] + [J1] [J4] −[J4] [J4] −[J4] 21 1 1 1 1

[J22] 0 0 0 [J3] [J2] 4[J5] + [J2] [J3] −[J3] [J3] −[J3] 22 τ −τ̄ τ̄ −τ
[J23] 0 0 0 [J2] [J3] 4[J5] + [J3] [J2] −[J2] [J2] −[J2] 23 τ τ̄ τ̄ τ

[J24] 0 0 0 [J1] [J4] 4[J5] + [J4] [J1] −[J1] [J1] −[J1] 24 1 −1 1 −1

[J25] 0 0 0 0 [J5] 5[J5] 0 0 0 0 25 0 0 0 0

s0ŝ1 s1ŝ1 s2ŝ1 s3ŝ1 s4ŝ1 s0ŝ2 s1ŝ2 s2ŝ2 s3ŝ2 s4ŝ2 s0ŝ3 s1ŝ3 s2ŝ3 s3ŝ3 s4ŝ3 s0ŝ4 s1ŝ4 s2ŝ4 s3ŝ4 s4ŝ4

[J1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[J2] 2 τ −τ̄ τ̄ −τ 2 τ −τ̄ τ̄ −τ 2 τ −τ̄ τ̄ −τ 2 τ −τ̄ τ̄ −τ
[J3] 3 τ τ̄ τ̄ τ 3 τ τ̄ τ̄ τ 3 τ τ̄ τ̄ τ 3 τ τ̄ τ̄ τ

[J4] 4 1 −1 1 −1 4 1 −1 1 −1 4 1 −1 1 −1 4 1 −1 1 −1

[J5] 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0

[J6] 4 + τ τ2 −τ̄ τ2 −τ̄ 4− τ̄ τ −τ̄2 τ −τ̄2 4 + τ̄ τ̄2 −τ τ̄2 −τ 4− τ τ̄ −τ2 τ̄ −τ2

[J7] 3 + 2τ τ3 τ̄2 −τ −1 3− 2τ̄ τ2 τ̄3 −1 −τ̄ 3 + 2τ̄ −τ̄ −1 τ̄3 τ2 3− 2τ −1 −τ τ̄2 τ3

[J8] 2 + 3τ τ3 −τ̄2 −τ 1 2− 3τ̄ τ2 −τ̄3 −1 τ̄ 2 + 3τ̄ −τ̄ 1 τ̄3 −τ2 2− 3τ −1 τ τ̄2 −τ3

[J9] 1 + 4τ τ2 τ̄ τ2 τ̄ 1− 4τ̄ τ τ̄2 τ τ̄2 1 + 4τ̄ τ̄2 τ τ̄2 τ 1− 4τ τ̄ τ2 τ̄ τ2

[J10] 5τ 0 0 0 0 −5τ̄ 0 0 0 0 5τ̄ 0 0 0 0 −5τ 0 0 0 0

[J11] 5τ 2τ 0 2τ 0 −3τ̄ 0 2τ̄ 0 2τ̄ 5τ̄ 2τ̄ 0 2τ̄ 0 −3τ 0 2τ 0 2τ

[J12] 5τ 2τ2 0 −2 0 −τ̄ 0 −2τ̄2 0 2 5τ̄ −2 0 2τ̄2 0 −τ 0 2 0 −2τ2

[J13] 5τ 2τ2 0 −2 0 τ̄ 0 2τ̄2 0 −2 5τ̄ −2 0 2τ̄2 0 τ 0 −2 0 2τ2

[J14] 5τ 2τ 0 2τ 0 3τ̄ 0 −2τ̄ 0 −2τ̄ 5τ̄ 2τ̄ 0 2τ̄ 0 3τ 0 −2τ 0 −2τ

[J15] 5τ 0 0 0 0 5τ̄ 0 0 0 0 5τ̄ 0 0 0 0 5τ 0 0 0 0

[J16] 1 + 4τ τ2 τ̄ τ2 τ̄ 4τ̄ − 1 −τ −τ̄2 −τ −τ̄2 1 + 4τ̄ τ̄2 τ τ̄2 τ 4τ − 1 −τ̄ −τ2 −τ̄ −τ2

[J17] 2 + 3τ τ3 −τ̄2 −τ 1 3τ̄ − 2 −τ2 τ̄3 1 −τ̄ 2 + 3τ̄ −τ̄ 1 τ̄3 −τ2 3τ − 2 1 −τ −τ̄2 τ3

[J18] 3 + 2τ τ3 τ̄2 −τ −1 2τ̄ − 3 −τ2 −τ̄3 1 τ̄ 3 + 2τ̄ −τ̄ −1 τ̄3 τ2 2τ − 3 1 τ −τ̄2 −τ3

[J19] 4 + τ τ2 −τ̄ τ2 −τ̄ τ̄ − 4 −τ τ̄2 −τ τ̄2 4 + τ̄ τ̄2 −τ τ̄2 −τ τ − 4 −τ̄ τ2 −τ̄ τ2

[J20] 5 0 0 0 0 −5 0 0 0 0 5 0 0 0 0 −5 0 0 0 0

[J21] 4 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1

[J22] 3 τ τ̄ τ̄ τ −3 −τ −τ̄ −τ̄ −τ 3 τ τ̄ τ̄ τ −3 −τ −τ̄ −τ̄ −τ
[J23] 2 τ −τ̄ τ̄ −τ −2 −τ τ̄ −τ̄ τ 2 τ −τ̄ τ̄ −τ −2 −τ τ̄ −τ̄ τ

[J24] 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 −1

[J25] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The last 5 columns of the first table above together with the second table give the species
table for a(Z/25).

5.6. Cyclic normal subgroups

The methods of Sections 5.3 and 5.4 can be combined to deal with cyclic normal sub-
groups, taking into account the action of the normaliser. Let P = 〈g〉 E G be a normal
subgroup of order p, and let C = CG(P ), a normal subgroup of G of index m a divisor of
p− 1. Thus we have G/C ∼= Z/m. Let k be a field of characteristic p containing a primitive
2mth root of unity. And as in Section 5.3, it is convenient to make a central extension of G
by an element of order two. In order to do this, we form the pullback G̃ of G → Z/m and
Z/2m→ Z/m:

1

��

1

��

Z/2

��

Z/2

��

1 // C // G̃

��

// Z/2m

��

// 1

1 // C // G //

��

Z/m //

��

1

1 1

Let h ∈ G be an element mapping to a generator of G/C, let hgh−1 = gq, and let

x =
∑

16j6p−1

gj ∈ kP 6 kG.

Then we have xp = 0, h2m ∈ C 6 G̃, hx = qxh. Let η be a square root of q in k, and let Si
(i ∈ Z/2m) be the simple kG-module with a basis vector vi such that C acts trivially, and
hvi = ηivi. The functors Fi of Section 5.4 is designed to pick out the socles of the Jordan
blocks of length i of the action of kP . Tensoring with S2 moves us down one radical layer of
these Jordan blocks, so to obtain a suitably symmetric definition, we should define

Fi(M) = S−i ⊗
Ker(x) ∩ Im(xi−1)

Ker(x) ∩ Im(xi)
.

With this definition, as in Proposition 5.4.2, for 1 6 k 6 p− 1 we have

Fk(M ⊗N) ∼=
⊕
i,j

ci,j,kFi(M)⊗ Fj(N).

with the same coefficients ci,j,k as before.
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Theorem 5.6.1. We have p− 1 algebra homomorphisms ŝi : aC(G̃)→ aC(G̃/P )

ŝi : [M ] 7→
p−1∑
k=1

2 cos(ikπ/p)[Fk(M)]

with 0 < i < p. They are continuous with respect to the norm, and extend to give maps of
Banach algebras ŝi : â(G̃)→ â(G̃/P ).

Proof. As in the proof of Theorem 5.4.3, if s is a non-Brauer species of a(Z/poZ/2m),
the map

ŝ : [M ] 7→
p−1∑
k=1

s([Jk])[Fk(M)]

defines an algebra homomorphism ŝ : aC(G̃)→ aC(G̃/P ), which is the identity on the subal-
gebra aC(G̃/P ) ⊆ aC(G̃). This is continuous with respect to the norm, and so it extends to
give a map of Banach algebras ŝ : â(G̃)→ â(G̃/P ).

If s is a non-Brauer species of a(Z/poZ/2m), then the map ŝ only depends on the value
of s on the elements [Jk]. We are in the situation where d = 1 in Theorem 5.3.1, and so we
have

a(Z/po Z/2m) ∼= Z[X, Y ]/(Y 2m − 1, (X − Y − Y −1)fp(X)).

The element [Jk] corresponds to fk(X), which is in the subring generated byX. The 2(p−1)m
non-Brauer species si,j are given by X 7→ ζ i2p + ζ−i2p = 2 cos(iπ/p), Y 7→ ζj2m, with 0 < i < p,
0 6 j < 2m. The value of si,j on the elements [Jk] therefore only depends on i, and we write
ŝi for the common value of the ŝi,j. �

This theorem may be used in order to construct all the species of the Frobenius group
a(Z/pnoZ/m) with m coprime to p, and show that it is semisimple. As in that case, we do
need one more ring homomorphism

ŝ0 : a(Z/pn+1 o Z/2m)→ a(Z/pn o Z/2m)

as in Lemma 5.5.1, constructed in a similar way. Even though the tensor products are
more complicated than in the cyclic case, working modulo the ideal spanned by the modules
Jpn ⊗ Si, the tensor product relations (5.5.2) still hold. In the proof, instead of preserving
dimension, we have to preserve Brauer species, and so the map is given by

ŝ0 : [J2bpn±r]→ [S−d((2b−1)pn±r) ⊕ S−d((2b−3)pn±r) ⊕ · · · ⊕ S−d(3pn±r) ⊕ S−d(pn±r)

⊕ Sd(pn±r) ⊕ Sd(3pn±r) ⊕ · · · ⊕ Sd((2b−3)pn±r) ⊕ Sd((2b−1)pn±r)][Jpn ]± [Jr]

and ŝ0 : [Si] 7→ [Si]. The 2mpn species of a(Z/pn o Z/2m) are then given by

s`0,j ŝ`1 . . . ŝ`n−1

with 0 6 `i 6 p − 1 for 0 6 i 6 n − 1, and with 0 6 j < 2m. Restricting to the range
0 6 j < m gives the species for a(Z/pn o Z/m).

Remark 5.6.2. All these species satisfy s([M∗]) = s([M ]) for all modules M . It follows
that a(Z/pn o Z/m) is a symmetric Banach ∗-algebra, see Section 3.4.
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5.7. An integral example

In modular representation theory of finite groups, finite representation type implies that
the representation ring is semisimple. Here we give an example to show that this no longer
holds in integral representation theory. Let Z2 denote the ring of 2-adic integers, and consider
the group ring Z2G, where G = Z/4, the cyclic group of order four. Troy [92], Roiter [84]
showed that there are nine isomorphism classes of indecomposable finitely generated Z2-free
Z2G-modules. Reiner [77] denotes the basis elements of the representation ring correspond-
ing to these indecomposable modules c1, . . . , c9, and computes the tensor products, which
are as in the following table.

c1 c2 c3 c4 c5 c6 c7 c8 c9

c2 c1 c3 c4 c6 c5 c7 c8 c9

c3 c3 2c4 2c3 c4 + c9 c4 + c9 c3 + c4 + c9 c3 + c4 + c9 2c9

c4 c4 2c3 2c4 c3 + c9 c3 + c9 c3 + c4 + c9 c3 + c4 + c9 2c9

c5 c6 c4 + c9 c3 + c9 c1 + 2c9 c2 + 2c9 c8 + 2c9 c7 + 2c9 3c9

c6 c5 c4 + c9 c3 + c9 c2 + 2c9 c1 + 2c9 c8 + 2c9 c7 + 2c9 3c9

c7 c7 c3 + c4 + c9 c3 + c4 + c9 c8 + 2c9 c8 + 2c9 c7 + c8 + 2c9 c7 + c8 + 2c9 4c9

c8 c8 c3 + c4 + c9 c3 + c4 + c9 c7 + 2c9 c7 + 2c9 c7 + c8 + 2c9 c7 + c8 + 2c9 4c9

c9 c9 2c9 2c9 3c9 3c9 4c9 4c9 4c9

The representation ring a(Z2G) and its representation ideals are displayed in the following
diagram:

a(Z2G)

amax(Z2G) = 〈c3, c4, c7, c8, c9〉

←The nil radical lives here

〈c3, c4, c9〉

aproj(Z2G) = 〈c9〉

The element c7−c8 squares to zero, and generates the nil radical. The quotient is semisimple,
with eight species given by the following table, where we have reordered the indecomposables
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to reflect the structure of the representation ideals.

c1 1 1 1 1 1 1 1 1

c2 1 1 1 1 1 1 −1 −1

c5 3 1 −1 1 1 −1 1 −1

c6 3 1 −1 1 1 −1 −1 1

c7 4 2 0 2 0 0 0 0

c8 4 2 0 2 0 0 0 0

c3 2 2 −2 0 0 0 0 0

c4 2 2 2 0 0 0 0 0

c9 4 0 0 0 0 0 0 0

It is fairly easy to see that the role of the element ρ is played by c9, which is the only
projective module. The dimension function is the first column of numbers in the table, and
is the only Brauer species. Every module is self-dual, and since all the entries in the table
above are real, it follows that a(Z2G) is a symmetric representation ring, see Section 3.4.

Remark 5.7.1. In the same paper, Reiner [77] shows that whenever G is a cyclic group
of order pn with n > 2, there is a non-zero nilpotent element in a(ZpG). This result is
extended in Reiner [79].

The representation type of ZpG is finite if and only if the Sylow p-subgroups of G are
trivial, or cyclic of order p or p2, see Heller and Reiner [52, 53]. Integral representations of
the dihedral group of order 2p are described in Lee [67]. It would be interesting to know the
tensor products of integral representations in cyclic and dihedral cases of finite representation
type.

5.8. The group SL(2, q)

Let q = pm be a power of a prime p, and let k be a field containing Fq, and let G =
SL(2, q). In this section, we examine the two dimensional natural module M for SL(2, q)
over k. The goal is to show that γG(M) = 2 cos(π/q). On the way to this, we shall show
that the subring of a(G) generated by summands of tensor powers of M is isomorphic to a
ring of algebraic integers Z[2 cos(π/q)], which in turn is the real subring of the cyclotomic
integers Z[ζq] where ζq = e2πi/q.

We shall use the theory of tilting modules T (n) for SL(2, k̄), which turn out to be the
direct summands of the natural module L(1). A general discussion of tilting modules for
reductive groups may be found in Donkin [36], to which we refer for general background.
There are also relevant discussions of summands of tensor powers of the natural SL(2, q)-
modules in Alperin [4] and Craven [32].

The simple SL(2, k̄)-modules L(n) are indexed by their highest weight, which in this
case is an integer n > 0. In particular, L(0) is the trivial module, L(1) is the natural two
dimensional module, and for 0 6 n 6 p− 1 we have L(n) ∼= Sn(L(1)), the symmetric powers
of the natural module.
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Steinberg’s tensor product theorem states that if n =
∑m−1

j=0 njp
j with 0 6 nj 6 p − 1

then

L(n) ∼=
m−1⊗
j=0

F j(L(nj)).

The restriction of the modules L(n) to SL(2, q) for 0 6 n < q, which we continue to denote
L(n), form a complete set of irreducible modules for SL(2, q).

From [36], we know that the tilting module T (n) (Donkin’s notation is M(λ)) is the
unique indecomposable summand of L(1)⊗n with n as a highest weight. A module is a direct
sum of tilting modules if and only if it is a direct summand of a direct sum of tensor powers
of L(1). Tilting modules are determined by their weights.

Theorem 5.8.1. Let L(1) be the natural two dimensional module for SL(2, q) as above.
Then L(1) is algebraic, and we have

γ(L(1)) = 2 cos π/q.

More generally, if 1 6 j 6 p− 1 then

γ(L(j)) = sin((j + 1)π/q)/ sin(π/q).

Proof. Let atilt(SL(2, k̄)) be the subring of the representation ring of rational SL(2, k̄)-
modules generated by the tilting modules. Then atilt(SL(2, k̄)) is isomorphic to the subring
of Z[t, t−1] generated by t+ t−1, with the powers of t representing the non-negative weights,
and L(1) corresponding to t+ t−1.

Let fj(t) be the polynomials defined in Definition 5.2.3. Then we have

fj(t+ t−1) = tj−1 + tj−3 + · · ·+ t−j+3 + t−j+1

and

(t+ t−1)fj(t+ t−1) = fj+1(t+ t−1) + fj−1(t+ t−1).

In particular,

fq(t+ t−1) = tq−1 + tq−3 + · · ·+ t−q+3 + t−q+1

=
m∏
j=1

(tp
j−1(p−1) + tp

j−1(p−3) + · · ·+ t−p
j−1(p−1))

=
m∏
j=1

fp(t
pj + t−p

j

)

is the character of the Steinberg module L(q − 1) for SL(2, q). This a projective module
of dimension q. It follows that in a(G)/a(G, 1), we have fq[L(1)] = 0. In particular, by
Lemma 1.9.3, [L(1)] is algebraic in a(G). Now by Lemma 5.2.6, the irreducible factors of
fq(X) exactly correspond to the Steinberg tensor product factors of

L(q − 1) =
m−1⊗
j=0

F j(L(p− 1)).
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No smaller tensor product of these modules is projective, so fq is the minimal polynomial
of L(1) in a(G)/a(G, 1). Again using Lemma 5.2.6, the largest of the roots of fq(X) is
2 cos(π/q). Applying Theorem 3.5.1, it follows that γ(L(1)) = 2 cosπ/q. If 1 6 j 6 p − 1
then [L(j)] = fj+1[L(1)] and so

γ(L(j)) = fj+1(2 cosπ/q) = sin((j + 1)π/q)/ sin(π/q). �

Conjecture 5.8.2. If M is a kG-module with γ(M) < 2 then for some integer q > 2
we have γ(M) = 2 cos(π/q).

It is even plausible that if γ(M) = 2 cos(π/q) then q is a power of the characteristic p of
the coefficient field k. We know of no counterexamples to this statement.

5.9. The Klein four group

Let G = Z/2×Z/2 and k an algebraically closed field of characteristic two. It was shown
in Conlon [27] that elements of he representation ring aC(G) are separated by species (which
he calls G-characters) s : aC(G) → C, and therefore aC(G) is semisimple. The species are
described there, and more explicitly in Benson and Parker [12], and we repeat the description
here.

The set of species for aC(G) falls naturally into three subsets:

(i) The dimension.
(ii) A continuous set of species parametrised by the non-zero complex numbers z ∈

C \ {0}.
(iii) A discrete set of species parametrised by the set of ordered pairs (N, λ) with N > 0

in Z and λ ∈ P1(k), the projective line over k.

The set of indecomposable kG-modules also falls naturally into three subsets:

(i) The projective indecomposable module of dimension four.
(ii) The syzygies of the trivial module Ωm(k), m ∈ Z, of dimension 2|m|+ 1.

(iii) A set of representations parametrised by the set of ordered pairs (n, λ) with n > 0
in Z and λ ∈ P1(k), of dimension 2n.

Define infinite matrices A and B as follows.

A N →
1 2 3 4 5 · · ·

n 1 2 0 0 0 0

↓ 2 2 2 0 0 0

3 2 2 2 0 0

4 2 2 2 2 0

5 2 2 2 2 2
...

. . .

B N →
1 2 3 4 5 · · ·

n 1
√

2 −
√

2 0 0 0

↓ 2 2 2 0 0 0

3 2 2 2 0 0

4 2 2 2 2 0

5 2 2 2 2 2
...

. . .
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Then the representation table is as follows.

Parameters dim z (N,∞) (N, 0) (N, 1) (N, λ1) (N, λ2) (N, λ3) · · ·
(Projective) 4 0 0 0 0 0 0 0

m 2|m|+ 1 zm 1 1 1 1 1 1

(n,∞) 2n 0 A 0 0 0 0 0

(n, 0) 2n 0 0 A 0 0 0 0

(n, 1) 2n 0 0 0 A 0 0 0

(n, λ1) 2n 0 0 0 0 B 0 0

(n, λ2) 2n 0 0 0 0 0 B 0

(n, λ3) 2n 0 0 0 0 0 0 B
...

Thus there are three special points ∞, 0, 1 ∈ P1 where the matrix A is used, and for the
rest of the points the matrix B is used. The members of the continuous family of species
with |z| 6= 1 are not dimension bounded; the rest of the species are. There is a single Brauer
species dim, which is dimension bounded but not core bounded; the rest of the dimension
bounded species are core bounded. So the set of core bounded species is S1 ∪ (P1(k)×Z>0).
The weak* topology on this may be described as follows. The subset S1 has the usual
topology inherited from C. The subset P1(k) × Z>0 is discrete, but its closure is the one
point compactification, using the point 1 ∈ S1. So the space ∆(G) is a wedge of a circle
with the one point compactification of the discrete space P1(k)× Z>0.

5.10. The alternating group A4

Let k be an algebraically closed field of characteristic two, and let G be the alternating
group A4. Let V4 be the normal subgroup of G of index three, isomorphic to the Klein
four group. The indecomposable kG-modules are described in Conlon [27] in terms of those
of kV4; see also Conlon [28] and the appendix to Benson [8]. Let F4 = {0, 1, ω, ω̄} ⊆ k,
and write k, ω and ω̄ for the three one dimensional representations where a generator h for
G/V4

∼= Z/3 goes to 1, ω, ω̄ respectively. We also have an action of G/V4 on P1(k), in which
h sends λ to λh = 1/(1 + λ). The fixed points of this action are ω and ω̄.

The set of indecomposable kG-modules falls naturally into three subsets:

(i) The projective indecomposables Pk, Pω and Pω̄, each of dimension four.
(ii) The syzygies of the simple modules Ωn(k), Ωn(ω) and Ωn(ω̄), each of which restrict

to Ωn(k) as a kV4-module.
(iii) For each orbit of G/V4 on P1(k) \ {ω, ω̄} and each n ∈ Z>0 there is an indecompos-

able kG-module of dimension 6n which restricts to the sum of the indecomposable
kV4-modules corresponding to (n, λ), (n, 1+1/λ), (1, 1/(1+λ)); for each λ ∈ {ω, ω̄}
and each n ∈ Z>0 there are three kG-modules of dimension 2n, restricting to the
kV4-module corresponding to (n, λ).
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We define one more infinite matrix C as follows.

C N →
1 2 3 4 5 6 · · ·

n 1
√

2 −
√

2 0 0 0 0

↓ 2 2 2 0 0 0 0

3 −1 −1 −1 0 0 0

4 −1 −1 −1 −1 0 0

5 2 2 2 2 2 0

6 −1 −1 −1 −1 −1 −1
...

. . .

After the first row, each column repeats with period three where it is non-zero. Then
the representation table is as follows. As in the appendix to [8], we have used the Atlas
conventions [30] to illustrate the relationship with the tables for the Klein four group.

Params dim z (N,∞) (N, 0) (N, 1) (N,ω) (N, ω̄) (N,λ) (N,λh) (N,λh
2
) fus h z (N,ω) (N, ω̄)

(Proj) 4 0 0 0 0 0 0 0 0 0 : 1 0 0 0

m 2|m|+ 1 zm 1 1 1 1 1 1 1 1 : ε zm 1 1

(n,∞) 2n 0 A 0 0 0 0

(n, 0) 2n 0 A 0
(n, 1) 2n 0 A

(n, ω) 2n 0 B : ε 0 C 0

(n, ω̄) 2n 0 B : ε 0 0 C

(n, µ) 2n 0 Bδλ,µ 0 0 0 0

(n, µh) 2n 0 0 Bδλ,µ

(n, µh
2
) 2n 0 Bδλ,µ

Here, ε ∈ {−1, 0, 1} is congruent to the dimension modulo three. Just as in the case of
the Klein four group, the structure space ∆(G) has a discrete part and a continuous part.
The continuous part is ∆max(G), and consists of three disjoint circles, corresponding to the
columns headed “z” (the one on the right side is really two, one for each non-trivial character
of the quotient G/V4). All but the second row of this table (which is really an infinite set
of rows) represent elements of a(G,max), on which these columns take the value zero. The
closure of the discrete part is again its one point compactification, attached at the basepoint
of one of the three circles.

Expanding out the table for the quotient amax(G) from Atlas format to full notation, we
obtain the following table:

Ωm(k) zm zm zm

Ωm(ω) zm ωzm ω̄zm

Ωm(ω̄) zm ω̄zm ωzm

This is exactly the character table for Z×Z/3. This is because amax(G) is isomorphic to the
group ring of Picmax(G) ∼= Z× Z/3, a group with generators Ω(k) and ω.
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5.11. Dihedral 2-groups

The indecomposable modules for the dihedral groups D2n (n > 3) were classified by
Ringel [82]. Let k be a field of characteristic two, let

G = D2n = 〈x, y | x2 = 1, y2 = 1, (xy)2n−1

= 1〉,

and let X = x− 1, Y = y − 1 as elements of kG. Then

kG = k〈X, Y 〉/(X2, Y 2, (XY )2n−2 − (Y X)2n−2

).

The modules come in two types, called strings and bands. The ones of odd dimension
are string modules.

The string modules M(C) correspond to words C = w1w2 . . . wm where the wi alternate
between X±1 and Y ±1. The dimension of the module is m+ 1. Thus for example the word
X−1Y XY X−1Y −1 gives a module with schema

•
X
// • •

Y
oo •

X
oo •

Y
oo

X
// •

Y
// •

For a particular order of dihedral group, there is also a restriction on the number of consec-
tutive letters which are all direct or all inverse. The module corresponding to a given word
w1w2 . . . wm has a k-basis v0, v1, v2, . . . , vm. The elements X and Y in kG act in the manner
indicated by the schema, sending each basis either to an adjacent basis element or to zero.
In the example, we have

X : v0 7→ v1, v1 7→ 0, v2 7→ 0, v3 7→ v2, v4 7→ v5, v5 7→ 0, v6 7→ 0,

Y : v0 7→ 0, v1 7→ 0, v2 7→ v1, v3 7→ 0, v4 7→ v3, v5 7→ v6, v6 7→ 0.

Modules coming from two different words are isomorphic if and only if one word is the inverse
of the other. To invert a word, reverse the letters and invert each one. So for example the
inverse of the word above is Y XY −1X−1Y −1X.

The band modules M(C, φ) are similar, except that the word has to have even length,
and the beginning and end of the word are linked to make a cycle. Instead of putting one
basis element at each vertex, we take a vector space V and an indecomposable automorphism
φ : V → V , and we put a copy of V at each vertex. The arrows are identity maps, but the
two end vertices are identified using φ. So for example the word above gives us a schema

V
X
// V V

Y
oo V

X
oo V

Y
oo

X
// V

Y

φ

OO

The word C is not allowed to be a power of a smaller word, as this would be absorbed into
making the vector space V larger. Modules M(C, φ) and M(C ′, φ′) are isomorphic if and
only if either C and C ′ differ by a rotation and φ = φ′, or C−1 and C ′ differ by a rotation
and φ−1 = φ′.

The band modules all have even dimension. So the odd dimensional modules are string
modules for words of even length. Inverting the word if necessary, we may assume that it
starts with X±1 and ends with Y ±1, and then we don’t need to bother about equivalent
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words. Thus the odd dimensional modules are of the form M(C) with C = X±1 . . . Y ±1.
This includes the empty word, which we take to corrspond to the trivial module.

Lemma 5.11.1. If M is an odd dimensional indecomposable kD2n-module then M↓〈x〉 is
a direct sum of a one dimensional trivial module and a projective module.

Proof. This follows immediately from the description above. The one dimensional
summand corresponds to the right hand vertex. The remaining pairs of vertices give free
summands as modules for k〈x〉 = k〈X〉. �

The next two theorems come from Archer [5].

Theorem 5.11.2. If M and N are odd dimensional indecomposable kD2n-modules then
M ⊗N has a unique odd dimensional indecomposable summand.

Proof. This follows by restricting to 〈x〉 and using Lemma 5.11.1. �

It follows from this theorem that the isomorphism classes of odd dimensional indecompos-
able kD2n-modules form an abelian group, equal to Picmax(a(kD2n)) (see Section 1.7). The
product of [M ] and [N ] in this group is the isomorphism class of the unique odd dimensional
summand of M ⊗N . The inverse of [M ] is [M∗].

Theorem 5.11.3. This group is torsion free.

Remark 5.11.4. Zemanek [98] showed that there are non-zero nilpotent elements in
a(D2n) (n > 3); see also Benson and Carlson [11], Heldner [51]. So we cannot hope to
separate elements of a(D2n) using species, as we did in the case of the Klein four group.

The papers of Herschend [54, 55] study a different tensor product on representations of
dihedral group algebras.

5.12. Semidihedral 2-groups

Let k be a field of characteristic two, and let

G = SD2n = 〈x, y | x2 = 1, y2n−1

= 1, yx = xy2n−2−1〉.

In Section 3 of Bondarenko and Drozd [17], an explicit isomorphism is given between the
quotient by the one dimensional socle, kG/Soc(kG), and the algebra Λ2n−1−1 where

Λm = k〈X, Y 〉/(X3, Y 2, X2 − (Y X)mY ).

Since every non-projective indecomposable kG-module has Soc(kG) in the kernel, classifi-
cation of the indecomposable kG-modules amounts to classification of the indecomposable
Λ2n−1−1-modules. The indecomposable Λm-modules for m > 1 were classified by Crawley-
Boevey [33]; see also Geiß [44]. They have a description in terms similar to the strings and
bands described in the last section, but more complicated. There are four types, called asym-
metric strings, symmetric strings, asymmetric bands, and symmetric bands. The asymmetric
and symmetric bands have even dimension. If M is an odd dimensional indecomposable kG-
module then M is an asymmetric or symmetric string module corresponding to a word of
even length. In particular, just as in the dihedral case, the restriction of an odd dimensional
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module to the two dimensional subalgebra generated by Y is trivial plus free. So we get the
following theorem.

Theorem 5.12.1. If M and N are odd dimensional indecomposable kSD2n-modules then
M ⊗N has a unique odd dimensional indecomposable summand. �

Again we deduce that the isomorphism classes of odd dimensional kSD2n-modules form
an abelian group, equal to Picmax(a(kSD2n)). But this time it is not torsion free. There is
a self-dual module M = Λ2n−1−1/〈Y X〉 of dimension 2n−1 + 1, with simple socle, such that
M ⊗M ∼= k ⊕ kG. Thus [M ]2 = 1 in this group.

5.13. Finite 2-groups

The following conjecture appears in [10].

Conjecture 5.13.1. Let G be a finite 2-group and k an algebraically closed field of
characteristic 2. If M is an indecomposable kG-module of odd dimension then M ⊗M∗ is a
direct sum of k and indecomposable modules of dimension divisible by four.

The conjecture is true in the case of cyclic groups, dihedral groups, and semidihedral
groups.

Given this conjecture, the isomorphism classes of indecomposables of odd dimension form
a discrete abelian group, equal to Pic(a(G)), and amax(G) is its group algebra, weighted with
the function M 7→ dim coremax(M).

5.14. Some Hopf algebras

Whenever the modular representation ring of a finite group is finite dimensional, it is
semisimple. We saw in Section 5.7 that this is not the case for integral representation rings.
We shall see in this section that it is also not true for finite dimensional Hopf algebras over
a field. To illustrate this, we examine some generalisations of Hopf algebras introduced by
Earl Taft [90], which are neither commutative nor cocommutative. They are similar to the
group algebras of the Frobenius groups studied in Section 5.3, but sufficiently different that
we find it worthwhile to spell out the details. The end result is that the radical is contained
in the ideal of projective modules, but is non-zero.

We begin with the smallest case, which is Sweedler’s four dimensional Hopf algebra; see
page 89–90 of Sweedler’s book, as well as Remark 5.8 in Cibils [26] and Remark 1.5.6 in
Montgomery [70]. Let k be a field of characteristic not equal to two, and consider the k-
algebra with a vector space basis consisting of elements 1, g, x and gx. The multiplication
is given by g2 = 1, x2 = 0, xg = −gx. The comultiplication is given by ∆(g) = g ⊗ g,
∆(x) = 1⊗ x+ x⊗ g. The counit is given by ε(g) = 1, ε(x) = 0, and the antipode is given
by S(g) = g, S(x) = gx, S(gx) = −x, with S4 = 1.

This Hopf algebra has four isomorphism classes of indecomposables. There are two
simples, S0 and S1, and their projective covers P0 and P1. The tensor products are given by
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the following table:

[S0] [S1] [P0] [P1]

[S0] [S0] [S1] [P0] [P1]

[S1] [S1] [S0] [P1] [P0]

[P0] [P0] [P1] [P0] + [P1] [P0] + [P1]

[P1] [P1] [P0] [P0] + [P1] [P0] + [P1]

Note, in particular, that the representation ring is commutative. Its radical is generated by
[P0]− [P1]. There are three species, given by the following table.

s1 s2 s3

[S0] 1 1 1

[S1] 1 −1 1

[P0] 0 0
√

2

[P1] 0 0
√

2

The representation ideals Xmax and Xproj are equal, and consist of the projectives [P0] and
[P1]. So there is only one possible non-zero choice for a representation ideal X, namely
X = Xmax = Xproj. We have γ(S0) = γ(S1) = 1, γ(P0) = γ(P1) = 0.

The family of generalised Taft algebras Hm,n(q) [90] has the Sweedler four dimensional
algebra as the case H2,2(−1). Their representation rings were studied in [24, 56, 68, 76, 96].
They were constructed as examples of Hopf algebras whose antipode has arbitrarily large
finite (even) order. Let k be a field having a primitive mth root of unity η, with m an integer
at least two; in particular, we assume that k has characteristic coprime to m. Let n > 2 be
a divisor of m, and let q = ηd, a primitive nth root of unity, where d = m/n. The algebra
Hm,n(q) is generated over k by elements h and x satisfying hm = 1, xn = 0, hx = qxh. The
comultiplication is given by ∆(h) = h ⊗ h, ∆(x) = 1 ⊗ x + x ⊗ h, the counit is given by
ε(h) = 1, ε(x) = 0. The antipode is given by S(h) = h−1, S(x) = −xh−1, and has order 2n.
For reasons similar to those given in Section 5.3, we consider the double cover H2m,n(q) of
Hm,n(q) first and then identify a(Hm,n(q)) as a subring of a(H2m,n(q)).

So we now suppose that the field k has a primitive 2mth root of unity η, the integer
n > 2 divides m, and q = η2d is a primitive nth root of unity, where d = m/n. The Hopf
algebra H2m,n(q) over k has generators h and x satisfying h2m = 1, xn = 0, hx = qxh. The
comultiplication, counit and antipode are as before.

The algebra H2m,n(q) has 2m isomorphism classes of simple modules Si, i ∈ Z/2m, all
one dimensional, corresponding to the characters of the subgroup generated by h. Letting vi
be a basis element for Si, we have hvi = ηivi and xvi = 0. The space Ext1H2m,n(q)(Si, Sj) is one
dimensional if j = i + 2d and zero dimensional otherwise. The projective indecomposable
modules are uniserial of length n, with composition factors (from top to bottom) of Pi
being Si, Si+2d, Si+4d, . . . , Si−2d. So H2m,n(q) is a Frobenius algebra, but not a symmetric
algebra. Every indecomposable module is a quotient of a projective indecomposable module.
We write Jj (1 6 j 6 n) for the indecomposable module of length j with composition
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factors S−d(j−1), S−d(j−3), . . . , Sd(j−1). A complete list of the 2mn isomorphism classes of

indecomposable H̃m,n(q)-modules is given by the modules Jj⊗Si with 1 6 j 6 n, 0 6 i < 2m.
The representation ring a(Hm,n(q)) is commutative, even though this Hopf algebra is not
quasitriangular. As in Section 5.3, we have

J2 ⊗ Jj ∼=


J2 j = 1

Jj+1 ⊕ Jj−1 2 6 j 6 n− 1

(Jn ⊗ Sd)⊕ (Jn ⊗ S−d) j = n.

Theorem 5.14.1. We have

a(H2m,n(q)) ∼= Z[X, Y ]/(Y 2m − 1, (X − Y d − Y −d)fn(X))

where X corresponds to J2 and Y corresponds to S1, and the polynomials fi are described
in Definition 5.2.3. This ring has a basis consisting of the X iY j with 0 6 i < n and
0 6 j < 2m.

Proof. This follows from the above relations, as in Theorem 5.2.7, Remark 5.2.10 and
Theorem 5.3.1. The element fj(X) again corresponds to [Jj]. �

Our next task is to identify the species and radical of this representation ring.

Lemma 5.14.2. In Z[Y, Y −1], for j > 0 we have (Y − Y −1)fj(Y + Y −1) = Y j − Y −j.

Proof. We prove this by induction on j, the cases j = 0 and j = 1 being trivial to
verify. For the inductive step, with j > 2, we have

(Y − Y −1)fj+1(Y + Y −1) = (Y − Y −1)((Y + Y −1)fj(Y + Y −1)− fj−1(Y + Y −1))

= (Y + Y −1)(Y j − Y −j)− (Y j−1 − Y −j+1)

= Y j+1 − Y −j−1. �

Lemma 5.14.3. In Z[X, Y, Y −1] the element (Y d− Y −d)fn(X)− (Y m− Y −m) is divisible
by X − Y d − Y −d.

Proof. It follows from Lemma 5.14.2 that (Y d−Y −d)fn(Y d +Y −d) = Y m−Y −m. Now
use the factor theorem. �

Proposition 5.14.4. The element (Y d − Y −d)fn(X) squares to zero in a(H2n,m(q)).

Proof. Since Y m − Y −m is zero in a(H2n,m(q)), it follows from Lemma 5.14.3 that the
element (Y d − Y −d)fn(X) is divisible by (X − Y d − Y −d). Hence its square is divisible by
(X − Y d − Y −d)fn(X), which is zero in a(H2n,m(q)). �

Theorem 5.14.5. The nil radical of a(H2m,n(q)) is generated by (Y d − Y −d)fn(X), and
has Z-rank 2(m−d). There are 2(mn−m+d) species si,j of a(H2m,n(q)), and they are given
by

X 7→ ζ i2n + ζ−i2n = 2 cos(iπ/n)

Y 7→ ζj2m.
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where 0 6 i 6 n, 0 6 j < 2m, and if j is divisible by n then i ≡ j (mod 2n).
The ideal of projective modules is generated by fn(X), and the 2d Brauer species are the

ones with j divisible by n. The quotient aproj(H2m,n(q)) = a(H2m,n(q))/(fn(X)) is semisimple.

Proof. By Proposition 5.14.4, (Y d−Y −d)fn(X) is in the radical. Consider the quotient
a(H2m,n(q))/((Y d−Y −d)fn(X)). Since X−Y d−Y −d annihilates (Y d−Y −d)fn(X), we have

X(Y d − Y −d)fn(X) = (Y d + Y −d)(Y d − Y −d)fn(X).

We also have

(Y 2(m−d) + Y 2(m−2d) + · · ·+ Y 2d + 1)(Y d − Y −d)fn(X) = Y −d(Y 2m − 1)fn(X) = 0.

So the ideal generated by (Y d−Y −d)fn(X) is the Z-span of the elements Y i(Y d−Y −d)fn(X)
with 0 6 i < 2(m− d). The quotient therefore has rank 2(mn−m + d), and has a Z-basis
consisting of the X iY j with 0 6 i < n, 0 6 j < 2m, such that if i = n− 1 then 0 6 j < 2d.

For the species, we must satisfy the two relations Y 2m = 1 and (X−Y d−Y −d)fn(X) = 0.
The first implies that Y 7→ ζj2m with 0 6 j < 2m. Then the second relation becomes
(X − ζj2n − ζ

−j
2n )fn(X) = 0. The roots of fn(X) = 0 are X 7→ ζ i2n + ζ−i2n with 0 < i < n. So

the product has a repeated root unless ζj2n = ±1, namely j is divisible by n. In that case,
X 7→ 2 if j is divisible by 2n and X 7→ −2 otherwise. This accounts for the cases i = 0 and
i = n. The element fn(X) = [Jn] generates the projectives, and so the Brauer species are
the ones where fn(X) does not go to zero. This is the case where j is divisible by n. �

To go down from H2m,n(q) to Hm,n(q), we use the polynomials φi(y, z) given in Defini-
tion 5.3.3.

Theorem 5.14.6. a(Hm,n(q)) = a(H2m,n(q)/〈hm〉) ∼= Z[y, z]/(ym−1, (z−yd−1)φn(yd, z))
with y = Y 2 and z = XY d. This is a complete intersection of Z-rank mn, with a Z-basis
consisting of the monomials yizj with 0 6 i < m, 0 6 j < n.

The nil radical of a(Hm,n(q)) is generated by the element (yd − 1)φn(y, z), which squares
to zero. There are mn−m+ d species si,j of a(Hm,n(q)), and they are given by

y 7→ ζjm

z 7→ ζj+i2n + ζj−i2n

where 0 6 i 6 n, 0 6 j < m, and if j is divisible by n then i ≡ j (mod 2n).
The ideal of projective modules is generated by φn(yd, z), and the d Brauer species are the

one with j divisible by n. The quotient aproj(Hm,n(q)) = a(Hm,n(q))/(φn(yd, z)) is semisimple.

Proof. The proof of the first part is the same as the proof of Theorem 5.3.4. The second
part follows from Theorem 5.14.5. �

Remark 5.14.7. The Taft algebras Hn(q) are the case of the generalised Taft algebras
Hm,n(q) where m = n and d = 1.
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5.15. Some open problems

Throughout this section, G is a finite group, k is a field of characteristic p, and M is a
kG-module. Some of the following questions come from [10, 13]. Others have been around
for a while.

Question 5.15.1. If M is a kG-module, is γG(M ⊗M∗) = γG(M)2?

Question 5.15.2. Is â(G) a symmetric Banach ∗-algebra? If so, then by Proposi-
tion 3.4.2, we can deduce that Question 5.15.1 has a positive answer. More generally, develop
a good way of testing whether a representation ring is symmetric.

Question 5.15.3. If 1 < γG(M) < 2, is γG(M) = 2 cos π/n for some integer n > 4? If
this holds, is n a power of p?

Question 5.15.4. Is γG(M) an algebraic integer?

Question 5.15.5. Do the numbers cGn (M) satisfy a linear recurrence relation with con-
stant coefficients, for all sufficiently large values of n? If so, then Question 5.15.4 has a
positive answer.

Question 5.15.6. Let G be a finite 2-group and k an algebraically closed field of char-
acteristic 2. If M is an indecomposable kG-module of odd dimension then Conjecture 5.13.1
states that M ⊗M∗ is a direct sum of k and indecomposable modules of dimension divisible
by four. Is this true?

Question 5.15.7. The indecomposable modules for the dihedral and semidihedral groups
in characteristic two are known. How do their tensor products decompose? Compute the
radical of the representation ring. Is it nilpotent?

Question 5.15.8. What are the indecomposable modules for the quaternion groups in
characteristic two? We know that the group algebra has tame representation type, but a
classification of the modules is not known.

Question 5.15.9. Are there nilpotent elements in the representation ring of an elemen-
tary abelian 2-group (Z/2)r in characteristic two, when r > 3? The same question may be
asked of the representation ring of an exterior algebra of rank at least three in any charac-
teristic, regarded as a finite supergroup scheme.
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âX(G), 5, 75

absolute convergence, 16

action on Hilbert space, 47

Adams psi operations, 79, 87

adjoint map, 46

algebraic element, 25

alternating group A4, 105

amenable group, 59

analytic function, 18

antiautomorphism, 40

antilinear, 40

antipode, 109

augmentation map, 64

automatic continuity, 34

Banach

algebra, 31

commutative, 31

without unit, 31, 37
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